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Abstract Leaf area index (LAI) is involved in biological, environmental and physio-

logical processes, which are related to photosynthesis, transpiration, interception of radi-

ation and energy balance. Thus, most crop models use LAI as a key feature to characterize

the growth and development of crops. However, direct measures of LAI are destructive and

tedious so that samplings can seldom be repeated in time and in space. Green canopy cover

(GCC) is directly involved in crop growth and development. GCC estimation can benefit

from aerial observation, as it can be measured by using image analysis or estimated by

obtaining different vegetation indices. The main purpose of the second part of this paper

was to study the relationships between GCC and LAI by using aerial images from UAVs in

order to characterize crop growth. Also, the relationships between GCC and a vegetation

index based on the visible spectrum was calibrated and validated. Relationships between

LAI and GCC, growing degree days (GDD) and GCC and GDD and LAI were calibrated

and validated for maize and onion crops with proper fitting. Visible atmospherically

resistant index also appears to be a sensitive indicator to different growing stages and could

generally be applied to any field crop. To apply this methodology, GCC and LAI rela-

tionships must be calibrated for many other crops in different irrigable areas. In addition,

the cost of the UAV is expected to decrease while autonomy increases through improved

battery life and reductions in the weight of on-board sensors.
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Introduction

Monitoring crop development is an important tool as farming decision support, since it

permits assessment of the most critical stages of growth. Phenological monitoring also

improves the understanding of crop development and growth processes (Viña et al. 2004).

Most crop models use leaf area index (LAI) as a key feature to characterize the growth and

development of crops. LAI, is defined as one-sided area of leaf tissue per unit ground

surface area (Watson 1947). Due to the applicability of LAI in modelling, there is a need

for LAI estimation during a growing cycle. Also, LAI is involved in biological, environ-

mental and physiological processes, which are related to photosynthesis, transpiration,

interception of radiation and energy balance (Kucharik et al. 1998). Direct measures of

LAI are destructive and time consuming so that samplings can seldom be repeated in time

and in space. Several techniques of remote sensing have been developed to estimate LAI

from easy indicators, such as vegetation indices. These studies have indicated the need for

model calibration and validation and that high resolution images obtained with aerial

vehicles at low altitude over experimental plots are an excellent resource (Chen et al.

2004).

Green canopy cover (GCC) is directly involved in crop growth and development. Many

studies, such as Wright (1982), Allen et al. (1998) and Kato and Kamichika (2006),

determined the growth intervals based on the different slope of the GCC curve throughout

the progression of the crop cycle, considering GCC as the fraction of soil surface covered

by the crop canopy (Steduto et al. 2009). Also, GCC is related to soil and erosion, with the

atmosphere and transpiration, climate, plant stress agents and crop vegetation management

(Pereira and Allen 1999). Recognised models, such as Aquacrop (Steduto et al. 2009) use

GCC as the main parameter instead of LAI, developing an empirical relationship between

GCC and LAI obtained by regression.

Unmanned aerial vehicle (UAV) platforms offer new possibilities to agriculture in order

to obtain high spatial resolution imagery delivered in near-real time (Herwitz et al. 2004).

Green canopy cover estimation can benefit from this aerial observation, as it can be

measured by using image analysis. Spectral vegetation indices are widely used for tem-

poral and spatial variations in vegetation structure and biophysical parameters. Normalized

vegetation index (NDVI) is one of the most used in remote sensing applications related to

land cover studies (Pettorelli et al. 2005). However, NDVI saturates as a function of LAI or

GCC beyond a threshold value (Turner et al. 1999). Techniques that use only the visible

range of the spectrum for quantitative estimation of GCC, such as green vegetation index

(VIgreen) and visible atmospherically resistant index (VARIgreen) have been proposed

(Gitelson et al. 2002; Stark et al. 2000). These indices have been applied to avoid the effect

of saturation experienced with NDVI. Some studies, such as those developed by Asrar

et al. (1989) and Baret and Guyot (1991) studied the correlations between different veg-

etation indices with LAI, green biomass and GCC.

The main purpose of the second part of this paper was to study the relationships between

GCC and LAI by using aerial images from UAVs in order to characterize crop growth.

Also, the relationship between GCC and a vegetation index based on the visible spectrum

was calibrated and validated.
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Materials and methods

Study area

The fields analysed were located in Tarazona de La Mancha (Albacete, Spain) in com-

mercial plots for two seasons: 2010–2011 and 2011–2012. The main crop characteristics

are shown in Table 1 for the two seasons. These maize and onion crops were both irrigated

using permanent solid set systems. The cultivation techniques applied were the typical

practices in this area for both crops. Sampling dates were selected according to the main

phenological and vegetation closure changes (Allen et al. 1998), which will determine

future crop biomass and yield rates.

