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Abstract Information on crop height, crop growth and biomass distribution is important

for crop management and environmental modelling. For the determination of these

parameters, terrestrial laser scanning in combination with real-time kinematic GPS (RTK–

GPS) measurements was conducted in a multi-temporal approach in two consecutive years

within a single field. Therefore, a time-of-flight laser scanner was mounted on a tripod. For

georeferencing of the point clouds, all eight to nine positions of the laser scanner and

several reflective targets were measured by RTK–GPS. The surveys were carried out three

to four times during the growing periods of 2008 (sugar-beet) and 2009 (mainly winter

barley). Crop surface models were established for every survey date with a horizontal

resolution of 1 m, which can be used to derive maps of plant height and plant growth. The

detected crop heights were consistent with observations from panoramic images and

manual measurements (R2 = 0.53, RMSE = 0.1 m). Topographic and soil parameters

were used for statistical analysis of the detected variability of crop height and significant

correlations were found. Regression analysis (R2\ 0.31) emphasized the uncertainty of

basic relations between the selected parameters and crop height variability within one field.

Likewise, these patterns compared with the normalized difference vegetation index

(NDVI) derived from satellite imagery show only minor significant correlations (r\ 0.44).
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Introduction

Crop height, crop growth and biomass distribution are important parameters for precision

agriculture (PA) and environmental modelling. Generally, crops are influenced by man-

agement, topography, diseases, soil and weather (Kravchenko et al. 2005). The quantifi-

cation of the effects from these numerous and very variable factors affecting yield can be

carried out by statistical analysis of yield (Heuer et al. 2011; Kravchenko et al. 2005;

McKinion et al. 2010b). Kaspar et al. (2003) found in a 6 year corn dataset that corn yield

is correlated to topographic factors, which were established from a kinematic DGPS sur-

vey. In this case, in years with lower precipitation, the well-known effect of higher yields

in low lying areas, which benefit from moisture and better soil properties, can be proven.

However, in years with high precipitation or strong precipitation events, the pattern is

reversed. This knowledge facilitates the establishment of yield stability maps, which can be

used to adjust management (McKinion et al. 2010b).

In contrast to the approaches mentioned that use yield data, also the current status of

crop height, density, vitality and biomass is important for PA (Mulla 2013). For instance,

information about plant vitality and biomass can be obtained by multi- and hyperspectral

remote sensing (Gnyp et al. 2013; Yu et al. 2013). Further methods to gather data on the

spatial distribution of crop height and other parameters are photogrammetric approaches

carried out from unmanned airborne vehicles (UAVs) (Bendig et al. 2013; Gómez-Candón

et al. 2013; Samseemoung et al. 2012), or balloons (Murakami et al. 2012), as well as radar

remote sensing (Koppe et al. 2013). The distribution of plant height and a relation to

biomass is important for the calculation of the nitrogen nutrition index (NNI), which

enables determination of the ideal amount of N (Bendig et al. 2014).

Laser scanning, which is based on light detection and ranging (LIDAR), has also been

applied in agronomy. It provides highly accurate and dense 3D point measurements of

objects. The systems can be used at different scales, areas and accuracies. The technology

can be used on airborne platforms, known as airborne laser scanning (ALS), on mobile

platforms, known as mobile laser scanning (MLS), as well as on terrestrial platforms,

known as terrestrial laser scanning (TLS). Various application areas, like topographic

surveys, forestry and documentation of buildings and cultural heritage have been reported

(Vosselman and Maas 2010).

For the detection of crop structure and other parameters, this method has been used by

several authors. Ehlert et al. (2008) tested a laser scanner at different viewing angles on

field machinery to directly derive data on crop height, coverage and density and found

correlations between crop height, fresh and dry biomass of oilseed rape, winter rye, winter

wheat and grassland (R2[ 0.88). Lumme et al. (2008) investigated crop heights of dif-

ferently fertilized barley, oats and wheat plots with a phase-based-scanner mounted on a

