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Abstract Tree-specific management practice related to individual tree physiological

condition is necessary for higher quality and quantity in apple fruit production. Detection

of apple flowering abundance based on analysis of HSL (hue, saturation, luminance)

images was used to estimate the number of flower clusters (FC) of individual trees in a high

density apple orchard. The image acquisition was performed with a still camera and an

industrial color camera during the day and night. The FC estimation algorithm included

HSL thresholding with parameter optimization. Three hypothetical, tree-specific man-

agement practices (sprayings) were assumed, using [25, [50 and [100 FC thresholds to

carry out the practice. When an industrial camera was used for image acquisition during

the daytime and hypothetical spraying was done by on/off criterion[100 FC per tree, 10 %

incorrect executions were identified. Comparable FC counting performance was achieved

by using a still camera or an industrial camera.

Keywords Apple flower detection � Site-specific management practice �
Precision horticulture � Image analysis

Introduction

Irregular flowering and fruiting is a common trait in some important horticultural plants

such as apple, pear, plum, olive and citrus (Monselise and Goldschmidt 1982). Undesired

climatic factors can result in deflowering or defruiting in the wider fruit growing areas but

the year-to-year crop load variation of single trees within the orchard can be induced by

technological factors (inappropriate pruning, plant protection or growth regulator
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e-mail: marko.hocevar@fs.uni-lj.si
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management) or tree physiological status (Tromp 2000; Dennis 2000). The annual varia-

tion of the bloom density of individual trees in an apple orchard is considerable and can

cause large variation of orchard yield (Bukovac et al. 2010; Aggelopoulou et al. 2010).

Low fruit quality and the prevention of flower bud formation in the following year can be

expected with heavy flower/fruit setting apple trees (Monselise and Goldschmidt 1982;

Dennis 2000). In practice, apple-thinning agent spraying, as a measure to reduce fruit set of

over-heavily loaded (flowering) trees, is used uniformly in all orchards, without regard to

actual flower/fruit set of single trees. Unnecessary use of spray/thinning agents and too

strong fruit set reduction can possibly occur if light flower/fruit setting trees are included in

the thinning practice in the plantation. Site-specific spraying on an individual tree basis

could be used in irregular flower/fruit setting orchards and differential crop load man-

agement practice may be optimal for maximizing yield quality and quantity (Manfrini et al.

2009).

However, the physiological response of apple trees to external factors (technological

measures) is always specific to individual tree physiological characteristics. Tree-specific

management is a necessity for a growth regulator spraying strategy in the orchard; non-

flowering or low flowering apple trees should be excluded from thinning management

programs while high flower/fruit setting trees should be sprayed with a higher dose of

thinning agents than moderate bearing trees. If fruit set and the location of the individual

tree in the orchard can be determined, an adjusted growth regulation strategy later in the

season can be also managed according to the needs of the individual trees (e.g. spraying of

growth retardants or fruit retention agents). Thus, a site-specific plant protection strategy

may be adapted to crop load specification of each tree in the orchard.

Sensing of the orchard architecture has been studied extensively to plan horticultural

site-specific management practices (Giles et al. 1989; Schumann and Zaman 2004; Jeon

et al. 2011). Most researchers have tried to adapt the application rate of plant protection

products to single vine or fruit tree canopy dimensions in the plantation (Doruchowski and

Holownicki 2000; Gil et al. 2007; Llorens et al. 2010; Jejčič et al. 2011; Hočevar et al.

2010). While machine vision in agricultural systems is yet to reach its full potential, many

applications have been developed for various tasks in the fields, orchards, and greenhouses.

