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Abstract Canopy reflectance sensors are useful tools for guiding nitrogen fertilization in

crops. However, studies of sugarcane comparing the efficiency of different devices for

determining crop parameters are scarce. The objective of this study was to compare the

performance of canopy sensors in detecting sugarcane variability. Four nitrogen (N) rate

experiments were conducted (plots), along with biomass sampling, chlorophyll meter

readings and leaf N concentration determination in another four fields by canopy sensor

readings guided samplings. The examined canopy sensors were GreenSeeker and two Crop

Circle models (ACS-210 and ACS-430), which allowed the calculation of different nor-

malized difference vegetation index (NDVI) configurations. Neither of the canopy sensors

showed a correlation with the obtained chlorophyll meter readings (SPAD) or leaf N

content within the fields, while high correlations with above-ground biomass were found,

indicating that the plant population and vigor interfered with the canopy sensor readings.

The devices showed similar suitability in terms of N rate differentiation and correlations

with crop parameters. However, the NDVI calculated from the Crop Circle ACS-430

sensor using a red-edge waveband (NDRE) showed the best results, displaying the greatest

range of measured values and the highest sensitivity as a biomass predictor. Regardless of

the canopy sensor and wavebands used, all of the analyzed sensors proved to be good tools

for identifying the variability of crop development in sugarcane fields.
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Introduction

Sugarcane (Saccharum spp.) is the most important crop for sugar and ethanol production in

tropical and subtropical regions, accounting for approximately 80 % of global sugar

production and approximately 35 % of global ethanol production (FAO 2011). However,

nitrogen (N) fertilization of sugarcane remains a challenge, as there are no reliable methods

for N soil availability analysis, mainly under tropical conditions, and there is a lack of

reliable yield monitors and, consequently, yield maps that would allow for variable rate

application. Therefore, the application of ground-based crop canopy reflectance sensors

(canopy sensors) represents a noteworthy approach. The suitability of canopy sensors for

guiding N application has been widely documented in crops such as maize and wheat

(Lukina et al. 2001; Raun et al. 2005; Berntsen et al. 2006; Holland and Schepers 2010;

Kitchen et al. 2010; Solie et al. 2012).

There are many available canopy sensors, but studies comparing the efficiency of these

devices in determining crop parameters are scarce. Shaver et al. (2011) found that the

results obtained using the GreenSeeker and Crop Circle ACS-210 canopy sensors were

closely related to the yield and N rates in maize. Similar findings were reported by Hong

et al. (2007) in terms of maize biomass accumulation and chlorophyll contents. Shaver

et al. (2010) demonstrated that the Crop Circle ACS-210 sensor performed better than the

GreenSeeker sensor in greenhouse maize, while GreenSeeker showed more variability in

the readings obtained and was affected by the speed of movement. Tremblay et al. (2008)

evaluated N-sensor and GreenSeeker in maize and wheat and affirmed that both sensors

were capable of describing the N condition of the crops, but each sensor displayed unique

sensitivity characteristics, and these authors concluded that the algorithms developed with

one sensor for variable-rate N application cannot be transferred directly to another sensor.

In sugarcane, studies have demonstrated the efficiency of canopy sensors used to

identify certain crop parameters. Molin et al. (2010) and Amaral and Molin (2014),

working with the GreenSeeker and Crop Circle ACS-210 canopy sensors, respectively,

detected a significant relationship between N rates and the measurements obtained using

these devices. In another study, Portz et al. (2011) found that the N-Sensor ALS was able to

identify biomass and N uptake variability in sugarcane fields. Furthermore, Amaral et al.

(2012) and Lofton et al. (2012) verified the reasonable efficiency of this approach based on

estimating sugarcane yields from canopy sensor readings (working with Crop Circle ACS-

210 and GreenSeeker, respectively).

However, despite the availability of some published studies and others being developed

regarding the use of canopy sensors in sugarcane, no study has yet compared the efficiency

of different devices. Thus, the objective of the present study was to compare the perfor-

mance of canopy sensors in detecting sugarcane variability, mainly in terms of biomass and

N status, as well as to identify which crop parameters interfere with canopy sensor mea-

surements. The results of this study will aid in determining which canopy sensors provide

better results under the conditions of sugarcane cultivation.