3 m rack. A correlation between crop height and grain yield was reported and single ears

were successfully detected (R2[ 0.88). Hosoi and Omasa (2009) used a triangulation-

based scanner for the voxel-based estimation of plant area density, leaf area density and

leaf area index of wheat (R2[ 0.9). The approach was successfully transferred to rice by

implementing a mirror above the canopy to accurately estimate the previously stated

parameters (Hosoi and Omasa 2012). Crop structure and the associated chlorophyll content

can be derived by the integration of intensity values of a green laser, which are radio-

metrically corrected (Eitel et al. 2010). Moreover, the nitrogen status in young wheat

canopies can also be derived with this approach (Eitel et al. 2011). Höfle (2014) presented

an approach to use corrected intensity values for the discrimination of single maize plants.
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In contrast to the already mentioned approaches, an indirect multi-temporal approach

for the determination of the spatial distribution of crop height and crop growth of an entire,

normally managed field was applied in this study. Sugar-beet was planted in 2008 and

barley in 2009. In all cases, maps of crop height and crop growth were established by a

comparison of high-resolution, multi-temporal crop surface models (CSMs) from different

time steps (Hoffmeister et al. 2010). The aim of this study, in contrast to the previously

described statistical studies on yield, is to find factors for the derived crop height and crop

growth patterns by statistical analysis with topographic and soil parameters. In addition,

comparisons with the normalized difference vegetation index (NDVI) derived from

satellite imagery was used to prove the importance of these measurements.

Materials and methods

Project and site description

The study was applied within the framework of the Transregional Collaborative Research

Centre 32 (CRC/TR32) ‘‘Patterns in Soil-Vegetation-Atmosphere-Systems’’, which is an

interdisciplinary research project, focusing on exchange processes between the soil, veg-

etation and the adjacent atmospheric boundary layer. The overall research goal of the CRC/

TR32 is to yield improved numerical SVA models to predict CO2, water and energy

transfer by calculating patterns at various spatial and temporal scales. The focus is on the

catchment area of the river Rur, situated in western Germany, parts of Belgium, and the

Netherlands (CRC/TR32 2015).

The study was conducted on a single field (Fig. 1), which was intensively observed by

different sensors for research issues of the CRC/TR32 (Korres et al. 2010; Koyama et al. 2010;

Waldhoff et al. 2012; Schmidt et al. 2012). The field (N50�5105800, E6�2605000) is situated in an

intensively used agricultural area, located about 40 km to the west of Cologne, Germany. It is

around 405 m by 105 m with an area of about 4.3 ha, an elevation of 102–105 m above sea

level and has gentle slopes (\2.5�). The soil of the study field is heterogeneous in terms of soil

type distribution. The two most abundant soil types are a gleyic Luvisol in the west changing to a

gleyic Cambisol in the east. In addition, some areas with anthropogenic soils (filled or removed

0102/60/527002/90/22

Fig. 1 Orthophotos of the observed field (white dashed line) from two different years showing the in-field
variability of crops. Imagery (left): � Geobasis NRW 2007. Imagery (right): � 2012 Google, Digital Globe,
25.06.2010
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material) have been identified in the middle part. In 2008, sugar-beet was planted followed by

winter barley flanked by two strips of winter wheat in 2009.

TLS and RTK–DGPS surveys

A laser scanner (LMS-Z420i, Riegl, Horn, Austria) was used for all observations. In addition,

a high-resolution digital camera, Nikon D200, was mounted on the head of the laser scanner

for taking pictures, which were used to colour the point clouds. The different positions of the

laser scanner were measured by a highly accurate real-time kinematic GPS (RTK-GPS)

(HiPer Pro, Topcon, Tokyo, Japan). The relative accuracy of this device is*10 mm in regard

to the base station that was established above a marked point every time. The marked point

was translated into the state surveying network by using six surrounding survey points within

a 2 km distance (Seeber 2003). To estimate the direction of the point cloud and as a first

estimation for the orientation of each point cloud from each scan position and date, several

highly reflective targets mounted on ranging poles (reflectors) were additionally measured by

the RTK–GPS and the TLS (Hoffmeister et al. 2010). The laser scanner was mounted on a

tripod at a height of[1.5 m. To cover the entire area, eight scan positions were established in

2008 and one further scan position was added in 2009. Measurements were undertaken three

times in 2008 (14/05/08, 26/06/08, 24/07/08) and four times in 2009 (07/04/09, 18/05/09,

24/06/09, 20/07/09) during the growing seasons. Each first date was used to establish the

initial digital terrain model (DTM).