Field work procedure

A procedure for field work for onion and maize was implemented (Fig. 1). Phenological

observations were performed at the same plots and sampling events. After sampling area

selection, the first step was to install targets for geo-referencing the final model (ortho-

photo or 3D terrain model). A sampling area of 1 000 m2 was selected from the total flight

area for the different crop samples. For each flight event, three 1 m2 plots (sampling plots)

from the 1 000 m2 sampling area were randomly selected using the Latin-hypercube

method. Latin hypercube sampling procedure may be considered a particular case of

stratified sampling. Stratified sampling provides better coverage of the sample space for the

input factors. A 1 m2 steel frame was used for delimiting each sample plot, which could be

perfectly detected in the images due to very high resolution. After locating the frames, the

flight was performed following the flight planning process described above. After the

flight, plants from each sampling plot were collected and transported to the lab for mea-

surements by separating plant components and measuring leaf area (LA) among other

variables. In each sampling event, the LA for completely extended individual leaves was

computed by using an automated infrared imaging system LI-COR-3100C (LI-COR Inc.,

Lincoln, Nebraska, USA). Six plants from each sampling plot were collected for both

maize and onion, as stated by Córcoles et al. (2013), which means 50 and 38 % of the total

number of plants in the sampling plot, respectively.

In each experimental plot, the total number of plants was counted in order to calculate

the LAI using Eq. 1.

LAI ¼ LA � Np ð1Þ

where LAI is leaf area index (m2 leaf m-2 soil), LA is leaf area (m2 plant-1), Np is Number

of plants per soil surface (number of plant m-2 soil).

After field work, ortho-images were processed using the LAIC software in order to

obtain the GCC in each experimental plot.

Modelling

Traditionally, GCC is one of the most utilized indices for quantifying crop growth and

development because it is easy to determine with nadiral images taken with conventional

cameras. This paper establishes the relationships between GCC and other key components

of the crop growth and development, such as LAI, which are difficult to measure directly.

Understanding temporal and spatial variation in LAI is therefore essential for climate,
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meteorological and hydrological modelling (Herbst et al. 2006). In mid-latitudes, crop

growth and development tends to follow a well-defined temporal pattern (Viña et al. 2004).

So, temporal profiles of GCC and LAI can be used to characterize crop phenology by

evaluating their variability over time. In this study, in order to study inter-annual com-

parisons, different models based on growing degree days (GDD) were used to reproduce

the behaviour of LAI and GCC (Table 2). To account for the climatic differences among

years, the GCC and LAI was represented as a function of GDD, calculated with a base

temperature of 8 �C for maize (Kiniry. 1991) and 5 �C for onion (Lancaster et al. 1996).

The studied models were linear, polynomial (second and third order), logarithmic and

exponential-polynomial models. Exponential-polynomial models refer to polynomials

generated by operating on exponential functions by differentiation, or by expanding the

exponential into a power series in x (Bell 1934). All the proposed models were calibrated

using collected and measured data from season 2011–2012. The model that best fits

simulated with observed values is selected based on the highest coefficient of determi-

nation (R2) and the lowest standard error. Then, the selected model was validated with the

measured data in the previous season (2010–2011) which represent the third part of the

total collected data.

Fig. 1 Steps in field work data collection where GPS is global position system, UAV is unmanned aerial
vehicle and LA is leaf area
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Validation of the model

The validation of the model was done using independent data sets from the season 2010–

2011, which were not used in the calibration process. In validating the model, observed and

simulated values were compared. Model validation and performance was analysed with the

root mean squared error (RMSE) (Eq. 2) and coefficient of efficiency (E) (Nash and

Sutcliffe 1970; DeJonge et al. 2011) (Eq. 3) statistical indicators.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðNÞ
X

N

i¼1

ðOi � SiÞ2
v

u

u

t ð2Þ

where Oi are the observed values, Si are simulated values, N is the number of observations.

The units for RMSE were the same as that for Oi and Si and the model fits improved when

RMSE is approaching zero.

Coefficient of efficiency was calculated following Eq. 3.

E ¼ 1�
PN

i¼1 ðOi � SiÞ2
PN

i¼1 ðOi � OÞ2
ð3Þ

where Oi are the observed values, Si are simulated values, N is the number of observations,

O is the mean value of Oi. Coefficient of efficiency (E) expressed how much the overall

deviation between observed and simulated values departs from the overall deviation

between observed values (Oi) and their mean values O: the best model simulations

occurred when values are close to ?1.

