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Abstract Knowledge of spatial variability of soil fertility and plant nutrition is critical

for planning and implementing site-specific vineyard management. To better understand

the key drivers behind vineyard variability, yield mapping from 2002 to 2005 and 2007

(the monitor broke down in 2006) was used to identify zones of different productive

potential in a Pinot Noir field located in Raimat (Lleida, Spain). Simultaneously, the

vineyard field was sampled in 2002, 2003 and 2007, applying three different schemes

(depending on the number of target vines in different grape yield zones). The sampling

carried out in 2002, which involved different soil, topographic and crop properties (mineral

contents in petiole), made it possible to evaluate the influence of these parameters on the

grape yield variability. The zones of lowest yield coincided with locations in which the

nutritional status of the crop exhibited the lowest values, particularly with respect to petiole

contents of calcium and manganese. Sampling systems adopted in 2003 and 2007 (grape

quality and soil attributes) confirmed the inverse spatial correlation between grape yield

and some grape quality parameters and, more importantly, showed that the percentage of

soil carbonates had a great influence on grape quality probably due to the reduced avail-

ability of manganese in calcareous soils. Site-specific vineyard management could there-

fore be considered using two different strategies: variable-rate application of foliar

fertilizers to increase the yield in areas with low production and also foliar or soil fertilizers

to improve the quality specifications in some areas.
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Introduction

Since the first appearance and commercial use of sensors and yield monitors on grape

harvesters, it has been evident that the yield of grapes exhibits significant spatial variability

(Bramley and Hamilton 2004). In fact, many winegrowers are fully aware of this vari-

ability which affects not only production, but also other parameters related to grape quality

(Bramley 2005). As a consequence, it is very difficult to predict grape yield (Martı́nez-

Casasnovas and Bordes 2005) and the quality of the product that actually enters the wine

cellar. This also limits the possibility of differentiating between wines that, when sold, may

also exhibit significantly different qualities.

Aware of the new technologies and opportunities offered by precision agriculture, the

Spanish company Codornı́u decided to initiate a precision viticulture project on its Raimat

(Lleida) estate in 2001 (Arnó et al. 2005). This involved the acquisition of equipment for

grape yield monitoring and its incorporation into one of their self-propelled grape har-

vesters. In 2002, working in collaboration with the University of Lleida, the company

established a work protocol based on three main objectives: obtaining grape yield maps;

analysing the spatial variability shown in these maps; and determining the possible

influence of certain soil and crop related parameters on observed differences in grape yield.

Later, in 2003 and 2007, two additional studies were carried out to assess the spatial

relationship between yield, vine parameters, grape and must quality and also some physical

and chemical soil properties.

Grape yield and grape quality within a given field are variable. When this spatial

variability is large (i.e., when the differences between zones are considerable and the

spatial grape yield or quality pattern is not random), site-specific crop management

(SSCM) becomes feasible. The ultimate aim is, therefore, to develop a procedure that will

allow the implementation of precision viticulture based on the use of variable-rate appli-

cation maps. As Bramley and Lamb (2003) observed, the possibilities of successfully

introducing this type of technology will ultimately be conditioned by the degree to which it

is possible to understand the factors responsible for the spatial variability, the temporal

stability of this variation, and the possibilities of being able to manage the parameters that

are responsible for it.

The influence of soil characteristics on grape yield has already been studied by Bramley

(2001) for Australian winegrape production systems. This author showed that variations in

soil depth are the major cause of yield variability, with the highest yielding zones fre-

quently being the areas with the deepest soils. This is because water availability in the root

zone increases according to effective soil depth (Tardaguila et al. 2011). Soil salinity and

clay content (and in particular its location in the soil profile) are two other physical soil

properties that have an important influence (Bramley and Lamb 2003).

Quality is also very important in viticulture. Wine quality seems to be influenced by the

‘‘terroir’’: the final expression in the wine of the combined influence of soil, topography,

microclimate, grape variety and cultural practices. However, Bramley and Hamilton (2007)

confirmed that contrasting wines may derive from different areas within the same, uni-

formly managed vineyard. This supports the view that ‘terroir’ is spatially variable at the

within-vineyard scale (Bramley et al. 2011). According to Hidalgo (2006), deep calcareous
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soils with sandy-loam textures and low fertility are the most suitable for vineyards. In

contrast, clay soils (with a clay content of higher than 30–40%) give high yields but of less

quality (Bramley and Hamilton 2007), producing wines with a low alcohol content which

are more acidic and richer in nitrogen. Furthermore, an excess of nitrogen fertilization

increases the vigour of vines and yield, but slows down the process of maturation, pro-

ducing juices with fewer sugars and phenolic compounds. An excess of soil organic matter

may also have a negative effect, producing wines that are richer in nitrogen and poorer in

flavour. On the other hand, the availability of elements such as iron and manganese in

appropriate quantities is very important for producing high quality wines (Bramley et al.