Post-processing

The registration of each scan position was facilitated by georeferencing every point cloud.

For this purpose, the RTK–GPS measurements of each position of the laser scanner and

one reflector for orientation were used. The iterative closest point (ICP)-algorithm (Besl

and McKay 1992), which is implemented in the scanner’s software as multi-station

adjustment (MSA) enhanced the registration by iteratively minimizing differences of

points (Vosselman and Maas 2010). The colorisation of each point within the point clouds

was possible by assigning the RGB-values of the pictures taken by the digital camera. The

area of interest was manually extracted and filtered in several steps. The point clouds

containing *10 million points were finally interpolated with the same resolution of 1 m by

inverse distance weighting (IDW) to establish the initial DTM and the CSMs representing

the top canopy of every other survey. To determine the crop height (CH), a CSM of a

certain time step (t) was compared to the initial DTM from the first measurement before

crop emergence, as depicted in Eq. 1 and shown in Fig. 2a.

CH ¼ CSMt � DTM ð1Þ

The resulting CH depicts the current, absolute crop height of the assigned survey date.

The results are visually controlled by the corresponding panoramic pictures of the mounted

camera and are evaluated with the manual measurements of plant height by comparing

mean values of the CSM (1 m2) at the position of the measurement. In contrast, crop

growth (CG) can be established by comparing two CSMs from successive dates to retrieve

the relative crop growth between those dates, as defined by Eq. 2 and depicted in Fig. 2b.

CG ¼ CSMt2 � CSMt1 ð2Þ
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In-situ crop analysis and biomass harvesting

Manual crop height measurements at 27 locations and biomass harvesting at three of these

locations was conducted every 2 weeks within the first year. Manual measurements of crop

height at each spot were conducted at three plants with a measuring tape. Biomass was

extracted from three plants representing an area of 0.5 by 0.5 m at each spot. The cleaned

leaves were dried for 3 days at a temperature of 105 �C, weighed and an average dry

biomass in g m-2 was calculated.

Soil data

Soil moisture measurements, reported as the ratio of water and soil volume (vol. %), were

made with a handheld FDR probe (Delta-T Devices Ltd., Cambridge, UK) at 24 points on a

50 by 50 m grid (Korres et al. 2010). The mean of six measurements for each point at the

dates, listed in Table 1, were interpolated by inverse distance weighting. Mean soil depth

and the soil score were digitized from the corresponding soil maps of the State’ geological

agency. The soil score has a value of zero to one hundred and should represent soil fertility

derived from the soil composition, geologic origin and current condition and altered by

local climatic and topographic variations. Soil depth and soil score values were mapped at

a scale of 1:5000 established by ground surveys of federal agencies.

Correlation and regression analysis

The measured DTM was validated by a DTM from the state’s surveying agency generated

by ALS at a 1 m resolution (DGM1L). The CH and CG values averaged over 1 m2 were

compared with manual crop height and biomass measurements. In order to analyze factors

that might have influenced variability of crop height and crop growth, different parameters

were derived from the DTM with different cell sizes (1, 5, 10, 20 m). These parameters

were the absolute height, slope, curvature, plan and profile curvature of the terrain, as well

t-DTM
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Fig. 2 Illustration of the
derivation of crop height (CH) by
comparison of CSMs and the
initial DTM (a). Crop growth
(CG) is derived by a comparison
of two consecutive CSMs (b)
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as soil moisture, soil depth and soil score (Table 1). Slope and curvature values were

derived by ArcGIS for Desktop (ESRI, Redlands, USA) (Longley et al. 2006). The

parameters derived from the DTM (slope and curvature values) were separately derived

from the DTM with the corresponding cell size.

