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Abstract In-season site-specific nitrogen (N) management is a promising strategy to

improve crop N use efficiency and reduce risks of environmental contamination. To

successfully implement such precision management strategies, it is important to accurately

estimate yield potential without additional topdressing N application (YP0) as well as

precisely assess the responsiveness to additional N application (RI) during the growing

season. Previous research has mainly used normalized difference vegetation index (NDVI)

or ratio vegetation index (RVI) obtained from GreenSeeker active crop canopy sensor with

two fixed bands in red and near-infrared (NIR) spectrums to estimate these two parameters.

The development of three-band Crop Circle active sensor provides a potential to improve

in-season estimation of YP0 and RI. The objectives of this study were twofold: (1) identify

important vegetation indices obtained from Crop Circle ACS-470 sensor for estimating rice

YP0 and RI; and (2) evaluate their potential improvements over GreenSeeker NDVI and

RVI. Four site-years of field N rate experiments were conducted in 2012 and 2013 at the

Jiansanjiang Experiment Station of China Agricultural University located in Northeast

China. The GreenSeeker and Crop Circle ACS-470 active canopy sensor with green, red

edge, and NIR bands were used to collect rice canopy reflectance data at different key

growth stages. The results indicated that both the GreenSeeker (best R2 = 0.66 and 0.70,

respectively) and Crop Circle (best R2 = 0.71 and 0.77, respectively) sensors worked well

for estimating YP0 and RI at the stem elongation stage. At the booting stage, Crop Circle

red edge optimized soil adjusted vegetation index (REOSAVI, R2 = 0.82) and green ratio
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vegetation index (R2 = 0.73) explained 26 and 22 % more variability in YP0 and RI,

respectively, than GreenSeeker NDVI or RVI. At the heading stage, the GreenSeeker

sensor indices became saturated and consequently could not be used for YP0 or RI esti-

mation, while Crop Circle REOSAVI and normalized green index could still explain more

than 70 % of YP0 and RI variability. It is concluded that both sensors performed similarly

at the stem elongation stage, but significantly better results were obtained by the Crop

Circle sensor at the booting and heading stages. Furthermore, the results revealed that Crop

Circle green band-based vegetation indices performed well for RI estimation while the red

edge-based vegetation indices were the best for estimating YP0 at later growth stages.

Keywords Precision nitrogen management � Crop Circle sensor � In-season nitrogen

management � Active crop canopy sensor � GreenSeeker sensor � Response index

Introduction

The major challenges for global food security and sustainable development are how to

double food production while improving resource use efficiencies and reducing environ-

mental consequences (Tilman et al. 2011; Zhang et al. 2013; Chen et al. 2014). Increase in

fertilizer nutrient input, especially nitrogen (N) fertilizer, has contributed significantly to

the increase of crop yields in the world (Cassman et al. 2003). However, the rates of cereal

yield growth have slowed down in the past 20–30 years, and even become stagnated in

many regions, despite increases in N fertilizer input (Zhang et al. 2012; Grassini et al.

2013).The high rates and improper timing of N application are major problems in crop

production, which have resulted in low N use efficiency and high environmental costs

(Nosengo 2003; Guo et al. 2010; Good and Beatty 2011; Miao et al. 2011). Rice (Oryza

sativa L.) is the most important staple cereal crop in the world. To feed growing popu-

lations, global rice yield needs to be increased to 116 million tons by 2035 (Seck et al.

2012). Globally, China is by far the largest producer of rice and consumed 36 % of total N

fertilizer used for rice production on 19 % of world’s rice planting area (Heffer 2008;

FAOSTAT 2013). The current N partial factor productivity (PFP) for rice was reported to

be only 41 kg kg-1 based on surveys of 6592 farmers (Chen et al. 2014). Technologies and

methods for effective N management strategies are urgently needed in rice production

areas of China.

Chlorophyll meter and leaf color chart have been commonly used in site-specific N

management (SSNM) to improve rice N use efficiencies (Dobermann et al. 2002; Peng

et al. 2010). In addition to these point measurement tools, there is increasing interest in

developing active crop canopy sensor-based precision N management strategies because

they are more efficient and suitable for large area applications (Xue and Yang 2008;

Harrell et al. 2011; Yao et al. 2012; Cao et al. 2013). A commonly used active crop canopy

sensor for precision N management is the GreenSeeker handheld sensor (Trimble Navi-

gation Limited, Sunnyvale, CA, USA) with two fixed wavebands (red and NIR) (Raun

et al. 2002; Li et al. 2009; Bijay-Singh et al. 2011; Cao et al. 2012). This sensor provides

two vegetation indices, normalized difference vegetation index (NDVI) and ratio vegeta-

tion index (RVI). Yao et al. (2012) developed a practical GreenSeeker sensor-based pre-

cision N management strategy for rice based on the regional optimum N rate (RONR)

strategy and the N fertilization optimization algorithm (NFOA) developed by Raun et al.
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(2002, 2005)) for winter wheat (Triticum aestivum L.). In this strategy, a RONR of

