
Ground-level hyperspectral imagery for detecting weeds
in wheat fields

I. Herrmann • U. Shapira • S. Kinast • A. Karnieli • D. J. Bonfil

Published online: 13 June 2013
� Springer Science+Business Media New York 2013

Abstract Site-specific weed management can allow more efficient weed control from

both an environmental and an economic perspective. Spectral differences between plant

species may lead to the ability to separate wheat from weeds. The study used ground-level

image spectroscopy data, with high spectral and spatial resolutions, for detecting annual

grasses and broadleaf weeds in wheat fields. The image pixels were used to cross-validate

partial least squares discriminant analysis classification models. The best model was

chosen by comparing the cross-validation confusion matrices in terms of their variances

and Cohen’s Kappa values. This best model used four classes: broadleaf, grass weeds, soil

and wheat and resulted in Kappa of 0.79 and total accuracy of 85 %. Each of the classes

contains both sunlit and shaded data. The variable importance in projection method was

applied in order to locate the most important spectral regions for each of the classes. It was

found that the red-edge is the most important region for the vegetation classes. Ground

truth pixels were randomly selected and their confusion matrix resulted in a Kappa of 0.63

and total accuracy of 72 %. The results obtained were reasonable although the model used

wheat and weeds from different growth stages, acquisition dates and fields. It was con-

cluded that high spectral and spatial resolutions can provide separation between wheat and

weeds based on their spectral data. The results show feasibility for up-scaling the spectral

methods to air or spaceborne sensors as well as developing ground-level application.
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Introduction

Site-specific weed control and management could economically benefit farmers and con-

sumers without diminishing weed control efficiency (Pinter et al. 2003; Slaughter et al.

2008). Another reason to reduce the amount of applied herbicides is weed resistance to

herbicides (Marshall and Moss 2008). Site-specific weed management has reduced her-

bicide use by 11–90 % without affecting crop yield (Feyaerts and van Gool 2001; Gerhards

and Christensen 2003). Weed distribution in fields is non-uniform and confined to patches

of varying size in field as well as along field borders (Gerhards et al. 1997; Weis et al.

2008) and, since there is significant variation in weeds also between different fields, the

need for site-specific weed monitoring and management is emphasized (Moran et al. 2004).

Non-selective weed detection and control can be implemented by detection of green

vegetation (Biller 1998). This approach can be applied to entire fields before crop emer-

gence or between the crop rows after emergence (Moran et al. 1997; Alchanatis et al.

2005). Selective sensing methods are designed to detect the shape of weed leaves against

the soil background and, thus, can be applied only in early growing stages when leaves are

not overlapping (Weis et al. 2008). Selective ground-based sensing methods can also rely

upon the spectral characteristics of the weed as well as of the crop. The reflectance data of

canopy will probably include shaded leaves and might include stems, flowers, fruits and a

background that is very likely to be soil that might be partly shaded and of different

humidity levels.

Plant spectra will mainly be affected by leaf pigmentation in the visible region

(400–700 nm) (Yoder and Pettigrew-crosby 1995) while the near infrared (NIR) region

(700–1 100 nm) is highly influenced by the leaf or canopy structure that can be affected by

phenology as well as species (Gausman 1985). A dicotyledonous leaf has more air spaces

among its spongy mesophyll tissue than a monocotyledonous leaf (Raven et al. 2005) of

the same thickness and age, resulting in a higher reflectance in the NIR region (Gausman

1985). The red-edge region is the slope connecting the low red and high NIR reflectance

values in the spectrum of vegetation and is an important indicator for spectral separation of

different plant species (Herrmann et al. 2011; Shapira et al. 2013).

The first step required in order to spectrally distinguish between crops and weeds is to

obtain continuous spectra of pure plant for each species or group of species. This can be

implemented by using high spatial and spectral resolutions, as shown by Vrindts et al.

(2002), whose conclusions demonstrated the need to employ relative reflectance values in

order to classify crops and weeds and to minimize the effect of different lighting conditions

on the spectral data. Lopez-Granados et al. (2008) classified the ground-level spectral

reflectance of wheat, four grass weeds and soil, and concluded that one sampling date per

growth season, when phenological distinction is maximal, can provide high quality clas-

sification. It is important to mention that relying on phenology for spectral separation will

be less efficient in cases when the optimal time for herbicide application precedes the date

of maximal phenological variability among crop and weeds. Slaughter et al. (2008) noted,

in their review, that the greatest portion of the studies were conducted in ideal conditions,

with no overlapping of crop and weeds, and resulted in classification accuracies of

65–95 %. Zwiggelaar (1998) mentions, in his review, that using selected wavelengths for

discriminating between crops and weeds in a row environment has not been demonstrated
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so far, and analyzing images with a limited number of wavelengths might not be sufficient.

Okamoto et al. (2007) worked in the visible and NIR regions in order to separate between

sugar beet and four weeds, two broadleaf weeds and two grass weeds. The validation

results showed 75–97 % success for the five classes for sampled pure vegetation pixels.

Predictions for an entire image and ground truth analyses were not mentioned. In other

studies that applied hyperspectral cameras, the soil background was excluded and the

classifications of crop and weeds were applied to young plants with one or two layers of

leaves (Borregaard et al. 2000; Feyaerts and van Gool 2001; Nieuwenhuizen et al. 2010).

