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Abstract Imaging spectroscopy is widely used in weed recognition, pest monitoring,

agricultural product quality control and other precision agricultural fields. In the present

study, an in-house-designed/developed field imaging spectroscopy system (FISS,

380–870 nm) was used to obtain the imaging spectra of soybean leaves at 344 wave-

lengths. The spatial and spectral information including the entropy, mean reflectivity and

standard deviation of the leaf images at different wavelengths were extracted; the

chlorophyll content was retrieved using multiple linear regression (MLR) together with the

spatial information and spectral information, and the results were compared with the results

derived with the Analytical Spectral Devices (ASD, FieldSpecFR spectrometer, Analytical

Spectral Devices Inc., USA) data that were generated using conventional single sensor

spectrometers. The results demonstrated that the entropy, standard deviation and other

features of the image were very good indicators of the leaf chlorophyll content, confirming

the idea that spatial information can be used to retrieve chlorophyll content, with an

accuracy equivalent to that of spectral information, and can provide information that

spectral reflectivity cannot provide. Thus, integrating spatial information and spectral

information can greatly improve the chlorophyll content retrieval accuracy and reduce the

estimation errors by 20 %. Due to the unique measurement method and image-spectrum-

in-one feature, the field imaging spectroscopy system (FISS) data can be conveniently used

to achieve accurate chlorophyll content retrieval, and the retrieval error was reduced by

30–45 % compared with that for the ASD data. FISS data and the proposed method of
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integrating both spectral and spatial information of imaging spectroscopy have potential

advantages in quantitative spectral analysis applied in agricultural biochemistry related

fields.

Keywords Imaging spectroscopy � Precision agriculture � Chlorophyll � Spectral analysis �
Field imaging spectroscopy system

Introduction

Chlorophyll is themost important pigment in plant photosynthesis or even themost important

organicmatter on Earth (Davies 2004; Blackburn et al. 2008). Changes in chlorophyll content

affect the physiological stress, development and aging process of plants and are also closely

related to the primary productivity. Thus, from the perspective of scientific research, espe-

cially research on plant-environment interactions or from the perspective of specific appli-

cations, such as applications in the fields of agriculture, forestry and environmental

management, access to information about the temporal and spatial variation of chlorophyll

content in leaves is very important (Blackburn et al. 2008). According to the principles of

spectroscopy, the absorption characteristics are usually determined based on the composition

and component content of the substance. Extracting chlorophyll information based on the

spectral features of plants using the principle of spectroscopy has become a major means of

estimating chlorophyll contents. This method has attracted widespread attention because of

its advantages of being fast, convenient and non-destructive. Numerous studies have been

conducted using spectral data to retrieve chlorophyll information at different time and space

scales in carrying platforms such as ground, aviation and aerospace (Botha et al. 2007; Xue

and Yang 2009; Huang et al. 2011; Main et al. 2011; Croft et al. 2014; Houborg 2013;

Schlemmer et al. 2013; Saberioon et al. 2014).

Imaging spectroscopy can be divided into two categories according to the carrying

platform of sensors and the applicable fields. One type is based on remote-sensing plat-

forms such as satellites and aircrafts. The most common one is aerospace remote sensing,

which is suitable for large-scale regional studies and applications. The other type is based

on a small ground application platform, i.e., the ground remote-sensing system. Because of

its compact size, flexibility and mobility, this type of system is widely used in agriculture,

including biochemical parameters retrieval (Monteiro et al. 2007; Fernández Pierna et al.

2012; Dong et al. 2013), crop/weed discrimination (Liu et al. 2010a; Zhang et al. 2012;

Dale et al. 2013), crop pest and disease monitoring (Nansen et al. 2009; Larbi et al. 2013),

quality control of agricultural products and meat (El Masry et al. 2007; Gowen et al. 2007;

Chen et al. 2013; Rustioni et al. 2014). Such systems can be divided into single sensor

spectrometers and imaging spectrometers depending on whether an image can be formed.