Materials and methods

Crop canopy reflectance sensors

Three crop canopy reflectance sensors were tested: GreenSeeker (Trimble Navigation,

Ltd., Sunny Vale, CA, USA) and two Crop Circle devices, models ACS-210 and ACS-430
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(Holland Scientific Inc., Lincoln, NE, USA). These sensors are active and function based

on two or three wavebands in the visible and near infrared (NIR) regions, providing

variations of the normalized difference vegetation index (NDVI, Eq. 1) as outputs.

The GreenSeeker sensor works with wavebands in the red (660 nm) and NIR (770 nm)

regions, thereby calculating the red NDVI. The ACS-210 also uses two wavebands, but

centered on the amber (590 nm) and NIR (880 nm) regions, thus calculating the amber

NDVI. In contrast, the ACS-430 functions with three wavebands in the red (670 nm), red-

edge (730 nm) and NIR (780 nm) regions, enabling calculation of both the red NDVI and

red-edge NDVI (NDRE). The NDVI calculations were performed as follows:

NDVI ¼ NIR� VIS

NIRþ VIS
ð1Þ

where NIR is the reflectance in the near-infrared waveband and VIS is the reflectance in the

visible or red-edge waveband, according to the applied sensor.

The canopy sensor readings were taken simultaneously when the sugarcane stalk height

was *0.5 m (Amaral and Molin 2014). In all of the evaluations, the sensors were mounted

on a high-clearance vehicle (Uniport 3000 NPK, Máquinas Agrı́colas Jacto, Pompéia, SP,

Brazil) and maintained at 0.8 m from the canopy (Fig. 1).

Plot experiments with N rates

To identify the efficiency of the canopy sensors in distinguishing different levels of N in the

soil, four plot experiments were performed in the central-eastern part of the state of Sao

Paulo, Brazil (21�210 S – 48�040 W) from 2011 to 2012: two in sugarcane-producing fields

and two at research centers (Table 1). The plots consisted of six 15-m-long sugarcane rows

spaced 1.5 m apart, and the treatments were comprised of different N rates (Table 1).

Nitrogen fertilizer was manually applied as ammonium nitrate along the rows on top of straw

immediately after harvest. A randomized block experimental design with four replications

was applied, where the investigated areas were the four central rows. The vegetation index

value for each plot was composed by the average of *400 canopy sensor readings.

Field measurement trials and sampling procedures

The canopy sensors were tested in terms of their efficiency in determining biomass, chlo-

rophyll contents and leaf N concentrations. For this purpose, four sugarcane-producing

fields (*5 ha each) were scanned with the canopy sensors (Table 1), with measurements

being taken at 1 Hz in all of the rows (spaced 1.5 m apart) at a travel speed of *4.44 m s-1.

The applied sample allocation and sampling procedure were performed according Portz

et al. (2011). After scanning, the sensor data were analyzed to identify outliers, which were

removed following the upper and lower quartile criteria. The cleaned data were interpolated

using 10 m cells and the inverse distance method (SSToolbox, SST Development Group,

Stillwater, OK, USA). Based on the interpolated surfaces, five classes were discriminated by

natural breaks scale to express the field variability. Six sampling points were located in the

middle of the representative areas of each class, summarizing 30 points per field.

Each sampling point consisted of four 5-m-long sugarcane rows. Inside this area, 30

chlorophyll meter readings (SPAD 502, Konica Minolta Sensing, Inc., Sakai, OS, Japan)

were obtained on the most recent, fully expanded leaf (leaf top visible dewlap—TVD),

midway between the leaf tip and the base and midway between the margin and the midrib.

This same portion of the leaves was used to determine the leaf N concentration via the
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micro-Kjeldahl digestion and distillation method (Bremner and Mulvaney 1982). The

above-ground biomass was also sampled by cutting 1.5 m subplots in three rows, sum-

marizing the 4.5 m row length, and the fresh matter was weighed in the field.

Data analysis

To address the effects of the N rates among the fields in the plot experiments, the mean

canopy sensor readings for each treatment were converted across replications into the

sufficiency index (SI, Eq. 2) (Varvel et al. 1997) as follows:

SI ¼ CheckN

HighN
ð2Þ

where CheckN is the NDVI value according to the treatment (N rate), and HighN is the

NDVI value obtained in the treatment with the highest N rate.

Thus, the data from plot experiments were analyzed via ANOVA using a mixed model

in which the N rates were considered fixed effects, and the blocks were considered random

effects. Regression analyses, testing for both linear and quadratic components, were also

applied to further the understanding of the sugarcane N response. Statistical analyses were

performed using SISVAR statistical software (Federal University of Lavras, Lavras, MG,

Brazil—Ferreira 2011).