The current research used ground-level image spectroscopy data, with high spectral and

spatial resolutions, for detecting annual grasses and broadleaf weeds in wheat fields.

Specific objectives were threefold: (1) to choose the best class determinations, for this

dataset, in order to separate broadleaf weed (BLW), grass weed (GW) and wheat; (2) to

find the most important spectral bands needed for this separation; and (3) to examine the

potential of using high spectral and spatial resolution ground-level reflectance from the

wheat fields to predict categories of wheat and weeds.

Materials and methods

Study area

Field measurements were performed in rainfed as well as irrigated wheat experimental

plots in winter 2009 at the Gilat Research Center in the northwest Negev, Israel (31o200 N,

34o400 E). This region is defined as semi-arid with a short rainy season (November–April;

Har Gil et al. 2011). Soils are Calcic Xerosols with sandy loam texture formed from

alluvium and loess on shallow hills with average elevation of 80–150 m above sea level

(Kafkafi and Bonfil 2008).

Field work and pre-processing

Ground level images were obtained by the Spectral Camera HS (V10E, Specim, Oulu,

Finland), a pushbroom sensor, with 1 600 pixels per line and 849 spectral narrow bands

(* 0.67 nm wide) in the visible and NIR regions. The images were obtained from 2 h

before until 2 h after midday in order to minimize changes in the solar zenith angle and

shadow effects. Since herbicides are usually applied before closure of the crop canopy

(Thorp and Tian 2004), images were acquired 10–54 days after the emergence of the

wheat. The growth stages of the wheat were Zadoks 12–47 known as seedling growth to

flag leaf sheath opening (Zadoks et al. 1974) and the canopy height was up to 0.35 m. The

camera was mounted on a tripod, 1.35 m above the top of the canopy, pointing down to

cover an area of 0.5 by 0.5 m delimited by a metal frame at the canopy level (Fig. 1). At

this height, the spatial resolution was approximately 0.5 mm. The square frame was

divided into 16 equally sized squares to visually estimate the relative coverage of different

features, such as wheat, weeds and soil. The assessment was carried out for each of the

squares and accumulated, with 6.25 % weight per square, to include the entire area sur-

rounded by the frame. All assessments were performed by the same person. The relative

coverage of BLW category included all broadleaf plants in the frame area mainly Che-

nopodium, Malva, potato, knapweed and chrysanthemum. The relative coverage of GW

category included all grasses that are not wheat mainly Lolium rigidum and Hordeum

plaucum.
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A Coolpix S10 (Nikon) digital camera, mounted at the same height as the hyperspectral

camera, was used to acquire true-color images (RGB). These photos were used as refer-

ences for the cross-validation classification, as well as for obtaining ground truth. It should

be noted that, since the integration time of each scene, resulting from the push broom

instrument, was 28–35 s (depending on the frame rate and number of lines acquired), and

since all images were acquired in an open field, gusts of wind could influence the relative

location of leaves. Consequently, a slight difference might exist between the hyperspectral

image and the RGB photo.

The image preprocessing included the subtraction of the sensor electronic noise (dark

current) and radiometric correction by the AISATools software (Specim, Oulu, Finland).

Then, the images were converted to relative reflectance values by the ENVI 4.3 (EXELIS,

Boulder, Colorado, USA) software environment. This process was based on the flat field

calibration method by white referencing to a barium sulfate (BaSO4) panel positioned on

the frame underneath the camera (Hatchell 1999) as presented in Fig. 1. The barium sulfate

panel was prepared by pressing BaSO4 powder into a 20 mm deep round box with a

diameter of 52 mm. The powder was smoothened with glass to create a smooth surface.

The panel was smoothed in the beginning of every working day and checked after every

image. The flat field calibration method was performed for each image by its own white

reference; this also provided atmospheric correction. The images were spectrally resam-

pled to obtain 91 bands by averaging the original spectra every 5 nm in the range of

400–850 nm. The images were rectangularly clipped to include only the area within the

frame boundaries. In cases where the frame was not parallel to the image borders, the

images were clipped to include the maximal area, while the frame itself was not included.

21 images were acquired this way for further processing and statistical analysis.

PLS-DA analysis

The partial least squares discriminant analysis (PLS-DA) applies a partial least squares

model to the discriminant function analysis problem in order to allow maximal separation

among classes (Musumarra et al. 2004). Since the partial least squares method was not

Fig. 1 Setup of the hyperspectral camera in a wheat field. In the small frame: an example of a sampled
image including broadleaf and grass weeds, soil, and wheat
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initially designed for classification, it has been rarely used for this purpose. Nevertheless,

the PLS-DA method can produce plausible separation (Barker and Rayens 2003). In order

to relate the PLS (numerical) to the DA (categorical), in a two classes case, each sample

was assigned an arbitrary number that indicated to which class it belonged (Xie et al.

2007). These two arbitrary numbers are the only values acceptable for one artificial var-

iable. In the case of more than two classes to be separated, there is a need for more (equal

to the number of classes) binary artificial variables that will indicate to which class each

sample belongs (Musumarra et al. 2004).

