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Abstract Site-specific weed management is defined as the application of customised

control treatments only where weeds are located within the crop-field by using adequate

herbicide according to weed emergence. The aim of the study was to generate georefer-

enced weed seedling infestation maps in two sunflower fields by analysing overlapping

aerial images of the visible and near-infrared spectrum (using visible or multi-spectral

cameras) collected by an unmanned aerial vehicle (UAV) flying at 30 and 60 m altitudes.

The main tasks focused on the configuration and evaluation of the UAV and its sensors for

image acquisition and ortho-mosaicking, as well as the development of an automatic and

robust image analysis procedure for weed seedling mapping used to design a site-specific

weed management program. The control strategy was based on seven weed thresholds with

2.5 steps of increasing ratio from 0 % (herbicide must be applied just when there is

presence or absence of weed) to 15 % (herbicide applied when weed coverage[15 %). As

a first step of the imagery analysis, sunflower rows were correctly matched to the ortho-

mosaicked imagery, which allowed accurate image analysis using object-based image

analysis [object-based-image-analysis (OBIA) methods]. The OBIA algorithm developed

for weed seedling mapping with ortho-mosaicked imagery successfully classified the

sunflower-rows with 100 % accuracy in both fields for all flight altitudes and camera types,

indicating the computational and analytical robustness of OBIA. Regarding weed dis-

crimination, high accuracies were observed using the multi-spectral camera at any flight

altitude, with the highest (approximately 100 %) being those recorded for the 15 % weed

threshold, although satisfactory results from 2.5 to 5 % thresholds were also observed, with

accuracies higher than 85 % for both field 1 and field 2. The lowest accuracies (ranging

from 50 to 60 %) were achieved with the visible camera at all flight altitudes and 0 %
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2 Department of Graphic Engineering and Geomatics, University of Cordoba, Campus de Rabanales,
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weed threshold. Herbicide savings were relevant in both fields, although they were higher

in field 2 due to less weed infestation. These herbicide savings varied according to the

different scenarios studied. For example, in field 2 and at 30 m flight altitude and using the

multi-spectral camera, a range of 23–3 % of the field (i.e., 77 and 97 % of area) could be

treated for 0–15 % weed thresholds. The OBIA procedure computed multiple data which

permitted calculation of herbicide requirements for timely and site-specific post-emergence

weed seedling management.

Keywords Site-specific weed management (SSWM) � Mosaicked imagery � object-
based-image-analysis (OBIA) � Remote sensing � Unmanned aerial vehicle (UAV) � Weed

threshold

Introduction

Efficient and timely post-emergence weed control is a critical task in crop production

because inappropriate weed management tends to reduce yield and increase the negative

impacts on the environment. Inappropriate weed management is often related to incorrect

herbicide use resulting from three main problems. The first is applying herbicides when

weeds are not in the suitable phenological stage (generally when weeds have 4–6 true

leaves, although this depends on specific weed species or group of species), the second is

applying herbicides without considering any weed threshold (i.e., the weed infestation

level above which a treatment is required (Swanton et al. 1999)), the third is broadcasting

herbicides over the entire field, even when weed-free areas are present due to the usual

weed patchy distribution (Jurado-Expósito et al. 2003, 2005). The first problem is usually

addressed using the expert knowledge of farmers. The other two problems can be over-

come by developing site-specific weed management (SSWM) strategies according to weed

thresholds (Longchamps et al. 2014). These strategies may consist of both a single her-

bicide treatment to weed patches where a unique group of weeds is present (for example

either grass or broadleaved weeds), or use of several herbicides according to the presence

of different weed species or group composition, such as grass, broadleaved weeds or a

specific problematic weed such as Orobanche-broomrape, which can be a serious problem

in sunflower production (Garcı́a-Torres et al. 1994; Molinero-Ruiz et al. 2014). Sunflower

(Helianthus annuus L.) is the most important annual oilseed crop in southern Europe and

the Black Sea region, with over 5 M ha grown annually (FAO 2015), of which 0.8 M ha

are in Spain (MAGRAMA 2015). Weed control operations (either chemical or physical)

using large agricultural machinery account for a significant proportion of production costs,

create various agronomic problems (soil compaction and erosion) and represent a risk for

environmental pollution. In this context, there is a demand for developing a timely, post-

emergence, site-specific management program in order to reduce the issues associated with

current weed control practices in sunflower and to comply with the European legislation

and concerns (Regulation EC No 1107/2009; Directive 2009/128/EC; Horizon 2020).

