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Abstract In this study, we investigated the possibility of using ground-based remote

sensing technology to estimate powdery mildew disease severity in winter wheat. Using

artificially inoculated fields, potted plants, and disease nursery tests, we measured the

powdery mildew canopy spectra of varieties of wheat at different levels of incidence and

growth stages to investigate the disease severity. The results showed that the powdery

mildew sensitive bands were between 580 and 710 nm. The best two-band vegetation

index that correlated with wheat powdery mildew between 400 and 1000 nm wavelength

were the normalized spectrum 570–590 and 536–566 nm bands for the ratio index, and

568–592 and 528–570 nm for the normalized difference index. The coefficients of

determination (R2) for both were almost the same. The optimum dual-green vegetation

index was constructed based on a calculation of the ratio and normalized difference

between the normalized spectrum within the two green bands. The coefficients of deter-

mination (R2) of DGSR (584, 550) (dual-green simple ratio) and DGND (584, 550) (dual-

green normalized difference) were both 0.845. The inverse models of disease severity

performed well in the test process at the canopy scale, and indicated that, compared with

the traditional vegetation indices of Lwidth, mND705, ND (SDr, SDb), SIPI, and GNDVI,

the novel dual-green indices greatly improved the remote sensing detection of wheat

powdery mildew disease. Following these results, combined disease severity and canopy
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spectra were shown to be of enormous value when applied to the accurate monitoring,

prevention, and control of crop diseases.

Keywords Wheat powdery mildew � Hyperspectral � Dual-green vegetation index �
Disease severity � Inversion model

Abbreviations
SR Simple ratio

ND Normalized difference

SD Simple difference

MSR Modified simple ratio

SIPI Structural independent pigment index

SAVI Soil adjusted vegetation index

TSAVI Transformed soil adjusted vegetation index

MSAVI Improved SAVI with self-adjustment factor L

PSRI Plant senescence reflectance index

CTR2 Carter indices

mND705 Modified ND705 by incorporating reflectance at 445 nm

Depth672 The depth of the absorption feature at 672 nm

Lwidth Red edge width

SDr Sum of 1st derivative values within red edge

SDb Sum of 1st derivative values within blue edge

SDy Sum of 1st derivative values within yellow edge

ND (SDr, SDb) Normalized difference between SDr and SDb

ND (SDr, SDy) Normalized difference between SDr and SDy

PRI Photochemical reflectance index

RVI Ratio vegetation index

NDVI Normalized difference vegetation index

GNDVI Green normalized difference vegetation index

RVSI Red-edge vegetation stress index

VARI Visible atmospherically resistant index

WI Water index

NSRI Spectral ratio index in near-infrared shoulder region

PMI Powdery mildew index

MCARI Modified chlorophyll absorption ratio index

ARI Anthocyanin reflectance index

DGND Dual-green normalized difference

DGSR Dual-green simple ratio

RGND Red-green normalized difference

RRSD Red-red simple difference

ReRSD Red-edge-red simple difference

PLSR Partial least squares regression

cDI Conventional disease index

mDI Modified disease index

LAI Leaf area index

R2 The coefficients of determination

RMSE The root mean square error

RE The relative error
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Introduction

Wheat powdery mildew, caused by the ascomycete fungus Blumeria graminis f. sp. tritici,

is a devastating pathogen of wheat that is found in all major wheat producing countries

worldwide. In China, with the promotion of dwarf varieties and the improvement of

agricultural conditions, the area and scope of powdery mildew disease incidence is

expanding, and the disease severity increasing. For example, in 1990, 50 % of the total

area devoted to wheat production was infected with powdery mildew in Henan, China,

causing a yield loss of nearly 400 000 tons.

Traditional methods of monitoring wheat powdery mildew have limitations because

they mainly rely on artificial field investigations, which are inefficient, subjective, and

time-consuming. Therefore, the development of a rapid, non-destructive, real-time

monitoring technology could be significant for the precise prevention and control of

diseases. Wheat powdery mildew infected by B. graminis f. sp. tritici results in a layer

of white powdery mildew covering the leaf surface, causing mesophyll cell damage,

water and chlorophyll content reduction, and leaf yellowing and withering, which then

lead to wheat production loss and grain quality degradation (Maxwell et al. 2009;

Sharma et al. 2004). Morphological and physiological changes in diseased plants also

cause changes in their corresponding spectra, and then provide possibilities for the real-

time monitoring of wheat powdery mildew using remote sensing technology (Sankaran

et al. 2010).

Several previous studies have shown that the sensitive bands for different crop

diseases identified by spectra are mainly located in the visible and near infrared regions

(Raikes and Burpee 1998; Wang et al. 2002; Cheng et al. 2010), and that the optimal

sensitive bands vary with different crops and different diseases (Zhang et al. 2003;

Mahlein et al. 2013). Research on wheat stripe rust showed that the photochemical

reflectance index (PRI) is a robust spectral index in quantifying yellow rust infection,

and a potential candidate for operational use in the monitoring of this disease (Huang

et al. 2007). NSRI (the NIR shoulder region), a simple ratio of reflectance at 890 nm to

reflectance at 780 nm, could monitor the deterioration of the wheat blade internal

structure caused by the stripe rust pathogen (Liu et al. 2014). In wheat aphid moni-

toring, it is clear that the sensitive spectral bands are 484–552, 609–619 and

718–770 nm (Luo et al. 2013), and the R800/R450 and R950/R450 can better distin-

guish the aphid-affected wheat plants (Yang et al. 2009); the normalized difference

vegetation index (NDVI), was applied to classify the data into areas showing different

levels of disease severity (Franke and Menz 2007). In previous studies monitoring wheat

powdery mildew, it was clearly shown that the sensitive spectral bands were 490, 510,