A total number of 1857 spectra from pure pixel (i.e., containing one class) were arbi-

trarily selected from the 21 raw images, as presented in Table 1. Each spectra was obtained

from one pixel as a vector of reflectance values in all 91 bands. The BLW category

included spectra of three species: Chenopodium, Malva, and potato. The GW category

included spectra of Lolium rigidum and Hordeum plaucum. The PLS-DA was applied for

the categories and not for specific species. Approximately half of the spectra were obtained

from sunlit pixels and the rest from shaded pixels. In Table 1, the data is divided into four

classes: BLW, GW, soil and wheat with 799, 364, 330 and 364 spectra, respectively. Six

models were examined:

• Model #1 separates three classes: BLW, G (including GW and wheat) and soil;

• Model #2 separates two classes: BLW and G (including GW and wheat);

• Model #3 separates four classes: BLW, GW, soil and wheat;

• Model #4 separates three classes: BLW, GW and wheat;

• Model #5 separates the classes from model #3 and divides them into sunlit and shaded

pixels (i.e., eight classes);

• Model #6 separates the classes from model #4 and divides them into sunlit and shaded

pixels (i.e., six classes).

The sample distribution to classes for each of the models is presented in Table 1.

In order to evaluate the relative importance of each band in the chosen PLS-DA model,

the variable importance in projection (VIP) after Wold et al. (1993) was computed. The

VIP is defined as the summary of the importance for each predictor projections to find a

number of principal components of the PLS model (Chong and Jun 2005; Cohen et al.

2010). The VIP values are evaluated by ‘‘the higher the better’’ method where the average

VIP = 1 is considered to be the putative threshold since it is the average value of the PLS

model predictors’ VIP values. Therefore, in order to separate between wheat and weeds, as

well as to determine the most important wavelengths for the separation, each PLS-DA

model was cross-validated (including VIP analysis) and the best model performed a pre-

diction for each of the images. This process was applied in a Matlab 7.6 (MathWorks,

Natick, Massachusetts, USA) environment by the PLS-toolbox (Eigenvector, Wenatchee,

Washington, USA). Building PLS-DA models included pre-processing the X-block by

mean centering the data. Mean centering is applied as pre-processing for PLS models by

reducing variation within the data (Navalon et al. 1999). It operates by subtracting the

mean reflectance value for each wavelength from each reflectance value. Then the data

were validated by cross-validation as is customary for empirical models (Borregaard et al.

2000). The cross-validation was using every 10th sample in order to set the number of

latent variables to be applied for the model (Nason 1996; Wu et al. 1997). Classification

quality assessment methods were applied for these confusion matrices in order to obtain

the most suitable model for the prediction of weeds in a wheat field. The chosen model was

applied for the prediction of all images. The PLS-DA classification prediction interme-

diately resulted in a two-dimensional image per class, in which the value of each pixel is
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the probability of the pixel to belong to this class. A pixel was determined to belong to a

certain class if the probability of this class was higher than the others. The threshold for

classification was set to be 0.3, meaning pixels with probability values smaller than 0.3

were defined as unclassified. Pixels that were unclassified for all classes were determined

as unclassified in the final classification result image. The PLS-DA classification prediction

resulted in 21 two-dimensional images, in which each pixel is related to one of the classes

or defined as unclassified.

Classification quality assessment

The quality of PLS-DA models was compared based on the cross-validation confusion

matrices. Cohen’s Kappa was computed as presented and defined by Cohen (1960) as the

proportion of agreement after chance agreement is removed from consideration. Cohen’s

Kappa is a unit-less value ranging from 1 for perfect agreement to -1 for complete

disagreement. Computation of Cohen’s Kappa is based on a confusion matrix and is

presented in Eq. (1):

Kappa ¼ d � q

N � q
ð1Þ

where d is the sum of pixels that were correctly classified, q is the sum of each line and

column in the confusion matrix all summed to be divided by the total number of samples

and N is the total number of samples. The confidence limit (CL) units are percent and were

calculated for overall accuracy as shown by Foody (2008) and presented in Eq. (2):

CL ¼ �tN;d�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ
N � 1

r

ð2Þ

where p is the overall accuracy, tN,d-1 is the statistical value of a 95 % two-tailed test for d

samples, N is the total number of samples, and d is the sum of ground truth pixels that were

correctly classified. The CL of the total accuracy can allow comparisons between models

that are based on total accuracy and, therefore, show if there is a model that is significantly

better or worse than others (Foody 2008). A comparison of the quality of coupled PLS-DA

classification models was performed, as mentioned, by Congalton and Mead (1986) and

presented in Eq. (3):

Z ¼ Kappa1 � Kappa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var1 þ Var2

p ð3Þ

where Z is the normal curve deviation, and if it is [ 1.96 or \ -1.96, the difference

between the confusion matrices is significant at 95 % probability (2.58 and -2.58 are the

thresholds for significance at 99 %); Kappa is defined in Eq. (1); and Var is the variance of

the confusion matrix, as shown by Hudson and Ramm (1987). The comparison was done

for two confusion matrices at a time, and their Cohen’s Kappa and variance were calcu-

lated in order to determine if they are significantly different from one another.

The quality of the prediction by the PLS-DA model was assessed by ground truth data.