Table 2 Models analysed for representing leaf area index (LAI), green canopy cover (GCC) and growing
degree days (GDD) relationships and their references

Relationship Expression Reference

LAI-GCC Linear
y = ax ? b

Gupta et al. (2000); Wang et al. (2004)

Second order polynomial
y = ax2 ? bx ? c

Tei et al. (1996); Córcoles et al. (2013); de Medeiros et al.
(2001)

Logarithmic
y = (ln(1-(x/a)b))c-1

Nielsen et al. (2012)

GCC-GDD Second order polynomial
y = ax2 ? bx ? c

López-Urrea et al. (2012); Nuarsa et al. (2011)

Third order polynomial
y = (ax3 ? bx2 ? cx ? d)

de Medeiros et al. (2000); Jovanovic and Annandale (1999);
López-Urrea et al. (2009)

Exponential-polynomial
y = exp(ax2 ? bx ? x)

Steduto et al. (2009); Lofton et al. (2012)

LAI-GDD Second order polynomial
y = ax2 ? bx ? c

López (2004); Martı́n de Santa Olalla et al. (1994);
Juskiw et al. (2001)

Third order polynomial
y = (ax3 ? bx2 ? cx ? d)

Maturano (2002); Dutta et al. (2011); de Medeiros et al. (2000)

Exponential-polynomial
y = exp(ax2 ? bx ? x)

Tei et al. (1996); Srivastava et al. (2005)
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Vegetation indices in the visible spectrum

Normalized vegetation index is the vegetation index most frequently used. However, when

the canopy is too sparse, the background spectral properties can affect significantly the

NDVI value, thus when the canopy is too dense, NDVI can also saturate (Gilabert et al.

2010). Alternative indices have been proposed for remote estimation of LAI (Gitelson et al.

2003) and GCC (Gitelson et al. 2002). As described in part I of this paper, some of them

are VIgreen and VARIblue which only use bands in the visible region of the electromagnetic

spectrum. The main difference between the VIgreen and VARIgreen is that VARIgreen

introduces an atmospheric self-correction. According to Gitelson et al. (2002), VARIgreen is

more sensitive than VIgreen to GCC estimation due to the introduction of the blue reflec-

tance. In this study, the relationships VARIgreen versus GCC and VARIgreen versus LAI

were evaluated.

Results

Several crop indices and relationships between indices and crop characteristics were

established using the methodology and software developed for this study. These rela-

tionships can be used to calibrate satellite-based remote sensing crop measurements, to

predict yield and to determine the crop stage variability in a plot, among many other

applications. Some examples of the utility of the proposed methodology are described in

this section.

Analysis of LAI and GCC values

Leaf area index and GCC observed values through 2010–2011 and 2011–2012 seasons are

shown in Table 3 for maize. For 2011–2012 season (calibration season), LAI values

showed high variability at the first sample date. This can be explained by different rates of

leaf growth in the first phenological stage, where there were different sizes and numbers of

leaves per plant. Green canopy cover exceeded average values at the second sampling

event (12th July), when the third FAO-stage started and average LAI values were very

high, reaching more than 4.3 m2 leaf m-2 soil. At the third sampling event, 1 198 GDD,

LAI and GCC reached maximum values after the period of maximum vegetative activity

(start of fruit growth). The maximum LAI value (4.6 m2 leaf m-2 soil) represented a GCC

of 95.4 %—common values for maize in this area (Maturano 2002). At this stage, the

lowest coefficient of variation (CV) of the experiment was obtained because plants after

flowering present similar growth rates meaning higher uniformity between sampling plots.

Green canopy cover showed similar behaviour to LAI: both parameters reached maximum

values after flowering and decreased quickly at maturity. However, although all leaves

dried, GCC values were around 12.0 % at 1 911 GDD. This could be caused by other green

portions, such as stems and bracts, supported by the crop during senescence.

Observed data at first sampling event for validation season, 2010–2011, did not show a

high variability as in 2011–2012. It could be due to the highest crop uniformity of growth

at the first phenological stages in this season. Maximum values of LAI and GCC, 5.31 m2

leaf m-2 soil and 89.2 % respectively, were observed at the second sampling event (1 244

GDD). From this sampling event, a decrease of LAI and GCC occurred coinciding with the

beginning of the fourth FAO-stage. However, the highest variability was found at this

moment, (from 1 412 GDD) due to the different rates of senescence along the sampling

Precision Agric (2014) 15:593–614 599
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plot, which means that some plants reached their physiological maturity whereas the others

were at early-dough stage. The high intra-plot variability in this stage was observed in the

distribution of GCC obtained with the ortho-images and the LAIC software, as reported in

part I of this paper.

Table 4 shows plot sampling events for onion for 2010–2011 and 2011–2012 seasons.