In addition, the principal components from the crop height data for the 2 years were

calculated with a principal component analysis (PCA). For this procedure, the data for each

measurement date was standardized to a zero mean and a standard deviation of one to

ensure a uniformly weighted contribution of every date to the principal components

(Korres et al. 2010). With this single parameter PCA, the stable patterns of crop height

were calculated for the years 2008 and 2009 and entered into the correlation analysis.

For the statistical evaluation of the crop height and crop growth variability, center points

from the DTM raster data were established for each cell and all data were attributed to

these points. Generally, a bi-linear interpolation function was used to derive values for

each point at each resolution. Finally, attribute tables of these point data, such as mean

plant height, slope value and soil moisture, were exported for each resolution and used for

correlation and regression analysis in R-statistical software. For tests on statistical sig-

nificance, spatial auto-correlation was determined by modified t tests in the PASSaGE 2

software (Taylor and Bates 2013).

Evaluation with satellite imagery

The detected crop height variability could be (in terms of modelling approaches) of interest

for the entire region. Parameters derived from satellite imagery were compared to the

resulting crop height and crop growth distribution. Images from the ‘Advanced Spaceborne

Thermal Emission and Reflection Radiometer’ (ASTER), Landsat (TM/ETM?) and

RapidEye satellites were used. Acquisition dates, raster resolution and bands used for

NDVI calculation are listed in Table 2. Likewise, the data were statistically evaluated, as

stated before. In order to avoid mixed-pixel problems by surrounding trees, a surrounding

buffer of 15 m was removed before analysis. Thus, only the inner field area was

considered.

Table 1 Parameters incorporated for analysis of the detected variability of CH and CG

Parameter Description

Height Z values of the DTM derived from the first measurements of every year

Slope Slope is the maximum degree of change between each cell and its neighbours

Curvature Curvature is the gradient of the slope. Positive numbers depict convex curvatures, negative
values show concave curvatures, zero values are flat

Plan
curvature

Plan curvature is perpendicular to the direction of the maximum slope. Positive values
assign sidewardly convex surfaces and negative values denote sidewardly concave
surfaces. Zero values are denoted for linear surfaces

Profile
curvature

Profile curvature is in the direction of the maximum slope. A negative value assigns an
upwardly convex surface and likewise a positive value indicates a concave surface. Zero
values are denoted for linear surfaces

Soil moisture Mean values of measured data from specified date (08/07/2008, 25/07/2008, 07/08/2009),
interpolated by inverse distance weighting

Soil depth Mean soil depth in decimetre from the soil map

Soil score Soil score from the soil map
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Results

Point clouds with an accuracy of about 10 mm were achieved as a primary result. Merging

those point clouds of every single scan position was possible by the RTK–GPS mea-

surements and enhancement by the MSA procedure with a RMSE\ 10 mm. The DTM

from the first date and the CSMs taken from the latter dates were generated by interpolation

from the final point clouds with approximately 10 million single measurements. With

regard to the point density distribution, which depends on the range, a 1 m cell size was

chosen as the initial resolution.

Comparison of elevation models

The derived DTM ( �X = 103.53 ± 0.53 m) was compared to the DGM1L

( �X = 102.86 ± 0.51 m), which is distributed with an accuracy of 0.2 m obtained from the

state’s surveying agency to test the overall accuracy of the approach. A significant cor-

relation (r = 0.99) was found that reveals the relative precision of the measurements. For

the TLS measurements, a positive shift of *0.8 m was observed.

Results of 2008 and accuracy analysis

The maps of crop height, crop growth, and the initial DTM from 2008 are presented in

Fig. 3. Statistical values are shown in Table 3. Sugar-beet shows throughout the obser-

vation period an increase in plant height, with a larger standard deviation (SD *0.1) and

coefficient of variation (CV[ 0.23). The generated DTM (Fig. 3a) shows the major

topographic patterns of the field, which is characterized by an east to west downhill trend

with several local depressions at the eastern and central parts, as well as a sharp linear edge

in the central section. These overall patterns are reflected by the map of crop height from

late June, 2008 (Fig. 3b). Particularly, the eastern central part and the whole western edge

show inferior crop development. Furthermore, west of the linear edge, several distinctive,

circular areas with different crop development can be observed (Fig. 3d). These patterns

appear reversed in the maps of crop growth between late June and late July 2008 (Fig. 3c).