For each spectral image, 50 pixels, not included in the calibration data set, were randomly

selected to be ground truth data. These pixels were identified in the digital photos taken in

field and have been determined to belong to one of the classes. The classification results, in

comparison with the ground truth, were analyzed as confusion matrices. The quality of the

classification was assessed by Cohen’s Kappa coefficient, overall accuracy, user’s accuracy
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and producer’s accuracy for each confusion matrix. The classification quality was assessed

for each image separately (i.e., 50 ground truth pixels) and for all the images together (i.e.,

1 050 ground truth pixels).

Relative coverage assessment

Relative coverage assessment was performed by three methods: field estimation, counting

pixels in the PLS-DA classification results, and by a simple classification decision tree

(DT). The field estimation was described earlier, and the classes were BLW, GW, soil and

wheat. The final results of the PLS-DA classification for each image were used to count the

pixels related to each of the four classes (i.e., BLW, GW, soil and wheat) and to divide this

number by the number of pixels in the image in order to obtain relative coverage. The DT

classified each image into one of five classes: sunlit vegetation, shaded vegetation, spec-

ularly reflected vegetation, sunlit soil and shaded soil. The DT classification was applied in

ENVI software environment for all the images and resulted in 21 two-dimensional images,

in which each pixel is related to one of the five classes.

The DT, presented in Fig. 2, is based on conditions applied for the relative reflectance

values of three narrow bands (i.e., 470, 555 and 670 nm) that reflect differences between

the classes. The first condition checks if the reflectance values in bands 470 and 555 nm

are both lower than 0.05. In case the condition is fulfilled, the pixel is assumed to be shaded

and the next condition will determine if it is soil or vegetation. In case the condition is not

fulfilled, the pixel is assumed to be sunlit, and the other two conditions will determine if it

is sunlit soil, specularly reflected vegetation, or sunlit vegetation.

Results and discussion

Figure 3 presents the averaged reflectance values with standard deviation of the eight

classes: four classes obtained from pure pixels that were sunlit and four classes obtained

from pure pixels that were shaded. Note that, as expected, the range of reflectance values of

Fig. 2 Decision tree for separating five classes: sunlit vegetation, shaded vegetation, specularly reflected
vegetation, sunlit soil, and shaded soil. Each condition, written in the rectangular boxes, has two options: yes
or no. Each option leads to another condition or to a classification product. The q stands for the relative
reflectance value at the specified wavelength (in nm)
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the sunlit pixels (Fig. 3a) are higher than those of the shaded ones (Fig. 3b). These eight

classes were used for testing the different classes by the six PLS-DA models.

Tables 2, 3, 4, 5, 6, 7 present the cross-validation confusion matrices of six PLS-DA

models. These six models are divided into three couples, each with the same classes with

Fig. 3 The averaged spectra of 8 classes along with the standard deviation: a 4 classes obtained from sunlit
pure pixels; and b 4 classes obtained from shaded pure pixels
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Table 2 Model #1 cross validation of PLS-DA classification model of three classes: broadleaf weeds, grass
weeds and wheat, and soil

Ground truth

BLW G Soil Total # of
classified
samples

User’s
accuracy
% correct

Classification
results

BLW 618 46 0 664 93

G 177 656 0 833 79

Soil 4 26 330 360 92

Total # of ground truth samples 799 728 330

Producer’s accuracy % correct 77 90 100 89

The model is based on four latent variables resulting in a confidence interval of ± 1.4 % for the overall
accuracy, and Kappa = 0.79

Table 3 Model #2 cross validation of PLS-DA classification model of two classes: broadleaf weeds and
grass weeds

Ground truth

BLW G Total # of
classified
samples

User’s
accuracy
% correct

Classification
results

BLW 681 89 770 88

G 118 639 757 84

Total # of ground truth samples 799 728

Producer’s accuracy % correct 85 88 87

The model is based on five latent variables resulting in a confidence interval of ± 1.7 % for the overall
accuracy, and Kappa = 0.73

Table 4 Model #3 cross validation of PLS-DA classification model of four classes: broadleaf weeds, grass
weeds, soil and wheat

Ground truth

BLW GW Soil Wheat Total # of
classified
samples

User’s
accuracy
% correct

Classification
results

BLW 695 15 0 28 738 94

GW 41 297 0 53 391 76

Soil 7 0 330 25 362 91

Wheat 56 52 0 258 366 70

Total # of ground truth samples 799 364 330 364

Producer’s accuracy % correct 87 82 100 71 85

The model is based on seven latent variables resulting in a confidence interval of ± 1.6 % for the overall
accuracy, and Kappa = 0.79
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and without soil. In order to find the best model, a comparison of the confusion matrices

was computed by the normal curve deviation (Z; Eq. 3) for all model couplings (Table 8).

In Model #1, the classes were either broadleaf or grass (including wheat data); therefore, it

did not distinguish between crop and weeds. For Model #-2, a soil class was added. These

models were analyzed and presented in order to learn more about the importance of soil as

a distinguishable class. The overall accuracy of Model #1 is higher than that of Model #2

(Tables 2 and 3), and the difference between these confusion matrices is significant

(Table 8). Similarly, in other couples of models, i.e., Models #3 and 4 (Tables 4 and 5) and

Models #5 and 6 (Tables 6 and 7), the only difference between them is an additional soil

class. The overall accuracy is higher for each model containing a soil class, and the

difference between the coupled models is significant, as presented in Table 8. These three

couplings show that the total accuracy is significantly better (more than 99 %) when soil is

added as a class. Since the canopy in the current study is denser than mentioned in the

literature for operating similar sensors (Borregaard et al. 2000; Feyaerts and van Gool

2001; Okamoto et al. 2007; Nieuwenhuizen et al. 2010) and since the current study is

expected to be a step towards up-scaling (soil will be included in the larger pixel), the

influence of soil on classification quality was explored. It can be assumed that, for the

coupled models (i.e., models #1 and #2, #3 and #4, and #5 and #6), the improvement in the

overall accuracy for models including the soil class is mainly influenced by the accuracies

of the soil classes. This assumption is incorrect based on the user’s and producer’s

accuracies in Tables 2, 3, 4, 5, 6, 7.