90–110 kg N ha-1was used as an initial total N rate, and 45 and 20 % were applied as

basal and tillering fertilizers, respectively. The GreenSeeker sensor was used at the stem

elongation stage to estimate yield potential with no additional topdressing N (YP0) and

yield response index (RI, responsiveness to additional topdressing N application). The

potential yield with added N fertilization (YPN) can be estimated by multiplying YP0 by

RI. The N topdressing rate can then be estimated by considering the difference between

YPN and YP0, grain N concentration, and N use efficiency (Yao et al. 2012). This approach

was tested in rice and increased N PFP by 48 % over farmer’s practice without reducing

yield (Yao et al. 2012). The key to the success of this strategy is the capability to estimate

YP0 and RI accurately before topdressing. However, the relationships between RI at

harvest (RIHarvest) and RI calculated using GreenSeeker NDVI (RINDVI) and RVI (RIRVI)

were poor whether at the stem elongation stage, booting stage or across growth stages, with

R2 being less than 0.3 (Yao et al. 2012),which may result in inaccurate estimation of

topdressing N application rate. This may be caused by the saturation problem of Green-

Seeker NDVI at moderate to high biomass conditions, which may be reduced by using

wavelengths with similar penetration into the plant canopy (Gnyp et al. 2014; Yao et al.

2014).

Active canopy sensors with more spectral bands may have better potential to improve

in-season prediction of rice YP0 and RI under high-yielding conditions. The Crop Circle

ACS-470 sensor (Holland Scientific Inc., Lincoln, Nebraska, USA) is user configurable

with a choice of up to 6 spectral bands: blue (450 ± 20 nm), green (550 ± 20 nm), red 1

(650 ± 20 nm), red 2 (670 ± 11 nm), red edge (730 ± 10 nm), and NIR

([760 nm).Three of them can be used at a time. As a result, a variety of spectral vegetation

indices can be derived. Some of these indices have been found to be better than the

traditional NDVI and RVI indices for estimating crop N status. In a recent study conducted

in Northeast China, Cao et al. (2013) systematically evaluated 43 vegetation indices

derived from three Crop Circle ACS-470 bands (green, red edge, and NIR) for estimating

rice N status. The results revealed that the modified chlorophyll absorption reflectance

index 1 (MCARI1) had consistent high correlations with rice biomass and plant N uptake

(R2 = 0.79–0.83) across site-years, varieties, and growth stages. Four red edge-based

indices performed equally well for estimating rice N nutrition index (NNI) (R2 = 0.76)

under high-yielding conditions. By contrast, Yao et al. (2014) found that GreenSeeker

NDVI and RVI explained more than 70 % of rice aboveground biomass and plant N uptake

variability at early growth stages, whereas less than 40 % of NNI variability were

explained. However, NDVI became saturated at approximately 4 mg ha-1 biomass or

100 kg ha-1 plant N uptake. In a comparison study, Cao et al. (2015) found that the Crop

Circle ACS 470 sensor could improve the estimation of winter wheat plant N concentra-

tion, uptake, and NNI by 53, 7–11, and 30 %, respectively, compared with the Green-

Seeker sensor.

It was hypothesized that the three-band Crop Circle ACS470 sensor could improve in-

season prediction of rice YP0 and RI compared with two-band GreenSeeker sensor. The

objectives of this study were to: (1) identify important vegetation indices obtained from

Crop Circle ACS-470 sensor for estimating rice yield potential and responsiveness to

topdressing N application, and (2) evaluate their potential improvements over GreenSeeker

NDVI and RVI.
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Materials and methods

Study site description

This study site is located in the Sanjiang Plain (43.8�N–48.5�N, 129.2�E–135.1�E), which
is an alluvial plain of the Heilong, Songhua, and Wusuli Rivers and it covers approxi-

mately 108 900 km2 in Heilongjiang Province, Northeast China. The Sanjiang Plain is a

leading region of modern agriculture and is strategically important for China’s food

security (Zhao et al. 2013). It is characterized by a temperate humid or sub-humid con-

tinental monsoon climate with a warm summer and cold winter (Wang et al. 2006). The

mean annual temperature is about 2 �C. The annual average precipitation ranges from 500

to 650 mm and 70 % of the precipitation falls from July to September (Wang and Yang

2001). The annual sunshine hours are about 2300–2600, and the frost-free period is only

about 120–140 days (Yan et al. 2002). During the past two decades, rice farming has been

expanding very fast and has become dominant in this region due to climate warming,

abundant water resources, and fertile soils (Zhao et al. 2013).

The field experiments were conducted at Jiansanjiang Experiment Station of the China

Agricultural University (47.2�N, 132.6�E). The experimental field has been devoted to rice

production since 1992. The soil type is Meadow Albic bleached soil. The chemical

parameters of the 0–0.3 m soil layer before transplanting in 2011 were as follows: organic

matter content—35 g kg-1, pH—6, total N—145 mg kg-1, Olsen-phosphorus—

36 mg kg-1, and exchangeable potassium—111 mg kg-1.