Visual detection of flowering has been undertaken in a few common crops, particularly

those with prominent and color-distinguishable flowers. Vina et al. (2004) demonstrated

the use of a spectral index computed from several visible light bands to detect the

emergence of tassels in maize. Pimstein et al. (2009) developed a method to detect heads in

wheat (Triticium aestivum L.). Image segmentation was used by Thorp and Dierig (2011)

to monitor flowering of lesquerella plants. Also for lesquerella, Adamsen et al. (2000) used

a digital camera and developed an automatic image segmentation algorithm to estimate

flower counts; they managed to estimate flower counts with a coefficient of determination

(R2) better than 0.8. Efforts to estimate flower density on apple trees have also been

undertaken to estimate yield; Aggelopoulou et al. (2011) analyzed images of blooming

apple trees. Due to multiple unpredictable factors such as weather conditions during the

long period between bloom and harvest, yield was not predicted well and the results were

also related to a group of 10 trees and not to individual trees. Using conventional sensing

methods, Thorp et al. (2011) measured the spectral reflectance of lesquerella canopies with

a field spectro-radiometer and estimated flower counts. However, imaging methods offer

an advantage over more traditional remote sensing approaches with spectrometers.

Imaging methods allow a combined spatial and spectral approach for analyzing crop

scenes, whereas spectrometer measurements are point-based.
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The aim of the experiment was to automate estimation of number of flower clusters

(FC) on an individual tree basis in a modern, mature apple orchard. The estimation con-

sisted of image acquisition by still and industrial color cameras and offline image analysis

with HSL thresholding and parameter optimization. Estimated number of FC was com-

pared to manually counted ground truth data.

Materials and methods

Site description and plant material

The research was carried out in an experimental orchard of the Agricultural Institute of

Slovenia, located in central Slovenia (latitude 46�100N, longitude 14�410E). Mature, ele-

ven-year-old ‘Golden Delicious’ apple trees (Malus 9 domestica Borkh.) grafted on dwarf

M.9 rootstocks were grown in a single row system (3.2 m between rows and 0.8 m on the

row, planting density 3 900 trees/ha). Trees were trained as slender spindle (2.5–3.0 m

high, 0.7–1.0 m width) and were chosen from one row oriented N–S. 136 non-selected

individual trees from the single row were used for analysis. Analysis was performed at full

bloom time. Flowering of clusters at full bloom time on ‘Golden Delicious’ are similar to

other apple cultivars with 4–6 individual flowers in the cluster open at the same time thus

one flowering cluster appeared as a flowering unit. Number of FC were manually counted a

day before image acquisition on each of 136 trees. A wide variability in flowering density

of the trees was found: 17 trees bore\25 FC, 5 trees 25–49 FC, 10 trees 50–99 FC, and 104

trees [100 FC. Such variability of flowering abundance between the trees is commonly

found in many modern, high density apple orchards (Stopar 2010), while some of the trees

bore very low number of FC. It should be mentioned that a lot of trees extended their

branches into the crown of the neighboring tree.

Each of 136 trees was marked by a wide plastic tag where the exact number of manually

counted FC was written. The tags were used to recognize individual trees during image

analysis. During measurement, wind velocity was always 0 m/s and humidity was from

85 % to 100 %.

Image acquisition

Blooming trees in the row were photographed by four treatments. The first two treatments

were performed during the day (cloudy weather) with a still color camera and an industrial

color camera. The third and fourth treatments were performed with the same equipment,

but during the night of the same day. Orchard and experimental setup for measurements

using an industrial color camera are shown in Fig. 1. No background screen was used

behind measured rows to prevent interference with other rows in the background. The

reason for omitting the background screen was to increase applicability of the measure-

ment method: the second tractor would be required in orchards with hail protecting nets to

tow the background screen.

Still color camera

The still color camera used was a Nikon D80 (Tokyo, Japan) with 2 592 9 3 872 pixel

resolution. Lens used was a Tamron XR 17–50 mm, F/2.8, focus settings were set to
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automatic. Aperture and shutter selection during the day was undertaken with auto settings.

During the night, illumination for the still color camera was provided by a flash unit Nikon

SB22, mounted on the camera. The illumination was aperture-corrected such that the

image was not too bright; an under-exposure of one aperture stop was used. A similar

approach to image acquisition was used for counting of apples by Linker et al. (2012).