2011).

Another point of interest in viticulture is that quantity is inversely proportional to

quality. In Australia, for example, the optimization of wine quality has meant having to

limit yield to 6 t ha-1 (Bramley and Proffitt 1999). Both yield and quality seem to be

basically influenced by soil physical properties and soil fertility (Tardaguila et al. 2011).

Bramley (2001) has shown that the K/Mg ratio in the petiole, the yield and the probable

alcoholic degree of the juice are all correlated and that the accumulation of sugars depends

on there being an appropriate proportion of these two nutrients. The similarity between the

pattern of spatial variability of the phenolic content in the grapes and the manganese

content in the petiole was also noted by Bramley (2001). However, the existence of some

form of spatial covariance between grape yield and grape quality remains a matter for

discussion. Bramley and Lamb (2003) pointed out that the structure of the spatial variation

of grape quality parameters needs not coincide with the spatial distribution pattern of the

yield. In fact, although it has been demonstrated that yield spatial distribution pattern tends

to be relatively stable from year to year, the best grape quality zones may not always be the

same (Bramley and Hamilton 2004). This may indicate that, in addition to yield maps, any

within-field zoning of grape quality may require other crop, soil and/or environmental

parameters (Santesteban et al. 2010).

Analysis of the spatial variability of grape yield and quality has been undertaken by

researchers into precision viticulture in various countries, including France (Tisseyre et al.

2001; Acevedo-Opazo et al. 2008), Chile (Ortega et al. 2003) and Australia (Bramley and

Hamilton 2004; Taylor 2004; Bramley 2005). Within-field variability in grape yield and

quality is important for decision making in crop management (Tisseyre et al. 2007, 2008;

Hall et al. 2010). The present study has sought to understand the key factors in vineyard

variability within the context of Spanish viticulture, with the aim of contributing, along

with other similar studies, to improving their management. The objectives of this study

were: to analyse spatial variability in yield through field zoning; and to determine the soil

and crop factors that affect this variability. The extent to which soil characteristics are

related to grape quality attributes is another of the questions raised. The ultimate goal is to

establish how grape yield, grape quality, or both, can be improved in the areas with poor

characteristics by targeted crop fertilization and/or soil amendment practices.

Materials and methods

Grape yield maps

Grape yield maps for the 2002, 2003, 2004, 2005 and 2007 vintages were obtained for a

5 ha field planted with Vitis vinifera of the Pinot Noir cultivar and located in Raimat

(Lleida, Spain) (ED50 UTM 31n co-ordinates 291125, 4616275, 275 m.a.s.l.). The field
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(denoted P30) was planted in 1985 and irrigated using a sprinkler system. The pattern of

the plantation was 3.2 m between rows and 2.1 m along the rows.

To obtain the grape yield maps, a Gregoire G-140 SW self-propelled grape harvester

(Fig. 1) (Grégoire SAS, Chateaubernard, France) was equipped with a GPS/dGPS receiver,

load cells and a Canlink 3000 yield monitor produced by Farmscan (Computronics, Perth,

Western Australia).

Using the FarmscanTM Data Manager program (supplied with the Canlink 3000 mon-

itor), data that had been stored by the yield monitor were saved as a text file. The mapping

process consisted of editing the initial data for spatial interpolation (kriging) that would

convert the point data collected by the yield monitor into data referring to specific surfaces.

Spatial interpolation was carried out with version 1.6.3 of the VESPER program for

geostatistical analysis (Minasny et al. 2005). As there was a large amount of yield data, the

option was kriging in 10 m blocks and projecting interpolated data over a regular 3 m grid.

For the interpolation of each point, a local variogram based on a minimum of 150, and a

maximum of 200, neighbouring (yield data) points was used. Moreover, the ranges

obtained from the interpolated maps, based on local variograms, were very similar to the

range of variation for real grape yields as determined by local block kriging (Bramley and

Williams 2001).