Compared with the single sensor spectrometer, an imaging spectroscopy system provides

not only spectral information but also a wealth of images and spatial details. For example,

the system developed in our study can achieve a spatial resolution of 2 mm when placed on

a 1-m-high observation platform (details will be described later in this paper). Usually,

different parts of the leaf will have discolored spots due to the health condition or the status

of nutritional stress, resulting in differences in the spectral properties of different parts of

the leaf (Nansen et al. 2009). Therefore, it is natural to wonder whether these spatial

differences or image features can be used to retrieve the chlorophyll content if different
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health statuses of leaves can lead to varying spatial features of the spectrum of leaves. The

spatial detail can only be obtained using imaging spectroscopy systems. Currently, most

ground-based studies on chlorophyll retrieval use Analytical Spectral Devices (ASD,

FieldSpecFR spectrometer, Analytical Spectral Devices Inc., USA) data generated by a

single sensor spectrometer or images with a small number of wavelengths that are gen-

erated by multi-spectral systems (Thenkabail et al. 2004; Grisham et al. 2010; Liu et al.

2010a, b; Prabhakar et al. 2013; Singh et al. 2013). Studies using imaging spectral data

have rarely been reported. In addition, almost all the studies that involved a high spatial

resolution field imaging spectroscopy system (FISS) only used the spectral information but

not the spatial information; thus, the advantage of the imaging spectroscopy system was

not fully exploited (Thenkabail et al. 2004; Nansen et al. 2009; Liu et al. 2010b; Prabhakar

et al. 2013; Singh et al. 2013).

In the present study, 100 soybean leaf images were collected using an in-house-de-

veloped FISS (also the first FISS in China). The spectral information (e.g., leaf reflectivity)

and image features (e.g., entropy and standard deviation) were extracted, key wavelengths

were selected using stepwise multiple regression and the chlorophyll content was estimated

using the spectral information, spatial information and the two in combination. In addition,

ASD data of these soy leaves were also obtained for comparison with the FISS data in

terms of the chlorophyll content estimation and to investigate the applicability of different

types of sensors for estimating the chlorophyll content of soy leaves. Our study attempted

to address the following topics regarding the use of FISS to extract chlorophyll content: (1)

Can the image features or spatial information be used to extract information about the

chlorophyll content of soy leaves? (2) Compared with spectral information alone, can the

combination of ‘‘spatial information’’ and ‘‘spectral information’’ help in improving the

accuracy of chlorophyll content estimations for soy leaves? (3) Evaluation of the perfor-

mance and potential of FISS in quantitative applications of spectral information in

agriculture.

Experimental design and data preprocessing

Experimental design

Experiment

The experiment was performed in the Huanjiang Observation and Research Station for

Karst Ecosystem, Chinese Academy of Sciences. Several fertilization gradients were set

up, and fertilizers with different nutrient ratios were used in the experimental soybean plot

to study the nutrients in rain-fed lands. Fresh leaves were picked from the upper part of the

plant on August 20, 2009 in the plot, stored in coolers and then rapidly transported back to

the laboratory.

Field imaging spectroscopy system

The FISS consists of a platform for operating, an electronics system, an opto-mechanical

system, a computer system, and auxiliary equipment (Fig. 1) (Tong et al. 2010, 2013). As

the core component of the FISS, the opto-mechanical system consists of a scanning mirror,

optical lenses, spectroscopic devices (ImSpector V9, Spectral Imaging, Ltd., Finland), and
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a CCD (charge-couple device) camera. The electronic system includes the power and the

motor control circuit. The motor control circuit is used to control the rotation of the

scanning mirror, synchronize the beam splitter and receiver, and collect and store the data.

The hardware of the computer system is a portable computer used for operating the

FISS. The software system includes data collection software and data processing software.

The data collection software serves primarily to display spectral images and curves, and set

operation parameters such as integral time, aperture, FOV (Field of View), etc. Data

processing software is designed for geometric correction, radiometric correction, reflec-

tance inversion, data format conversion, etc.

The FISS can acquire high-resolution images (spatial resolution up to 2 mm) of mea-

sured targets as well as extract a spectrum curve of any pixel from these images. This

system helps to improve the efficiency of field spectral measurements greatly. It could

provide both image and spectral information for analyzing the structure of spectra,

extracting pure spectra and deriving detailed spectral characteristics of targets surface. The

FISS is the first field imaging spectrometer based on a cooling area CCD in China and

designed for multi-applications in agriculture, food chemistry or online monitoring, etc.

Table 1 shows the main technical parameters the FISS (Tong et al. 2010, 2013).