To achieve these goals, it is necessary to generate the weed cover maps, which allow the

translation of the spatial distribution of the weed infestation into site-specific herbicide

treatment maps. As reported earlier, one of the main variables considered in the weed

control decision process in sunflower is weed threshold, which is based on weed density or

level of infestation (Castro-Tendero and Garcı́a-Torres 1995; Carranza et al. 1995). If these

weed cover or weed infestation maps are built using a grid design, a weed threshold can be
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derived, which is the percentage of weed cover in every grid, above which a treatment is

required. This threshold could be the baseline to generate the herbicide treatment maps.

Remote sensing, together with proximal sensing, are now two of the principal sources of

data to monitor weeds in a cost effective way. There are previous studies that have

investigated weed detection and mapping in crops at late growth stages, e.g., flowering,

using imagery from piloted airborne or satellite able to register visible and near-infrared

information (Gutiérrez-Peña et al. 2008; De Castro et al. 2012, 2013). However, the images

from these platforms have limited ability to detect weeds at the seedling stage due to their

low spatial resolution. Other remote platforms, on the other hand, can generate the high

spatial resolution imagery (pixel size B0.05 m) needed to map weeds at very early phe-

nological stages, which can then be used to develop efficient post-emergence controls.

Recent research emphasises the suitability of unmanned aerial vehicles (UAV) for this

purpose (López-Granados 2011; Zhang and Kovacs 2012). A key component of a UAV is

the versatility of the configuration of onboard sensors, flight altitude, flight planning, etc.

The required parameters and their implications for the potential use of UAV in early weed

detection have been reported by Torres-Sánchez et al. (2013). The main advantages of

using UAV is that they can carry (even simultaneously) different sensors to record reflected

energy at diverse spectral ranges according to each detection objective, fly at different

altitudes to adjust the desired high spatial resolution and be programmed on demand at

critical stages of crop growth. This is crucial when detecting weeds in crops for early post-

emergence SSWM when crops and weeds are at the same early phenological stage and they

show spectral and visual similarities.

As a result of collecting images with a very high spatial resolution, UAV images taken

at low altitude cannot cover the entire study area. This causes the need to take a sequence

of a percentage of forward (lateral) and side (longitudinal) overlapped imagery, which

acquire a number of images per hectare depending on the flight altitude. These individual

images must then be stitched together and ortho-rectified to create an accurately geo-

referenced ortho-mosaicked image of the entire plot for further analysis and classification.

Image mosaicking is a well-known task for integrating spatial data to assess and monitor

disasters (Li et al. 2011), map archaeological sites (Lambers et al. 2007) or conduct high

quality cadastral and urban planning (Haarbrink 2008) using local invariant features or

ground control points to perform the aero-triangulation. However, the splicing image used

to generate an ortho-image (also named ortho-mosaicked image) of herbaceous crops at

early stages of phenological development presents serious difficulties due to the high

repetitive pattern of these fields. In a recent work, our research group discussed a detailed

procedure to produce accurate ortho-imagery with spatial resolutions from 0.0074 to

0.0247 m and representing the entire area of wheat fields (rows 0.15 m apart) by using

UAV flying at low altitudes (Gómez-Candón et al. 2014). This work concluded that one of

the crucial parameters for generating ortho-mosaicked imagery when mapping row crop

environments is crop row alignment on both sides of the overlapped images. This issue was

addressed and crop line continuity was preserved because overall spatial errors less than

twice the spatial resolution were obtained. This methodology was very useful in the

development of the objectives herein presented.

One of the intrinsic problems when processing very high spectral resolution imagery is

that individual pixels do not capture the distinctiveness of the targets investigated, which

generates a high intra-class spectral variability and, consequently, resulting in difficulties

to achieve statistical separation. Segmentation is the process of dividing a digital image

into multiple regions according to the proposed objective. For example, to discriminate

weeds in a crop using UAV imagery, the segmentation would consist of multi-pixel regions
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defined by crop, weeds and bare soil. That is, throughout the segmentation, spatially

adjacent and spectrally homogeneous pixels would be grouped to create units named

objects that contain more information than individual pixels, allowing for a more mean-

ingful interpretation. This is the main idea behind the steps of the object-based-image-

analysis (OBIA) procedure: (1) to automatically segment an image into objects, (2) to

combine their spectral, contextual, morphological and hierarchical information, and (3) to

classify the image by using them as the minimum information units (Blaschke 2010). Peña

et al. (2013) developed an OBIA algorithm using single UAV imagery (not ortho-mo-

saicked imagery) for early detection of weeds in maize

As previously described, UAV ortho-mosaics are becoming an important tool for

the development of site-specific weed prescription strategies because they can offer

information on the entire study area and can detect small plants (crop and weeds) at

early growth stages, which are not detected using other kinds of remote platforms

with coarse spatial resolution (like satellite or conventional aerial platforms with

which objects smaller than 0.20 m cannot be detected). Considering that highly

accurate mosaics have been obtained working in wheat fields (Gómez-Candón et al.