Nitrogen rate experiments

A total of four N rate field experiments (Exp. 1–4) were conducted in two rice seasons (2012

and 2013) to develop models for predicting rice yield potential and response index at harvest

(RIHarvest) from in-season optical sensor measurements. Each experiment had the same five N

rates (0, 70, 100, 130, and 160 kg N ha-1) using a randomized split block design with three

replications. Each plot was divided into two parts: 6 m 9 9 m as the main plot and

3 m 9 9 m as the subplot. The main plot received the application of fertilizer N as urea in

three splits: 40 % as basal N before transplanting, 30 % of N at the tillering stage, and the

remaining 30 % of N at the stem elongation stage. In order to evaluate the capability of using

Crop Circle sensor to estimate rice yield potential, the subplot did not receive the third N

application. For all the treatments, 50 kg P2O5 ha
-1 in the form of Ca(H2PO4)2 was applied

before transplanting and 105 kg K2O ha-1 was applied as two splits: 50 % before trans-

planting and 50 % at the stem elongation stage. In each year, one experiment used the rice

variety Kongyu 131 (11 leaves, 127 maturity days) and the other experiment used the variety

Longjing 21 (12 leaves, 131 maturity days). Rice seedlings were prepared in a greenhouse

and transplanted into the experimental fields. Transplanting density, seeding age, and irri-

gation were the same in all treatments. The rice was transplanted in mid-May and harvested

in mid to late September each year. Modified alternate wetting and drying irrigation as

described in Zhao et al. (2013) was adopted this study.

Active canopy sensor data collection

Reflectance data were collected across each plot at four different growth stages, including

the panicle initiation, stem elongation, booting, and heading stages. The third topdressing

N is usually applied at the stem elongation, and there is a possibility of delayed application
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to the booting stage due to weather, labor, or other practical limitations in agricultural

production. In order to further increase grain yield, a fourth topdressing N can be applied at

the heading stage (Zhao et al. 2013). Therefore, data from the stem elongation, booting,

and heading stages were used for this study.

Two crop canopy sensors were used in this study. The first sensor was GreenSeeker

handheld sensor detecting reflection in red (650–670 nm) and NIR (755–785 nm) spectral

regions. It has a nadir viewing angle with a field of view of 0.0052–0.0145 m2 and

acquisition interval ranging from 20 to 1500 ms (Raper et al. 2013). Sensor readings were

collected by holding the GreenSeeker sensor approximately 0.7–0.9 m above the canopy

and walking at a constant speed in all experimental plots. The sensor path was parallel to

the seed rows or the beam of light was perpendicular to the seed row. The GreenSeeker

sensor uses built-in software to calculate NDVI and RVI directly and generates ten NDVI

and RVI determinations per second.

The second sensor was the Crop Circle ACS-470 active sensor, which incorporates three

optical measurement channels and is user configurable (440–800 nm) using 12.5 mm

interference filters. In this study, we selected three bands based on literature reviews and

previous research (Cao et al. 2013): green (550 ± 20 nm), red edge (730 ± 10 nm), and

NIR ([760 nm). Spectral reflectance data can be easily and quickly recorded to a text file

on a SD flash card using the Holland Scientific GeoSCOUT GLS-400 data logger. The field

of view of the Crop Circle ACS-470 sensor is an oval of *32� by *6� range, resulting in

an area of approximately 0.09 m2. Sensor readings were collected approximately

0.7–0.9 m above rice canopy at a rate of 10 readings per second and walking at a constant

speed in each plot (Fig. 1). The average reflectance values were computed to represent

each plot for both sensors. The calculated spectral vegetation indices evaluated in this

study are listed in Table 1.

Grain yield determination

Grain yield was determined by hand harvesting three 1 m2 areas in each plot where

spectral reflectance data were collected. Grains were separated from straw using a small

grain thresher and weighed. Grain moisture was determined immediately after weighing.

Grain weight for rice was adjusted to a moisture content of 140 g kg-1.

Fig. 1 Collecting rice canopy reflectance data using Crop Circle ACS-470 active canopy sensor

140 Precision Agric (2016) 17:136–154

123



Table 1 Vegetation index selected for Crop Circle multispectral active canopy sensor

Index Formula Reference

Normalized green index
(NGI)

G/(NIR ? RE ? G) Modified from
Sripada et al.
(2006)

Normalized red edge
index (NREI)

RE/(NIR ? RE ? G) Modified from
Sripada et al.
(2006)

Normalized NIR index
(NNIR)

NIR/(NIR ? RE ? G) Modified from
Sripada et al.
(2006)

Red edge ratio
vegetation index
(RERVI)

NIR/RE Jasper et al.
(2009)

Green ratio vegetation
index (GRVI)

NIR/G Buschmann and
Nagel (1993)

Red edge green ratio
vegetation index
(REGRVI)

RE/G Modified from
Buschman
and Nagel
(1993)

Green difference
vegetation index
(GDVI)