The canopy sensor data from each sampling point in the field trials were obtained using

a 5-m radius buffer, while all the readings value inside the buffer (one to four readings per

point) were averaged. It was analyzed the relationships between crop parameters (biomass,

chlorophyll content and leaf N concentration measured at each sampling points) and the

canopy sensor readings. Correlation analyses were performed within and across the fields,

and the significance of the correlations was verified using T tests (p \ 0.05). To estimate

the sensitivity of the canopy sensor readings in identifying the sugarcane biomass, relative

values were obtained, in which the highest value within the fields was used as the

denominator. The relationship between the relative values was estimated via linear

regression (relative biomass on the x axis and relative sensor readings on the y axis;

Fig. 1 The (a) GreenSeeker, (b) Crop Circle ACS-210, and (c) Crop Circle ACS-430 canopy sensors
mounted on the fertilizer application boom of a high-clearance vehicle
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Solari et al. 2008). The slope and root mean square error (RMSE) of each relationship were

determined, and the sensitivity equivalent (SEq) was calculated (Eq. 3) as follows:

SEq ¼ slope

RMSE
ð3Þ

According to Viña and Gitelson (2005), the SEq incorporates both the slope and RMSE

and provides an effective assessment of differences in the ability of vegetation indices

(canopy sensors readings) to assess canopy variation. The data were plotted using Sig-

maPlot software (SPSS Inc., Chicago, IL, USA).

Results and discussion

Relationships between sugarcane crop parameters for each field

The canopy reflectance in the visible and near infrared regions is influenced by the amount

of green tissue present. Among the factors that can interfere with determining this

parameter, the biomass content and chlorophyll content are highlighted when performing

proximal sensing above crops. Thus, a good relationship between these parameters and

canopy sensor readings has been reported in maize and wheat (Teal et al. 2006; Hong et al.

2007; Eitel et al. 2008; Solari et al. 2008).

However, because sugarcane is a semi-perennial crop, the variability of the crop pop-

ulation and skips within rows tend to be the main factors interfering with canopy sensor

readings in sugarcane. Thus, a high correlation with biomass and no correlation with the

SPAD readings was obtained (Table 2). This absence of correlation between canopy sensor

readings and SPAD readings was showed by Amaral and Molin (2014) working with Crop

Circle ACS-210 on sugarcane. Similarly, Sudduth et al. (2010) found that GreenSeeker and

Crop Circle ACS-210 are more affected by variations in maize height than by SPAD

readings and leaf N contents. Despite the observed efficiency in distinguishing between

crop parameters, the correlations between the canopy sensor readings and the crop

parameters were quite similar for all of the sensors.

Identification of sugarcane N status

Significant differences (p \ 0.05) in the SI values were only detected by the sensors in half

of the plot experiments according to the N application rates (Table 3). These differences

were obtained in the plot experiments where the indicated N rates had been applied for two

or three crop cycles (the Piracicaba and Barra fields, respectively), whereas in the plots

undergoing their first year of treatment (the Velha and Izaura fields), no significant

response was observed due to the high variability in the crop response. This result is likely

due to conditions remaining from the previous crop cycle. Prado and Pancelli (2008) found

that the crop response to N application in sugarcane occurs in the cycle following N

application, which may explain the results presented here. Despite the variability in the

plots and the difficulty of obtaining large responses to N application in the first year at

certain N application rates, a linear trend was detected in the Velha plots and a quadratic

trend in Izaura plots.

The lower the SI value (SI \ 1.0), the higher the response to N under those field

conditions (Varvel et al. 1997). Thus, it was determined that the Crop Circle ACS-430
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sensor functioning in the NDRE (red-edge NDVI) showed the greatest sensitivity in dif-

ferentiating the sugarcane canopy response in terms of N application. The same sensor

generating the red NDVI presented a lower sensitivity in differentiating N rates when

working with this index.

Shaver et al. (2011), working with the canopy sensors GreenSeeker and Crop Circle

ACS-210 in maize, found that both sensors could efficiently identify the N rates applied to

this crop but that GreenSeeker reached saturation earlier in the growing season, potentially

limiting the use of this sensor at later growth stages when the plant biomass is higher,

whereas Crop Circle ACS-210 showed a lower range of values according to N rates.

Additionally, Erdle et al. (2012), working with GreenSeeker and the Crop Circle ACS-470

(a device similar to Crop Circle ACS-430), found that the indices obtained using red-edge

wavebands function better than those generated using red wavebands in identifying the N

status of wheat. Similarly, Shiratsuchi et al. (2010) obtained better results working with the

NDRE than the NDVI in the identification of N levels in maize.