In the first sample event of the calibration season (2011–2012), LAI values were 0.7 m2

leaf m-2 soil. For this season, LAI and GCC showed high variability, with CV values from

2.6 to 80.9 %. The highest variation was found at 966 GDD as ground closure and LAI

Table 3 Measured values of plant density, leaf area index (LAI) and green canopy cover (GCC) for maize

Density
(plants/m2)

Leaf area index
(m2 leaf m2 soil)

Green canopy cover
(%)

Individual
sample

Mean CV Plot
sampling

Mean CV Plot
sampling

Mean CV

Season 2010–2011

Jun 22
(409)a

10 9.50 21.91 0.80 0.87 9.54 20.43 21.37 4.44

9 0.95 22.31

13 0.81 21.60

Aug 20
(1 244)a

11 12.00 9.62 5.44 5.31 5.87 89.60 89.24 1.96

13 5.18 88.89

11 4.82 86.27

Aug 30
(1 412)

13 13.50 7.41 4.83 5.32 19.85 79.17 87.51 19.95

14 5.80 95.85

15 3.70 60.94

Season 2011–2012

Jun 21
(428)a

13 12.00 8.33 2.10 1.54 41.50 38.53 34.84 18.72

12 1.67 38.69

11 0.84 27.31

Jul 12
(698)a

11 11.67 4.95 4.34 4.36 8.39 74.21 75.32 16.75

12 4.01 63.30

12 4.74 88.46

Aug 14
(1 198)a

11 11.00 0.00 4.31 4.61 5.69 95.49 95.36 0.16

11 4.73 95.38

11 4.78 95.19

Aug 28
(1 455)a

10 11.00 15.75 4.17 3.84 18.90 61.58 58.56 6.38

13 4.33 59.72

10 3.01 54.38

Sep 10
(1 640)a

13 13.33 4.33 3.32 2.88 29.09 36.19 37.23 6.50

13 3.41 39.99

14 1.91 35.50

Oct 03
(1 911)a

13 12.00 8.33 0.00 0.00 0.00 13.88 11.58 19.16

12 0.00 9.45

11 0.00 11.40

CV Coefficient of variation
a Growing degree days (GDD)
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depend on density, plant architecture and leaf posture. Due to different crop establishment

rates, density values showed high variability. There were also significant differences

between sampling plots caused by varying development states of the different sampling

plots: different sizes of leaves appeared in each plot through the vegetative growth.

According to LAI, there was higher heterogeneity in GCC for this first sampling event.

These results agreed with other studies, such as Córcoles et al. 2013 that reported similar

trends for onion crop. Physiological maturity is assumed to be at the time GCC decreases

to zero. Extrapolated from LAI-GCC data, senescence start time is assumed to be the time

when GCC decreases below a LAI = 3.6 m2 leaf m-2 soil. At this time, there was greater

uniformity in LAI and GCC as there were no new leaf blades at the onset of bulbing

(Jiménez 2008; Tei et al. 1996). After this stage, leaves continued to expand but then

started to die and, as a consequence, there was a progressive decrease in LAI, reaching a

final value of 2.1 m2 leaf m-2 soil (Jiménez 2008). At the end of the establishment stage,

Table 4 Measured values of plant density, leaf area index (LAI) and green canopy cover (GCC) for onion

Density
(plants/m2)

Leaf area index
(m2 leaf m2 soil)

Green canopy cover
(%)

Individual
sample

Mean CV Plot
sampling

Mean CV Plot
sampling

Mean CV

Season 2010–2011

Jul 18
(1 303)a

58 58.33 4.31 3.45 2.61 28.00 45.01 40.96 8.77

56 2.26 39.73

61 2.12 38.15

Jul 29
(1 450)a

57 55.33 5.22 4.39 3.96 10.52 59.90 55.95 6.91

52 3.92 55.76

57 3.56 52.18

Aug 06
(1 561)a

59 59.00 0.00 5.21 4.86 10.34 69.90 64.86 11.00

59 4.50 59.81

Season 2011–2012

Jun 20
(966)a

46 43.00 14.15 1.25 0.72 73.03 27.38 15.07 80.90

47 0.73 14.82

36 0.19 3.00

Jul 12
(1 268)a

38 38.67 1.49 2.92 2.47 18.02 40.57 33.48 23.34

39 2.46 34.77

39 2.03 25.10

Jul 23
(1 431)a

37 38.33 3.01 3.63 3.65 2.60 51.65 48.46 9.82

39 3.75 50.74

39 3.56 42.99

Aug 09
(1 685)a

30 32.33 6.44 3.16 3.59 10.40 44.69 50.62 11.78

34 3.81 56.62

33 3.80 50.55

Aug 23
(1 939)a

42 38.33 10.54 2.10 2.09 21.35 34.97 37.17 9.72

39 2.53 35.21

34 1.64 41.34

CV Coefficient of variation
a Growing degree days (GDD)
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GCC was around 15.1 %, similar to values reported in López-Urrea et al. (2009). Later in

the development stage, GCC increased, rapidly, reaching the maximum value (50.6 %)

when bulb growth and maximum LAI values occurred. After that, GCC decreased to

37.2 % during maturing of bulbs.