516, 540, 780 and 1300 nm at the leaf level (Graeff et al. 2006), and 580–710 and

750–860 nm at the canopy level (Cao et al. 2013). Red edge parameters, such as the red

edge area (Rdr680–760 nm) (Cao et al. 2013) and the red edge width (Lwidth) (Zhang

et al. 2012a, b), could better identify wheat powdery mildew disease. Powdery mildew-

index (PMI) based on 520, 584 and 724 nm could distinguish powdery mildew from

other diseases (Mahlein et al. 2013). The common spectral features as green NDVI

(GNDVI), modified chlorophyll absorption ratio index (MCARI) and reflectance of

green band also have great potential in estimating the disease severity of wheat powdery

mildew (Zhang et al. 2012a, b). For monitoring rice blast, the bands of optimal sen-

sitivity were shown to be near 485 and 675 nm (Kobayashi et al. 2001). Yang et al.

(2007) studied Rnir/Rred, GNDVI and the soil-adjusted vegetation index (SAVI) for the
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detection of brown plant hoppers and leaf-folder infestations in rice plants. In other

fruits and vegetables research, NDVI (760, 708) and anthocyanin reflectance index

(ARI) can facilitate detection of rhizomania in Sugar Beets (Steddom et al. 2003).

Naidu et al. (2009) suggested that different vegetation indices differed in their ability to

detect wine disease; MCARI, red-edge vegetation stress index (RVSI) and visible

atmospherically resistant index (VARI) performed well. These results suggest that

remote sensing using spectral reflectance and indices can be a nondestructive technique

to detect infestation caused by disease and pests on different crops. However, the

determination of sensitive bands and spectral indices varied between studies.

In recent years, partial least squares regression (PLSR) has been widely used in crop

growth monitoring and can overcome the problems of ‘‘over-fitting’’ and collinearity

(Herrmann et al. 2011). It is a potential approach with which to determine plant N

status of winter wheat (Li et al. 2014) and it can also predict insect infestation on plants

(Oumar et al. 2013). In addition, PLSR algorithms can improve monitoring accuracy for

wheat powdery mildew at both leaf level and region scale (Zhang et al. 2012a, b, 2014).

However, some bands are not informative of the target variable or may even disturb

useful signatures, so the PLSR method may not always provide the best solutions

(Yoshio et al. 2012). The two-band method, which has the advantage of clear combined

bands and various combination forms, is also used to evaluate crop growth status.

Exploring innovations of band combination patterns and corresponding coefficients

expand their application in crop monitoring. Yoshio et al. (2012) compared various

approaches for spectral assessment of canopy nitrogen content in rice and showed that

two-band combination of the first derivative is superior to the PLSR method.

Studies on the disease monitoring in other crops have made progress toward the goal

of early recognition and prevention to lower the risk of yield loss, reduce pesticide

application and cost and protect the environment. However, as these studies mainly

relied on limited test conditions and single varieties, it is necessary to confirm and

verify quantitative relationships between different varieties and production systems in

different years. In addition, the symptoms of wheat powdery mildew occur mostly in the

middle and lower parts of the plant, while the canopy spectra is mainly derived from

the middle and upper leaves, which results in a weak overall correlation between

canopy reflectance and infestation information. Moreover, because related studies were

always limited to the single blade level or the qualitative classification of aerial remote

sensing (Zhang et al. 2012a, b, 2014; Franke and Menz 2007), it is not known whether

any band or vegetation index in different crops and disease could be used to detect

powdery mildew stress in wheat using ground-based hyperspectral radiometry.

Artificial inoculation of powdery mildew and measurement of canopy spectra and

disease index (DI) in wheat at different levels of infection, will enable us to clearly

understand the relationships between spectral bands and disease severity. From this, we

can develop a novel vegetation index that will indicate disease development and

establish a quantitative estimation model of wheat powdery mildew severity, in order to

(1) provide a band reference for multi-channel portable disease monitors, (2) provide

quantitative evaluation methods for remote sensing to monitor a large area of wheat

powdery mildew damage, and (3) enhance the level of precision for management of

agricultural epidemics.
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Materials and methods

Experimental design

Experiment 1

The first experiment was conducted at the Science and Education Demonstration Garden,

Henan Agricultural University, Zhengzhou, China (34�510N, 113�350E) during the

2009–2010 growing season. Four winter wheat cultivars, Yanzhan 4110 and Yumai 34

(susceptible varieties), Aikang 58 and Zhengmai 366 (moderately susceptible varieties),

were selected to represent different levels of susceptibility to powdery mildew. The test

soil was sandy loam, the 0–0.3 m soil basic indicators were organic matter 8.3 g kg-1,

total N 0.87 g kg-1, available phosphorus 24.44 mg kg-1, and available K

124.32 mg kg-1 prior to planting. Fertilizer application amounts were 240 kg ha-1

nitrogen, 120 kg ha-1 P2O5, and 90 kg ha-1 K2O. Seeds were sown in rows on October

15, 2009. The area of the plot was 20.3 m2 (7 m long 9 2.9 m wide). The planting rate

adopted was 135 kg ha-1. The experiment was a randomized complete block design with

three replications for each treatment. In each plot, cultivation and management were

consistent, and the management of other aspects followed standard local practices for

wheat production. Based on the amount of inoculum and frequency of inoculation, three

treatment levels (heavy, medium, and light) were established, with a non-inoculated area as

the control group. Plants were inoculated from the wheat jointing stage to the time when

symptoms became obvious. Infection was observed at the heading stage, and canopy

spectral testing and sampling was conducted at 5, 15, and 25 days after flowering.