The low lying western part is generally characterized by inferior growth, as well as the

small depression in the central eastern part. A panoramic picture generated from the

camera on the TLS (Fig. 4) from the last survey of 2008 shows the poorer development of

the sugar-beet plants on the western side. In Fig. 3d, the mainly covered area of the picture

Table 2 Overview of incoporated satellite imagery, raster resolution and bands used for NDVI calculation

Satellite Acquisition
date

Resolution Bands used

Landsat 7
(ETM?)

29/06/2008 30 m Band 3 visible (red) (0.63–0.69 lm) 30 m and band 4 near-
infrared (0.77–0.90 lm)

ASTER 24/07/2008 15 m Band 2 red (0.63–0.69 lm) and band 3 near-infrared
(0.76–0.86 lm)

RapidEye 24/05/2009 5 m Band 3 red (630–685 nm) and band 5 near-infrared
(760–850 nm)

ASTER 02/07/2009 15 m Band 2 red (0.63–0.69 lm) and band 3 near-infrared
(0.76–0.86 lm)
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 < 0.2 m
0.2 - 0.3 m

0.3 - 0.4 m
0.4 - 0.5 m

0.5 - 0.6 m
> 0.6 m

 < 0.0 m 0.0 - 0.2 m
0.2 - 0.4 m

0.4 - 0.6 m
> 0.6 m

A DTM 

each CH

B CH = CSM              - DTM

C CG = CSM              - CSM D CH = CSM              - DTM 

Fig. 4

CG

26/06/2008 14/05/2008

24/07/2008 26/06/2008 24/07/2008 14/05/2008

14/05/2008

Fig. 3 Maps of crop height (CH), crop growth (CG) and the DTM for the year 2008. CH and CG were
determined by a comparison of consecutive CSMs and the DTM. Rectangle marks the area of a panoramic
picture for the corresponding survey date (Fig. 4)

Table 3 Overview of the derived crop height and crop growth values (n = 983), as well as manually
measured crop heights (n = 27) in meters for 2008 (Fig. 3) and 2009 (Fig. 5)

Derived values Measured values

�X SD CV �X SD

Sugar beet 2008 CH 080624–080525 0.33 0.11 0.33 0.34 0.10

CH 080725–080525 0.52 0.12 0.23 0.52 0.12

CG 080725–080624 0.19 0.09

Barley and wheat 2009 CH 090518–090418 0.80 0.06 0.08

CH 090624–090418 0.98 0.08 0.08

CH 090720–090418 0.83 0.08 0.10

CG 090624–090518 0.18 0.06

CG 090720–090624 -0.16 0.05

CV coefficient of variation
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is marked. Generally, all observations match with the pictures and manual measurements

of crop height. The calculated plant heights of the CSMs were compared with independent

crop height measurements on the field for the year 2008. The manual measurements were

in agreement with the derived plant height values as depicted in Table 3 and the R2 is 0.53.

RMSE is 0.1, which equals to a relative error of 22 %.

24/07/2008

Fig. 4 Panoramic picture from one scan position from 24 July 2008. The western part of the field showing
inferior growth is visible in the foreground. The area is marked in Fig. 3
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In addition, biomass sampling of sugar-beet plants was conducted in 2008 at three

points within the field. Biomass and plant height for the whole growing period are shown in

Fig. 5a, with the mean crop height of the TLS measurements. Assuming a logarithmic

regression (Fig. 5b), R2 value was 0.63. Generally, the quantity of the independent crop

height measurements is low.

Results of 2009

Barley and wheat exhibited a more uniform crop height and crop growth than sugar-beet

in 2008. This is reflected by a minor SD (\0.1) and CV (\0.1). The pattern of the initial

DTM is not visually recognizable. Inferior crop development of barley was detected only

for the north-western part. In late July, the crop height generally decreased, close to

harvest, due to ear development. This is also seen in the mostly negative crop devel-

opment between late June and late July (Fig. 6f). The narrow strips of wheat show

slightly different crop heights at certain time steps (e.g., Fig. 6d). Statistical values are

given in Table 3.