2014), generation of ortho-mosaicked imagery for sunflower fields with 0.70 m row

spacing seems to be a reasonable starting point for developing an early SSWM

program, in which the relative location of weeds in proximity to the crop rows is a

hypothesis for discriminating and mapping weed cover. Thus, the objectives of this

work were to: (1) assess the optimal planning of UAV flights with respect to flight

altitude and sensor type (visible vs visible ? near-infrared cameras) for generating

accurate ortho-imagery, (2) design and evaluate an OBIA procedure for mapping bare

soil, crop-rows, weed-patches and weed-free zones using the ortho-mosaicked ima-

gery, and (3) simulate several field-based scenarios according to different weed

thresholds to evaluate the sections of the sunflower fields that should be and not be

managed with herbicide.

Materials and methods

Sites

The study sites were two commercial sunflower fields with flat ground (average slope

\1 %) situated at Monclova Farm, in Seville province (southern Spain, central co-ordi-

nates datum WGS84: 37.528 N and 5.315 W for field 1, and 37.524 N, 5.318 W for field

2). The sunflower crops were sown on March 25th, 2014, at 6 kg ha-1 in rows 0.70 m

apart, and emergence of the sunflower plants started 15 days after sowing. The sunflower

fields had an area of approximately 1 ha each, and were naturally infested by the broad-

leaved weeds Amaranthus blitoides S. Wats (pigweed), Sinapis arvensis L. (mustard) and

Convolvulus arvensis L. (bindweed), as well as Chenopodium album L. (lambsquarters) in

field 2. All these weed species can be controlled by the same type of herbicide. Weed and

crop plants were in the principal stage 1 (leaf development, four–six true leaves, codes

14-16) from the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische

Industrie) extended scale (Meier 2001).
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UAV flights: cameras and altitudes

The co-ordinates of each corner of the experimental fields were collected with GPS for

planning the flight route. Then, each flight route was programmed into the UAV software

to allow the UAV to attain every programmed altitude and required degree of image

overlap. This imagery was collected with two different cameras mounted separately in a

quadrocopter UAV, model md4-1000 (microdrones GmbH, Siegen, Germany, Fig. 1) on

May 7th 2014 at two different altitudes: 30 and 60 m. A sequence of 30 % side-lap and

60 % forward-lap imagery was collected to cover the entire area of the experimental

sunflower fields corresponding to each flight mission cameras and altitudes (Fig. 2). One of

the cameras used was a low-cost digital visible camera, model Olympus PEN E-PM1

(Olympus Corporation, Tokyo, Japan), which acquires 12-megapixel images in true Red–

Green–Blue (RGB) colour with 8-bit radiometric resolution. The other sensor was a multi-

spectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA),

which acquires 1.3-megapixel images composed of six individual digital channels arranged

in a 2 9 3 array that can acquire images with either 8-bit or 10-bit radiometric resolution.

This camera has user configurable band pass filters (Andover Corporation, Salem, NH,

USA) of 10-nm full-width at half maximum and centre wavelengths in the B (450 nm), G

(530 nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm) spectral

regions. Detailed information about the configuration of the UAV flights and specifications

of the vehicle and the cameras can be found in Torres-Sánchez et al. (2013). The images

taken with the visible camera were used directly after downloading to the computer, but

those taken with the multi-spectral camera required pre-processing. This multi-spectral

sensor acquires images in each channel in raw format and stores them separately on six

individual CF cards embedded in the camera. Therefore, an alignment process was needed

to group, in a single file, the six images taken at each waypoint. The Tetracam

Fig. 1 Microdrone MD4-1000 with the multi-spectral camera (6 channels) embedded flying over one the
sunflower experimental fields
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PixelWrench 2 software (Tetracam Inc., Chatsworth, CA, USA) supplied with the multi-

spectral camera was used to perform the alignment process.

In the course of the UAV flights, a barium sulphate standard spectralon� panel (Lab-

sphere Inc., North Sutton, NH, USA) of 1 9 1 m dimension was also placed in the middle

of the fields to calibrate the spectral data (Fig. 3). Digital images captured in each camera

spectral channel were spectrally corrected by applying an empirical linear relationship

(Hunt Jr. et al. 2010). Equation coefficients were derived by fitting digital numbers of the

multi-spectral images located in the spectralon panel to the spectralon ground values.

