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Abstract Efficient crop protection management requires timely detection of diseases.

The rapid development of remote sensing technology provides a possibility of spatial

continuous monitoring of crop diseases over a large area. In this study, to monitor powdery

mildew in winter wheat in an area where a severe disease infection occurred, the capability

of high resolution (6 m) multi-spectral satellite imagery, SPOT-6, in disease mapping was

assessed and validated using field survey data. Based on a rigorous feature selection

process, five disease sensitive spectral features: green band, red band, normalized differ-

ence vegetation index, triangular vegetation index, and atmospherically-resistant vegeta-

tion index were selected from a group of candidate spectral features/variables. A spectral

correction was processed on the selected features to eliminate possible baseline effect

across different regions. Then, the disease mapping method was developed based on a

spectral angle mapping technique. By validating against a set of field survey data, an

overall mapping accuracy of 78 % and kappa coefficient of 0.55 were achieved. Such a

moderate but practically acceptable accuracy suggests that the high resolution multi-

spectral satellite image data would be of great potential in crop disease monitoring.
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Introduction

Wheat diseases are important biotic stressors that threaten winter wheat production

worldwide (Mahlein et al. 2012). Disease management is usually a costly component in

wheat production. Using large amounts of pesticide not only increases the cost of crop

production but also causes a potential risk to field environment and eco-system. Large-

scale wheat cropping would benefit from a timely and location-specific monitoring system

to reduce costs and risks associated with pesticide spray (Lee et al. 2010). Recently, with

development of precision agricultural technology, sprayer control systems (e.g., TeeJet 854

Sprayer Control, TeeJet Technologies, Glendale Heights, IL, USA) with variable rate

control capability have been applied in agricultural management. In such a variable rate

spray system, a key component is to create an accurate prescription map. However, there

exist obvious defects associated with conventional disease field scouting approaches, such

as subjectivity, low efficiency and spatial limitation. Thus, the spatial continuous feature of

remote sensing technology makes it a suitable alternative for producing a prescription map

for the pesticide spray application (Sankaran et al. 2010).

The response of electromagnetic radiation interaction with plants due to disease

infection serves as a theoretical basis for remote sensing detection (Lee et al. 2010).

Basically, infection of a disease pathogen leads to colored spots/lesions on plant organs

(e.g., leaves, stems and spike), destruction of pigment systems (mainly chlorophyll), col-

lapse of foliar cellular structure and variation of canopy morphology. All the biophysical

alterations as stated above would finally affect the absorption rate in the visible region and

the reflective and scattering magnitude in the near infrared (NIR) region, which thus

determine spectral characteristics of plants suffering from a specific disease.

A number of studies aiming at identifying the most efficient spectral bands or vegetation

indices (VIs) have been conducted at a foliar or canopy level for mapping and monitoring

several important crop diseases (e.g., yellow rust, powdery mildew in winter wheat; late

blight in tomato) (Wang et al. 2008; Moshou et al. 2011; Zhang et al. 2012). These studies

mostly rely on using airborne/satellite images (Franke and Menz 2007; Huang et al. 2007;

Calderón et al. 2013). Hyperspectral imagery has exhibited advantages in disease mapping.

For instance, Huang et al. (2007) and Zhang et al. (2003) demonstrated that airborne

hyperspectral and multi-spectral imagery could be used to detect yellow rust in winter

wheat and late blight infestations in tomato fields, respectively. However, the high cost and

low availability of hyperspectral image data, as well as difficulties in data collection and

data processing, hamper its application in practice. Instead, the relatively low cost and high

availability of high resolution multi-spectral images make them reasonable remote sensing

surrogates for crop disease mapping. For example, Hicke and Logan (2009) demonstrated

the potential of using high spatial resolution satellite imagery in mapping whitebark pine

mortality caused by a mountain pine beetle outbreak. Using Worldview-2 sensor data in

predicting bronze bug damage in plantation forests, Oumar and Mutanga (2012) also

proved their applicability in disease monitoring. As an important fungal disease in winter

wheat, powdery mildew (Blumeria graminis) causes an obvious foliar symptom that offers

the possibility of being detected by remote sensing sensors. The powdery mildew disease

spreads quickly in winter wheat fields under suitable weather conditions, and thus moni-

toring it is important for wheat production. For this case, an attempt to use multi-temporal

moderate resolution satellite images in mapping powdery mildew of winter wheat at a

regional scale was conducted by Zhang et al. (2014), which achieved an overall accuracy

of 78 %. However, because of the patchy characteristic of wheat fields in some regions, it
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is necessary to test the potential of using high resolution imagery to monitor plant disease

at the field level. To date, only a few studies have been conducted to evaluate the per-

formance of these high resolution data in crop disease mapping. Among various types of

multi-spectral images, SPOT-6 provides a new generation of image products, which have

high resolution (6 m) and commonly-used setting of bands over visible and NIR spectral

regions (Table 1). Given that SPOT-6 has a short revisit time (1–3 days), a wide swath