One reason for this result may be the signal saturation in the red waveband due to its

high absorption by chlorophyll pigments, causing the NDVI based on red wavebands to be

Table 2 Correlation coefficient between the canopy sensor readings and crop parameters (biomass, SPAD
readings and leaf N concentrations) for the data collected in the four fields

Correlation coefficient (r)

Biomass SPAD Leaf N

Field: Alvoradaa

GreenSeeker 0.520** 0.334ns –

ACS-210 0.812** 0.062ns –

ACS-430NDVI 0.812** 0.057ns –

ACS-430NDRE 0.810** 0.042ns –

Biomass – 0.067ns –

Field: Aparecida

GreenSeeker 0.425* -0.092ns 0.250ns

ACS-210 0.708** 0.048ns 0.394*

ACS-430NDVI 0.771** -0.027ns 0.424*

ACS-430NDRE 0.773** -0.049ns 0.417*

Biomass – -0.076ns 0.464*

Field: ApArenoso

GreenSeeker 0.826** 0.205ns 0.491ns

ACS-430NDVI 0.848** 0.144ns 0.415*

ACS-430NDRE 0.772** 0.384* 0.513**

Biomass – 0.322ns 0.568**

Field: ApArgiloso

GreenSeeker 0.812** -0.167ns -0.475*

ACS-430NDVI 0.805** -0.212ns -0.574**

ACS-430NDRE 0.791** -0.186ns -0.499*

Biomass – -0.189ns -0.268ns

* and ** significant at the 0.05 and 0.01 levels, respectively
ns Non-significant at the 0.05 level
a In this field, leaf N analyses were not performed
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saturated in the dense and multi-layered canopy and to show a nonlinear relationship with

the biophysical parameters (Baret and Guyot 1991). For the same reason, the GreenSeeker

and Crop Circle ACS-210 showed a decreased sensitivity in differentiating N rates, while

still being efficient in determining N rates. These results corroborate those of studies that

have found a similar ability of these canopy sensors to identify different levels of N applied

to maize and wheat (Shiratsuchi et al. 2010; Shaver et al. 2011; Erdle et al. 2012).

Significant correlations with leaf N could also be found (Table 2). However, in most

cases, these correlations were related to an increased leaf N concentration in plants in

advanced stages of development (data not shown) due to their more extensive root system

being exposed to larger areas of the soil, thereby taking in more N than the plants located in

areas with any restriction to their development. Nevertheless, other factors can alter this

relationship, such as high N levels due to soil organic matter mineralization and crop

fertilization, thus impairing the relationship between leaf N and biomass and, conse-

quently, the obtained canopy sensor readings. The N dilution effect can also impair this

relationship, as observed in the ApArgiloso field and also found by Franco et al. (2010)

Table 3 Sufficiency index obtained by averaging vegetation index values across replications within the N
rates in the four plot experiments, analysis of variance and regression analysis

Nitrogen rate (kg ha-1) ANOVA Regression analysisa

Plots: Velha

0 60 120 180 240 P value

GreenSeeker 0.97 0.99 0.97 0.99 1.00 0.639 0.352 (LRb)

ACS-210 0.95 0.98 0.97 0.99 1.00 0.175 0.038 (LR)

ACS-430NDVI 0.91 0.95 0.91 0.95 1.00 0.459 0.161(LR)

ACS-430NDRE 0.86 0.92 0.90 0.94 1.00 0.176 0.027 (LR)

Plots: Piracicaba

0 50 100 150 P value

GreenSeeker 0.90aa 0.96b 0.99b 1.00b – 0.041 0.008 (LR)

ACS-210 0.88a 0.95b 0.99c 1.00c – \0.001 \0.001 (LR)

ACS-430NDVI 0.78a 0.94b 1.01b 1.00b – \0.001 \0.001 (LR)

ACS-430NDRE 0.71a 0.91b 0.99c 1.00c – \0.001 \0.001 (LR)

Plots: Barra

0 50 100 150 P value

GreenSeeker 0.83a 1.01b 0.95b 1.00b – 0.007 0.023 (LR)

ACS-430NDVI 0.76a 0.99b 0.94b 1.00b – 0.048 0.062(LR)

ACS-430NDRE 0.71a 0.98b 0.94b 1.00b – 0.009 0.010(LR)