Fig. 2 a Screen shot of the set of overlapped images taken with UAV flying at 30 m altitude equipped with
the visible still camera in field 1 (1 ha surface). Blue rectangles represent the relative position of every
overlap image respect to the others; b resulting ortho-mosaicked imagery

Fig. 3 a Partial view of the ortho-mosaicked imagery at 30 m altitude (sunflower field 2), showing the
sunflower rows, the spectralon (white square placed between two sunflower rows at the bottom-left), some
patches of weed infestation and some of the 49 191 m square frames; b Detail of vector file created for
every square frame (yellow); c detail of the vector file created for the sunflower crop (green) and weed
(violet) classes in one the 49 square frames
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Image mosaicking

Image mosaicking is an important task prior to image analysis and consists of the com-

bination of the sequence of overlapped imagery by applying a process of mosaicking using

Agisoft PhotoScan Professional Edition (Agisoft LLC, St. Petersburg, Russia). On the day

of the UAV flights, a systematic on-ground sampling procedure was conducted, which

consisted of placing 49 1 9 1 m sampling areas, or frames, regularly distributed

throughout the two experimental fields according to a representative distribution of weed

infestation in the experimental fields (Fig. 3). All the frames were georeferenced and, of

the 49 frames, 12 were utilised as artificial terrestrial targets in order to perform the

imagery ortho-rectification and mosaicking process. All of the 49 frames were also

employed later in the validation of the OBIA procedure for the weed discrimination, as

explained in the evaluation of the OBIA algorithm performance section. The mosaicking

process had three principal steps for each field: (1) image alignment, i.e., the software

searches for common points in the images and matches them, in addition to finding the

position of the camera for each image and refining camera calibration parameters, (2)

construction of image geometry based on the estimated camera positions and images

themselves to produce a 3D polygon mesh representing the overflow areas was built by

PhotoScan, and (3) projection of individual images once the geometry was built for ortho-

photo generation. The resultant ortho-mosaicked images must show a high-quality land-

scape metric and an accurate sunflower row matching between consecutive images in order

to guarantee good performance of the subsequent segmentation and classification analyses.

OBIA algorithm

The OBIA procedure designed for the weed mapping objectives was developed using the

commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany).

This OBIA procedure was based on an algorithm for weed mapping in early-season maize

fields fully described in previous work by our research group (Peña et al. 2013), though

that work was conducted using single imagery, whereas the procedure presented herein

includes some relevant variations and upgrades related to the unique characteristics of

sunflower crops. The OBIA algorithm combined object-based features such as spectral

values, position, orientation and hierarchical relationships among analysis levels. The

algorithm was based on the position of crop and weed plants relative to the crop rows, that

is, every plant not located on the crop line was considered a weed. Therefore, the algorithm

was programmed to accurately recognise and detect the crop rows by the application of a

dynamic and auto-adaptive classification process, and then classified the vegetation objects

outside the rows as weeds. The detailed image analysis workflow is described by Peña

et al. (2013) and only the variations and improvements are described in the following steps:

(a) Field segmentation into sub-parcels ortho-mosaicked images taken with every

camera and flight altitude were segmented into small parcels whose size is user-config-

urable and, in this case, was 5 9 5 m. Every sub-parcel was analysed individually to

address the spatial and spectral variability of the crop.

(b) Sub-parcel segmentation into objects the sub-parcel images were sub-segmented

using a multi-resolution algorithm to create homogeneous multi-pixel objects corre-

sponding to two classes: vegetation (crop and weeds) and non-vegetation (bare soil)

objects. Since these objects come from the merger of spectrally and spatially homogeneous

pixels, they contain new information that was used in the next phases of the OBIA

Precision Agric (2016) 17:183–199 189

123



procedure. In this study, this new information corresponded to 1, 10, 0.6, 0.4, 0.5, 0.5 for

band weights, scale, color, shape, smoothness and compactness, respectively.

(c) Vegetation objects discrimination once the sub-parcels were segmented, the vege-

tation (crop and weeds) objects were discriminated from the bare soil objects. Two spectral

indices were used: excess green (ExG, Woebbecke et al. 1995; Eq. 1) for the visible

camera, and NDVI (Rouse et al. 1973; Eq. 2) for the multi-spectral camera because both

indices enhance spectral differences of vegetation objects against the non-vegetation

objects in UAV images, as previously reported by Torres-Sánchez et al. (2014). The

determination of the optimal ExG and NDVI values for vegetation discrimination was

conducted by an adaptation to eCognition of an iterative automatic thresholding by using

Otsu’s method (Otsu 1979) adapted to UAV imagery for detection of three herbaceous

crops, including sunflower (Torres-Sánchez et al. 2015).

ExG ¼ 2g� r � b; r ¼ R

Rþ Gþ B
g ¼ G

Rþ Gþ B
b ¼ B

Rþ Gþ B
ð1Þ

NDVI ¼ NIR� R

NIRþ R
ð2Þ

(d) Sunflower crop-line detection after classifying vegetation and bare soil objects, those

corresponding to vegetation were merged to determine the crop-row structure. Crop row

orientation was determined by an iterative process in which the image was successively

segmented in stripes with different angles (from 0� to 180�, with 1� of increasing ratio).