(60 km) and low price, the SPOT-6 data are of great potential to be used in mapping crops

at a regional scale. Therefore, the objectives of this study were to: (1) investigate the

capability of high spatial resolution multi-spectral remote sensing data (SPOT-6) in

mapping powdery mildew-infected wheat areas at a regional scale; (2) evaluate the fea-

sibility of a method associated with a spectral correction (which was processed on the

selected features to eliminate possible baseline effects across different regions) and

spectral angle mapping (SAM) in crop disease mapping. Relevant issues on feature

selection and disease mapping with multi-spectral data were also discussed.

Materials and methods

Overall workflow of powdery mildew mapping

Figure 1 presents a workflow of mapping powdery mildew with high-resolution satellite

images using the SAM algorithm. To ensure the effectiveness of SFs that would be used for

mapping powdery mildew, an experiment on analyzing the spectral response of the disease

was conducted separately at the canopy level (see processing procedures in the right branch in

Fig. 1). The hyperspectral spectra were measured and converted to broad-band spectra

according to a relative spectral response function (RSR function) of the SPOT-6 sensor. The

most sensitive SFs to powderymildewwere identified through an independent t test and were

then used for mapping the disease. A spectral correction was processed on the selected

features to eliminate possible baseline effects across different regions. The corrected spectral

features were used as a spectral reference of the disease for classification. Finally, both field

survey data about disease occurrence and a corresponding high-resolution satellite image

were acquired to evaluate the performance of the proposed disease mapping protocol.

Study area

The canopy level experiment was conducted in an experimental field in Beijing Academy

of Agriculture and Forestry Sciences, China (39�560N, 116�160E). Cultivar ‘Jingdong 8’

was chosen as it is moderately susceptible to powdery mildew. During the 2012–2013

Table 1 Parameters of SPOT-6 imagery

Items Information

Spatial resolution (m) 6

Multi-spectral bands (nm) Band 1 (455–525 nm); Band 2 (530–590 nm);
Band 3 (625–695 nm); Band 4 (760–890 nm)

Image swath (km) 60

Revisit time (day) 1–3
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growing season, the powdery mildew occurred naturally in the experimental field. A

gradient of disease severity was generated in a field through a variable rate of fungicide

application.

The field survey was conducted in a disease outbreak region in Mei county of Shaanxi

province, China (34�2012.8600N, 107�0048.8400E) (Fig. 2). Mei county is located near Qin

mountain that is an important geographical boundary to differentiate southern and northern

China. Warm and humid climate characteristics in the study area with a relatively high

elevation enable the over-summering and over-wintering of the powdery mildew pathogen,

which makes Mei county a susceptible district to the disease in Shaanxi Province. In spring

2013, the powdery mildew occurred widely in Mei county. Within Mei county, two regions

consisting of big wheat parcels were chosen as the study area for disease mapping (see

Fig. 2).

Fig. 1 A workflow of mapping powdery mildew at a regional scale
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Experimental design and data acquisition

Canopy spectral measurements

Canopy spectral measurements were taken by a FieldSpec� UV/VNIR spectro-radiometer

(ASD Inc., Boulder, Colorado, USA) at 0.6 m above the canopy with a field of view of 23�.
The spectra from wavelengths 400–2500 nm were collected by the spectro-radiometer. All

measurements were taken under clear sky conditions and only between 10:00 and 14:00

local time. The spectrum of a white spectralon reference panel was taken every ten canopy

measurements in order to eliminate the effect of possible variation of illumination. For

each measurement, fifteen readings were made and then averaged to obtain one spectrum.

Given that the early grain filling stage is critical for prevention of powdery mildew, a total

of 56 canopy spectra were measured at this stage. Those samples covered different

infection status, including seven spectra of healthy canopies (no visible symptoms on

leaves could be seen), 32 spectra of lightly infected canopies (lesions covered less than

50 % of the leaf on average) and 17 spectra of seriously infected canopies (lesions covered

over 50 % of the leaf on average). Figure 3 provides nadir views of both healthy and

infected wheat canopies.