Correlation between crop height variation and selected parameters

The detected variability of crop height and crop growth was compared to the previously

stated parameters, in order to identify sources for this crop height variation. The mean

plant heights were correlated with the stated parameters in R-statistical software with a

resolution of 1, 5, 10 and 20 m respectively. Significant parameters were used in a

multiple, linear regression in order to explain this variation. The results for the resolution

of the 10 m cell size showed in this case the best results and are listed in Table 4

(n = 983). Similar but lower correlation values were derived for the chosen resolutions.

Generally, correlation coefficients were low (\0.4), and significance is mostly reduced,

concerning spatial autocorrelation. Significant correlations of slope, curvature, plan and

profile curvature, as well as for the soil depth were found for sugar-beet in 2008. Here,

slope and profile curvature are negatively correlated. Only minor correlations for all

curvatures are indicated for crop growth in 2008. For 2009, curvature was negatively

correlated, whereas profile curvature was positively correlated. For the latest stage in

2009 soil depth was additionally correlated (r = 0.38) For crop growth, slope and soil

moisture showed a correlation with the first growing period from May to late June of

2009, whereas for the second growing period only soil depth was correlated. Significant

parameters were used in a multiple linear regression computation for every CH and CG

stage. The R2 values were generally low (\0.29) and only a part of the crop height

distribution of 2008 is related to the selected parameters. For 2009, the coefficients of

determination were negligible.

In order to derive a generalized statement, the principal components of crop height for

each year were computed. The main annual patterns are depicted by the first principal

component (PC1) and the variation is reflected by the second principal component (PC2).

For 2008, in PC1 slope was negatively correlated to crop height and positively correlated

to variation. Likewise, profile curvature was positively correlated to this variation. In

contrast, curvature, plan curvature and soil depth were negatively correlated to PC2, which

are values that are positively correlated to plant height. In 2009, slope was correlated to the

variation reflected by PC2 (0.21). Curvature (-0.18) and profile curvature (0.21) were

significantly correlated to PC1.
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In Table 5, the results of the comparison between the derived crop height and crop

growth values and the computed NDVI from satellite imagery are shown. Significant

correlations of *0.35 were only found for sugar-beet crop height variation in 2008 and

crop growth of the first period in 2009 (r = 0.44).

MTD-MSC=HCBMTDA

C CH = CSM           - DTM D CH = CSM    - DTM

E CG = CSM           - CSM

 < 0.6 m
0.6 - 0.7 m

0.7 - 0.8 m
0.8 - 0.9 m

0.9 - 1.0 m
> 1.0 m

 < 0.0 m  0.0 - 0.2 m
0.2 - 0.4 m

0.4 - 0.6 m
> 0.6 m

each CH

each CG

07/04/2009 18/05/2009 07/04/2009

07/04/200907/04/200924/06/2009 20/07/2009

24/06/2009 18/05/2009 F CG = CSM           - CSM20/07/2009 24/06/2009

Fig. 6 Maps of crop height (CH), crop growth (CG) and the DTM for the year 2009. CH and CG were
determined by a comparison of consecutive CSMs and the DTM. The main crop was winter barley with two
narrow areas of winter wheat, which are marked by white dashed lines
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Discussion

Considering the method itself, the system and all components worked well. Surveys cannot

be conducted during rain, as most instruments are only splash proof. Dust and insects

caused some noise. The georeferencing approach of combining TLS surveys with accurate

RTK–GPS measurements made an analysis and comparison with other georeferenced data

possible. This was of particular importance in this study, as other data were incorporated to

determine factors for crop height and crop growth variation. For this purpose, the RTK–

GPS base station was transformed into the state surveying network. The comparison with

the DTM of the state surveying agency revealed a shift of about 0.8 m, which might be the

result of different measurement methods and following post-processing steps. McKinion

et al. (2010a) found comparable results (±1 m). However, the relative relationship here

shows a high correlation, which confirms the general accuracy of this approach.