Experiment 2

The second experiment was conducted in greenhouses located at the National Engineering

Research Center for Wheat, Henan Agricultural University, Zhengzhou, China (34�510N,
113�350E) during the 2009–2010 growing season. The same four winter wheat cultivars,

two susceptible and two moderately susceptible varieties, which were used in Experiment

#1 were used here. The test soil was sieved sandy loam. Each square pot

(0.25 m 9 0.25 m) was filled with 13.5 kg of soil and buried in the soil 20 mm above the

ground level. The fertilizer selected was the same as in the first experiment, but twice the

amount was used. Seeds were sown by way of dibbling on October 18, 2009. Each pot had

ten holes, and two seed were placed in each hole. Powdery mildew inoculations were

initiated at the jointing stage. The same three levels of treatment (heavy, medium and light)

and the same non-inoculated control from Experiment #1 were used here. Wheat was

infected from the heading stage, and the canopy spectral testing and sampling were per-

formed both at the heading stage and 10 days after flowering. The potted wheat plants were

moved out of the greenhouse and divided into three groups of one, two, and four pots for

spectral measurements. Three methods were determined on two sets of data, for a total of

96 samples.

Experiment 3

The third experiment was conducted in nursery fields located at the National Engineering

Research Center for Wheat, Henan Agricultural University, Zhengzhou, China (34�510N,
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113�350E) during the 2010–2011 growing season. The three winter wheat cultivars

Yanzhan 4110 and Yumai 34 (susceptible varieties) and Aikang 58 (moderately suscep-

tible) were used in this experiment. The test soil was sandy loam, and the 0–0.3 m soil

basic indicators were organic matter 16.3 g kg-1, total N 1.22 g kg-1, available phos-

phorus 35.65 mg kg-1, and available K 114.68 mg kg-1 before planting. Fertilizer

application amounts were 270 kg ha-1 nitrogen, 120 kg ha-1 P2O5, and 90 kg ha-1 K2O.

Disease conditions were the same as in Experiment #1, with a total of four treatments and

two replications. Seeds were sown in rows on October 15, 2010, and the area of the plot

was 8.1 m2. The planting rate was the same as that used in Experiment #1. Cultivation and

management practices were consistent for each plot, and other aspects of management

followed standard local practices for wheat production. Infection began from the booting

stage, and canopy spectral testing and sampling were conducted at heading and 10 days

after flowering.

Inoculations

Leaf inoculation

Based on the experimental design, infected plants showing symptoms of powdery mildew

in the greenhouse nursery were dug up and shaken over the top of plants in the plot to be

inoculated. The diseased plants were then placed horizontally in the middle and lower part

of the wheat plants. Leaf inoculation was undertaken every 2 days.

Inoculation of potted plants

When the potted plants had reached full size in the greenhouse nursery area, they were

inoculated using diseased potted plants as described in the previous section, and then the

potted plants were set in the plot. To ensure uniform inoculation in the plot, their positions

were changed every 2 days.

Canopy spectral measurements

All canopy spectral measurements were taken from a height of 1.0 m above the canopy,

and the diameter of the ground visual field range was 0.44 m on a sunny and windless day

(or when the wind speed was low), between 10:00 and 14:00 (Beijing local time), using a

FieldSpec HandHeld spectrometer (Analytical Spectral Devices Inc., USA). The spec-

trometer was operated with a field angle of 25�, a spectral sampling interval of 1.4 nm, and

spectral resolution of 3.0 nm in the band region between 325 and 1075 nm. A

0.4 m 9 0.4 m BaSO4 calibration panel was used for calculating the black and baseline

reflectance. In each experiment, data were obtained on several different days corre-

sponding to the main growth stages. Ten spectra were recorded as a sample at each

sampling point, the mean value of which was calculated as the spectral reflectance of the

point.

Assessment of disease index

Disease incidence rating surveys were collected simultaneously after spectral data acqui-

sition. Twenty plants were randomly selected to assess the severity of powdery mildew in
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the range of about 0.6 m2 of the spectral test location. In the pot experiments we used all

leaves of the whole plant and the severity to indicate the incidence condition. The severity

was the percentage of the incidence area of wheat leaf relative to the total leaf area using a

square grid. Powdery mildew severity was assessed on a 0–9 scale as follows: 0, 1, 10, 20,

30, 45, 60, 80 and 100 %. The average DI was calculated with the following equation (Cai

et al. 2007):

Table 1 The common spectral parameters used in this study

Spectral
parameters

Formulae References

SIPI (R800 - R445)/(R800 - R680) Peñuelas et al. (1995)

TSAVI a�ðRNIR�a�RRED�bÞ
a�RNIRþRRED�ab

Baret et al. (1989)

MSAVI 1
2
� ð2� R800 þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� R800Þ þ 1Þ2 � 8� ðR800 � R670Þ
q

Qi et al. (1994)

PSRI (R680 - R500)/R750 Merzlyak et al. (1999)