Image acquisition and field survey

A SPOT-6 image was acquired on May 11, 2013 over the study area, concurring with the

early grain filling stage when powdery mildew manifested the most distinct symptoms in

the field. Along with the image acquisition, an intensive field survey was carried out within

the study area at the same time, providing necessary calibration and validation data for the

disease mapping. In the study area, given that the disease occurrence tended to appear to be

Fig. 2 A map of survey points in the study area in Shaanxi Province, P. R. China
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relatively homogeneous in the field, a simple yes/no criterion was applied in the field

survey. Along with the image acquisition, a field survey was carried out at the same time at

37 plots in region 1 (19 healthy and 18 infected plots) and 19 plots in region 2 (10 healthy

and 9 infected plots). At each plot with a size of 6 m 9 6 m (the same as pixel size of

SPOT-6 image), disease occurrence was checked. At the center of each plot, its geolocation

was measured by using a Trimble GeoXT DGPS with sub-meter accuracy. The distribution

of all surveyed plots is shown in Fig. 4.

Data processing

Canopy spectral processing

To assess the suitability of SPOT-6 for disease monitoring, an integration procedure was

applied to the hyperspectral data based on a RSR function of the SPOT-6 sensor. For this

case, the narrow band hyperspectral spectrum was converted to a broad band multi-spectral

spectrum. The integration was done by:

R ¼
Zr kn

r k1

f rð Þdr ð1Þ

where R is the simulated reflectance of a certain channel of the multi-spectral sensor; r is

the reflectance at a hyperspectral wavelength; r_k1 and r_kn indicate reflectance of the

beginning and ending wavelengths of this channel, respectively, and f(k) represents the

corresponding RSR function of the multi-spectral sensor (i.e., SPOT-6 in this study).

Image data processing

The SPOT-6 image was rectified to the Universal Transverse Mercator (UTM), World

Geodetic Survey 1984 (WGS-84), Zone 48, co-ordinate system. The image preprocessing

Fig. 3 Photos of healthy and powdery mildew infected winter wheat canopies
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included a radiometric calibration, an atmospheric correction and a geometric correction

(Liang et al. 2001). The calibration coefficients were first obtained from the header file of

the original image data. The calibrated data were then processed for an atmospheric

correction with the algorithm provided by Liang et al. (2001), which estimated the spatial

distribution of atmospheric aerosols and retrieved surface reflectance under general

atmospheric and surface conditions. Finally, a geometric registration was conducted

against a set of ground control points (n = 56) that were collected with a sub-meter-

accuracy differential global positioning system (DGPS) device [Trimble GeoXT, (Sun-

nyvale, CA, USA)]. The root mean square error (RMSE) for the geometric-corrected image

was less than half a pixel size (3 m). Given that the spectral difference between infected

and healthy wheat plants was relatively smaller than spectral difference between different

ground cover types (e.g., water, vegetation, impervious area), it is necessary to mask out

Fig. 4 Distribution of survey plots on wheat field parcels for both regions. The SPOT-6 image with a false
color combination as R/G/B = Green/NIR/Red bands was used as the background image
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the wheat planted area prior to disease monitoring. To do so, a visual interpretation was

implemented to extract boundaries of wheat parcels from the panchromatic layer of SPOT-

6 imagery (Fig. 4).

Spectral features and sensitivity analysis

In addition to using the four original bands of SPOT-6, the sensitivity of seven vegetation

indices to powdery mildew was also examined. The seven VIs included normalized dif-

ference vegetation index (NDVI), green normalized difference vegetation index (GNDVI),

triangular vegetation index (TVI), soil adjusted vegetation index (SAVI), atmospherically

resistance vegetation index (ARVI), enhanced vegetation index (EVI) and re-normalized

difference vegetation index (RDVI). Some of these VIs have been demonstrated to be

responsible for the plant stress status, such as NDVI and TVI (Zhao et al. 2004; Naidu et al.

2009). The other VIs (i.e., GNDVI) were also used for detecting plant diseases (Zhao et al.

2004; Naidu et al. 2009; Yang et al. 2007). The definition, calculation formulae and

references for the seven VIs are summarized in Table 2.