NIR - G Tucker (1979)

Red edge difference
vegetation index
(REDVI)

NIR - RE Modified from
Tucker (1979)

Red edge green
difference vegetation
index (REGDVI)

RE - G Modified from
Tucker (1979)

Normalized difference
red edge (NDRE)

(NIR - RE)/(NIR ? RE) Barnes et al.
(2000)

Green normalized
difference vegetation
index (GNDVI)

(NIR - G)/(NIR ? G) Gitelson et al.
(1996)

Red edge GNDVI
(REGNDVI)

(RE - G)/(RE ? G) Gitelson et al.
(1996)

Green wide dynamic
range vegetation
index (GWDRVI)

(a*NIR - G)/(a*NIR ? G) (a = 0.12) Modified from
Gitelson
(2004)

Red edge wide dynamic
range vegetation
index (REWDRVI)

(a*NIR - RE)/(a*NIR ? RE) (a = 0.12) Modified from
Gitelson
(2004)

Optimized vegetation
index 1 (VIopt1)

100*(ln NIR – ln RE) Jasper et al.
(2009)

Modified double
difference index
(MDD)

(NIR - RE) - (RE - G) Modified from
Le Maire
et al. (2004)

Modified normalized
difference index
(MNDI)

(NIR - RE)/(NIR - G) Modified from
Datt (1999)

Green chlorophyll index
(CIG)

NIR/G - 1 Gitelson et al.
(2005)
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Table 1 continued

Index Formula Reference

Red edge chlorophyll
index (CIRE)

NIR/RE - 1 Gitelson et al.
(2005)

Modified red edge
simple ratio
(MSR_RE)

(NIR/RE - 1)/SQRT(NIR/RE ? 1) Modified from
Chen (1996)

Modified green simple
ratio (MSR_G)

(NIR/G - 1)/SQRT(NIR/G ? 1) Modified from
Chen (1996)

Modified enhanced
vegetation
index(MEVI)

2.5*(NIR - RE)/(NIR ? 6*RE - 7.5*G ? 1) Modified from
Justice et al.
(1998)

Modified normalized
difference red edge
(MNDRE)

[NIR - (RE - 2*G)]/[NIR ? (RE - 2*G)] Modified from
Wang et al.
(2012)

Modified chlorophyll
absorption in
reflectance index
1(MCARI1)

[(NIR-RE) - 0.2*(NIR - G)](NIR/RE) Modified from
Daughtry
et al. (2000)

Modified chlorophyll
absorption in
reflectance index
2(MCARI2)

1:5½2:5ðNIR�REÞ� 1:3ðNIR�GÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2NIRþ 1Þ2 �ð6NIR� 5

ffiffiffiffiffiffiffi

RE
p

Þ� 0:5

p

Modified from
Haboudane
(2004)

Modified transformed
CARI (MTCARI)

3*[(NIR - RE) - 0.2*(NIR - G)(NIR/RE)] Modified from
Haboudane
et al. (2002)

Green soil adjusted
vegetation index
(GSAVI)

1.5*[(NIR - G)/(NIR ? G ? 0.5)] Sripada et al.
(2006)

Red edge soil adjusted
vegetation
index(RESAVI)

1.5*[(NIR - RE)/(NIR ? RE ? 0.5)] Modified from
Sripada et al.
(2006)

Modified GSAVI
(MGSAVI)

0.5*[2*NIR ? 1 - SQRT((2*NIR ? 1)2 - 8*(NIR - G))] Modified from
Qi et al.
(1994)

Modified RESAVI
(MRESAVI)

0.5*[2*NIR ? 1 - SQRT((2*NIR ? 1)2 - 8*(NIR - RE))] Modified from
Qi et al.
(1994)

Green optimal soil
adjusted vegetation
index (GOSAVI)

(1 ? 0.16)(NIR - G)/(NIR ? G ? 0.16) Modified from
Rondeaux
et al. (1996)

Red edge optimal soil
adjusted vegetation
index (REOSAVI)

(1 ? 0.16)(NIR - RE)/(NIR ? RE ? 0.16) Modified from
Rondeaux
et al. (1996)

MCARI1/GOSAVI MCARI1/GOSAVI Modified from
Zarco-Tejada
et al. (2004)

MCARI2/GOSAVI MCARI2/GOSAVI Modified from
Daughtry
et al. (2000)

MTCARI/GOSAVI MTCARI/GOSAVI Modified from
Haboudane
et al. (2002)
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Statistical analysis

In-season estimate of yield (INSEY) can be regarded as an estimate of average daily

growth rate or biomass production from the time of planting to the day of sensing (Raun

et al. 2002). It was calculated as NDVI divided by the number of growing degree days

(GDD) (Yao et al. 2012). In this study, however, the number of days from transplanting to

sensing (DAT) was used instead of GDD to calculate INSEY. The selected Crop Circle

vegetation indices were used to replace the GreenSeeker NDVI or RVI.