Photos of each tree were taken from a photographic stand at 2 m distance, 1.7 m height and

by using a lens focal length of 17 mm. The photographer was moving along the row and

took pictures of each tree such that the tree was in the middle of the image.

Industrial color camera

The industrial color camera was a firewire FLEA2 (Pointgrey Research, Richmond, BC,

Canada). The resolution of the camera was 1 024 9 768 pixel, 24 bit RGB. Acquisition

settings were set to automatic, except that shutter speed was set to 1 ms. Frame rate was set

to 2 Hz. The lens used was a 6 mm megapixel C-mount lens from Vivitar. The aperture

was set to F4 during the day and to F1.4 during the night.

Illumination during night treatments was provided by three 500 W halogen lamps

operating on a 230 V power supply from a power generator. Images were recorded using

Labview software with image acquisition and vision toolkits from National Instruments

(Austin, USA).

The industrial color camera was mounted on the tractor at 1.7 m height, attached by a

heavy metal support. Orientation of the camera was set using a camera ball head to

horizontal. Distance of the sensor from the tree was 1.9 m. The camera was located in front

of the tractor and was protected by an enclosure. During the experiment, the tractor

transversed along the row at a speed of 1 m/s.

The acquisition computer was mounted on a tractor and acquisition was turned on and

off using a wireless connection from another computer.

Analysis

The image analysis procedure is schematically shown in Fig. 2. All image processing was

performed offline. The analysis procedure consisted of two parts, image analysis and

iterative selection of parameters (Figs. 3, 4).

Images were first loaded from disk to memory. A color image may be encoded in

memory as either an RGB or HSL image while, for further analysis, HSL representation

Fig. 1 Experimental setup for
image acquisition using an
industrial color camera. The
image acquisition computer was
mounted on the left of the tractor
protection cab. The camera was
located in front of the tractor and
protected by a grey enclosure. A
power generator for illumination
lamps was attached to the rear
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was selected. HSL representation is based on hue, saturation and luminance. HSL repre-

sentation is preferred in comparison to RGB in conditions of changing illumination (Thorp

and Dierig 2011). The HSL color space provides more accurate and robust color infor-

mation for use with color processing functions. The mapping to the HSL image is however

much dependent on illumination, in sunny, cloudy or artificial illumination conditions: FC

and rest of the tree are both represented by different values of HLS depending on illu-

mination conditions.

Fig. 2 Image processing algorithm schematics. Optimization processes are in square frames, while
processes which did not require optimization are in round frames. Counting of objects rejects too large and
too small objects

Fig. 3 Example of image processing taken during the day with still color camera. a Original image,
b image after HSL thresholding, c image after thresholding and rejection of objects outside the tree frame
(green) and rejection of too large and too small objects. In this particular case, figures show a tree with 172
FC, while image analysis has identified 117 objects (Color figure online)
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The following equations were used to transform images from RGB representation to

HSL representation:

L ¼ 0:299Rþ 0:587Gþ 0:114B ð1Þ

V2 ¼
ffiffiffi

3
p
� G� Bð Þ ð2Þ

V1 ¼ 2R� G� B ð3Þ

H ¼
256 � tan�1 v2

v1

� �

2p
ð4Þ

S ¼ 255 1� 3 �min R;G;Bð Þ
Rþ Gþ B

� �

ð5Þ

Here R, G and B represent components of red, green and blue value in RGB images and

H, S and L represent hue, saturation and luminance components in the HSL images.

For analysis, positions of trees in the images were determined. In images, recorded

using the still color camera, trees were positioned in the middle of the image during

recording. In the case of images, recorded using the free running industrial color camera,

individual trees were not located in the middle of corresponding images, while also several

successive images showed the same tree in different locations. Therefore, individual

images were manually picked from among the recorded ones, showing an individual tree as

nearly as possible in the middle of the image. Then the position of the tree was manually

marked in the image. Image analysis was later performed in a rectangular frame around

this manually marked position. Frame size was constant and corresponded to the inter-tree

distance in a row. The frame is shown in Figs. 3 and 4.