Fig. 1 Photograph of the FISS components

Table 1 Main parameters of the
FISS

Main parameters Values

Band number 344

Spectral range 379–870 nm

Spectral resolution 4–7 nm

Spatial resolution C2 mm

Radiance calibration error in laboratory B5 %

Imaging rate/(lines/s) 20

Scan field/� -20—20

Quantitative value/bit 12

Signal to noise [500 (60 % of bands)

Spectral sampling interval/nm About 1.4
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Spectra measurement

Soy leaves were removed from the cooler and laid flat on the bench. A set of light source

(halogen light) was placed on the sample bench. In order to provide uniform light intensity

on the sample surface and minimize the potential influence of measurement geometry: (1)

light source and detectors were fixed to be nearly perpendicular to the sample bench so that

zenith angle of observation was minimized. (2) The distance between light source and

sample was kept enough long to make the light field on sample surface as uniform as

possible. (3) Each leaf sample was placed on the same marked area to make sure that all

leaf samples had the identical measurement condition.

The imaging spectral data of soybean leaves were obtained using the FISS while the

ASD data were obtained using an ASD spectrometer, and the spectral data of a reference

gray board were also obtained at the same time. The leaf was rapidly returned to the cooler

after the measurement and taken to the chemical analysis laboratory for processing.

Chlorophyll content determination

The chlorophyll content was determined using the rapid extraction method with an ethanol-

acetone mixture (1:1 by volume). After being cut into pieces, 0.2 g leaf samples were

weighed and placed into a 25-mL colorimetric tube for extraction for 18–24 h in the dark.

The tube was shaken once every hour. Then, the absorbance was measured with a UV

spectrophotometer, and the measurement data were used for calculating the contents of

chlorophyll a, chlorophyll b and carotenoids.

Data preprocessing

For the ASD data obtained, the soybean leaf reflectivity was calculated by comparison with

the gray plate. For the imaging spectral data, reflectivity images were also obtained by

comparison with the gray plate. Then, the soy leaves were divided according to the

threshold set, and shadows on the leaves were also separated and removed. The valid

image data extracted will be used for calculating the features in the chlorophyll retrieval

model in the following section.

Chlorophyll retrieval

Model feature

The model feature in this section refers to the information that can be used to retrieve the

nitrogen content of the pigment. The features are divided into image features (i.e., spatial

information) and spectral reflectivity (i.e., spectral information).

The imaging spectral data can provide both spectral and image information, while current

studies generally use only the spectral information but not the image information. Figure 2

presents the soybean leaf data obtained by FISS. The color varied across the entire soybean

leaf, with a yellow color on part of the edge. In addition, the spectra of parts in different colors

also varied greatly. A vigorously growing plant that has adequate nutrition will have a

relatively uniform color (spectrum) across the leaf. However, if the plant lacks certain

nutrients or is damaged by pests, its colors (spectrum) will change accordingly.
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The color variation of the leaf is also an important basis for crop disease diagnosis (Nansen

et al. 2009).

The spectral heterogeneity of the soy leaf reflects the chlorophyll content and other

information to some extent, and the degree of heterogeneity is an image feature. In the

present study, the standard deviation and entropy are used to describe the spatial distri-

bution of heterogeneity and variation, defined as follows:

Std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðDi � �DÞ2
s

ð1Þ

where n is the number of pixels of the leaf, Di is the digital number (DN) of pixels and �D is

the mean DN of the entire leaf.

E ¼ �
X

N

s¼1

PðsÞ log2 PðsÞ ð2Þ

where N is the quantization level and P(s) is the normalized probability of the occurrence

of DN value s.

P(s) can be computed by the histogram of the soy leaf image:

PðsÞ ¼ Ns

Ntotal

ð3Þ

Fig. 2 Soybean leaf data obtained by FISS
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where Ns is the number of pixels with a gray value of s and Ntotal is the number of total

pixels in a leaf image.

Entropy generally is used as an image texture feature in image processing. It measures

randomness of the input image and is an indication of the complexity within an image (Wu

et al. 2008). Namely, if an image is more complex, it will have higher entropy values. In

this study, vigorously growing soybeans generally have a relatively uniform color across

the leaf and thus generates a lower entropy value in contrast to the plant lacking certain

nutrients or damaged by pets.