CTR2 R695/R760 Carter and Miller (1994)

mND705 (R750 - R705)/(R750 ? R705 - 2 9 R445) Sims and Gamon (2002)

MCARIb 1:5�ð1:2�ðR800�R550Þ�2:5�ðR670�R550ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�R800þ1Þ�ð6�R800�5�
ffiffiffiffiffiffi

R670

p
Þ

p
�0:5

Haboudane et al. (2004)

Depth672 1� Rci

ðRsiþðREi�RsiÞ�ðkci�ksiÞ=ðkEi�ksiÞÞ
Kokaly and Clark (1999)

Lwidth RðkÞ ¼ Rs � ðRs � R0Þ exp �ðk0�kÞ2
2r2

� �

Miller et al. (1990)

SDr Rdr680–760 Gong et al. (2002)

SDb Rdr490–550 Gong et al. (2002)

SDy Rdr550–650 Gong et al. (2002)

ND (SDr, SDb) (SDr - SDb)/(SDr ? SDb) Gong et al. (2002)

ND (SDr, SDy) (SDr - SDy)/(SDr ? SDy) Gong et al. (2002)

MSR (R800/R670 - 1)/(R800/R670 ? 1)0.5 Haboudane et al. (2004)

PRI (R531 - R570)/(R531 ? R570) Gamon et al. (1992)

GNDVI (R800 - R550)/(R800 ? R550) Gitelson et al. (1996)

SAVI 1.5 9 (R800 - R670)/(R800 ? R670 ? 0.5) Huete (1988)

RVI (800, 670) R800/R670 Baret and Guyot (1991)

RVSI (R714 ? R752)/(2 - R733) Merton and Huntington
(1999)

VARI (R550 - R670)/(R550 ? R670 - R480) Gitelson et al. (2002)

WI R900/R970 Peñuelas et al. (1997)

NSRI R890/R780 Liu et al. (2014)

PMI (R520 - R584)/(R520 ? R584) ? R724 Mahlein et al. (2013)

RVI (800, 450) R800/R450 Yang et al. (2009)

RVI (950, 450) R950/R450 Yang et al. (2009)

MCARIa [(R700 - R670) - 0.2 9 (R700 - R550)] 9 (R700/R670) Daughtry et al. (2000)

ARI (R550)
-1 - (R700)

-1 Gitelson et al.(2001)
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DI =

P

xf

n
P

f
� 100

where x is the value of every incidence level, n is the highest incidence level (in this work,

n = 9), and f is the total number of leaves of each degree of disease severity. The definition

and calculation of the formula for the conventional DI (conventional DI, cDI) was based on

previously established studies. Powdery mildew on wheat spreads from the lower leaves

upward as disease progresses. Therefore, prior to the appearance of moderate disease

incidence, symptoms are mostly centered on the lower parts of the plant, whereas the

canopy spectrum is mainly affected by the middle and upper leaves. Consequently there is

a significant deviation by means of canopy spectral detection, which will have a strong

impact on the early identification and prevention of disease. In this study, the conventional

DI divided by the leaf area index (LAI) of the corresponding plot indicated the degree of

DI per unit leaf area, which was defined as the modified DI (modified DI, mDI). It is

straightforward to compare the influence of disease severities on the canopy spectra under

different LAI, in order to decrease the influence exerted by population structure diversity

on the disease severity estimation. Correlation analysis of the wheat DI with canopy

spectral data confirmed that mDI was the appropriate expression indicator for the canopy

spectra.

Data analysis

We used the Savitaky–Golay smoothing method in the MATLAB program to smooth the

raw spectral data (Turton 1992). The common spectral parameters that were selected to

establish monitoring models based on their correlation with mDI are listed in Table 1.

Previous studies reported that the image normalization and reflectance ratio were able to

suppress both additive and multiplicative noises. A transformation calculation was applied

to measure the change magnitude of spectral features between different conditions (Zhang

et al. 2012a, b, 2014). To suppress the possible difference of the illumination, stages,

canopy and blade structure, we then normalized all spectra curves of the diseased plants by

dividing them by the reflectance of healthy plants. The reflectance ratio was calculated as:

RNi ¼ RDi=RHi

where RNi is the normalized spectrum for band i, RDi is the original reflectance of diseased

plots at the band, and RHi is the original reflectance of healthy plots at the band.

The two-band combinations were calculated using all possible combinations of two

wavebands (k1 and k2) in the 400–1000 nm region. These consisted of three types of

indices: (1) a simple ratio index (SR), (2) a normalized difference index (ND), and (3) a

simple difference index (SD). In addition, we further studied the following three rela-

tionships: (1) the two-band original reflectance ratio, and normalized difference and simple

difference index with mDI, (2) the normalized spectrum simple ratio, and normalized

difference and simple difference index with cDI, and (3) the normalized spectrum simple

ratio, and normalized difference and simple difference index with mDI. Programming was

performed in the MATLAB language environment. We selected data from Experiments 1

and 2 involving different species, test systems, and grades of the incidence for modeling

analysis, and used the independent experimental data from Experiment 3 to test the above

monitoring models. We used the correlation coefficient (R2), the root mean square error

(RMSE), and the relative error (RE) between predicted and observed values to evaluate

model accuracy.
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Results

Variation in features of wheat canopy spectra with differing severities
of powdery mildew disease