Models #5 and 6 were also analyzed in order to demonstrate the effect of sunlit and

shaded pixels. In most of the cases, the sunlit class caused better user’s and producer’s

accuracies than the shaded class (Tables 6 and 7). The shaded soil and, to a lesser extent,

the shaded GW user’s accuracy values of Model #5, produced values that are similar to the

soil and GW classes in Model #3. When comparing the user’s accuracy of sunlit classes

from Model #5 to the classes of Model #3, the values are similar. Since the images used for

the prediction include 21–65 % shade and shaded vegetation out of the total area of the

image (obtained by the DT and not presented), Model #3, including sunlit and shaded

pixels together, is a more efficient classifier than Model #5. The distribution of sunlit and

shaded pixels is presented in Table 1. Table 8 shows the significant superiority of Model

#3 over Models #5 and 6. Model #3 comprises, in addition to wheat and weeds, a class of

soil, and each class combines data from sunlit and shaded pixels. Therefore, it was chosen

Table 5 Model #4 cross validation of PLS-DA classification model of three classes: broadleaf weeds, grass
weeds, and wheat

Ground truth

BLW GW Wheat Total # of
classified
samples

User’s
accuracy
% correct

Classification
results

BLW 611 15 90 716 85

GW 36 267 58 361 74

Wheat 152 82 216 450 48

Total # of ground truth samples 799 364 364

Producer’s accuracy % correct 76 73 59 70

The model is based on four latent variables resulting in a confidence interval of ± 2.3 % for the overall
accuracy, and Kappa = 0.55

Precision Agric (2013) 14:637–659 647

123



T
a

b
le

6
M

o
d
el

#
5

cr
o
ss

v
al

id
at

io
n

o
f

P
L

S
-D

A
cl

as
si

fi
ca

ti
o
n

m
o
d
el

o
f

ei
g
h
t

cl
as

se
s:

b
ro

ad
le

af
w

ee
d
s,

g
ra

ss
w

ee
d
s,

so
il

an
d

w
h
ea

t,
al

l
su

n
li

t
as

w
el

l
as

sh
ad

ed

G
ro

u
n

d
tr

u
th

B
L

W
su

n
li

t
B

L
W

sh
ad

e
G

W
su

n
li

t
G

W
sh

ad
e

S
o

il
su

n
li

t
S

o
il

sh
ad

e
W

h
ea

t
su

n
li

t
W

h
ea

t
sh

ad
e

T
o

ta
l

#
o

f
cl

as
si

fi
ed

sa
m

p
le

s

U
se

r’
s

ac
cu

ra
cy

%
co

rr
ec

t

C
la

ss
ifi

ca
ti

o
n

re
su

lt
s

B
L

W
su

n
li

t
3

4
7

6
2

0
0

0
1

3
0

3
6

8
9

4

B
L

W
sh

ad
e

0
3

7
1

0
1

2
6

0
0

0
1

6
4

6
6

1
5

6

G
W

su
n

li
t

2
8

0
1

5
3

0
0

0
1

7
0

1
9

8
7

7

G
W

sh
ad

e
3

7
7

4
7

0
0

1
3

6
8

6
9

S
o

il
su

n
li

t
0

0
0

0
1

6
3

1
1

2
0

1
7

6
9

3

S
o

il
sh

ad
e

0
6

0
0

0
1

5
6

3
2

1
6

9
9

2

W
h

ea
t

su
n

li
t

1
8

0
1

2
0

0
0

1
4

5
0

1
7

5
8

3

W
h

ea
t

sh
ad

e
0

1
3

0
1

7
0

0
0

1
2

4
2

2
9

T
o

ta
l

#
o

f
g

ro
u

n
d

tr
u

th
sa

m
p

le
s

3
9

6
4

0
3

1
7

4
1

9
0

1
6

3
1

6
7

1
8

3
1

8
1

P
ro

d
u

ce
r’

s
ac

cu
ra

cy
%

co
rr

ec
t

8
8

9
2

8
8

2
5

1
0

0
9

3
7

9
7

7
1

T
h

e
m

o
d

el
is

b
as

ed
o

n
fi

v
e

la
te

n
t

v
ar

ia
b

le
s

re
su

lt
in

g
in

a
co

n
fi

d
en

ce
in

te
rv

al
o

f
±

2
.1

%
fo

r
th

e
o

v
er

al
l

ac
cu

ra
cy

,
an

d
K

ap
p

a
=

0
.7

0

648 Precision Agric (2013) 14:637–659

123



T
ab

le
7

M
o
d
el

#
6

cr
o
ss

v
al

id
at

io
n

o
f

P
L

S
-D

A
cl

as
si

fi
ca

ti
o
n

m
o
d
el

o
f

si
x

cl
as

se
s:

b
ro

ad
le

af
w

ee
d
s,

g
ra

ss
w

ee
d
s,

an
d

w
h
ea

t,
al

l
su

n
li

t
as

w
el

l
as

sh
ad

ed

G
ro

u
n

d
tr

u
th

B
L

W
su

n
li

t
B

L
W

sh
ad

e
G

W
su

n
li

t
G

W
sh

ad
e

W
h

ea
t

su
n

li
t

W
h

ea
t

sh
ad

e
T

o
ta

l
#

o
f

cl
as

si
fi

ed
sa

m
p

le
s

U
se

r’
s

ac
cu

ra
cy

%
co

rr
ec

t

C
la

ss
ifi

ca
ti

o
n

re
su

lt
s

B
L

W
su

n
li

t
3

3
6

1
0

0
2

8
0

3
6

5
9

2

B
L

W
sh

ad
e

1
2

6
3

0
6

3
0

5
4

3
8

1
6

9

G
W

su
n

li
t

2
6

0
1

6
0

0
2

0
0

2
0

6
7

8

G
W

sh
ad

e
0

4
9

3
4

4
4

3
4

1
3

4
3

4

W
h

ea
t

su
n

li
t

3
3

0
1

1
0

1
3

1
0

1
7

5
7

5

W
h

ea
t

sh
ad

e
0

9
0

0
8

3
0

9
3

2
6

6
3

5

T
o

ta
l

#
o

f
g

ro
u

n
d

tr
u

th
sa

m
p

le
s

3
9

6
4

0
3

1
7

4
1

9
0

1
8

3
1

8
1

P
ro

d
u

ce
r’

s
ac

cu
ra

cy
%

co
rr

ec
t

8
5

6
5

9
2

2
3

7
2

5
1

6
5

T
h

e
m

o
d

el
is

b
as

ed
o

n
fo

u
r

la
te

n
t

v
ar

ia
b

le
s

re
su

lt
in

g
in

a
co

n
fi

d
en

ce
in

te
rv

al
o

f
±

2
.4

%
fo

r
th

e
o

v
er

al
l

ac
cu

ra
cy

,
an

d
K

ap
p

a
=

0
.6

0

Precision Agric (2013) 14:637–659 649

123



to be the model for applying the prediction by images with the aim of identifying weeds in

a wheat field.

It is important to emphasize that, although the cross-validation was obtained by pure

pixels (Fig. 3), the spectral samples of vegetation classes were acquired from the canopy,

and those of the soil class were acquired next to canopy or in its shade. As mentioned

above, leaves are semi-transparent for NIR radiation. Therefore, the spectrum of the soil

shaded by vegetation will most likely include vegetation signals; hence, a spectrum from

each of the classes also includes the spectral signals of the neighboring objects (Borregaard

et al. 2000) e.g., leaves and soil, GW and BLW, and sunlit as well as shaded. These objects

can be the same class of the sample, another class, or even a target that is not included in

any of the classes (e.g., stems, specular reflection and stones). Therefore, each of the

presented models includes some amount of error that was caused by field conditions.

Consequently, Model #3, that includes in each of its classes sunlit and shaded spectra, is

believed to provide prediction results that are based on real field conditions.

In order to find the important wavelengths for separating the classes in Model #3, the VIP

analysis was applied for each of the classes and is presented in Fig. 4. For the three vegetation

classes, the most important spectral region is the red-edge with the highest peak at 730 nm,

while for the soil, the highest peak is at 685 nm on the edge of the red and red-edge spectral

regions. This makes sense since the soil does not absorb radiation in the red region, as

vegetation does, due to the photosynthetic process (Gausman 1985) and the 685 nm wave-

length is the reflectance depth for the three sunlit vegetation classes (data not presented). This

is in agreement with the perfect producer’s accuracy for the soil and sunlit soil classes in

Tables 2, 4 and 6. Spectra of shaded soil, in a vegetated area, can include elements of

vegetation (e.g., absorption in the red region and enhanced reflectance in the NIR region).

This might be part of the reason why the soil and soil-shaded classes do not have perfect user’s

accuracy in these three tables. For the wheat and GW classes, besides the red-edge, the

important regions are the blue and green ones. In most of the cases, the GW plants, in the field

as well as in the digital pictures, have a lighter green hue than the wheat plants that seem to be

more bluish. This combination of four wavelengths (i.e., blue, green, red and red-edge)

became the most important for separating the four classes of Model #3.