For the first sampling event of the validation season (2010–2011), average LAI values

were 2.61 m2 leaf m-2 soil and average GCC was 40.9 % without significant variability.

Maximum values of LAI, 4.9 m2 leaf m-2 soil were found at the third sampling event

(1 561 GDD) when maximum GCC values were reached (64.9 %). However, GCC values

were close to the maximum at the second sampling event after accumulating at 1 450 GDD

(beginning of bulbing stage) which means that GCC remained for longer with maximum

values than LAI. These values were a little higher than those collected during 2011–2012

season. Some problems with the third sampling event impeded acquisition of data from one

of the three sampling plots, so data from two sampling plots were used.

Relationships between LAI and GCC

Different models were used to analyse the different relationships between LAI and GCC

for maize (Table 5) and onion (Table 6), which had different model fit values.

The maize case study

The second order polynomial models had the best fit between GCC and LAI with an

adjusted R2 of 0.91 (p \ 0.001) (Table 5; Fig. 2). The dispersion pattern of the residuals

followed a normal distribution and displayed homoscedastic behaviour.

Exponential models were reported by Hsiao et al. (2009) with a high R2 for three site-

year experiments. However, no details were given on seeding and how GCC values were

obtained. Nielsen et al. (2012) suggested low seeding rates used by Hsiao et al. (2009) as

70 % was the maximum GCC reached at LAI = 3.0 m2 leaf m-2 soil. So, this model was

used for low plant densities and it would not be representative for LAI values greater than

3.0 m2 soil m-2 leaf. It was also suggested using different relationships for higher seeding

rates, which would involve higher GCC values. Exponential models were not appropriate

for the results of this study, as LAI = 4.6 m2 leaf m-2 soil and GCC = 95.4 %.

For maize, LAI did not increase much from GCC = 75.3 to 95.4 % (Fig. 2). The same

behaviour could be observed in other research (Nielsen et al. 2012), which reported that

maximum values of LAI were obtained with different GCC values. This means that

maximum LAI is maintained by the crop throughout maturity due to the changes in crop

structure, as leaves became more horizontal and efficiency of solar radiation interception is

increased (Lisazo et al. 2003). Thus, GCC is useful for determining the crop development

status during the initial stages of the crop, but is difficult to differentiate when GCC is

70.0 % or higher. The effect is similar to the saturation of NDVI (Calera et al. 2001). The

good agreement in the validation process between measured and simulated LAI using the

second order polynomial model for 2010–2011 season is also shown in the statistical

analysis given in Table 7, with high E obtained for these samples.

The onion case study

According to the models studied, linear equations presented the best fit (R2 = 0.85,

p \ 0.001). In all models studied, the dispersion pattern of residuals followed a normal
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distribution and present homoscedastic behaviour. According to these results, a linear

model can be considered the most suitable to describe the relationship between LAI and

GCC (Fig. 3). Similar studies concluded also that linear models have a high significant

fitting between LAI and GCC (Córcoles et al. 2013) with similar values of coefficient of

determination (R2 = 0.84) as that obtained in this paper for onion crops. Moreover, others

authors, such as Gupta et al. (2000) and Calera et al. (2001) established a linear rela-

tionship between NDVI and LAI. Regarding the validation process, the linear model was

able to properly simulate the 2010–2011 season. This is shown by the low RMSE and high

E (close to 1.00) values (Table 7).

LAI and GCC patterns through the phenological cycle

Estimating and analysing the behaviour of LAI and GCC during the phenological cycle of

the crops could supply useful information to decision makers about which cultivation

techniques should be undertaken and at what time (Botella et al. 1997; Barker et al. 2010).

A crop model can be described as a quantitative scheme for predicting the growth,

development and yield of a crop, given a set of generic features and relevant environmental

variables (Monteith 1996).
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Fig. 2 Relationship between
leaf area index (LAI) and green
canopy cover (GCC) for maize
using linear model (solid line)
and second order polynomial
model (dashed line) according to
the expressions described in
Table 5

Table 7 The root mean squared error (RMSE) and coefficient of efficiency (E) obtained in the validation
process for the selected green canopy cover (GCC)- leaf area index (LAI), GCC-growing degree days
(GDD) and GDD-LAI relationships for 2010-2011 growing season data

RMSE
(m2 leaf m2 soil)

E RMSE
(%)

E RMSE
(m2 leaf m2 soil)

E

GCC-LAI GDD-GCC GDD-LAI

Maize 0.523 0.932 12.641 0.830 0.753 0.860

Onion 0.326 0.911 9.052 0.791 0.664 0.816
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Analysing GCC and LAI behaviour through the growing cycle using GDD, instead of

days after emergence, allows the application of the obtained results to different growing

seasons. Many models, such as AquaCrop (Steduto et al. 2009), not only are able to

simulate crop development using GDD, but also have a key feature of simulating GCC

instead of LA using canopy cover per seedling, canopy growth coefficient and maximum

GCC as known variables. Temporal patterns of GCC for both crops (Fig. 4 for maize and

Fig. 5 for onion) show phenological changes due to biomass accumulation, with a period of

early leaf development, a period of maximum canopy expression and a period of

senescence.