The response index at harvest (RIHarvest) indicates the actual crop response to additional

N within a given year (Johnson and Raun 2003; Mullen et al. 2003) and was calculated as

follows:

RIHarvest ¼
Yield Nrich

Yield CK
;

where Yield_Nrich is the average yield of plots receiving sufficient N application (the

160 kg N ha-1 treatment in this study), and Yield_CK is the average yield of a check plot

or plot without receiving the third N application at the stem elongation stage.

In-season prediction of response to N fertilization based on vegetation index (RIVI) was

calculated in the same way as RIHarvest, with the exception that vegetation indices derived

from GreenSeeker and Crop Circle ACS-470 sensors were used instead of yield. The yield

potential with additional N (YPN) was calculated by multiplying YP0 and RIHarvest esti-

mated by RIVI.

Table 1 continued

Index Formula Reference

Modified canopy
chlorophyll content
index (MCCCI)

NDRE/GNDVI Modified from
Barnes et al.
(2000)

NDRE/GOSAVI NDRE/GOSAVI Cao et al.
(2013)

Red edge transformed
vegetation index
(RETVI)

0.5*[120*(NIR - G) - 200*(RE - G)] Modified from
Broge and
Leblanc
(2000)

Green re-normalized
different vegetation
index (GRDVI)

(NIR - G)/SQRT(NIR ? G) Modified from
Roujean and
Breon (1995)

Red edge re-normalized
different vegetation
index (RERDVI)

(NIR - RE)/SQRT(NIR ? RE) Modified from
Roujean and
Breon (1995)

Modified RETVI
(MRETVI)

1.2*[1.2*(NIR - G) - 2.5*(RE - G)] Modified from
Haboudane
(2004)

MCARI1/MRETVI MCARI1/MRETVI Modified from
Eitel et al.
(2007)

MTCARI/MRETVI MTCARI/MRETVI Cao et al.
(2013)
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Linear, quadratic, exponential, power, and logarithmic models were evaluated for

describing the relationships between INSEY and YP0 or RIVI and RIHarvest using the SPSS

18.0 software (SPSS Inc., Chicago, IL, USA). The corrected coefficients of determination

(R2) values were used for model selection in addition to visual inspection of each curve.

Fig. 2 The relationships between yield without additional topdressing N application (YP0) and in-season
estimate of yield (INSEY) calculated with vegetation indices derived from GreenSeeker (NDVI, RVI) and
Crop Circle ACS-470 (Top two indices) at different growth stages (stem elongation, booting, stem
elongation ? booting, and heading stages) during 2012 and 2013
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Results and discussion

In-season estimation of rice yield potential

Across site-years and crop varieties, the Crop Circle sensor performed consistently better

than the GreenSeeker sensor for estimating YP0 at different growth stages (Table 2).

The stem elongation stage is the key stage to apply panicle fertilizer for rice in

Northeast China. The INSEY calculated with GreenSeeker NDVI (INSEY(GS - NDVI))

and RVI (INSEY(GS - RVI)) explained 63 and 66 % of YP0 variability, respectively

(Table 2). This is similar to the findings of Yao et al. (2012) at Site 1 (R2 = 0.67–0.69),

which is the same site as this study. The INSEYs calculated with the top 6 Crop Circle

indices performed similarly as that derived from the GreenSeeker sensor. The top two Crop

Circle indices, normalized near infrared index (NNIR) (R2 = 0.71) and green soil adjusted

vegetation index (GSAVI) (R2 = 0.68) explained slightly more YP0 variability than the

GreenSeeker indices (Fig. 2a–d).

At the booting stage, rice aboveground biomass was generally greater than 4 mg ha-1,

and the saturation effect started to become a problem (Gnyp et al. 2014; Yao et al. 2014).

The performance of the GreenSeeker sensor at this stage was worse than that at the stem

elongation stage. The INSEY (GS - NDVI) and INSEY (GS - RVI) explained 56 and

41 % of YP0 variability, respectively (Fig. 2e, f). Conversely, the INSEYs calculated with

the top 10 Crop Circle indices explained 77–82 % of YP0 variability, which was 21–26 %

higher than INSEY (GS - NDVI). These ten indices were all red edge-based indices,

indicating the importance of red edge band for estimating yield potential at this stage. The

INSEY calculated with the Crop Circle red edge optimal soil adjusted vegetation index

(INSEY (CC - REOSAVI)) performed the best, explaining 82 % of YP0 variability

(Fig. 2g). The INSEY calculated with Crop Circle modified enhanced vegetation index

(INSEY (CC - MEVI)) (Fig. 2h), red edge chlorophyll index (INSEY (CC - CI_RE)),

and modified red edge simple ratio (INSEY (CC - MSR_RE)) had the same performance,

all explaining 80 % of YP0 variability.