To evaluate the sensitivity of the candidate spectral features (SFs) to powdery mildew, a

two-step selection principle was adopted, including an independent t test analysis and a

cross-correlation check. Firstly, the independent t test was applied to examine whether the

difference of a SF between healthy and infected samples was statistically significant at a

significance level (alpha = 0.05). The t-test analysis was implemented on both simulated

spectral data and real satellite image spectral data. Only SFs extracted from both data sets

that all exhibited sensitivity to the disease were retained. Furthermore, to eliminate the

redundant information among SFs, a cross-correlation check was conducted. For a SF pair

that has high correlation with R2[ 0.8, the one with relatively low disease sensitivity

would be dropped. By traversing all combinations of SFs with this procedure, it was

guaranteed that the redundancy among the retained SFs was relatively low. And only

retained SFs were used for further model development.

SAM algorithm for disease mapping

To map the disease with the retained SFs, a supervised classification algorithm, the spectral

angle mapper (SAM) was used in this study. It transforms the responses of a pixel in the

different bands into a vector in a space of n dimensions, where n is the number of bands in

the multi-spectral image. The SAM compares the angle between the endmember spectrum

vector and each pixel vector. In this way, an unknown pixel will be assigned to a class (i.e.,

either healthy or infected class in this study) with a highest similarity measured by an angle

distance (Kruse et al. 1993). A formula of n-dimensional angle can be written as:

h ¼ arccos

PL
i¼1

xiyi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL
i¼1

x2i

ffiffiffiffiffiffiffiffiffiffiffiPL
i¼1

y2i

svuut
; h 2 0;

p
2

h i
ð2Þ

where L is the number of the selected spectral features; x is the corrected spectral feature

vector for a reference pixel (i.e., healthy and infected), and y is the corrected spectral

feature vector for a test pixel. In this method, to eliminate possible baseline effects across

different regions, a spectral correction was processed on the selected features. The
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correction was implemented by multiplying the original SF by a correction coefficient,

which is actually a spectral ratio of infected to healthy samples. The corrected SF can be

calculated by:

SFcorrected ¼ SF
SFinf ected

SFhealthy

ð3Þ

where SF is the original spectral feature; SFcorrected is the corrected spectral feature;

SFhealthy and SFinf ected represent the average value of known healthy (n = 10) and infected

samples (n = 6) as references, which were randomly selected from the field survey data.

Then, based on corrected SFs, the disease mapping model was established using a SAM

method, which was processed in ENVI 4.8 (ENVI4.8 2012).

For an accuracy assessment, a confusion matrix was generated from all the field survey

samples except those used for reference samples. The accuracy indices including overall

accuracy (OA), producer’s accuracy, user’s accuracy and kappa coefficient were used for

assessing the disease mapping accuracy (Congalton 1991).

Results and discussion

Spectral signatures of powdery mildew canopies

The spectral reflectance curves of both infected and healthy canopies and their ratio

curves, as shown in Fig. 5, allow a straightforward understanding of spectral variation

that was induced by powdery mildew infection. Generally, the powdery mildew

infection can increase reflection in the VIS region and decrease reflectance in the NIR

region. In the ratio curves, there were two peaks in the VIS region around 490 and

670 nm, respectively, where healthy and diseased samples have the largest spectral

difference (Fig. 5b). Comparing ratio curves between slightly infected canopies and

seriously infected canopies, it is noticeable that with increase of infection severity, the

reflectance ratio curve tends to exhibit a steeper shape in the VIS region and a more

significant decrease in the NIR region. In this study relative to healthy canopy, in the

VIS region, the largest reflectance was increased by 46.3 and 53.8 % whereas, in the

NIR region, the largest reflectance was decreased by 7.6 and 13.7 % for slightly and

heavily infected canopies, respectively.

There is a common doubt as to whether broad-band sensors are capable of capturing

spectral signatures of plant diseases that might be always obvious in narrow bands. By

overlapping the wavelength ranges of four SPOT-6 channels on the reflectance ratio curves

of powdery mildew, it is encouraging to observe that those disease sensitive regions

(characterized by concave-convex shape in the canopy reflectance ratio curves) were just

located by the four SPOT-6 channels (Fig. 5b). Such observation indicates that the band

setting of SPOT-6 might have a potential to capture spectral response of powdery mildew.

Such a finding was in a good agreement with the study by Zhang et al. (2012), which

suggested that powdery mildew could be detected by multi-spectral data. More quantitative

analysis about the capability of SPOT-6 data in disease mapping is addressed in the

following sections.
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Sensitivity of spectral features to powdery mildew infection

All spectral features were examined for their response to powdery mildew using an

independent t-test. The SFs were constructed with both simulated spectral data from

canopy hyperspectral measurements and real satellite image spectral data. Table 3 sum-

marizes the sensitivity levels of all SFs. The sensitivity testing results suggested that the

response of most SFs to powdery mildew except NIR band were statistically significant.