Plots: Izaura

0 60 120 180 P value

GreenSeeker 0.92 0.92 1.05 1.00 – 0.169 0.611 (QRc)

ACS-430NDVI 0.96 0.99 1.07 1.00 – 0.324 0.243 (QR)

ACS-430NDRE 0.93 0.95 1.04 1.00 – 0.100 0.349 (QR)

a Means followed by different letters within the same row are significantly different, as determined by the
Scott-Knott test (p \ 0.05)
b LR linear component fitted via linear regression
c QR quadratic component fitted via linear regression
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working with sugarcane fertilization. The effect of dilution is characterized by a reduction

in leaf N concentration with an increase in the plant biomass (Jarrell and Beverly 1981). In

this field, the crop development was greater than the N uptake (negative correlation

between biomass and leaf N) probability due to high level of available water in the soil

(heavy soil) which increases the crop development, causing the dilution effect. The soil

compaction that tends to happen in heavy soils was not measured in the present study, but

it can also limit root development, allowing for less soil exploration and, thus, less N

uptake, what might cause the effect showed in the ApArgiloso field.

Despite the significant correlation between the canopy sensor readings and leaf N levels

found in each field (Table 2), when the data from all of the fields were combined, the

differences between the fields were observed to be greater than the variability within the

fields, demonstrating that the leaf N concentration is a function of field conditions,

resulting in relationship with the canopy sensor readings (Fig. 2). The Aparecida, ApA-

rgiloso and ApArenoso fields were cultivated with the same sugarcane variety, but the

mean leaf N concentration in the ApArenoso field (18.8 g N kg-1) differed from that in the

others (22.9 and 23.0 g N kg-1, respectively, in the Aparecida and ApArgiloso fields).

This differences can be explained by soil texture contrasts (ApArenoso, Aparecida and

ApArgiloso soils containing 220, 490 and 512 g clay kg-1, respectively, in fields). An

explanation to differences in leaf N content is related to natural N available in the soil,

where due to higher clay content, the soils tend to show higher organic matter levels, what

in several cases is related to N availability. Therefore, the canopy sensor approach was not

efficient in identifying the variability in sugarcane leaf N within the fields, regardless of the

canopy sensor used, corroborating Amaral and Molin (2014).

Biomass estimation

In contrast to the leaf N concentration, a high correlation was found between the recorded

biomass and canopy sensor readings when all of the data were combined (Fig. 3). To

compare the data obtained from the different canopy sensors, the readings were normalized

based on the highest value determined within all of the fields. This normalization dem-

onstrated that Crop Circle ACS-430 showed the highest range of values, regardless the

vegetation index used (NDRE or NDVI), emphasizing its superior ability in distinguishing

sugarcane biomass. GreenSeeker displayed a lower range, and Crop Circle ACS-210

showed a lower sensitivity to biomass variability (low range), even though it was employed

in only two of the four fields. A similarly low range of the NDVI generated using the ACS-

210 sensor was also reported by Solari et al. (2008) and Shaver et al. (2011) and can be

interpreted as indicating that this sensor shows a lower sensitivity in differentiating green

tissues. Moreover, the higher NDVI data dispersion obtained from GreenSeeker and Crop

Circle ACS-430NDVI might be due to the fact that these sensors function using wavebands

in the visible region of the spectrum, thereby increasing the reflectance ‘‘noise’’ due to soil

background reflectance and the variety of colors (leaves and stalks). Taubinger et al.

(2012), testing for factors interfering with canopy sensor readings in sugarcane, found that

the vegetation indices based on visible wavebands were more susceptible to the influence

of soil background than those based on red-edge wavebands.

It is interesting that a high correlation of the biomass with the absolute values of the

sensors was observed, eliminating the need for data normalization and facilitating the

adoption of canopy reflectance sensor by growers in general. Furthermore, regardless of the

canopy sensor employed, the correlation with biomass was similar to that found in studies

conducted on maize (Freeman et al. 2007; Hong et al. 2007) and wheat (Osborne 2007;

Precision Agric (2015) 16:15–28 23

123



Cao et al. 2012). Thus, sugarcane N uptake and yields may be efficiently estimated with

these sensors, as carried out by Portz et al. (2011) and Lofton et al. (2012), respectively,

allowing various approaches for variable N application rates based on canopy sensor

readings to be employed (Lukina et al. 2001; Raun et al. 2005; Holland and Schepers 2010;

Amaral et al. 2012; Solie et al. 2012). Any approach that might use this technology to

guide variable N application must focus on applying N according biomass variability

instead of crop N status.