Across the stem elongation and booting stages, INSEY (GS - NDVI) and INSEY

(GS - RVI) explained 47 and 52 % of YP0 variability, respectively (Fig. 2i, j). These

observations are similar to the results of Yao et al. (2012). On the other hand, the INSEYs

calculated with the top 10 Crop Circle indices explained 56–63 % of YP0 variability

(Table 2). They were all red edge-based vegetation indices. Particularly, the INSEYs

calculated with the best Crop Circle indices, modified red edge soil adjusted vegetation

index (INSEY (CC - MRESAVI)) and red edge soil adjusted vegetation index (INSEY

(CC - RESAVI)) (R2 = 0.63) (Fig. 2k, l), explained 11 % more YP0 variability than

INSEY (GS - RVI) (R2 = 0.52).

At the heading stage, crop canopy was closed, and the average biomass was around

7 t ha-1 (Gnyp et al. 2014).The GreenSeeker NDVI and RVI became saturated. Hence, no

significant relationship existed between the corresponding INSEYs and YP0 (Fig. 2m, n).

By contrast, the INSEYs calculated with the top 10 Crop Circle indices explained 68–75 %

of YP0 variability at this stage (Table 2). Likewise, they were all red edge-based vegetation

indices. The INSEY (CC-REOSAVI) (Fig. 2o) and INSEY (CC-RERDVI) indices were

quadratically related to YP0, while INSEY (CC RESAVI) (Fig. 2p) and INSEY (CC

MRESAVI) were linearly related to YP0.

The performance of GreenSeeker for estimating YP0 at the stem elongation and booting

stage were better than the result of (Harrell et al. 2011), who found that GreenSeeker NDVI
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explained 36 and 42 % of YP0 variability at the panicle initiation and panicle differenti-

ation stages, respectively. This may be caused by stage difference or attributed to the

problem of NDVI saturation in high biomass conditions. The yield level ([10 mg ha-1 for

many data points) was high in the study of Harrell et al. (2011), while it was mainly below

Fig. 3 The relationships between response index calculated with yield (RIHarvest) and response index
calculated with vegetation indices derived from GreenSeeker (NDVI, RVI) and Crop Circle ACS-470 (top
two indices) at different growth stages (stem elongation, booting, stem elongation ? booting, and heading
stages) during 2012 and 2013