The insignificant response of the NIR band might be because many factors other than

disease infection (e.g., planting density, leaf area index and canopy structure) would have

led to variation of NIR reflectance. Generally, both simulated reflectance spectra and

satellite image spectra derived SFs have shown a similar spectral response to powdery

mildew (Table 3). However, there still exists a slight difference of sensitivity to powdery

Fig. 5 Original spectral reflectance (a) and spectral ratios of infected to healthy winter wheat (b). The grey
color blocks indicate the spectral regions of the four SPOT-6 bands
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mildew between the two types of SFs. It is understandable that the atmospheric correction

of a satellite image is unable to eliminate the atmospheric influence completely. Conse-

quently, the remainder of atmospheric effect for the satellite image spectra might lead to

slightly lesser sensitivity of some SFs to powdery mildew. Therefore, this factor together

with some other possible errors in the measurement process (e.g., sensor configuration,

calibration error, etc.) could have explained the slight difference of sensitive level of the

SFs extracted from the two types of spectral data. As a strict feature identification process,

only SFs derived from the two types of spectra (i.e., simulated and satellite image spectra)

and with significant response (p value\0.05) to powdery mildew were retained. Finally,

after eliminating a significantly redundant effect between SFs, a total of five SFs: green

band, red band, NDVI, TVI and ARVI, were retained as the most ideal SFs, which would

be used for subsequent disease mapping. Of the chosen spectral features, the two visible

bands are associated with canopy color change due to disease infection. The NDVI is

proven to be an efficient VI in reflecting a general physiological status of green plants

(Rouse et al. 1973; Weng 2011). Variation of both pigment contents (mainly chlorophyll)

and leaf area index would cause a corresponding response of NDVI to the powdery

mildew. TVI provides an improved quantification of plant chlorophyll content more than

NDVI by calculating a triangular spectral area in the visible domain, which has shown

potential in detecting plant stress (Broge and Leblanc 2001). ARVI, with its advantage in

suppressing the atmospheric effect, might be beneficial to disease mapping with satellite

images.

Mapping of powdery mildew with SAM model

The significant response of SFs derived from both simulated spectral data and real satellite

image spectral data to the powdery mildew at canopy level illustrated the possibility of

mapping powdery mildew with multi-spectral satellite images. As shown in Fig. 6, the

ratio vectors derived from both satellite image spectra and simulated spectra exhibited a

Table 3 A summary of disease sensitivity of spectral features

Spectral
features

Independent t test SFs selection

Simulative
spectra

Real satellite
image spectra

Independent
t test

Cross-correlation
check

Blue ** *** s

Green ** * s s

Red ** *** s s

NIR

NDVI *** *** s s

TVI * * s s

GNDVI *** ** s

SAVI ** ** s

ARVI *** * s s

EVI **

RDVI ** ** s

* p value\0.05; ** p value\0.01; and *** p value\0.001;s SFs retained after independent t test analysis
(selection step 1) and cross-correlation check (selection step 2), respectively
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similar pattern between Fig. 6a and b, suggesting that the spectral response to powdery

mildew remains detectable in multi-spectral satellite image data. In addition, instead of

using a single SF in disease mapping, multiple infection-sensitive SFs with a low redun-

dancy were chosen to be used in disease mapping. This is mainly based on the fact that

different stressors might cause similar spectral response as in a single SF, but are less likely

to have similar spectral responses from multiple SFs simultaneously. Therefore, the ratio

vector created from the multiple SFs represented a spectral signature of either powdery

mildew infected or healthy pixel (sample). To apply this method in practice, users only

need to provide a predefined ratio vector of a specific disease or mark several unique

healthy and infected pixels as in this study, rather than to collect a dataset consisting of a

gradient of disease severities (Yuan et al. 2014).