Based on the above discussion, it is natural to contemplate that soy leaves under

nutritional stress may have more heterogeneous chlorophyll distribution, and thus, the

image of the respective wavelength will have a large standard deviation and entropy. Such

spatial information indirectly indicates, to some extent, the magnitude of the chlorophyll

content. The FISS data contain both spectral information and image information and each

sample (one leaf) corresponds to many pixels. Thus, the average reflectivity, image

standard deviation and entropy of each wavelength can be obtained (note that the mean

reflectivity does not contain spatial information). In contrast, ASD data cannot generate an

image but only one spectrum for each sample (i.e., only spectral information but no spatial

information) and therefore cannot provide the appropriate standard deviation or entropy

data of the leaf. The input features of both types of data that can be used in the chlorophyll

content retrieval model are summarized in Table 2.

Stepwise multiple linear regression (MLR)

In the present study, stepwise MLR was used to estimate the chlorophyll content. Spectral

analysis often involves a large number of usually highly correlated wavelengths, and the

high correlation between the variables will usually result in unstable MLR models.

Stepwise MLR is currently widely used for regression analysis and is also a common

method to reduce the correlation between independent variables. Stepwise MLR can

guarantee an ‘‘optimal’’ regression equation for a given significance level. The main

parameters are the confidence level of the variable introduced (ain) and the confidence level
of the variable deleted (aout). Stepwise MLR is implemented in SPSS13.0 (Gao 2005).

The coefficient of determination (R2) and root mean square error (RMSE) are used to

measure the estimation accuracy, defined as follows:

R2 ¼
X

n

i¼1

ðŷi � �yÞ2=
X

n

i¼1

ðyi � �yÞ2 ð4Þ

Table 2 Input features of FISS data and ASD data for the chlorophyll retrieval model

Data source Feature Feature dimension
(number of bands)

Feature type

FISS Mean reflectance 344 Spectral information

Image standard deviation
of reflectance

344 Spatial (image)
information

Entropy 344 Spatial (image)
information

ASD Reflectance 520 (350–870 nm) Spectral information
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðŷi � yiÞ2=n
s

ð5Þ

where n is the number of samples, �y is the measured mean of the sample and ŷ is the

predicted value.

Results and discussion

Correlation analysis of image features, spectral variables and pigment content

To compare the difference between the FISS data and ASD data for quantitative pigment

content estimation and to analyze/compare the roles of the image features and spectral

reflectivity as a pigment content indicator, we calculated the linear correlation coefficients

between these factors and the pigment content, as presented in Figs. 3, 4, 5 and 6. The

correlation coefficient curves of chlorophyll a, b, total chlorophyll and the carotenoids

were similar in shape but different in ranges; namely, the curves coincided for wavelengths

with high correlation coefficients, which will be illustrated in the following section using

the total chlorophyll as an example.

Whether it was the entropy, image standard deviation or spectral reflectivity, the regions

that were highly correlated with the chlorophyll content were all located from 530 to

670 nm and 695 to 715 nm. Lower chlorophyll content may indicate a lower level of

health and therefore more heterogeneous color or spectrum, resulting in greater variation

and smaller entropy, and thus, the entropy was positively correlated with the pigment

content with a maximal coefficient of 0.84 (corresponding to a wavelength of 700 nm, as

shown in Fig. 3). Figure 5 demonstrates that the maximal correlation coefficient between

the FISS mean reflectivity and the chlorophyll content was -0.85 (corresponding to

wavelengths of approximately 568 and 703 nm). Figure 6 shows that the correlation

Fig. 3 Correlogram of entropy of soy leaf image versus pigment contents (calculated using FISS data)
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coefficient of the image standard deviation was generally greater than the correlation

coefficient of the reflectance, with a maximum of -0.87 (corresponding to wavelengths of

approximately 568 and 705 nm). This result indicated that the spatial difference of the soy

leaf spectra can be used as a good indication of the chlorophyll content and outperformed,

to some extent, the mean leaf reflectivity by itself. Therefore, the spatial information can

also be used for pigment content retrieval. The curves in Figs. 4 and 5 have similar shapes,

and the overall correlation shown in Fig. 5 was greater than that of Fig. 4. The maximal

Fig. 4 Correlogram of spectral reflectivity of soy leaves versus pigment contents (calculated using ASD
data)

Fig. 5 Correlogram of spectral mean reflectivity of soy leaves versus pigment contents (calculated using
FISS data)
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correlation coefficient of the ASD-spectra-derived reflectivity was only -0.54 (corre-

sponding to wavelengths of approximately 699 and 578 nm), indicating that the FISS data

can reflect the chlorophyll content more accurately. The features of the FISS image can

provide spectral information for each pixel of the leaf, overcoming the drawback of the

non-imaging spectrometer that the resulted spectra cannot be precisely mapped to the

measured target object. Therefore, imaging spectroscopy has features that can be exploited

to more reliably obtain leaf pigment content information.