In the second step, HSL images were thresholded to a binary image. A a similar

thresholding procedure to that used by Thorp and Dierig (2011) for flower counting in

lesquerella was used. The HSL thresholding procedure was such that for each pixel in the

input image test was performed with three ranges (hue, saturation and luminance) to

Fig. 4 Example of image processing taken at night with still color camera. a Original image, b image after
HSL thresholding, c image after thresholding and rejection of objects outside the tree frame (green) and
rejection of too large and too small objects. In this particular case, figures show a tree with 172 FC, while
image analysis has identified 172 objects (Color figure online)
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determine whether the corresponding pixel from the HSL image under test belonged to the

value specified. If a pixel from the input HSL image did not have corresponding pixel

values specified in all three ranges, the corresponding pixel in the output binary image was

set to 0, otherwise it was set to 1.

During HSL thresholding, the most important criterion is a low saturation (nearly white

color). In the thresholded images, objects were counted, while it was assumed, that each

FC corresponded to a group of neighboring pixels, classified as objects. However, there

were cases where each FC was represented by two or more objects, and there were also

cases when FC was not detected, possibly due to occlusion, illumination, reflectance or

shadow problems, challenges common to image analysis in severely unconstrained envi-

ronments such as agricultural applications (Kapach et al. 2012).

After HSL thresholding, objects were rejected that were too large or too small. The

parameters used for this were minimum cluster size (pixel) and maximum cluster size

(pixel). Among the too large objects rejected were most notably the plastic tags, where the

exact numbers of manually counted FC were shown. Too small objects were most often

representation of noise.

The thresholding levels from HSL images to a binary image were selected such that the

number of FC detected in all images corresponded most closely to the actual counted FC.

The algorithm for selecting levels to achieve the highest possible agreement between

measured and counted FC was estimated using the coefficient of determination (R2). The

highest R2 represents the best agreement between measured and actual counted FC and is

therefore a measure of fit among both data sets. The following equation for R2 was used

R2 ¼
Pn

i¼1 xi � �xð Þ � yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � �xð Þ2�

Pn
i¼1 yi � �yð Þ2

q

0

B

@

1

C

A

2

ð6Þ

Here xi is the number of actual counted FC on the tree i and yi are the predicted number

of FC on the tree. �x and �y are average numbers of actual and counted FC on all trees.

Several other image processing algorithms such as morphological filters or image

enhancement tools were used, among them erosion and dilation. However, they did not

improve analysis accuracy. They were therefore not used.

HSL settings for variable parameters are shown in Table 1.

Different settings for HSL parameters for the still color and industrial color cameras

were required because of different color mapping of each camera (industrial camera

produced images of visibly different colors). Settings of HSL parameters are also depen-

dent on the illumination and vary among different treatments.

Results estimation and statistics

Statistical estimation was performed on individual trees, while every tree was represented

by 4 images of the four image acquisitions. Three hypothetical management practices

(thinning programs) with separate thresholds were selected to run according to the phys-

iological needs of an individual tree, i.e. based on flowering density of each tree as follows:

Threshold 1: First threshold was selected at \25 FC per tree. On these low bearing

individual trees, the fruitlet thinning practice would result in yield quality

and quantity reduction (Stopar 2010). This threshold is aimed at low

bearing individual trees.
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Threshold 2: Second threshold was selected at\50 FC per tree. On these low to medium

bearing individual trees, spraying the thinning agents may also result in

yield quality and quantity reduction but to a lesser extent than on trees on

which threshold 1 may also be applied. This threshold is aimed at medium

bearing individual trees.

Threshold 3: \100 FC per tree was used as full blooming threshold, because high fruit set

is expected. Tree bearing FC[100 are the most frequent individuals in this

kind of mature high density apple orchard and thinning them is the

necessary management practice.

All thresholds in this experiment were fixed according to multi-year experience of

growers, as weather conditions during fruit set are not known during the spraying period.

However, if there is rainy or cold weather during the fruit set period, weather conditions

may influence the yield and decrease correlation between yield and flower cluster.