The mapping results for region 1 and region 2 by the SAM method were demonstrated

in Fig. 7. Table 4 summarizes several classification accuracy indices of the mapping result

after being validated against field survey samples. The SAM method produced a moderate

accuracy with overall accuracy of 78 % and kappa coefficient of 0.55, as comparing with

previous studies associated with disease mapping with high resolution satellite images

(Franke and Menz 2007; Oumar and Mutanga 2012). By analyzing the confusion matrix,

the misclassification from infected pixels to healthy pixels was the major error, which led
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to a high omission error (31.58 %) and a relatively low commission error (18.75 %). Such

misclassifications usually occur in samples with slight infection symptoms and particularly

in fields with a high level of heterogeneity (Zhang et al. 2012; Cao et al. 2013). Unlike

some data mining methods (e.g., artificial neural network, support vector machine) with

complex principles, the SAM has an explicit physical basis and a straightforward com-

putational scheme, which makes it efficient for disease mapping. SAM uses a classification

decision rule based on spectral angles formed between a reference spectrum and unclas-

sified test pixel spectrum in n-dimensional space. Such a clear principle fits well with this

case in disease mapping. In this work, a set of disease sensitive spectral features constituted

a spectral vector, which can indicate the most unique spectral variation of powdery mil-

dew. The consistent spectral variation patterns that were found between in situ-based

spectra and pixel-based spectra (Fig. 6) suggested that the spectral uniqueness of the

disease maintained at image pixel level. Through calculating a spectral angle between a

Fig. 7 Mapping results of powdery mildew damage using the SAM method from the 5-band imagery
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reference spectrum and a test pixel spectrum, the SAM measures differences in spectral

shape across selected spectral features, which is a straightforward way to reflect an overall

spectral difference pattern between the reference and test pixel spectra.

Although the present accuracy (OA) was relatively lower than those achieved by using

airborne hyperspectral imagery (Zhang et al. 2003; Yang et al. 2010), it is able to satisfy

most practical needs in disease management for administration of plant protection (West

et al. 2003). Using airborne hyperspectral imagery, the finer spectral resolution of

hyperspectral data allows many detailed spectral analyses (e.g., extraction of red edge

optical parameters and developing narrow band VIs), which might result in a certain

improvement in mapping disease accuracy. Besides, as a successful example in mapping

cotton root rot using high resolution satellite imagery by Yang et al. (2010), the significant

spectral response and low heterogeneity in their experimental field might explain the

reason responsible for their high accuracy (Yang et al. 2010).

In previous work by Zhang et al. (2014), authors used multi-temporal moderate reso-

lution satellite images for mapping powdery mildew of winter wheat at a regional scale.

The highest classification accuracy (78 %) was achieved by a relatively comprehensive

strategy, which was linked to MTMF with PLSR. Despite using mono temporal satellite

image only, a similar accuracy (78 %) was achieved in the present work, which might be

owing to the improvement of spatial resolution from 30 m to 6 m. The consistent spectral

responses to powdery mildew were found between in situ-based spectra and pixel-based

spectra. Moreover, the SAM algorithm that was founded on a set of selected SFs was

proven as a simple and effective classifier in disease mapping.

Although both studies in Zhang et al. (2014) and this paper have shown great potential

in crop diseases mapping, the mapping accuracy was still somewhat insufficient in prac-

tice. To further improve the capability in emphasizing weak information (i.e., disease

signal), satellite images that meet the requirements of both high spatial and temporal

resolution are necessary. Moreover, some ancillary data, such as multi-temporal infor-

mation, larger sample size, geographic data and even meteorological data, need to be

included in the disease monitoring model to enhance the model performance.

Table 4 Confusion matrix and classification accuracies calculated from a set of validation samples

Reference U.’s a.
(%)

OA/AA
(%)

Kappa Commision
error (%)

Healthy Diseased Sum

Classified

Healthy 18 6 24 75.00 77.50/77.07 0.55 25.00

Diseased 3 13 16 81.25 18.75

Sum 21 19 40

P.’s a. (%) 85.71 68.42

Omission error (%) 14.29 31.58

The classification result was created with the SAM classifier

P.’s a. producer’s accuracy, U.’s a. user’s accuracy, OA overall accuracy, AA average accuracy
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Conclusions

To map powdery mildew in winter wheat from the point of view of practical application, a

newly launched high spatial resolution multi-spectral imaging sensor, SPOT-6, was tested

over an area with natural disease occurrence in Mei county, Shaanxi province, China.

Several conclusions could be drawn from the experimental results: (1) A consistent and

unique spectral response of five selected spectral features to powdery mildew disease in

winter wheat plants by analyzing both in situ-based spectra and pixel-based spectra indi-

cated that the disease could be detected by broadband multi-spectral satellite image data;

(2) a spectral ratio analysis facilitated a robust performance of a mapping method; (3) the

SAM classification underlying a set of selected spectral features achieved a promising

performance, which thus was considered as a simple but effective classifier in disease

mapping.
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