Significant wavelengths for chlorophyll content retrieval

Wavelengths that were significant in chlorophyll content retrieval were selected using the

stepwise selection based on the spectral variables listed in Table 2. The first 3 and 7

wavelengths selected are summarized and listed in Table 3.

Almost all the wavelengths selected using the ASD data were included in those selected

using the FISS data; however, the former did not include the FISS-data-selected wave-

lengths in the green region. By comparing the most important 3 wavelengths that were

selected for each feature and listed in Table 2, the wavelength in the green region (531 nm)

Fig. 6 Correlogram of image standard deviation of soy leaves versus pigment contents (calculated using
FISS data)

Table 3 The statistics of samples for calibration and validation of chlorophyll content retrieval model

Chlorophyll content Calibration sample (mg/g) Validation sample (mg/g)

Max 5.33 5.41

Min 2.33 2.69

Mean 4.19 4.05

Standard deviation 0.75 0.76
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was selected based on the image feature of ‘‘standard deviation’’. This result indicated that

the image can provide information that cannot be provided by the spectrum and that image

features can also be used for pigment content retrieval.

In summary, the wavelengths that were significant in chlorophyll content retrieval

generally include wavelengths near 450, 550, 600 and 700 nm. This result can provide

guidance for the development of low-cost equipment.

Chlorophyll content retrieval

There were a total of 101 valid samples for chlorophyll retrieval, of which 71 samples were

training samples and 30 samples were validation samples. The statistics are presented in

Table 4. The statistics of the training samples and validation samples were generally the

same; thus, these samples can be used for the construction and validation of the same model.

As described in the previous section, based on each feature, significant wavelengths

were selected using stepwise selection, and the chlorophyll content was retrieved with

MLR. The retrieval accuracies of various cases are indicated in Table 5 (FISS data) and

Table 6 (ASD data). In particular, when only one independent variable was selected, the

MLR automatically became a linear regression (LR).

Chlorophyll content estimation using spectral and spatial information combined

The comparison of the estimation based on the three features obtained from the image

(entropy, mean reflectivity and image standard deviation) was presented in Table 5 (FISS

data). The estimation error of entropy and standard deviation, which can reflect the spatial

information, was comparable to that of the spectral mean. This indicated that spatial

information can also be used for chlorophyll content retrieval and the retrieval accuracy

was equivalent to that of the spectral information. In particular, when using 7 wavelengths

as independent variables, the entropy had the best prediction, with an estimation error of

0.284 mg/g, and the model’s COD was 0.88.

When both the mean reflectivity and image standard deviation were used as the input

features in the model, the retrieval accuracy was substantially improved compared with

using a single feature alone (image standard deviation or spectral mean). For example, the

MLR retrieval errors of the validation samples at three wavelengths were reduced from

0.297 mg/g (mean reflectivity) and 0.318 mg/g (image standard deviation) to 0.254 mg/g,

relative reductions of 14.5 and 20.1 %, respectively. The error of the training samples

Table 4 Significant wavelengths for chlorophyll content retrieval based on FISS and ASD data

Data source Feature Significant wavelengths(nm)

FISS Entropy 700, 443, 703

700, 703, 688, 455, 452, 685, 709

Mean reflectance 567, 465, 703

567, 465, 703, 531, 822, 841, 813

Image standard deviation of reflectance 705, 399, 603

705, 399, 603, 713, 517, 384, 397

ASD Reflectance 699, 447, 598

699, 447, 598, 406, 393, 432, 482
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exhibited a similar pattern. This result suggested that the image features were a very good

indication of the chlorophyll content and could provide information that spectral variables

could not, and the integration of spatial information and spectral information can greatly

enhance the chlorophyll content retrieval accuracy.

Comparative analysis of FISS-data-based and ASD-data-based chlorophyll content
estimations

A comparison of Tables 5 and 6 clearly reveals that the FISS-data-generated results were

better than the ASD-data-generated results, with a mean error reduction of 30–45 %.