The estimated number of FC per tree was used for the hypothetical decision on selective

management practice based on the criterion of the above three flowering thresholds. The

estimated number of FC per tree was also evaluated against manually counted number of

FC per tree. Based on decisions about estimated versus manually counted cases, two types

of wrong hypothetical management practice on each tree can be identified:

(i) the tree is sprayed but, according to manually counted FC number, spraying is not

required (false positive),

(ii) the tree is not sprayed but, according to manually counted FC number, spraying is

required (false negative).

In the following, both false positive and false negative cases were treated as wrong

decisions. Also, results are represented in a confusion matrix of estimated number of FC in

four classes of flowering abundance. For example, if the manually counted number of FC per

tree is 153, and the estimated number of FC per tree is 68, the tree would be correctly included

in the hypothetical management practice when threshold[25 FC or[50 FC is used. The same

would be counted as wrong management practice when threshold[100 FC is used, and this

tree would be excluded from spraying due to incorrect FC number estimation.

Coefficients of determination (R2) were analyzed by Statgraphics Centurion XVI pro-

gram (Manugistics Inc., Rockville, MD, USA).

Results and discussion

Results of measurements and analysis are shown in Table 2 and in Figs. 5 and 6. Figures

show comparison of manually counted and estimated number of FC for four treatments.

Table 1 Settings for variable parameters for image analysis

Treatment H low–high
(–)

S low–high
(–)

L low–high
(–)

Min. cluster
size (pixel)

Max. cluster
size (pixel)

Day, still color camera 110–160 0–8 190–215 4 60

Day, industrial color camera 0–32 0–40 50–250 6 60

Night, still color camera 80–255 0–10 50–220 6 60

Night, industrial color camera 0–24 10–70 25–255 5 60

Minimum and maximum cluster size is normalized to image resolution of the industrial color camera
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Management practice was estimated for all four treatments and showed comparable

performance as shown in confusion matrix in Table 2. Among all four treatments, best

performance was achieved with the still camera during the day at[25 or[50 FC criterion

(thresholds 1 and 2) with 8.8 % false decisions, and with the still camera during the night at

[25,[50 and[100 FC threshold with 9.5, 5.1 and 9.5 % false decisions. The reason for

the poor performance of the still camera used through the day with [100 FC threshold

(wrong decisions 23.5 %) is unknown, but may be due to a) the superior image resolution

and quality of the still camera in comparison to the industrial camera during the daytime or

b) due to light reflection on leaves. Superior image resolution may lead to increased

detection of FC in the background rows during daytime which were included in analysis.

Illumination during a sunny day introduces additional sources of uncertainty to image

acquisition and processing. Cuticle wax composition on apple leaf surface may reflect in

the direct sunshine and such leaves appear in the image as white spots with similar HSL

characteristics to a flower cluster. To avoid this, daily measurement was performed in

mostly cloudy weather; however irrespective of this, a high value of percentage of wrong

decisions in Table 2 (still camera, daytime) may still be caused by such reflections. The

industrial camera showed 10.3–14.0 % wrong decisions during the day at all three

thresholds and, at night, 11.8–15.4 % wrong decisions.

Results from Table 2 show that the coefficients of determination (R2) were higher than

0.50 for three treatments. In these cases, more than half of the variability was explained

when correlations between real and estimated FC number were calculated in the case of the

industrial camera (day and night) and the still camera (night).

When analyzing the raw data from 136 trees, it was found that both still and industrial

color cameras during the day or night overestimated the manual counted FC number on

low bearing trees (\100 FC, Table 2), as seen also in Figs. 5 and 6. Large over-estimation

(up to 2–4 fold) was found frequently on trees with FC number\40 FC. The reason could

be the high density apple orchard planting system where individual mature trees overlap

into the neighboring crown with some branches. The effect of wrong FC estimation on a

selected tree is even more emphasized if the neighboring apple tree interferes with bran-

ches blooming on one-year-old wood where a high number of FC is present. Stajnko et al.