This segmentation in stripes was performed in a new level above the one with the classified

vegetation in order to not lose this information. Finally, the crop orientation was selected

according to which stripes showed a higher percentage of vegetation objects in the lower

level. After a stripe was classified as a sunflower crop-line, the separation distance between

rows (0.70 m) was used to mask the adjacent stripes with this distance in order to avoid

classifying areas with potential high weed infestation as crop rows.

(e) Weed-patches and weed-free maps once the crop-rows were classified, the remaining

stripes were classified as crop-row buffers (linear segments in contact with the crop rows) and

non-crop areas in the upper segmentation level. Next, the hierarchical relationship between

the upper and the lower segmentation levels was used to discriminate crop from weeds. The

vegetation objects (in the lower segmentation level) that were located either under the crop

rows or under the non-crop area (in the upper segmentation level) were classified either as

sunflower or as weeds, respectively. The remaining vegetation objects located under the

buffer area were classified following a criterion of minimum spectral distance, i.e., an

unclassified vegetation object was assigned to the sunflower or the weed class depending on a

higher degree of spectral similarity of their ExG and NDVI values to their surrounding

sunflower or weed objects for the visible and the multi-spectral images, respectively.

(f) Site-specific treatment maps after mapping weed-patches and weed-free areas, the

algorithm built a grid framework at an upper level and applied a chessboard segmentation

to generate grids of user-configurable size. For example, in this investigation and according

to the usual characteristics of sunflower and weed-control machinery, the grid size was

0.5 9 0.5 m. Therefore, a new hierarchical structure was generated between the grid

super-objects at the upper level and the sub-objects classified as sunflower, weeds or bare

soil at the lower level. Next, the site-specific treatment maps were created according to the

weed coverage maps estimated previously.

(g) Maps at several weed thresholds the weed coverage was mapped by identifying both

weed-free and weed-infested zones on the basis of seven thresholds with intervals of 2.5 from
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0 % (herbicide post-emergence treatment must be applied just when there is presence or

absence of weed) to 15 % (herbicide must be applied whether weed coverage[15 %) with an

increase 2.5 % per threshold level. That is, seven herbicide treatment maps resulting from a

given threshold value were studied for every flight altitude and camera. Both the grid dimen-

sions and the number and thresholds of the weed infestation can be customised according to

other cropping patterns and the specifications required by the herbicide spraying machinery.

Evaluation of OBIA algorithm performance

For validation purposes, the ortho-mosaicked visible imagery collected at 30 m altitude

was used in both fields to quantify classification accuracy because this image had a high

spatial resolution which allowed the visual identification of weeds in each of the 49

sampling frames. That is, ground reference observations were derived from the vertical

remote images collected at 30 m altitude. In addition, each sampling frame was georef-

erenced with a DGPS and was photographed to help to visually identify the individual or

group of weeds and create Fig. 3c to compare the on-ground weed infestation (observed

weed density) with the outputs from image classification (estimated weed density).

Therefore, two vector shape files were created, one of them containing the 49 1 9 1 m2

sampling areas (Fig. 3b) and the other one including the crop and weeds existing in every

frame (Fig. 3c) by using Quantum GIS software (QGIS, GNU General Public License).

These vector files were then introduced into the eCognition software to obtain the per-

centage of surface area occupied by the three classes, i.e., sunflower, weeds and bare soil,

in every square frame in order to generate the reference data. Afterwards, the first vector

file was overlapped with the classified image obtained by the OBIA algorithm to calculate

the relative area corresponding to each class in every frame. The accuracy of the classified

images was quantified by calculating the error matrix between weed coverage mapping

outputs and the field reference data in all sampling frames grouped by the weed threshold

(0–15 % weed coverage) previously defined. The confusion matrix quantified the overall

accuracy (OA) of the classification in each threshold (Congalton 1991).