Yanzhan 4110 (susceptible) and Aikang 58 (moderately susceptible) in Experiment 1 were

selected to show the impact of disease severity on canopy spectra (Fig. 1). Yanzhan 4110

had the following characteristics: moderate tillering ability, small groups, a relatively full

reflection of the disease information in the lower part of the plant on canopy spectra,

obvious disease symptoms characteristic of a susceptible variety, and large spectral dif-

ferences between different grades of infection. However, Aikang 58 had the opposite

characteristics: strong tillering ability, larger groups, less obvious reflection of disease

symptom information on spectra than Yanzhan 4110, relatively weak disease symptoms

characteristic of a moderately susceptible variety, lower level of disease incidence, and

smaller spectrum differences between different grades of infection. With an increase in the

mDI, spectral reflectance in the visible bands 350–710 nm gradually increased, and the

620–680 nm bands were the most conspicuous (Yanzhan 4110, P\ 0.001; Aikang 58,

P\ 0.05). Reflectance in the red edge region did not change significantly, but the slope

steepened, and the valley weakened. The reflectance did not show a certain noticeable

change rule in the near-infrared region, but it had a larger amplitude as for the disease

treatments, especially in the susceptible variety Yanzhan 4110, with a mean value of

31.2–40.6 % in the range of 780–1075 nm.

Correlation between wheat powdery mildew severity and canopy spectra

The overall performance of the correlation coefficient between canopy spectra and the cDI

was low. A good correlation was mainly in the 550–700 nm region (r\ 0.46), and the

effect for the pot experiments (n = 96) was markedly superior to that for the field trials

(n = 51) (Fig. 2). This could be because the pot experiments were conducted in a con-

trolled climate with fast onset, a high disease incidence, and short lag periods between

disease symptoms on the upper and lower parts of the plants, and therefore the plant

disease information was reflected more fully in the canopy spectra. Compared with the
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Fig. 1 Changes in the original spectrum reflectance under different modified disease indices (mDI) in
winter wheat with Yanzhan 4110 (a) and Aikang 58 (b)
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cDI, the correlation between the mDI and the original spectral reflectance was significantly

improved, which also showed the advantage of pot experiments over field experiments.

There were positive correlation coefficients in the 350–750 nm range, especially for

580–710 nm (r [ (0.5 - 0.7), P\ 0.001) with a higher value that could be considered to

be disease-sensitive bands. The near-infrared region, 750–1075 nm, showed an overall

negative but poor correlation (r\ 0.30). This indicated that mDI mitigated the influence

on the correlation analysis between spectrum and cDI due to the leaf area differences,

significantly improving the abilities of the canopy spectrum in response to and recognition

of the disease status.

Correlation between wheat powdery mildew severity and common spectral
parameters

Based on the reported characteristic spectral bands and vegetation indices, we used the

integrated wheat DI and canopy spectral parameters in the different test systems, wheat

varieties, and growth stages to conduct regression analyses. The relevant analysis of data

for the different varieties from the open-field experiment (n = 51) and the nursery

greenhouse (n = 96) is shown in Table 2. This analysis showed that expect for SDb, PMI,

RVSI, ARI and WI, the remaining twenty-three spectral indices were significantly corre-

lated with mDI (P\ 0.001), and that the correlations of mDI were significant better than

those of cDI. Because the nursery test system showed a big difference compared with the

open-field experiment in the ecological environment and disease characteristics, a com-

prehensive analysis of Experiments 1 and 2 was needed. The slope and intercept of the

fitting equations were different from each other to some extent under the different pro-

duction test systems, resulting in a much weaker correlation between the majority of

spectral parameters and the DI. However, Lwidth (the red edge width) still showed a flat

correlation coefficient with a single test system, up to 0.854 (P\ 0.001). The following

spectral parameters: mND705, ND (SDr, SDb), SIPI, GNDVI, and CTR2 also gave good

correlation coefficients (P\ 0.001), and the respective values of r were -0.545, -0.585,

0.538, 0.535, and 0.520. Figure 3 shows that the slope and intercept of the Lwidth of the
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Gaussian model in the regression equations for Experiment 1 (n = 51) and Experiment 2

(n = 96) were not significantly different (P[ 0.05). Therefore, the unified regression

equation can be used to express DI changes per unit leaf area, and the coefficient of

determination (R2) and the RMSE were 0.709 and 3.64, respectively. Despite the relatively

better compatibility of spectral parameters mND705, ND (SDr, SDb), SIPI, GNDVI, and

CTR2 in Experiments 1 and 2 integrated relevant analysis ( rj j[ 0.5), the differences in the

slope and intercept of the regression equation combined in the two trials were too large

(P\ 0.01) to fit by virtue of the uniform regression equation. We chose intuitively

Table 2 Correlation coefficients between canopy spectral indices and modified disease indices in winter
wheat