(2009) attained 89 % detection accuracy by a multi-stage image analysis algorithm on

presumably more complicated (green) apple fruit counting in the crown, but the trees were

small, had light crop load, and did not overlap. Another important reason for disagreement

between number of manually counted and estimated FC is that, in this experiment, a

background screen was not used behind the measured row. Such a screen has been used by

many authors for improvement of object detection in orchards. The background screen

behind a measured row eliminates interference with other rows in the background. This

reason is however limited only to image acquisition during the day. During the night,

illumination is only powerful enough for measuring the front row while rows in the

background are poorly illuminated and interfering objects are not detected. Another reason

for inaccurate FC number estimation might also be non-perpendicular position from which

images were acquired. In that case, some FC may protrude into the frame from both

neighboring trees on the left and right.

From Figs 5 and 6, it can be found, that in all cases the number of FC was underes-

timated on trees, which bear more than 200 FC. For this, two most important reasons can

be determined, the first is screening by other parts of trees, while the second is that these

trees may extend their branches out of the measurement frame (as seen in Figs. 3, 4).

As a result of variability of flowering abundance, Figs. 5 and 6 show that many trees

bore less than 15 FC. For these trees during night measurements using both industrial color
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camera and still color camera, estimated number of FC was overestimated. For these trees

during day measurements, estimated number of FC was also overestimated and in addition

variability of estimation of FC was high.

Fig. 5 Manually counted and estimated number of FC, day measurements

Fig. 6 Manually counted and estimated number of FC, night measurements
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Without regard to the percent of successful decisions between different types of image

acquisitions, the only possibility to perform automated management practice, based on

number of detected FC, is to use an industrial camera for image acquisition. Moreover, by

using an industrial camera, only a few percent worse performance was achieved as

compared to time consuming still camera photography.

In the case of this experiment, 24 % of trees bore less than 100 FC per tree. On some

trees, only a few or even no FC were manually counted. Taking into consideration that

more than 100 FC on the tree would mostly satisfy the criterion for fruit thinning as the

most important growth regulator practice in the apple orchard, 24 % of trees will be

managed incorrectly by a common overall spraying program. Further, far-reaching nega-

tive consequences on the next year flower set will be expected. In many apple orchards

with alternate bearing behavior, more than 50 % of insufficiently flowering trees can be

found in the off-years (Monselise and Goldschmidt 1982). The proposed tree-specific

management practice gives 10.3 % of incorrectly sprayed trees (based on an industrial

camera used in the day), and such practice is an important improvement over common

overall spraying with 24 % of incorrectly sprayed trees. The orchard used in this experi-

ment has 3 900 trees/ha and within is among the most dense apple orchards in Europe.

Nowadays, most common orchards have about 2 500–3 500 trees/ha and trees overlap less.

Conclusions

Alternate bearing trees in apple orchards may benefit from a tree-specific management

practice, especially when spraying growth regulators. An automated tree FC measurement

system is required to design a flowering abundance-adapted spraying system operating on an

individual tree basis. In this experiment, estimation of FC number of individual trees from a

very high density apple orchard was undertaken. From images acquired by a tractor-mounted

industrial camera, FC number of individual trees was estimated with almost the same success

rate as by using slow still photography. Overlapping of branches from neighboring trees and

influence of tree rows in the background were the main reason for estimation uncertainty. By

using still and industrial color cameras, around 10 % wrong decisions were made when using

a spraying threshold of 100 FC per tree as the on/off criterion for tree-specific management

practice. Improved FC detection and better tree-specific management practice can be

expected on more common apple orchards with a density of 2 500–3 500 trees/ha. Two or

three years of tree specific management practice would decrease alternate bearing habit of

treated trees leading to better bearing properties of orchards and increase of yields.

The most important limitation of the method is their dependence on illumination during

estimation of number of FC. In the present study, the image processing parameters have

been tuned according to the results obtained with respect to manual counting; obviously

this procedure could not be used in real operation. The robustness of color thresholding

parameters is low and the method performs better at night than with variable daylight: for

real field use, methods that are not based on color thresholding should be developed.
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