The case of maize crop

The relationships obtained between GCC and GDD showed that third order polynomial

models were considered the best fit (R2 = 0.93, p \ 0.001) (Fig. 4). For all models

studied, the dispersion pattern of residuals followed a normal distribution and homosce-

dastic behaviour.

Although an exponential-polynomial model showed the best statistical results

(R2 = 0.96; p \ 0.001), using this model to represent GCC versus GDD involves an

overestimation of maximum values of GCC. Exponential-polynomial models considered

104.77 % as maximum values of GCC at 1 031 GDD which is significantly higher than

expected ones. According to third order polynomial model, maximum GCC (95.08 %) is

reached at 961 GDD and lasts no longer than 179 GDD more (1 140 GDD in total) when

canopy closure starts to decrease below 90.0 %. The second order polynomial model

considers 85.82 % as the maximum value for GCC, which is much lower than values

obtained in experimental plots. Thus, according to maximum GCC timing and length, third

order polynomial models presented the best fit. Table 7 presents the statistics of the

simulated results for the validation process during season 2010–2011. Coefficient of

efficiency values of 0.83 and RMSE values of 12.64 % were due to the variability of GCC,

as with the same amount of required GDD (1 412 GDD), the range of GCC values varied

from 60.9 to 95.9 % in 2010–2011.
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Fig. 3 Relationship between
leaf area index (LAI) and green
canopy cover (GCC) for onion
using linear model (solid line)
and second order polynomial
model (dashed line) according to
the expressions described in
Table 6
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For the relationships between LAI and GDD combining all data, the second order or

higher of polynomial models were considered the best fitting, with the highest R2 in third

order equations (R2 = 0.91) (Fig. 4). Other studies, such as Maturano (2002) and López

(2004), reported similar models (second order or higher) as best fitting due to their
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Fig. 4 Relationship between green canopy cover (GCC) and growing degree days (GDD) for maize using
second order polynomial model (solid line), third order polynomial model (dashed line) and exponential-
polynomial function (dotted line) and relationship between leaf area index (LAI) and GDD for maize using
second order polynomial model (solid line and triangles), third order polynomial model (dashed line and
triangles) and exponential-polynomial function (dotted line and triangles) according to the expressions
described in Table 5

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

10

20

30

40

50

60

G
re

en
 C

an
op

y 
C

ov
er

 (
G

C
C

, %
)

Growin Degree Days (GDD, º)

0

1

2

3

4

5

6

Le
af

 A
re

a 
In

de
x 

(L
A

I, 
m

2  le
af

 m
−

2  s
oi

l)

Fig. 5 Relationship between green canopy cover (GCC) and growing degree days (GDD) for onion using
second order polynomial model (solid line), third order polynomial model (dashed line) and exponential-
polynomial function (dotted line) and relationship between leaf area index (LAI) and GDD for onion using
second order polynomial model (solid line and triangles), third order polynomial model (dashed line and
triangles) and exponential-polynomial function (dotted line and triangles) according to the expressions
described in Table 6
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accuracy according to maximum canopy length and declining start point. More complex

models have been analysed but neither their statistical accuracy nor their agronomic

meaning increased substantially. In all cases, the dispersion pattern of residuals followed a

normal distribution and homoscedastic behaviour. Highest rates of LAI variability could be

found at third sampling event during 2010–2011 validation season, resulting in low E

values (Table 7). According to these results, it can be noted that LAI seems to be more

sensitive to different rates of senescence than GCC.

Representing selected models for LAI-GDD and GCC-GDD relationships allowed

observation of how the mentioned curves followed a similar trend (Fig. 4). Both param-

eters reached maximum values around 1 000 GDD, at the end of the reproductive stage.

When maturity occurred, both parameters started their decrease. LAI decreased below

0.5 m2 leaf m-2 soil from 1 879 GDD, while GCC is over 13 %. This could be due to

maintaining green structures after leaf senescence.

Although crop behaviour is properly represented by GCC, using LAI values may be

more accurate at certain times. Some crop models use GCC, such as AquaCrop (Steduto

et al. 2009), while others include the progression of LAI (Ritchie et al. 1989; Stöckle et al.