Spectral parameters cDI mDI

EXP. 1 EXP. 2 EXP. 1 & 2 EXP. 1 EXP. 2 EXP. 1 & 2

SIPI 0.549*** 0.467*** 0.375*** 0.844*** 0.815*** 0.538***

TSAVI 0.466*** 0.411*** 0.173* 0.789*** 0.756*** 0.509***

MSAVI -0.442** -0.407*** 0.168* -0.777*** -0.748*** -0.484***

PSRI 0.574*** 0.297** 0.253** 0.847*** 0.789*** 0.465***

CTR2 0.476*** 0.392*** 0.164* 0.797*** 0.754*** 0.520***

mND705 -0.488*** -0.287** -0.192* -0.787*** -0.749*** -0.545***

MCARIb -0.574*** -0.375*** -0.238** -0.865*** -0.786*** -0.461***

Depth672 -0.463*** -0.481*** -0.266** -0.795*** -0.752*** -0.473***

Lwidth 0.694*** 0.492*** 0.457*** 0.881*** 0.832*** 0.854***

SDr -0.328* -0.275** 0.153 -0.360** -0.406*** -0.386***

SDb 0.078 0.126 -0.015 0.305* 0.234* 0.267**

SDy 0.374** 0.360*** -0.245** 0.294* 0.707*** 0.509***

ND (SDr, SDb) -0.394** -0.363*** 0.046 -0.733*** -0.667*** -0.585***

ND (SDr, SDy) 0.398** 0.397*** 0.176* 0.269 0.835*** 0.527***

MSR -0.318* -0.417*** 0.298*** -0.540*** -0.633*** -0.393***

PRI 0.469*** 0.355*** -0.312*** 0.614*** 0.656*** 0.450***

GNDVI -0.309* -0.454*** 0.140 -0.545*** -0.612*** -0.535***

SAVI -0.381** -0.411*** 0.233** -0.594*** -0.664*** -0.506***

RVI (800, 670) -0.280** -0.412*** 0.311*** -0.504*** -0.613*** -0.344***

RVSI -0.181 -0.002 -0.064 -0.106 -0.004 -0.058

VARI -0.559*** -0.296** 0.362*** -0.671*** -0.630*** -0.368***

WI -0.217 0.087 0.019 -0.192 0.181 0.085

NSRI 0.668*** 0.505*** 0.255** 0.711*** 0.565*** 0.495***

PMI 0.013 0.053 -0.171* 0.175 0.235* 0.262**

RVI (800, 450) -0.164 -0.471*** 0.260** -0.423** -0.580*** -0.403***

RVI (950, 450) -0.257 -0.423*** 0.335*** -0.473*** -0.621*** -0.357***

MCARIa -0.320** -0.267** 0.207* -0.350* -0.446*** -0.391***

ARI 0.589*** -0.277** -0.295*** 0.529*** -0.188 0.051

cDI conventional disease index, mDI modified disease index, EXP. 1 experiment 1, EXP. 2 experiment 2,
EXP. 1 & 2 comprehensive experiments 1 and 2

* P\ 0.05; ** P\ 0.01; *** P\ 0.001
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mND705 as representative to show the differences between the two test systems in the

scatter plot diagram (Fig. 3b).

Correlation between wheat powdery mildew severity and two-band
combination indices

The results showed poor correlation for all the bands in the near infrared regions between

two bands in the original spectrum simple ratio, normalized difference and simple dif-

ference index and mDI. However, the coefficients of determination were low (R2\ 0.50).

The bands that showed a good correlation between the normalized spectrum simple ratio,

normalized difference and simple difference index, and cDI were also distributed in the

near infrared region, and showed lower coefficients of determination (R2\ 0.60). The

bands that showed a better correlation between the normalized spectrum simple ratio,

normalized difference and simple difference index and mDI in the visible region and red

edge region, had the highest coefficient of determination, R2[ 0.75. Among these, the

ratio index band combinations that were well correlated with mDI were 570–590 and

536–566 nm, 604–616 and 540–560 nm, and 626–680 and 540–558 nm—three regions of

band combinations (R2[ 0.70) (Fig. 4c). The normalized difference index band combi-

nations that were well correlated with mDI were 568–592 and 528–570 nm, and 604–684

and 538–560 nm—two regions of band combinations (R2[ 0.70) (Fig. 4f). The simple

difference index band combinations that were well correlated with mDI were 590–616 and

624–640 nm, and 590–612 and 656–734 nm—two regions of band combinations

(R2[ 0.70) (Fig. 4i).

Among these band combinations, the ratio vegetation index with the highest correlation

with mDI for wheat powdery mildew consisted of 584 and 550 nm in the green region; that

is, DGSR (584, 550) (dual-green simple ratio) was better than RGSR (670, 550) (red-green

simple ratio) in the red and green regions. The normalized difference index included the

same two-band combinations, similarly, DGND (584, 550) (dual-green normalized dif-

ference) was better than RGND (670, 550) (red-green normalized difference) in the red and

green regions. However, the simple difference index band combination was comprised of

634 and 604 nm in the red region, namely RRSD (634, 604) (red–red simple difference),

which indicated that the single test performed better than the combined test. ReRSD (720,
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604) (red-edge-red simple difference) showed that the combined test performance was

close to that of the single test. The normalized spectrum simple ratio and normalized

difference indices consisted of 584 and 550 nm and gave the same R2 with powdery

mildew severity. We only selected DGND (584, 550) to exhibit quantitative change pat-

terns of canopy reflectance spectra with disease severity. Figure 5 shows that DGND (584,

550) generated R2 = 0.845 of the mDI model for wheat powdery mildew, which was

superior to the wheat powdery mildew models of RGND (670, 550), RRSD (634, 604) and

ReRSD (720, 604).

Given the simplicity and practicality of the three types of indices based on normalized

spectrum data, SR, ND and SD can be simply calculated from reflectance spectral data

across health and disease plots, and formulated as follows:
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Fig. 4 Correlations of three types of vegetation indices (SR, ND, and SD) with the two kinds of disease
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DGSR (584, 550) = (RH550/RH584) 9 (RD584/RD550)

RGSR (670, 550) = (RH550/RH670) 9 (RD670/RD550)

DGND (584, 550) = (RD584 9 RH550 - RD550 9 RH584)/(RD584 9 RH550 ?