When using the reflectivity at a single wavelength as the estimation variable, the error of

the ASD-data-based chlorophyll content estimation was 0.527 mg/g, while the accuracy of

the FISS-data-based single-wavelengthmodel was 0.310 mg/g, reducing the error by 41.2 %

and increasing the COD from 0.57 to 0.85; the highest validation accuracy of the ASD-based

three-wavelength model was 0.380 mg/g, while the accuracy of the FISS-data-based three-

wavelength model was 0.254 mg/g, reducing the error by 33.2 % and increasing the COD

from 0.77 to 0.91. The scatter plot of the measured chlorophyll content versus the predicted

chlorophyll content (Fig. 7) also reveals that the FISS-data-generated results scatter closely

around y = x, while the ASD-data-generated results were relatively further apart.

From the perspective of information sources, the imaging features of FISS enables it to

not only obtain the conventional spectral information but also the spatial information

(image features), as an image-spectrum-in-one can provide richer information and is more

Table 5 Different spectral variables and chlorophyll content retrieval accuracies of different models (FISS
Data)

Feature NO. of
wavelengths

Calibration Validation

RMSE R2 RMSE R2

Entropy 1 0.373 0.75 0.366 0.78

3 0.267 0.87 0.331 0.86

7 0.247 0.89 0.284 0.88

Mean reflectance (MR) 1 0.404 0.71 0.310 0.85

3 0.302 0.84 0.297 0.86

7 0.259 0.88 0.312 0.85

Image standard deviation
of reflectance (ISDR)

1 0.364 0.76 0.327 0.82

3 0.344 0.79 0.318 0.83

7 0.306 0.83 0.326 0.83

MR and ISDR 3 0.288 0.85 0.254 0.91

7 0.239 0.90 0.253 0.91

Table 6 Different spectral vari-
ables and chlorophyll content
retrieval accuracies of different
models (ASD data)

Feature NO. of wavelengths Calibration Validation

RMSE R2 RMSE R2

Reflectance 1 0.665 0.20 0.527 0.57

3 0.510 0.53 0.380 0.77

7 0.408 0.70 0.348 0.80
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conducive to chlorophyll content retrieval. From the perspective of measurement, the FISS

can accurately obtain the spectral information of any valid pixel in the entire soy leaf and

the spectrum and can accurately locate the target. A non-imaging spectroscopy system can

only obtain information in the detector’s field of view and not the complete spectral

information of the entire leaf. The chlorophyll content is related to the condition of the

entire leaf, and thus, the ASD spectral signals that cannot be precisely mapped to the target

objects are not conducive to chlorophyll content retrieval. Therefore, compared with the

single sensor system, these advantages of the imaging spectroscopy system enable it to

adapt to a wider range of agricultural applications, especially those requiring not only the

material properties but also the detailed distribution of the spatial structure, such as soy

pest diagnosis, nutritional status monitoring, weed/crop discrimination, agricultural pro-

duct quality control and other agricultural areas.

Fig. 7 Comparison of the accuracies of chlorophyll content retrieval using FISS data and ASD data
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Conclusions

FISS-data-based pigment retrieval focused on chlorophyll was investigated, and the results

were compared with ASD-based results. The image-spectrum-in-one feature of the

imaging spectroscopy system was fully exploited to improve the accuracy of crop

chlorophyll content estimation by integrating the image features and spectral information.

The main conclusions are the following:

(1) The wavelengths that were sensitive indicators of pigments were the same whether

selected based on FISS data or ASD data, and the reflectivity of 530–670 and 695–715 nm

were highly correlated with the pigment content, for which the correlation coefficient

between the FISS data and the pigment content was higher than that between the ASD data

and the pigment content. The significant wavelengths in chlorophyll content retrieval

should generally include wavelengths near 450, 550, 600 and 700 nm. This finding pro-

vides guidance for the development of low-cost equipment.

(2) The image features were also highly correlated with the pigment content, indicating

their indicative significance for pigment; the spatial information can also be used for

chlorophyll content retrieval, with an accuracy equivalent to the retrieval accuracy using

spectral information. Image features were also good indicators of chlorophyll content and

can provide information that spectral variables cannot. Integrating spatial information and

spectral information can greatly improve the accuracy of chlorophyll content retrieval.

(3) Because of the unique measurement method and image-spectrum-in-one feature,

FISS data can be used to achieve more accurate chlorophyll content retrieval, and the

retrieval error was reduced by approximately 30–45 % compared with the use of ASD

data, confirming the excellent performance and potential of FISS in quantitative spectral

analysis. Therefore, FISS can be widely used in the agricultural sector.
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