The resulting point density of the TLS surveys needs to be taken into consideration. The

surveys of the single field conducted with a tripod of 1.5 m height revealed a lower point

density at a distance of *100 m away from each scan position. Although an additional

position was established in 2009 within the field, a full coverage with a high point density was

still not achieved. Generally, less than 5 pts/m2 were obtained. Compared to the surveys

conducted with a tripod, an elevated position of *4 m (Hoffmeister et al. 2012; Höfle 2014)

resulted in a higher point density, which enables for instance single plant detection.

The method can be applied with a higher temporal resolution depending on organisation

and logistics. However, the measurement time of about half a day for a field is a major

disadvantage. An expansion to an MLS approach by incorporating an inertial navigation

system (INS) would enable faster measurements with a more uniform and higher spatial

and temporal resolution. Similarly, stereo-photogrammetry by UAVs (Bendig et al. 2013)

could be applied to obtain more accurate and higher spatial and temporal resolution.

However, this approach relies on ambient illumination, calmer weather conditions and the

Table 5 Derived correlation coefficients r of the comparison between crop height (CH) and crop growth
(CG) and the NDVI from different satellite images

n = 983 NDVI
080629

NDVI
080724

NDVI
090524

NDVI
090702

Sugar-beet 2008 CH 080624–080525 0.35a

CH 080725–080525 0.36a

CG 080725–080624 -0.15b 0.09b

Barley and wheat 2009 CH 090518–090418 0.12b

CH 090624–090418 0.48b

CH 090720–090418 0.51b

CG 090624–090518 0.44a 0.41b

CG 090720–090624 0.17b 0.15b

Two-tailed modified t test of significance is used
a Correlation is significant at the 0.05 level
b Significance is reduced by modified t test

308 Precision Agric (2016) 17:296–312

123



placement of ground control points within the mapped area (Gómez-Candón et al. 2013).

TLS and MLS are based on active sensors which are less prone to the ambient conditions.

In the TLS approach, the height of the plants was indirectly derived by a comparison

over time. In contrast, the MLS described by Ehlert et al. (2009) involved a height guiding

device in front of a carrier that holds the laser sensor at a constant height above the ground.

This allowed the plant height to be computed by geometric relations. Lumme et al. (2008)

mounted a phase-based scanner vertically on a 3 m rack. The resulting data was correlated

by an indirect registration of plastic discs, measured by a tachymeter. Thus, in both cases,

the crop height was directly measured.

However, direct comparison with manually measured crop heights showed the accuracy

of the TLS approach (Table 3). In this study, the number of manual measurements were

sparse. A similar set-up and procedure with more ground control was applied by Tilly et al.

(2014) to paddy rice fields and revealed a high correlation between manual measurements

and mean crop height values. Ehlert et al. (2009) found high correlations in his MLS

approach for several crops. Their study did not include sugar beet. The correlation between

sugar-beet height obtained manually and by TLS in this study were slightly worse,

probably due to the more complex plant structure and the greater uncertainty in the manual

crop height measurement. The derived crop height was a mean value of the corresponding

cell size, whereas the manual measurement was here a subjectively chosen spot height,

which might be biased.

Overall, the western part of the site showed poor crop development and the patterns

were also visible in the orthophotos from years before and after the observations (Fig. 1).

The north–south line in the centre of the site are the remains of old pathways, which

existed prior to land reallocation. In addition, the whole area is shaped by an inactive

palaeo-river system and remains of trenches and bomb craters from World War II (Ru-

dolph et al. 2015 and personal communication, 2014), which might be the cause for the

circular pattern in the middle of the field. The latter area is also denoted in the soil map as a

cultural deposit or alteration area.

For correlation purposes, all data were aggregated to raster datasets of 1, 5, 10 and 20 m

pixel resolution and compared to parameters from topography, soil information and soil

moisture. The results of the 10 m resolution are presented here. Generally, only small

significant correlation values were found (r\ 0.4) and the applied modified t test has

diminished several previously significant values. Similar small values were found in other

studies concerning yield data (Heuer et al. 2011; McKinion et al. 2010b). For instance,

McKinion et al. (2010b), related yield data from 5 years to topographic parameters and

found regression values smaller than 0.11. In this case, slope, all curvature values and soil

depth were correlated to sugar-beet height, whereas only curvature and profile curvature

were correlated to barley and wheat height in 2009. Slope generally was correlated to the

variation reflected by the second principal component. Overall, the selected parameters did

not provide a satisfactory explanation for the variation of the derived plant heights in

regression analysis (R2\ 0.31). Other processes are probably responsible for the detected

variability, for instance, management or nutrient availability. Results may be improved by

using other soil parameters such as soil electrical conductivity (EC) (Stadler et al. 2015;

Rudolph et al. 2015).