RD550 9 RH584)

RGND (670, 550) = (RD670 9 RH550 - RD550 9 RH670)/(RD670 9 RH550 ?

RD550 9 RH670)

RRSD (634, 604) = (RD634/RH634) - (RD604/RH604)

ReRSD (720, 604) = (RD720/RH720) - (RD604/RH604)

where RH and RD are the reflectance value of healthy and diseased wheat, respectively.

Model testing and inspection

In order to examine the reliability and generalization of the above quantitative identifi-

cation model, we used data from Experiment 3 (n = 40) to verify the preferred equations,

and testing was done through three indicators of precision (R2), RMSE, and the mean

relative error (RE). We also made a predicted and observed values 1:1 diagram to intu-

itively show the predictive power of the model. Due to similar test results of simple ratio

with normalized difference of 584 and 550 nm or 670 and 550 nm for the canopy nor-

malized spectrum, we chose the normalized difference type as representative of the results.
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Figure 6a shows that for the canopy normalized spectrum, the DGND (584, 550) models

gave better test results with R2 = 0.88 and RE 15.79 %, and the predicted values were

lower than the measured values in general. Meanwhile, RGND (670, 550), RRSD (634,

604) and Lwidth models generated relatively poor results with REs of 23.63, 24.67 and

22.72 %, respectively. Because the incidence and existing disease characteristics for

powdery mildew differed in different test systems, and the original spectrum was influ-

enced by the test environment and other factors, the number of suitable spectral indices

monitoring the disease was relatively small. It can mitigate the heterogeneous impact of

species, growth stages, and different test conditions on monitoring model by calculating

the relative spectral indices.

Discussion

Spectral characteristics and sensitive bands under different disease conditions

Infected plants showed a reduction in biomass, chlorophyll levels, and water content, but

an increase in the corresponding optical reflectance, and this is the same for different crops

and diseases (Cheng et al. 2010). Because of various dimensions of the spectrum test, the

canopy reflectance level fell (Guo et al. 2009; West et al. 2003) and leaf reflectance
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increased (Jing et al. 2009) in the near infrared region. The visible and near infrared bands

showed distinct reaction characteristics to the presence of disease, but the sensitivities of

the two region bands to the disease were different, which means that differences in the

visible bands were more obvious than in the near-infrared band with a smaller change of

spectral reflectance (Jing et al. 2009; Zhang et al. 2012a, b). This is similar to results from

previous studies of powdery mildew on single leaf blades in wheat, where it was pointed

out that the sensitive band was 520–720 nm, and disagreement appears in the 780–900 nm

bands (Peñuelas et al. 1995; Zhang et al. 2012a, b). There have also been inconsistent

results showing a closer correlation between the near-infrared reflectance and the disease

severity (Guo et al. 2009). In this paper, we have shown that the disease sensitive bands are

between 580 and 710 nm, and are significantly positively correlated with powdery mildew

disease severity. While in the near infrared region, reflectance was negatively correlated

with disease severity on the whole, and the correlation was poorer. Thus, it was not

possible to use near infrared as the sensitive bands for disease recognition.

Disease detection of red-edge spectral characteristic parameters

The red edge is indicative of vegetation nutrition, growth, moisture, and leaf area. When

vegetation is aging or suffering from pests or disease, the red edge position appeared to

make a ‘‘blue shift’’; the red edge amplitude decreased and the red edge area was reduced

(West et al. 2003). The correlation between the red and blue edge area ratio and disease

severity was significantly negative (Guo et al. 2009; Jing et al. 2009), leading to better

regression modeling of red edge parameters and DI. The study of wheat powdery mildew

found that the red edge width was highly correlated with disease severity (Zhang et al.

2012a, b), but such a discovery was limited to the single leaf level. Our tests demonstrated

that after the powdery mildew fungus infects wheat, the canopy spectral red valley features

weakened and Lwidth increased. Lwidth in the biennium unified modeling showed a flat

correlation with the single test system (r = 0.854, P\ 0.001), whereas the other common

original spectrum parameters had poorer comparability in the annual modeling.

In our field experiments, reflectance at 350–550 nm showed rather large differences

between the two seasons, and there was a significantly positive correlation in 550–710 nm

and a non-obvious negative correlation in the near-infrared band. The greenhouse pot

experiment, however, had a negative correlation ( rj j\ 0.3), which was quite different

from previous results with wheat stripe rust ( rj j [ 0.6 - 0.8) (Guo et al. 2009). This could

be due to differences in disease types and test systems, and more variable factors that

influence diseases in the near-infrared spectrum than in the visible spectrum, so the dis-

ease-specific spectral performance was not stable enough. This may explain why many

disease-related indices in previously reported disease detection case studies (e.g.,

Depth672, SDr, RVSI, PMI, MCARIa and ARI) show only weakly correlation

(-0.5\ r\0.5) with wheat powdery mildew.