There are few hyperspectral satellites that are active today (e.g., Hyperion and CHRIS

with two planned, HyspIRI and EnMAP) and they might not be able to meet the spatial

requirements for site-specific weed management. Currently, there are only two operational

multi-spectral satellites, WorldView-2 and RapidEye, which can meet the four-band

requirements (including a red-edge band) along with high spatial resolution for site-specific

Table 8 Normal curve deviation (Z) values of coupled PLS-DA classification models

Model #(Kappa,
variance)

1(0.79,
0.0002)

2(0.73,
0.0003)

3(0.79,
0.0001)

4(0.55,
0.0003)

5(0.70,
0.0001)

6(0.60,
0.0002)

1 (0.79, 0.0002) *

2 (0.73, 0.0003) 2.63 *

3 (0.79, 0.0001) 0.32 2.98 *

4 (0.55, 0.0003) 10.81 7.2 11.41 *

5 (0.70, 0.0001) 4.81 1.24 5.39 7.21 *

6 (0.60, 0.0002) 9.84 5.82 10.54 2.08 5.71 *

Z value [ 1.96 shows a significant ([ 95 %) difference between the confusion matrices. Highlighting
indicates the important couplings
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agricultural applications. The other two forthcoming satellites are the vegetation and

environmental new micro spacecraft (VENlS) and Sentinel-2 to be launched in 2014, at

the earliest. There is a need to further explore the influence of reduced spatial resolution on

the quality of prediction, in other words, to deal with the mixed pixel issue in order to find

out what the ideal pixel size is for weed analysis. This is suggested to be a specific airborne

(hyper- or multi-spectral) mission for calibrating several common weeds and crops in

relation to the economic benefits of weed control. Although satellites can obtain coverage

of several fields in one image, it seems that high spatial resolution that allows identifying

early weed infestation, similar to ground level, is beyond the goals of current or near future

satellites. Therefore, air- and ground-level application based on similar sensors, with a

higher spatial resolution, is also a course to be concentrated on in the near future.

Table 9 presents the total accuracy and its confidence interval, Cohen’s Kappa, and

user’s and producer’s accuracies obtained from 21 confusion matrices computed in order to

calculate the quality of prediction by Model #3 for the 21 images. The total accuracies

range from 54 to 90 % and, when considering the confidence intervals, can range from 40

to 98 %. The highest total accuracies of 88 and 90 % were both obtained in images that do

not contain all four classes to begin with, or in which the randomly picked ground truth

pixels did not cover all available classes, as can be seen by the 0 values in both user’s and

producer’s accuracies. Correlating the total accuracy to vegetation coverage by field

assessment, PLS-DA and DT, for the images presented in Table 9, resulted in very weak,

non-significant, negative relations with R2 \ 0.025. Therefore, it can be assumed that

Model #3 predictions are not influenced by the vegetation cover range of the values of the

current data. The vegetation cover was obtained by the three methods mentioned above and

resulted in 35–95 % by the field assessment, 28–100 % by the PLS-DA model, and

15–99 % by the DT.

Fig. 4 Variable importance in projection (VIP) values of model #3 for the four classes. Note that the
threshold for the VIP values is equal to 1
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The confusion matrix for all the ground truth points together is presented in Table 10.

The 1050 ground truth pixels were distributed among the classes almost evenly, and the

number of unclassified pixels is negligible. Soil is the class whose accuracy of prediction is

the highest. BLW can be predicted with 81 % success, but BLW is predicted as BLW only

with 52 % success. For the wheat class, it is the other way around as wheat can be

predicted with 60 % success, but wheat is actually predicted as wheat with 79 % success.

Pixels of BLW, GW and soil that are mistakenly classified are, in most cases, classified as

wheat 68, 49 and 21 %, respectively. Therefore, the user’s accuracy of wheat is the lowest.

In Table 6, most of the mis-classifications are between shaded vegetation classes and, since

in Model #3 the classes include sunlit and shaded data in the same class, this might be the

source of the miss-classifications in the vegetation classes presented in Table 10. The 1857

cross-validation pixels (used for calibration) were collected from homogeneous regions

and were not picked from stones, stems, specular reflection and upside down leaves, nor

those adjacent to leaf edges. The 1050 ground truth pixels were randomly selected and,

therefore, might be of a target whose spectrum is similar to more than one class (e.g., pixel

on the edge of a leaf). In order to generalize the model, spectral data were collected in

several plots and growing stages. Tyystjarvi et al. (2011) obtained the best results for

species classification by training and testing leaf florescence measurements that were

obtained on the same date. Therefore, it is assumed that the classification results could have

been improved if the cross validation was applied to data obtained from one date, one plot,

or even one image. However, the applied system must be generalized in the sense of

location and unlimited to specific growth stage before crop closure (i.e., the optimal time

for herbicide application).

Figure 5 displays two images and their classification results by Model #3. Figure 5a

presents an image with the lowest total accuracy and Fig. 5c presents an image with above

average values (Table 9). The relative coverage assessed in the field, for both images,

shows 30 and 25 % of GW, 40 and 50 % of wheat, 27 and 22 % of soil, and 3 and 3 % of

BLW, respectively. The DT analysis resulted in similar relative coverage with differences

that are not higher than 4 % for each of the five classes. The quality of the prediction

confusion matrices’ comparison resulted in a significant difference (more than 95 %),

Table 10 Prediction of pixels used for validation from all the images together by model #3 with a confi-
dence interval of ± 2.7 % for the overall accuracy, and Kappa = 0.63

Ground truth

Unclassified BLW GW Soil Wheat Total # of
classified
samples

User’s
accuracy
% correct

Classification
results

Unclassified 0 0 3 2 0 5 0

BLW 0 139 12 6 14 171 81

GW 0 39 175 8 27 249 69

Soil 0 20 9 232 16 277 83

Wheat 0 68 49 21 210 348 60

Total # of ground
truth samples

0 266 248 269 267

Producer’s accuracy
% correct

0 52 71 87 79 72
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based on Z = 2.27. The distributions of ground truth pixels in both images are similar,

with differences of 1, 3, 6 and 4 pixels for the four classes BLW, GW, soil and wheat,

respectively. Both images were acquired in the same field on the same day with less than

half an hour difference between acquisitions. Therefore, besides human assessment or

other errors or inaccuracies and the limitations of the model itself, the difference between

the confusion matrices is assumed to be related to the fact that the model was cross-

validated from a variety of spectral, growth stages and environmental conditions combined

with infield spectral variability.