Sampling of vine, soil and grape quality variables

Samples of the soil and of the crop (analysis of petioles) were taken to study the factors

that could influence grape yield and quality. To do this, a regular grid with sampling points

(target vines) every 11 rows and 20 vines (about 35.2 9 42 m) was established in 2002.

This allowed us to obtain approximately 6.5 samples per hectare. In 2003 and 2007, the

Lateral conveyor belt 
equipped with yield sensor 

Grape harvester 
equipped with yield 
monitor and GPS

Fig. 1 Grape harvester and tractor ? trailer (left) and detail of the location of the yield sensor on the lateral
discharge conveyor belt (right)

396 Precision Agric (2012) 13:393–410

123



sampling density was increased to every 10 rows and 10 vines (grid of 32 9 21 m).

Figure 2 shows the study field and the distribution of the sampling points for years 2002,

2003, and 2007. While crop samples were taken in June 2002 (at flowering) and soil data in

January 2003, the soil sampling in 2007 was carried out in November and grape quality

data for 2003 and 2007 were obtained just a few days before the corresponding vintages.

The sampled vines were geo-referenced, taking co-ordinates from the trunks, using a

Trimble Geoexplorer XT GPS with an external antenna and differential correction in post-

processing using the data provided by the CatNet network of the Cartographic Institute of

Catalonia. The sampling density could be considered acceptable in all cases, as the main

goal of the research was simply to assess possible interactions between grape yield, quality

and soil parameters and not to analyze spatial variability in detail through the construction

of appropriate surface (raster) maps.

The sampling carried out in the field was therefore systematic, with the sampling points

being distributed using a rectangular grid and providing uniform coverage of the field

(Fig. 2). As the spatial correlation scale of the sampled variables and possible zoning of the

field were not known in advance, a simple random sample was discarded on the grounds of

the potential ineffectiveness of such a measure if the density of the sampling points proved

to be unsuitable.

In 2002, data at each point were obtained relating to: the different physical and chemical

properties of the soil (texture, pH, electrical conductivity, percentage of CaCO3, organic

matter and root depth); properties related to the field topography (elevation and slope),

which were obtained from a digital model of the terrain; and mineral contents in petioles

(N, P, K, Ca, Mg, Fe, S, Zn, Cu, Mn, B and Na), which effectively provided information

relating to the nutritional state of the crop. It is known that petiole sampling is useful for

the posterior analysis and diagnosis of the nutritional state of vineyards at field level,

although rootstock and variety have a significant influence on the mineral composition of

vine leaves. To facilitate the evaluation of root depth, pits were opened at each point.

Having taken a single soil core for the whole profile, soil analysis was performed using the

following methods: pipette method for soil texture; a 1:2.5 dilution of soil:water for soil

Fig. 2 Distribution of sampling points in field P30 (Pinot Noir). Left: 32 sampling points in 2002. Centre:
85 sampling points in 2003. Right: 66 sampling points in 2007
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pH; 1:5 soil:water ratio for conductivity (lS cm-1 at 25�C); Walkley–Black dichromate

oxidation for organic matter, and gas analysis by reaction with HCl for soil carbonates.

Petiole selection consisted of cutting the whole leaf opposite a basal bunch to collect 100

petioles from nine vines around the sampling point. Then, laboratory used dry tissue to

determine nutrient levels of grapevine petiole samples. In 2003, the sampling centred on

grape quality attributes: probable alcoholic degree, acidity and phenolic content. Finally,

the variables sampled in 2007 were also related to grape quality (weight of 100 berries,

probable alcoholic degree, total acidity expressed as g H2SO4 l-1, anthocyanins, poly-

phenols and colour of grape juice) and to some soil properties (texture, pH, electrical

conductivity, percentage of CaCO3, organic matter, available water retention capacity or

AWRC, and soil depth). Like in 2002, soil samples were analyzed following the same

methods but having obtained the samples using an auger-hole. As for the grape quality

parameters, standard methods were used (Iland et al. 2004).

Cluster analysis of grape yield

The five grape yield maps produced for field P30 (Pinot Noir, Fig. 3) exhibited some visual

differences in the patterns of grape yield variation (no data were acquired in some areas in

2005 due to accidental disconnection of the yield monitor). However, reclassified maps

into two and three yield classes remained temporally stable for this field (Arno et al. 2011).