Results and discussion

Spatial resolution and area covered by ortho-mosaicked imagery

The visible and multi-spectral cameras collected images with pixel sizes ranging from

0.0114 to 0.0162 m and from 0.0228 to 0.0327 m at flight altitudes of 30 and 60 m,

respectively, as determined by a proportional relationship between imagery spatial

Table 1 Image spatial resolution, flight length and number of images per hectare as affected by flight
altitude and type of camera

Camera Flight altitude (m) Flight length (m:s) # Images Pixel size (m)

Visible (RGB)a 30 11:56 42 0.0114

60 5:41 12 0.0228

Multispectral (RGB ? NIR)a 30 28:00 117 0.0162

60 11:14 35 0.0327

a RGB red, blue green, near-infrared
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resolution and flight altitude (Table 1). Furthermore, slight changes in flight altitude during

the flight are critical for low altitude image acquisition because these variations can cause

important differences in the ortho-image spatial resolution. Weeds can be present in the

field as small or large patches, so the spatial resolution of the image must be considered

accordingly (Fig. 4). If the objective is the detection of small weed patches, the pixel size

could be 0.01–0.03 m which corresponds to flight altitudes of 30 and 60 m for the visible

camera and 30 m for the multi-spectral camera. However, when a weed patch is larger, the

UAV images could have a pixel size larger than 0.03 m, which corresponds to 60 m flight

altitude in the multi-spectral camera.

The number of images and the flight length needed to cover the entire study area

increased from 42 to 117 images and from 12 to 28 min for the visible and the multi-

spectral camera, respectively, at 30 m altitude. A similar trend was observed at 60 m

altitude. The different spatial resolutions and area covered for the visible and multi-spectral

cameras at the same flight altitude resulted from differences in the technical specifications

of each camera; i.e., the camera’s focal length and sensor size affect the extent of area

covered for a given sensor, and the pixel size of the sensor (measured in lm) determines

the relationship between flight altitude and spatial resolution for a given sensor. Therefore,

a decrease in the flying altitude reduces the area covered by each single image, which

results in an increase in both the sequence of images and the complexity of the image

mosaicking procedure to obtain an ortho-image covering the entire study area. Considering

these relationships between flight characteristics and camera types, the first decision to

Fig. 4 a Illustration of the ortho-mosaicked image taken with the visible camera at 30 m altitude, and
b corresponding weed seedling map using OBIA (green sunflower rows; red weeds; grey bare soil);
c illustration of the ortho-mosaicked image taken with the multi-spectral camera at 30 m altitude, and
d corresponding weed seedling map using OBIA
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make when the user defines the flight program is which combination of flight altitude and

camera type is ideal to keep the image spatial and spectral quality consistent to ensure

weed detection and minimise the operating time, given potential UAV battery limitations.

These considerations need to be addressed to design prescription control maps because

early SSWM requires high accuracy geo-referencing in agreement to the details of the

crop, weeds and soil background classes when both kind of plants are at very similar

phenological stages and a repeating crop pattern is present.

Classification of sunflower crop rows

Sunflower crop rows were detected and mapped with 100 % accuracy in the ortho-mosaics,

at all flight altitudes and camera types, using the OBIA algorithm (Fig. 4). This was due not

only to the performance of this procedure but also to the high matching of crop-line con-

tinuity of ortho-imagery during the mosaicking process. If mosaics were not accurate

enough, crop rows would appear broken, incorrectly geo-referenced and consequently,

moved, which would affect further OBIA classification. This algorithm was upgraded to

incorporate the special characteristics of sunflower crops and now includes relevant varia-

tions to previous versions, e.g., imagery was mosaicked to study the whole fields to optimise

the image analysis, and weed thresholds were considered in the construction of site-specific

treatment maps. Other authors have mosaicked imagery from other row crops such as corn,

although the objective was to determine the effect of topography on the rate of cross-

pollination (Haarbrink 2008). However, they found that obtaining an accurate ortho-image

was difficult, but they did not need to map crop rows. Therefore, one of the critical results of

the work reported here was the robustness of both the mosaicking and OBIA methods

developed for crop-row classification and mapping. This is relevant for the successful

detection of the vegetation objects referred to weeds placed in the inter-row areas.

Effect of cameras and flight altitudes on mapping of weed-patches and weed-
free areas

The accuracy of weed-patch discrimination, as affected by flight altitude and camera using

seven threshold values, are shown in Fig. 5 for both sunflower fields. The classification was

over grid units, not over pixels, therefore the accuracy was the percentage of frames

Fig. 5 Accuracy (%) of weed maps according to seven weed thresholds for the images collected with the
visible and multi-spectral cameras collected at 30 and 60 m altitude for a field 1, b field 2
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correctly classified, i.e., the number of correct frames as a percentage of the total number

of sampling frames. The threshold corresponding to zero means that the OBIA algorithm

detects simply the presence or absence of weeds, that is, a percentage of weeds greater than

zero was detected in the inter-row area, and consequently, all these weeds must be treated.

A threshold of 15 % means that at least 15 % of the inter-row area of every frame was

infested; if a lower weed infestation is detected and mapped, no treatment should be

applied.