2003; DeJonge et al. 2011). Thus, it is very important to understand the relationships

between the two variables and the moments where differences can appear. It is also

important to report findings at different developmental stages, which can be established

throughout the growing season using GCC.

The onion case study

In all models studied, the dispersion pattern of residuals followed a normal distribution and

homoscedasticity for analyses of the relationships between GCC and GDD (Fig. 5).

Adjustments obtained using third order polynomial and exponential-polynomial models

offer very good results (R2 [ 0.78, p \ 0.001 for both cases).

The other models (i.e. the second order polynomial) obtained lower values for maxi-

mum GCC (48.61 %) than those expected ([50 %). Jovanovic and Annandale (1999)

defined third order models obtaining high statistical significance values. However,

according to the results obtained in this paper, third order polynomial models established

maximum values close to 52.3 %, which was higher than the values obtained. The

exponential-polynomial model had similar statistical results but showed lower maximum

values for GCC (51.0 %). Other authors, such as Tei et al. (1996), also reported expo-

nential-polynomial models describing later stages: when leaves overlap with neighbouring

plants, onion shows a small increase in ground cover with an increase in LAI. Thus,

exponential-polynomial models have the best performance with these variables. The values

of E and RMSE, 0.79 and 9.05 % respectively (Table 7), indicate an adequate performance

of the selected expo-polynomial model in the validation process.

For all LAI-GDD models, the dispersion patterns of residuals followed a normal dis-

tribution and had homoscedastic behaviour. The exponential-polynomial model was con-

sidered the best fit (R2 = 0.90, p \ 0.001) (Fig. 5). The second order polynomial models

underestimated maximum values of LAI; and the third order polynomial placed the

maximum value over 1 605 GDD, while sampling events determined that maximum values

were close to 1 500 GDD. Other studies that established the same relationships with

similar indices (LA, specific leaf area), had also used exponential models with high sta-

tistical significance (Tei et al. 1996). For the validation process, E and RMSE values also

showed adequate performance (Table 7) for LAI estimation (E = 0.79, RMSE = 9.05 m2

leaf m-2 soil) during 2010–2011 season.
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The progression of LAI and GCC values for the phenological cycle, using the models

selected, showed that maximum values for both parameters were reached during bulb

growth (third FAO-stage). In this stage, there was a high increase in absolute values from

the first to the second sampling event (from the end of vegetative growth to the start of
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Fig. 6 Relationship between GCC and VARIgreen for maize and onion according to Table 8

Table 8 Calibration of the different studied models for maize and onion

Adjusted
R2

p value Standard
error

Maize

GCC (%) = 293.8 9 VARIgreen ? 67.13
(see Fig. 6)

0.946 *** 6.714

LAI (m2 leaf m-2 soil) = -33.24 9 VARIgreen
2

? 13.13 9 VARIgreen ? 3.917
0.890 *** 0.581

VARIgreen = 2.715 9 10-10 9 GDD3 - 1.348
9 10-6GDD2 ? 1.82 9 10-3GDD - 0.6534

0.972 *** 0.016

Onion

GCC (%) = 279.1 9 VARIgreen ? 68.13
(see Fig. 6)

0.815 *** 6.294

LAI (m2 leaf m-2 soil) = 22.62 9 VARIgreen ? 5.03 0.838 *** 0.470

VARIgreen ? 1 = exp(3.452 9 10-7 9 GDD2

? 0.001083GDD - 0.9265)
0.661 *** 0.028

LAI leaf area index, GCC green canopy cover, R2 Coefficient of determination

*** p \ 0.001
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bulbing). Maximum LAI was reached before maximum GCC value (1 570 GDD for LAI

and 1 613 GDD for GCC), although GCC was located in the range of maximum values at

this moment. Therefore, LAI remained constant to the following sampling event, mean-

while GCC continued increasing to 648 GDD, although this increased rate was not as high

as the previous one (Fig. 5).

Relationships between spectral vegetation index and canopy parameters

Relationships between VARIgreen versus LAI and GCC were studied for season 2011–2012

and validated for season 2010–2011. As expected and according to Viña et al. (2004), a

linear model offered very good adjustments between VARIgreen and GCC for both crops

(Fig. 6): R2 was 0.89 and 0.82 for maize and onion respectively (p value \ 0.001)

(Table 8). Similar results were reported by Gitelson et al. (2002) in both maize and wheat

fields. From the results and Fig. 6, linear models can be used to characterise the VARIgreen-

GCC relationship accurately regardless of the crop type, which eases its application in

remote sensing DSS.