Therefore, it was hypothesized that conclusions drawn on the basis of a single yield map

would be consistent with these different ‘yield zones’. As grape yield in field P30 (Pinot

Noir) showed the highest degree of variability in 2002 compared to subsequent campaigns

(Table 1), interest focused on assessing the possible causes of spatial variation for that

particular year. The annual rainfall in 2002 (340 mm) differed from the years 2005

Fig. 3 Grape yield maps for field P30 (Pinot Noir) in which the yield data have been normalised to a mean
of zero and a standard deviation of one
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(292 mm) and 2007 (212 mm), and irrigation and fertilization were then carried out fol-

lowing standard requirements.

To determine the soil and crop variables that could have affected yield variability in

2002, the interpolated grape yield data for this year was classified using cluster analysis,

and the k-means algorithm. In one case, two groups were established: low yield (L) and

high yield (H) and, in another, three groups were created: for low (L), medium (M) and

high (H) grape yield. The decision to establish two and three zones (classes) was based on

the temporal stability of grape yield maps in field P30 when two and three classes were

adopted (Arno et al. 2011). Bramley and Hamilton (2004, 2007) used the k-means algo-

rithm with yield data for several different years for within-field zoning. In this study, the

algorithm was used with a single variable (grape yield of the 2002 vintage) and each

observation (or interpolated point) was assigned to a cluster according to the ‘‘distance’’

between the observation and the centre or average value for the group.

Extraction of yield data to sampling locations

The ArcGIS 9.3 (ESRI, Redlands, CA, USA) was used to assign to each sampling point the

average yield within a circular area around of 3 m radius (buffer). The zonal statistics tool

of ArcGIS Spatial Analyst was used to overlay the buffer layer over the yield map and to

calculate the mean grape yield for each point. Obtaining mean yield data was a prerequisite

for knowing the yield level (cluster) corresponding to each sampling point and for carrying

out further logistic regression of grape yield (categorical data) on the soil and crop

parameters. To avoid performing a regression for each of the sampled variables, factor

analysis that considered all the variables sampled in the field (except grape yield) was first

applied (Mallarino et al. 1999). The basic idea was to describe the original variables in

terms of a smaller number of ‘factors’ using the following factor analysis model:

Xi ¼ ai1F1 þ ai2F2 þ � � � þ aimFm þ ei ð1Þ

where Xi was the ith sampled variable; ai1, ai2,…, aim were the ‘factor loadings’ for the ith
variable; F1, F2,…, Fm were m uncorrelated common factors, each with mean zero and unit

variance; and ei was a factor specific only to the ith variable, with mean zero and

uncorrelated with any of the common factors. Thus, it is assumed that each original

variable can be expressed as a linear combination of ‘factors’, plus a residual term that

reflects the extent to which the variable is independent of the other variables. Factor

analysis procedure involved three stages. First, provisional factor loadings were deter-

mined by principal components analysis, limiting to three the number of selected factors

(in our case, the number of eigenvalues greater than unity). Once the first three factors had

been extracted, the factorial matrix was orthogonally rotated in order to aid its

Table 1 Descriptive analysis of the values interpolated from yield maps in field P30 (Pinot Noir)

2002 2003 2004 2005 2007

Mean (t ha-1) 9.9 10.3 6.6 5.0 6.3

Minimum (t ha-1) 0.1 0.3 1.9 2.4 4.1

Maximum (t ha-1) 27.9 22.7 13.1 10.3 8.9

Standard deviation (t ha-1) 5.5 4.6 2.7 1.2 0.9

Coefficient of variation, CV (%) 56 45 40 24 15
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interpretation (Varimax method). The last stage of analysis involved calculating the factor

scores (i.e., the values of the factors for each of the sampling points), subsequently used to

formulate two different models for grape yield prediction (maps of two or three grape yield

classes). To analyse whether the yield response was dichotomous or not (map of two

classes), the logistic regression model was:

ln
p

1� p

� �
¼ b0 þ b1F1 þ b2F2 þ b3F3 ð2Þ

where p was the probability of the grape yield level being low (thus, 1 - p would be the

probability of the grape yield being high), Fk were the explanatory variables (latent

variables resulting from the factor analysis) and bk were the adjusted parameters in the

model. The model is interesting in two ways. As well as allowing calculation of the specific

probability of each type of yield, it could also be used to establish the opportunity (odds) of