Both sunflower fields showed similar results and trends. Higher accuracies were

observed with the multi-spectral camera at both flight altitudes, the highest (approximately

100 %) was recorded for 15 % threshold, although satisfactory results from 2.5 to 5 %

thresholds were also obtained with accuracies higher than 85 % for fields 2 and 1,

respectively. The lowest accuracies (ranging from 50 to 60 %) were achieved with the

visible camera at any flight altitude and 0 % of threshold value although, according to

Thomlinson et al. (1999) who standardised the overall accuracy of 85 % for minimum

established values, acceptable accuracies were also recorded from a 7.5 % threshold for

both fields. Best accuracies were achieved for the higher thresholds because, normally,

they imply the presence of larger weed patches which are more easily detected by the

OBIA algorithm. When analysing frames with only 2.5 % weed infestation, the most

common situation is that the weed patches are very small, and consequently, they are more

difficult to discriminate. Analysing the flight altitude, accuracies for the images taken with

the visible camera at 60 m were higher than at 30 m for 10 % weed threshold for field 1

and 12.5 % in field 2. A similar trend was observed with the multi-spectral camera.

Therefore, a higher altitude corresponds to higher accuracies for high weed thresholds in

both fields. This indicated that, in a sunflower field with a high weed infestation, the UAV

could be programmed to fly at 60 m altitude and perform better than at 30 m, because the

weed map would have a satisfactory accuracy, while requiring fewer images per ha, thus

improving both the flight time and the mosaicking process.

Traditionally, ExG and NDVI indices have been widely used in mapping vegetation

(190,000 and 330,000 results in Google for ‘‘remote sensing’’ plus ‘‘Excess Green’’, and

‘‘NDVI’’, respectively; accessed August 2015), however, they were quite limited for

mapping crop-rows and weeds using pixel-based-image-analysis in the preliminary image

analyses (data not shown). This is because reflectance data are sensitive to canopy cover,

and spectral data from crop and weed plants at early phenological stage are rather similar

and difficult to discern. The OBIA procedure developed has the ability to build objects

using several criteria of homogeneity, in addition to spatially accurate information (e.g.,

position, orientation, hierarchical relationships among image analysis levels). Figure 6

displays several illustrative examples of early, site-specific, post-emergence grid maps for

different scenarios at 30 m flight altitude, using both visible and multi-spectral cameras.

They also contain four thresholds and the spatial distributions of treated and untreated

grids. For a wider weed threshold, a lower weed-patch area was observed, and vice versa,

consequently, the threshold value has a direct effect on the percentage of the field to be

treated (Fig. 7). The herbicide savings obtained were relevant for both cameras and alti-

tudes in both fields, although they were higher in field 2 due to the lower degree of weed

bFig. 6 Several examples of maps showing the herbicide application area (black square) obtained for 30 m
altitude, and using visible camera (four upper figures) and multi-spectral camera (four bottom figures) for
field 2 corresponding to four weed thresholds: a and e 0 %; b and f 5 %; c and g 10 %; d and h 15 %. The
accuracy of every weed map is shown in parentheses
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infestation. The percentage of treated area was calculated to be higher when using the

multi-spectral camera because the weed patches were better discriminated and the maps

generated were more accurate than those from the visible camera.

That is, some weed patches present in the field were not correctly classified with

imagery from the visible camera, and as a result, no treatment was indicated. For example,

using the multi-spectral camera at 30 m altitude, a range of 3–23 % of the field (i.e., 77 and

97 % of untreated area) could be treated for weed thresholds from 0 to 15 %, corre-

sponding to accuracies ranging from 74 to 100 % for field 2. On the other hand, using the

visible camera at 30 m, a range of 3–9 % of the field (i.e., 92 and 97 % of untreated area)

could be treated for weed thresholds from 0 to 15 %, corresponding to accuracies from 63

to 94 % for field 1. As Fig. 6 shows, there are some parts of the fields where there were

clearly weed-free zones and where site-specific weed control equipment was not needed,

allowing not only the potential reduction of herbicide applications but also the optimisation

of fuel, field operating time and cost. Currently, accurate site-specific equipment for

farmers to implement site-specific weed management is available. In addition, collabora-

tive efforts have been conducted to develop autonomous and robotic tractors carrying

different implements for site-specific control of weeds and other pests using a high-level

decision-making system. This system was designed to accurately manage the type of

herbicide or dose level for other pesticides according to a prescription map (Pérez-Ruiz

et al. 2015).

The spatial structure was also different in both fields, i.e., the weeds were distributed in

patches across all of field 1, but were more localised in a part of field 2. The extent of the

weed-infested area and its spatial distribution, as well as the adoption of weed thresholds,

Fig. 7 Percentage of field surface requiring weed control in both sunflower fields based on seven weed
thresholds according to flight altitudes and cameras
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are crucial for the design and implementation of early SSWM. In addition, Gibson et al.