The detected variability is valuable information for crop growth models that consider

temporal processes (Lenz-Wiedemann et al. 2010; Korres et al. 2013). Likewise, the crop

height distribution can be used as a further source for these models. Correlation with the

NDVI derived from available satellite imagery gave only r values smaller than 0.44. A

combination of measured plant height and NDVI derived from high-resolution satellite
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imagery (e.g., Worldview2, 5 m/pixel) resulted in a coefficient of determination for bio-

mass modeling of R2[ 0.6 (Hütt et al. 2014).

Conclusion

TLS has been shown as a possible multi-temporal surveying method for deriving plant

height distribution, plant growth and biomass. A small number of sparse manual mea-

surements resulted in a R2 = 0.53, RMSE = 0.1 m to derived crop height values. Based

on the results, the spatial variability of crop height and crop growth can be determined in

one single field for two different crops in two different years by the method of combining

TLS and RTK–GPS in multi-temporal surveys. The detected variability was different for

both crop types. Winter barley and wheat in 2009 showed a more uniform crop height and

crop growth pattern than sugar-beet in 2008. Generally, significant correlations with

common topographic parameters and soil values were found. However, these showed,

similar to studies concerning yield data, hardly an explanation for the variation. Likewise,

the NDVI of different satellite imagery showed only a minor correlation. Thus, crop height,

crop growth and biomass distribution are barely related to the selected parameters, which

emphasizes the importance of these measurements in particular for modelling approaches.

Acknowledgments We thank the anonymous reviewers, who significantly improved the paper. We
gratefully acknowledge financial support from the CRC/TR32, funded by the Deutsche Forschungsge-
meinschaft (DFG). We also like to thank Topcon GmbH (Germany) and RIEGL Laser Measurement
Systems GmbH (Austria) for continuous support.

Compliance with Ethical Standards

Conflict of interest We declare no conflict of interest.

References

Bendig, J., Bolten, A., & Bareth, G. (2013). UAV-based imaging for multi-temporal, very high resolution
crop surface models to monitor crop growth variability. Photogrammetrie-Fernerkundung-Geoinfor-
mation, 6, 551–562.

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of
Barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing,
6(11), 10395–10412.

Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2), 239–256.

CRC/TR32 (2015). transregional collaborative research centre 32: Patterns in soil-vegetation-atmosphere-
systems. Retrieved July 24, 2015, from http://www.tr32.uni-koeln.de.

Ehlert, D., Adamek, R., & Horn, H.-J. (2009). Laser rangefinder-based measuring of crop biomass under
field conditions. Precision Agriculture, 10(5), 395–408.

Ehlert, D., Horn, H. J., & Adamek, R. (2008). Measuring crop biomass density by laser triangulation.
Computers and Electronics in Agriculture, 61(2), 117–125.

Eitel, J. U. H., Vierling, L. A., & Long, D. S. (2010). Simultaneous measurements of plant structure and
chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sensing of Envi-
ronment, 114(10), 2229–2237.

Eitel, J. U. H., Vierling, L. A., Long, D. S., & Hunt, E. R. (2011). Early season remote sensing of wheat
nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151(10),
1338–1345.

Gnyp, M. L., Yu, K., Aasen, H., Yao, Y., Huang, S., Miao, Y., et al. (2013). Analysis of Crop Reflectance
for Estimating Biomass in Rice Canopies at Different Phenological Stages. Photogrammetrie-Fern-
erkundung-Geoinformation, 2013(4), 351–365.

310 Precision Agric (2016) 17:296–312

123

http://www.tr32.uni-koeln.de
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