Precision Agric (2016) 17:136–154 147

123



T
a
b
le

3
R
el
at
io
n
sh
ip
s
b
et
w
ee
n
re
sp
o
n
se

in
d
ex

ca
lc
u
la
te
d
w
it
h
y
ie
ld

(R
I H

a
rv
e
st
)
an
d
re
sp
o
n
se

in
d
ex

ca
lc
u
la
te
d
w
it
h
v
eg
et
at
io
n
in
d
ic
es

d
er
iv
ed

fr
o
m

G
re
en
S
ee
k
er

(N
D
V
I,

R
V
I)
an
d
C
ro
p
C
ir
cl
e
A
C
S
-4
7
0
(T
o
p
1
0
in
d
ic
es
)
at

d
if
fe
re
n
t
g
ro
w
th

st
ag
es

ac
ro
ss

v
ar
ie
ti
es

an
d
si
te
-y
ea
rs

S
en
so
r

S
te
m

el
o
n
g
at
io
n
st
ag
e

B
o
o
ti
n
g
st
ag
e

S
te
m

el
o
n
g
at
io
n
&

b
o
o
ti
n
g
st
ag
e

H
ea
d
in
g
st
ag
e

In
d
ex

M
o
d
el

R
2

In
d
ex

M
o
d
el

R
2

In
d
ex

M
o
d
el

R
2

In
d
ex

M
o
d
el

R
2

G
re
en
S
ee
k
er

N
D
V
I

Q
0
.6
5

N
D
V
I

Q
0
.5
1

N
D
V
I

Q
0
.5
8

N
D
V
I

Q
0
.1
0

R
V
I

L
0
.7
0

R
V
I

Q
0
.4
6

R
V
I

L
0
.5
4

R
V
I

–
N
S

C
ro
p
C
ir
cl
e
A
C
S
-4
7
0

M
G
S
A
V
I

Q
0
.7
7

G
R
V
I

L
0
.7
3

G
R
V
I

L
0
.7
0

N
G
I

Q
0
.7
2

G
S
A
V
I

L
0
.7
6

C
I G

Q
0
.7
2

M
G
S
A
V
I

L
0
.7
0

R
E
G
N
D
V
I

L
0
.6
8

G
R
D
V
I

L
0
.7
5

G
W
D
R
V
I

Q
0
.7
2

G
S
A
V
I

L
0
.6
9

G
O
S
A
V
I

L
0
.6
7

G
D
V
I

L
0
.7
5

M
S
R
_
G

Q
0
.7
2

G
R
D
V
I

L
0
.6
9

G
R
V
I

L
0
.6
7

G
O
S
A
V
I

L
0
.7
4

G
O
S
A
V
I

L
0
.7
1

C
I G

Q
0
.6
9

C
I G

Q
0
.6
7

G
W
D
R
V
I

Q
0
.7
2

N
G
I

Q
0
.7
1

N
G
I

Q
0
.6
9

M
S
R
_
G

L
0
.6
6

C
I G

Q
0
.7
1

G
R
D
V
I

L
0
.7
0

G
O
S
A
V
I

Q
0
.6
9

G
W
D
R
V
I

Q
0
.6
6

G
N
D
V
I

Q
0
.7
1

G
N
D
V
I

Q
0
.7
0

M
S
R
_
G

Q
0
.6
8

G
N
D
V
I

Q
0
.6
6

M
S
R
_
G

Q
0
.7
1

R
E
S
A
V
I

Q
0
.7
0

G
D
V
I

Q
0
.6
7

R
E
G
R
V
I

L
0
.6
3

G
R
V
I

Q
0
.7
1

G
S
A
V
I

L
0
.6
9

G
N
D
V
I

Q
0
.6
7

G
R
D
V
I

L
0
.6
2

L
li
n
ea
r,
Q

q
u
ad
ra
ti
c
fi
t,
N
S
n
o
si
g
n
ifi
ca
n
ce

at
P
\

0
.0
5

148 Precision Agric (2016) 17:136–154

123



10 mg ha-1 in the present study. In addition, their results were based on multi-site-year

and variety data collected from two states in US, while the present data only covered

2 years, one site, and two varieties. At the heading stage, none of the GreenSeeker indices

were significantly related to YP0, which conforms to the findings of Harrell et al. (2011).

However, in the study of Xue et al. (2014) conducted in Jiangxi Province in East China, the

relationships between GreenSeeker NDVI and rice yield potential were consistently strong

across the growing season, with R2 being 0.95, 0.87, 0.84 and 0.77 at the tillering, panicle

initiation, heading and grain filling stages, respectively. Their results were based on

1 year’s data for early rice, and the yield level was lower than this study. Therefore,

GreenSeeker NDVI saturation may not be a limiting factor in their study.

In-season estimation of the responsiveness to topdressing N application

Similar to yield potential, the Crop Circle sensor performed consistently better than the

GreenSeeker sensor for RIHarvest estimation. The GreenSeeker sensor performed the best at

the stem elongation stage, with the RI calculated with NDVI (RI(GS - NDVI)) and RVI

(RI(GS - RVI)) explaining 65 and 70 % of RIHarvest variability (Fig. 3a, b). The RI cal-

culated with the top 10 Crop Circle indices explained 71–77 % of RIHarvest variability

(Table 3). The RI calculated with Crop Circle modified green soil adjusted vegetation

index (RI(CC - MGSAVI))and GSAVI (RI(CC - GSAVI)) explained 6–7 % more

variability than RI(GS - RVI) (Fig. 3c, d).

At the booting stage, both RI (GS - NDVI) and RI (GS - RVI) were linearly related

to RIHarvest, with R2 of 0.51 and 0.46, respectively (Fig. 3e, f). The RI calculated with the

top 10 Crop Circle indices performed similarly, with R2 ranging from 0.69 to 0.73

(Table 3). Particularly at this stage, the RI calculated with Crop Circle green ratio vege-

tation index (RI(CC - GRVI)) explained 22 % more variability in RIHarvest than

RI(GS - NDVI) (Fig. 3g).

Across the stem elongation and booting stages, RIs calculated with the top 10 Crop

Circle indices performed similarly (R2 = 0.67–0.70), explaining 9–12 % more variability

than RI (GS - NDVI) (Table 3). Both RI (CC - GRVI) and RI (CC - MGSAVI) were

linearly related to RIHarvest, with R2 being 0.70 (Fig. 3k, l).

At the heading stage, RI (GS - NDVI) could only explain 10 % of RIHarvest variability,

while RI (GS - RVI) was not significantly related to RIHarvest (Fig. 3m, n). However, the

RIs calculated with top 10 Crop Circle indices still performed quite well, explaining

62–72 % of RIHarvest variability (Table 3). Again, they were all green band-based indices.

RIs calculated with Crop Circle normalized green index (RI(CC - NGI)) and red edge

green NDVI (RI(CC - REGNDVI)) explained 62 and 58 % more variability, respectively,

in RIHarvest (Fig. 3o, p).

It should be noted that all the top 10 RIs calculated with Crop Circle indices at different

growth stages used green band, except for RESAVI at the booting stage. This result

indicated the importance of green band for estimating rice responsiveness to additional N

application.

The GreenSeeker-based RIHarvest estimation results are better than those reported by

Yao et al. (2012), who also conducted rice field experiments in the same study area. They

also found that the GreenSeeker sensor performed better at the stem elongation

(R2 = 0.43–0.59) than the booting stage (R2 = 0.17–0.22). In the study of Tubaña et al.

(2012), which was conducted in US with multi-site-year and variety data, the R2 for the

relationship between RI(GS - NDVI) and RIHarvest was 0.52, 0.49 and 0.43 at the panicle

initiation, panicle initiation plus 1 week, and panicle initiation plus 2 weeks, respectively.
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The patterns were similar; the relationship became weaker at later growth stages, mainly

due to NDVI saturation. It should be noted that they used data from Nrich plots and check

plots or different N rate plots and check plots to calculate RI, while Nrich plots and different

N rate plots (including check plots) were used in the present study to calculate RI, which

may be more applicable when developing in-season N recommendation algorithms.