Viña et al. (2004) reported that the VARIgreen was sensitive to GCC and to the amount

of chlorophyll present in leaves and thus pointed out the existing differences depending on

growing cycle for VARIgreen and GCC relationships: at the earliest stages, in which the soil

is progressively covered by leaves and at senescence when leaves lose chlorophyll pro-

gressively. This pattern can be shown in this study with significant differences for GCC

over 60 % during the leaf drying process (see part I). Thus, in this study, positive values of

VARIgreen are found for GCC values higher than 60 % for maize, also fitting with the

results obtained by Rundquist et al. (2001) for two maize data sets collected during 1998

growing season. Maximum values of VARIgreen (0.09) were reached at maximum GCC

values which could be related with the appearance of the tassel and the beginning of

reproductive stage, as from this moment VARIgreen decreased progressively to -0.21

corresponding to the minimum values of GCC.

Just as for maize, the onion crop maximum VARIgreen values (-0.05) were found at

maximum GCC values (51.65 %) when the development of the harvestable vegetative

plant parts has started. In none of the sampling events were positive VARIgreen values

found, and no GCC values higher than 60 % existed.

Then, the linear model was evaluated for 2010–2011 season to perform model vali-

dation (Table 9). The predicted and measured GCC for nine observations were compared

for each crop. The results showed how the linear model was able to properly simulate the

relationship VARIgreen versus GCC for both crops. This is shown by the low RMSE and

high E (higher than 0.80)

Table 9 The root mean squared error (RMSE) and coefficient of efficiency (E) for the selected visible
atmospheric resistant index (VARIgreen)-green canopy cover (GCC), VARIgreen-leaf area index (LAI) and
growing degree days (GDD)-VARIgreen relationships validated for 2010–2011 growing season

RMSE
(%)

E RMSE
(m2 leaf m-2 soil)

E RMSE E

VARIgreen-GCC VARIgreen-LAI GDD-VARIgreen

Maize 14.197 0.849 0.897 0.796 0.040 0.765

Onion 4.38 0.874 0.728 0.705 0.046 0.879
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Second order polynomial and linear models were studied for VARIgreen versus LAI

relationships for maize and onion respectively (Table 8). The results showed very good

adjustments with R2 values higher than 0.80. Also, the validation process with data obtained

from for 2010–2011 season was analysed (Table 9). The results showed good lationships for

the maize crop, although an under-prediction in the VARIgreen-LAI relationship for the onion

crop (RMSE = 0.73 m2 leaf m-2 soil and E = 0.71) should be noted.

Growing degree days and VARIgreen relationships were of the same type as those obtained

for GDD versus GCC for both crops (Table 8). Due to the characteristics of exponential-

polynomial functions and the negative value of VARIgreen index, a mathematical transformation

was required to represent this relationship. This transformation was that all VARIgreen values

were transferred to the positive axis by adding the value 1. Thus, to obtain simulated values, the

transformation should also be performed by subtracting 1 from the result of the model.

Conclusions

The use of high-resolution images obtained with UAVs together with proper treatment

might be considered a useful tool for precision monitoring of crop growth and develop-

ment, advising farmers on water requirements, yield prediction and weed and insect

infestations, among others. This approach could also be used for climate, meteorological

and hydrological modelling. It is necessary to couple the generated information with crop

models such as AquaCrop to assist farmers with the decision making process.

For maize without growth and development restrictions, the second order polynomial

models showed the best fit for relationships between LAI and GCC, while linear models

best fit the onion data. The models that related GDD with LAI and GCC for maize are third

order polynomial models. Maximum LAI values continue for maize throughout maturity,

while GCC shows greater variation. For onion, the relationships for GCC and LAI

throughout the growing cycle are represented by exponential-polynomial functions. This

crop reaches the maximum GCC value shortly after the maximum LAI.

Visible atmospherically resistant index showed a linear relationship with GCC for both

crops, maize and onion, with similar coefficients. Thus, the same model can be applied to

other crops. Visible atmospherically resistant index also appears to be a sensitive indicator

to different growing stages.

To apply this methodology, GCC and LAI relationships must be calibrated for many

other crops in different irrigated areas. In addition, the cost of the UAV is expected to

decrease while autonomy increases through improved battery life and reductions in the

weight of on-board sensors.
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Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). Cropsyst, a cropping systems simulation model.
European Agronomy Journal, 18, 289–307.

Tei, F., Scaife, A., & Aikman, D. P. (1996). Growth of lettuce, onion, and red beet. 1. Growth analysis, light
interception, and radiation use efficiency. Annals of Botany, 78, 633–643.

Precision Agric (2014) 15:593–614 613

123



Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J. M. (1999). Relationships
between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites.
Remote Sensing of Environment, 70, 82–98.

Viña, A., Gitelson, A. A., Rundquist, D. C., Keydan, G., Leavitt, B., & Schepers, J. (2004). Monitoring
maize (L) phenology with remote sensing. Agronomy Journal, 96(4), 1139–1147.
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