(2004) stated that farmers would choose to treat weed-free areas rather than assume the risk

of allowing weeds to go untreated, and Czapar et al. (1997) reported several reasons to

consider the use of thresholds, such as crop competition, harvesting problems, weed seed

production and seed bank replenishment, time required to survey fields or even general

field appearance. Analysing this latter work, the time spent to explore fields was perceived

to be a limitation for the acceptance of weed thresholds by 6 % of growers, while 26 % of

dealers and 39 % of farm managers also identified it as a restraint. This could be overcome

by using the technology presented here based on a UAV since the time spent to acquire

1 ha of sunflower area was less than half an hour for any of the flight altitudes and cameras

(Table 1). Of course, the processing time for image analysis would have to also be con-

sidered, although once the algorithm is developed, this time would be minimal for suc-

cessive use in as many sunflower fields as required. Field appearance was identified by

75 % of the dealers and 36 % of growers as an important limitation. This can be relevant if

weeds of medium to large size are present in the sunflower fields, as was the case in this

study. Pigweed and lambsquarters are considered large weeds, while mustard and bind-

weed are medium weeds according to the SEMAGI expert system developed for weed

management in sunflower (Castro-Tendero and Garcı́a-Torres 1995). These authors eval-

uated herbicide selection according to potential yield reduction from multi-species weed

infestations by assigning three size categories (small, medium and large) to weeds and

relating the percentage of sunflower losses to weed density and weed biomass. They

concluded that the subjective evaluation of farmers for weed infestation assessment usually

considers the size of the weed for herbicide decisions and this is in agreement with the

results reported by Czapar et al. (1997). Using SEMAGI and geostatistical tools, Jurado-

Expósito et al. (2003) reported the usefulness of weed infestation maps for identifying the

area exceeding the economic threshold to plan site-specific spraying strategies; they

obtained 61 % herbicide reduction. Therefore, the site-specific treatment maps considering

the different thresholds shown in Fig. 6 could help farmers to decide on early SSWM

operations without forgetting the subjective evaluation of their fields as an important

component of their decision making. For example, according to the previously mentioned

limitations found by land owners, it seems unlikely that they would choose the 15 %

threshold keeping treated approximately 5 % of both fields (Fig. 6) and untreated most of

the fields, particularly when these areas subjectively would appear highly infested due to

large size of weeds such as lambsquarters or pigweeds.

Current investigations are focusing on improving the OBIA algorithm when a number

of specific field conditions, such as curved crop rows, are present in the fields.

Conclusions

Because the spatial structure of patchy distribution of weeds allows mapping of infested

and un-infested areas, the objectives were to detect patches of weeds at early phenological

stages using UAV imagery and to design a timely and efficient weed control program

based on site-specific herbicide treatments according to weed cover. A UAV equipped with

RGB or multi-spectral cameras flying at 30 and 60 m altitude was used to acquire a set of

overlapped images. The spatial resolution of the image, area covered by each image and

flight timing were very sensitive to the flight altitude. At a lower altitude using the visible

camera, the UAV captured slightly finer spatial resolution imagery than at the same
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altitude using the multi-spectral camera. However, the number of images needed to cover

the entire field at 30 m altitude with the visible camera was much lower than for the multi-

spectral camera, showing that it may be a limiting factor due to potential UAV energy

limitations. The overlapped images were ortho-mosaicked to generate imagery at very-high

spatial resolutions (pixels ranging from 0.0114 to 0.0327 m). An accurate and automated

OBIA procedure was developed to detect and map bare soil, crop-rows and weeds.

Accurate site-specific herbicide treatment maps were created according to different factors:

flight altitudes, camera types and weed thresholds, and then relevant herbicide savings

were calculated. This information can help to balance spatial resolution, which depends on

flying altitude and type of camera with decision-making to calculate herbicide require-

ments and plan the overall weed management operations.
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Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2014). Assessing the accuracy of mosaics from
unmanned aerial vehicle (UAV) imagery for precision agriculture purposes. Precision Agriculture, 15,
44–56.
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Pérez-Ruiz, M., Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Peruzzi, A., Vieri, M., et al.
(2015). Highlights and preliminary results for autonomous crop protection. Computers and Electronics
in Agriculture, 110, 150–161.

Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. (1973). Monitoring vegetation systems in the
Great Plains with ERTS. In: Proceedings of the Earth Resources Technology Satellite Symposium
NASA SP-351, (vol 1, pp. 309–317). Washington, DC.

Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R., Deen, W., & Shreshta, A. (1999). Weed thresholds:
Theory and applicability. Journal of Crop Production, 2, 9–29.

Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating methodologies for scaling land-
cover classification from site-specific to global: Steps toward validating global maps products. Remote
Sensing of Environment, 70, 16–28.
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