The total accuracy and Cohen’s Kappa of prediction, presented for Model #3, can be

explained by the number of cross-validation pixels obtained from the image by 11.3 and

0.2 %, respectively, both not significant. Therefore, it is assumed that the influence of the

amount of cross-validation pixels on the Cohen’s Kappa, as well as the total accuracy, is

negligible and that Model #3 classification prediction results, for the 21 images, are not

influenced by the cross-validation pixels’ distribution among the images. Figure 6 presents

the user’s and producer’s accuracy of a class for each image related to the number of cross-

validation pixels, of the same class, acquired from each image. The GW and soil classes

correctly identified among the pixels classified (i.e., user’s accuracy) as GW and soil,

respectively, by Model #3 are significantly influenced by the number of cross-validation

pixels acquired in the image by 39 and 22 %, respectively. The BLW class correctly

classified among the pixels known to be BLW (i.e., producer’s accuracy) by Model #3 is

significantly influenced by the amount of cross-validation pixels acquired in the image by

Fig. 5 a An example of a hyperspectral ground-level image with the lowest total accuracy and b Its
classification; c An example of an image with above-average total accuracy and d Its classification
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47 %. When including in the analysis only the images that cross-validation pixels were

acquired from and the user’s accuracy, the R2 values of BLW, GW, soil and wheat were

0.01, 0.27, 0.83 and 0.1, respectively. When including in the analysis, only the images that

pixels were acquired from and the producer’s accuracy, the R2 values of BLW, GW, soil

and wheat were 0.29, 0.06, 0.31 and 0.03, respectively. Comparing these R2 values to the

R2 values in Fig. 6 results in a reduction of correlation between the amount of pixels and

the user’s as well as the producer’s accuracies for the three vegetation classes. Therefore,

Fig. 6 The amount of cross-validation pixels, of each class, acquired from each image in relation to:
a User’s accuracy; and b Producer’s accuracy, of the class for each image
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the vegetation classification quality is almost not influenced by the distribution of pixels

among the images. In the case of soil, the tendency is the opposite and, therefore, it seems

that, for soil, it is important to distribute the cross-validation pixels among more images.

In order to decide whether to apply weed control, there is a need to know the relative

coverage of weeds in the field (Slaughter et al. 2008). Figure 5b and d present examples of

classification results by Model #3; such images were used to obtain the relative coverage of

each of the four classes. There is a positive, significant correlation between the relative

coverage obtained by PLS-DA classification and by field assessment (Fig. 7). BLW and soil

that show relatively better user’s accuracy results (Table 9) provide better correlation to field

assessment. Therefore, it can be assumed that the relative coverage of the four classes can be

assessed by Model #3 with the limitations presented above. On top of human error in

assessment and mis-classifications of the model, differences in relative coverage can be

partly an outcome of the clipping process. Since the frame that was used for field assessment

was not always parallel to the image borders, narrow triangles, in the frame area, were

clipped out of the images that were used to predict and ground truth the PLS-DA model.

Conclusions

Classification of wheat and weeds was the aim of the current study. Pixels were selected

from ground-level images and used to build six PLS-DA models. The best model was

found to be the one that included soil as an additional class and combined sunlit and shaded

pixels in each of its four classes: BLW, GW, soil, and wheat. The important wavelengths

for each of the classes of the best model were obtained by the VIP method. The best model

was applied to the images and ground truth was applied using RGB photos. The total

ground truth resulted in an overall accuracy of 72 %. These results indicate that

Fig. 7 Relating relative coverage of BLW, GW, soil, and wheat by field assessment and by model #3
classification results
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differentiation between wheat and weeds is possible using PLS-DA, therefore, potentially

contributing to practical site-specific herbicide application. Specific conclusions are:

• Composition of four classes: BLW, GW, soil and wheat, was the best for weed

detection for the current data set.

• Sunlit vegetation can be better separated into classes than shaded vegetation.

• The red-edge is the most important region for separation among wheat, BLW and GW.

For wheat and GW, the blue and green regions are also important, respectively. For soil

separation among vegetation, the edge between the red and red-edge is most important,

spectrally.

• Although the model’s cross-validation and ground truth were acquired for heterogenic

data, the model obtained reasonable results and, therefore, is potentially applicable.

• High spectral and spatial resolutions can provide separation between wheat and weeds

based on spectral data alone.

Future work that is more aimed at economic thresholds for applying weed control

should be concentrated in one of two directions: covering wider areas, with coarser spatial

resolution, by satellites (e.g., WorldView-2, RapidEye, VENlS and Sentinel-2) while

exploring the mixed pixel issue; or covering relatively smaller areas, with fine spatial

resolution, by ground level sensors in order to deal with the sunlit and shaded parts in the

canopy and soil separately or to better understand their mutuality.
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