Moreover, due to the efficiency of the canopy sensors in predicting biomass, any

localized intervention taking crop development into consideration may be supported by

canopy sensor readings. In this context, sampling allocation focusing on the identification

of any factor that can impair crop development, such as pests and soil compaction, can be

guided by maps generated from canopy sensor data. Additionally, the maps obtained from

Fig. 2 Relationships between the variation in the leaf N concentration and the four normalized canopy
sensor readings for the data collected in three fields and the respective linear regression equations and
coefficients of determination (R2). All three fields were scanned with the GreenSeeker (a), Crop Circle ACS-
430NDRE (b) and ACS-430NDVI (c) canopy sensors, while only one field was scanned with Crop Circle ACS-
210 (d)
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Fig. 3 Relationships between the variation in sugarcane biomass and the four normalized canopy sensor
readings for the data collected in the four fields and their respective linear regression equations and
coefficients of determination (R2). All four fields were scanned with the GreenSeeker (a), Crop Circle ACS-
430NDRE (b) and ACS-430NDVI (c) canopy sensors, while only two field was scanned with Crop Circle ACS-
210 (d)

Table 4 Linear regression parameters between the relative sugarcane biomass determined from the mea-
surements based on the readings of the four canopy sensors for the data collected in two fields (Alvorada and
Aparecida fields) and in all four fields. The provided parameters are the slope, root mean square error
(RMSE) and sensitivity equivalent (SEq = slope/RMSE)

Slope RMSE SEq

2 fields 4 fields 2 fields 4 fields 2 fields 4 fields

GreenSeeker 0.420 0.437 0.096 0.097 4.394 4.504

ACS-210 0.376 NAa 0.051 NA 7.354 NA

ACS-430NDVI 0.597 0.444 0.079 0.102 7.564 4.375

ACS-430NDRE 0.656 0.498 0.085 0.088 7.729 5.679

a NA Data not available

Precision Agric (2015) 16:15–28 25

123



canopy sensor readings may be useful in delineating management zones, as they can

identify different crop development behaviors within fields.

To reliably test the sensitivity of the different vegetation indices obtained using the

ACS-210 sensor in identifying chlorophyll contents in maize, Solari et al. (2008) proposed

the SEq, a ratio between the slope and RMSE of the relationships between the chlorophyll

content and vegetation index value, and found that the chlorophyll index (CI, obtained

based on the amber waveband) is a better predictor than the NDVI (also based on the

amber waveband). Based on this approach, the NDRE was more efficient in determining

sugarcane biomass, as it showed the highest slope and a reasonable RMSE, resulting in the

highest SEq (Table 4).

The two fields where the Crop Circle ACS-210 sensor was used showed the lowest data

variation as well as the lowest slopes, thus compromising the efficiency of this sensor in

identifying biomass. This sensor was only more sensible than GreenSeeker in these two

fields. In contrast, considering all four study fields, GreenSeeker was the second most

sensitive sensor in identifying biomass, being inferior only to Crop Circle ACS-430NDRE.

Conclusion

The present study showed that canopy sensor readings are influenced differentially by

different crop parameters, regardless of the canopy sensor used. While a significant

correlation with chlorophyll contents has been found in maize and wheat, none of the

analyzed canopy sensors showed a reasonable correlation with the obtained chlorophyll

meter readings, due to the much higher interference of the investigated plant population

with the reflectance readings. Additionally, a low correlation with the leaf N concen-

tration was found across the fields, while no correlation was observed when all of the

fields were analyzed together. These results show that the differences between the fields

are more important than the variability within the fields in terms of leaf N concen-

trations; thus, the studied canopy sensors should not be employed in this approach.

Nevertheless, the canopy sensors efficiently differentiated the N rates applied to the

sugarcane crop. However, skips within rows can impair these predictions when the

response in terms of biomass accumulation is low. Additionally, all of the sensors were

efficient predictors of biomass variability, though the NDRE obtained using the Crop

Circle ACS-430 sensor showed the best results.

Regardless of the applied canopy sensor and vegetation index, all of the analyzed

sensors proved to be good tools for identifying crop vigor variability in sugarcane fields.

Thus, in addition to their traditional use in guiding N applications, these sensors can be

efficiently employed in sugarcane to guide sampling allocation focusing on the identifi-

cation of any factor that might impair crop development. Moreover, the generated data can

be used to delineate management zones.
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