Disease detection of the dual-green vegetation index

As a result of the bottom-up characteristic of the infection and spread of powdery mildew,

it is very difficult to detect disease symptoms using the canopy spectrum. Previous studies

have shown that the correlation between canopy reflectance and powdery mildew DI is

generally poor, and is not as obvious as that between canopy reflectance and growth

parameters such as nitrogen and chlorophyll. Consequently, some researchers turned to the

use of partial least square regression and neural networks, to monitor disease (Zhang et al.
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2014; Sankaran et al. 2010), which made it difficult to provide band references for the

multi-channel portable disease monitor and was barely conducive to production-oriented

applications.

Previous disease detection case studies used the combinations of green and red

(GNDVI and VARI) or red edge bands (PMI and AVI) to detect crop diseases (Sankaran

et al. 2010; Zhang et al. 2012a, b; Mahlein et al. 2013). The ratio of 550–600 and

500–550 nm was screened against inverse crop parameters (Tian et al. 2011). The

photochemical reflectance index PRI (531,570), comprised of green bands, was also

investigated to monitor winter wheat stripe rust at the canopy level (Huang et al. 2007).

However, these green-related indices performed poorly (-0.55\ r\ 0.55) for moni-

toring powdery mildew at canopy scale in the studies, which may be related to the type

of disease and the scale of monitoring among different test system. The spectral bands

that showed a close correlation with powdery mildew disease were mainly located in the

green band caused by the white powdery mycelium covering the leaf surface, which was

similar to increasing the light intensity (Mahlein et al. 2013). This could be because after

infection, there is a decrease both in chlorophyll content and light carrier received, which

is closely linked to the green band in the visible region. This requires us to explore the

combination of the green band to improve the specificity and effectiveness in monitoring

powdery mildew. We used the normalized spectrum index to weaken the impact on

disease stages and test conditions. The results showed that the ratio of the normalized

spectrum from 570–590 to 536–566 nm and the normalized difference between 568–592

and 528–570 nm was strongly associated with the DI (R2[ 0.75). The dual-green

vegetation index DGND (584, 550) established in this paper improved the correlation

with disease severity (R2 = 0.845, P\ 0.001), which showed a better compatibility.

DGSR (584, 550) also gave similar results. The above two novel dual-green vegetation

indexes significantly improve estimation precision (R2 = 0.709–0.845) compared with

optimal common vegetation index Lwidth. However, the vegetation indices RRSD (634,

604) and ReRSD (720, 604) from our work in the red band performed poorly in the

correlation with disease severity (R2\ 0.65), and also showed poorer compatibility in

the two trials. The dual-green vegetation index provides a new way of thinking and

analysis for spectral monitoring of plant diseases, and also allows us to perform a band

selection for the multi-channel portable spectrum monitor.

Although the two-band method is widely used in crop growth monitoring, it has some

shortcomings (Atzberger et al. 2015). Based on different crops and growth conditions, the

appropriate band combination patterns should be constantly explored to monitor specific

targets. The innovation of this study is the improved two-band method using the conver-

sion of spectral data and detection index. This improved method turned the original

spectrum into a normalized spectrum and the DI into a DI/LAI. Through applying this

approach, we obtain optimized green band combinations and the best estimation model for

powdery mildew disease severity, which can provide a specific band reference for multi-

channel portable disease monitors. However, it remains to be seen whether such a system

can stand up to extensive testing in the form of more diverse ecological sites, production

levels, and multiple varieties. This will be extremely important for the early detection,

prevention, and treatment of crop diseases.
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Conclusions

In this study, we used wheat canopy spectral data collected in an open field and in the

greenhouse. The two experiments involved different types of onset environment, disease

characteristics, and symptom performances, and were complementary to each other. We

have clearly shown that the spectral bands sensitive to wheat powdery mildew are

580–710 nm, and the accuracy of the green bands combination is higher (R2[ 0.80). The

dual-green vegetation index, the dual-green normalization difference [DGND (584, 550)],

can more effectively monitor the occurrence status of powdery mildew in the middle and

late growth stages of wheat, and these models with higher precision can serve as the best

estimation model for powdery mildew disease severity. These results will provide

empirical evidence for the monitoring of diseases and pests through the use of remote

sensing technology.
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spectral indices for detecting and identifying plant diseases. Remote Sensing Environment, 128, 21–30.

Maxwell, J. J., Lyerly, J. H., Cowger, C., Marshall, D., Brown-Guedira, G., & Murphy, J. P. (2009).
MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on
chromosome 7AL. Theoretical and Applied Genetics, 119, 1489–1495.

Merton, R., & Huntington, J. (1999). Early simulation of the ARIES-1 satellite sensor for multi-temporal
vegetation research derived from AVIRIS. In Summaries of the Eight JPL Airborne Earth Science
Workshop. JPL Publication, Pasadena, CA (pp. 299–307)

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical
detection of pigment changes during leaf senescence and fruit ripening. Plant Physiology, 106,
135–141.

Miller, J. R., Hare, E. W., & Wu, J. (1990). Quantitative characterization of the vegetation red edge
reflectance: 1. An inverted-Gaussian reflectance model. International Journal of Remote Sensing, 11,
1755–1773.

626 Precision Agric (2016) 17:608–627

123



Oumar, Z., Mutanga, O., & Ismail, R. (2013). Predicting Thaumastocoris peregrinus damage using narrow
band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion
sensor. International Journal of Applied Earth Observation Geoinformation, 21, 113–121.

Naidu, R. A., Perry, E. M., Pierce, F. J., & Mekuria, T. (2009). The potential of spectral reflectance
technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape
cultivars. Computers and Electronics in Agriculture, 66(1), 38–45.
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