Implications for precision N management of rice

Yield goal is central in many N recommendation methods or algorithms; however, actual

yield varied significantly from field to field, year to year and within fields. Consequently, it

is hard to reliably estimate yield at the beginning of the growing season. Therefore, it is

advisable to set an initial yield goal based on historical yield information, soil conditions,

variety characteristics, and management practices under normal weather conditions and get

a rough estimate of total N application rate or simply use regional optimum N rate as the

initial total N application rate (Peng et al. 2010; Harrell et al. 2011; Yao et al. 2012). Next,

a moderate amount of N can be applied in the early stages (e.g. 45 % before planting or

transplanting and 20 % at the tillering stage).Then, before topdressing application at the

panicle initiation or stem elongation stage, the yield goal can be adjusted based on in-

season crop growth conditions, which can be used to further estimate topdressing N

application rate (Yao et al. 2012). Such a dynamic in-season site-specific precision N

management strategy can better match N supply to crop N demand and result in improved

N use efficiencies.

Two key components in the above-mentioned strategy are YP0 and RIHarvest. The YP0
can be used to estimate how much N has already been accumulated in the plant before

topdressing plus the amount of soil N supply in the later part of the growing season (Yao

et al. 2012). RIHarvest is an indicator of the responsiveness of rice yield to additional

topdressing N application (Mullen et al. 2003; Yao et al. 2012). Both of these influence

crop N demand, but they are independent of each other, and should be combined to

determine in-season topdressing N application rates (Raun et al. 2011).

The results of this study indicated that the GreenSeeker sensor worked well for esti-

mating YP0 (R
2 = 0.63–0.66) and RIHarvest (R

2 = 0.65–0.70) at the stem elongation stage.

The Crop Circle sensor only slightly improved the estimation of these parameters by

5–7 % at the best. Therefore, both sensors can be used in the precision N management

strategy for rice as discussed previously. The advantage with GreenSeeker sensor is its

simplicity, because NDVI and RVI are automatically calculated and the users don’t need to

do any calculations. The Crop Circle ACS 470 sensor is more suitable for researchers

rather than farmers. The users need to calculate different vegetation indices by themselves.

However, once the most suitable indices are determined, the Crop Circle sensor can be

programmed to calculate the desired indices automatically for practical applications.

To meet the double challenges of food security and sustainable development, integrated

precision rice management systems need to be developed to increase both grain yield and

N use efficiencies simultaneously (Zhao et al. 2013). For such high yield rice management

systems, N application may need to be split into four doses: basal fertilizer before trans-

planting, tiller fertilizer during the tillering stage, panicle fertilizer during the stem elon-

gation stage, and grain fertilizer during the heading stage (Zhao et al. 2013). The

GreenSeeker sensor will not be able to estimate YP0 and RIHarvest at the heading stage, as

indicated by the results of this study. One alternative approach is to use GreenSeeker

sensor to determine topdressing N application rate at the stem elongation stage, and then

split that in two doses, 2/3 as panicle fertilizer and 1/3 as grain fertilizer. The Crop Circle
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ACS 470 sensor, however, can still be used to reliably estimate both YP0 (highest

R2 = 0.75) and RIHarvest (highest R
2 = 0.72) at the heading stage. Therefore, this sensor

can be used to develop precision N management strategy for high yield rice management

system with four N split applications. On the basis of the precision N management strategy

with three split N applications, the Crop Circle sensor can be used to estimate topdressing

N rate and 2/3 can be applied as panicle fertilizer at the stem elongation stage. Then at the

heading stage, the sensor can be used again to estimate YP0 and RIHarvest, as well as to

determine if and how much grain N fertilizer is needed.

More studies are needed to further evaluate GreenSeeker and Crop Circle active sen-

sors-based precision N management strategies for improving rice N use efficiencies under

on-farm conditions, especially in high yield rice management systems.

Conclusions

This study demonstrated that the GreenSeeker active canopy sensor performed the best for

estimating rice yield potential and responsiveness to topdressing N application at the stem

elongation stage, and became unusable at the heading stage. The Crop Circle ACS 470

sensor performed consistently well at different growth stages. It improved the estimations

of these two parameters by 5–7, 22–26 and 62–75 % at the stem elongation, booting, and

heading stages, respectively, compared to the GreenSeeker sensor. In general, Crop Circle

green band-based vegetation indices performed the best for estimating responsiveness to

topdressing N application, whereas red edge-based vegetation indices were the best for

estimating rice yield potential at the booting and heading stages. The Crop Circle ACS-470

sensor would be more suitable for precision N management of high yield rice systems.

Future studies are needed to develop and evaluate GreenSeeker and Crop Circle active

sensor-based precision N management strategies for improving rice N use efficiencies

under diverse on-farm conditions, especially for high yield rice management systems.
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