obtaining one type of yield as opposed to another p
1�p

� �
, and of calculating the odds ratio

between both types of yield against changes in the explanatory factors or variables. Finally,

the use of a multi-nomial logistic model allowed modelling of the grape yield when the

response was polytomous (for low, medium and high grape yields). Specifically, the model

used when grape yield had been classified into three classes was:

ln
p1

p3

� �
¼ b01 þ b11F1 þ b21F2 þ b31F3 ð3Þ

ln
p2

p3

� �
¼ b02 þ b12F1 þ b22F2 þ b32F3 ð4Þ

where p1 was the probability of the grape yield level being low, p2 the probability of being

medium, and p3 = 1 - p1 - p2 the probability of being high (reference category). Finally,

Fk were the factor scores of the latent variables resulting from the factor analysis, and bkj

the adjusted parameters in the model.

Analysis of variance (ANOVA) was subsequently used to study the relationship

between grape yield and quality in 2003, while the relationship between grape quality and

the soil characteristics sampled in 2007 was finally addressed by applying canonical

correlation analysis. This statistical procedure (Manly 1994) was used to divide the vari-

ables (grape quality and soil properties) into two groups and interest centres based on their

inter-relationships. Finding what relationships, if any, existed between these two groups of

variables is of considerable viticultural interest.

The univariate model for the ANOVA was:

Vij ¼ Vm þ Cj � Vm

� �
þ eij ð5Þ

where Vij was the value of sampled variable V at point i within the yield cluster j, Vm was

the average value of V, Cj was the average value of V in cluster j, and eij was the value of

the experimental error. This model allowed testing of significant effects of yield cluster

(factor analyzed) on the quality variables sampled in 2003. The analysis was completed by

mean separation using Duncan’s test.

Concerning the statistical method used in 2007, canonical correlation analysis is a

generalization of multiple regression in which several grape quality attributes (Y variables)

were simultaneously related to several soil properties (X variables). The approach was to

search for a linear combination of X variables, say
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W1 ¼ a11X1 þ a12X2 þ � � � þ a1pXp ð6Þ

and a linear combination of Y variables, say

V1 ¼ b11Y1 þ b12Y2 þ � � � þ b1qYq ð7Þ

so that the correlation between W1 and V1 be as large as possible. In practice more than one

pair of canonical variables (W1, V1) can be obtained, being the minimum value p or q the

final number of pairs of variables. In addition, canonical variables were chosen so that the

first pair (W1, V1) had the highest possible correlation and was therefore the most

important; the second pair (W2, V2) had the second highest correlation, subject to these

variables being uncorrelated with W1 and V1, and so on. To avoid interpretation problems

(in case X or Y variables were highly correlated), canonical variables that were significant

(p value\0.10) were subsequently described by looking at their correlations with the X and

Y variables rather than the coefficients aij and bij.

The statistical analyses were carried out using the SAS Enterprise Guide (SAS Institute

Inc., Cary, NC, USA). Only the factor analysis and logistic regression required a specific

program: the SAS 9.1.3 Service Pack 4, respectively employing the proc factor and proc
catmod procedures.

Results and discussion

Spatial variability in grape yield

The grape yield classification for the year 2002 based on the k-means algorithm resulted in

two clusters (low and high, Fig. 4): consisting of a large area of low production (almost

70% of the total area with an average yield of 7.0 t ha-1) and of a smaller area with a

higher level of production (average 16.4 t ha-1). The cluster analysis of yield, made in

three groups (low-L, medium-M and high-H), reduced the size of the low grape yield zone

in favour of areas classified as having a medium level of yield. The zone of low grape yield

(cluster L) now included 40% of the total area and had a mean production of 4.4 t ha-1.

The zone of medium production, or cluster M, occupied just over half of the total field area

and had a mean production of 12.4 t ha-1. Cluster H (with an average of 20.6 t ha-1) was

the most productive area though it occupied only 8.5% of the total surface. In short, the

zones of low and medium grape yield represented 91% of the total area of the field. The

incidence of areas of high productivity was clearly reduced and such areas were concen-

trated in the easternmost part of the field.

To determine the possible causes of yield variability, factor analysis was carried out

with the (soil, crop and topographic) variables that had been measured at 29 of the 32

points initially sampled in field P30 in 2002. The reduction in the data matrix was the result

of eliminating sampling points at which variables with outliers had been detected. The

procedure for analysis was limited to the extraction of the first three factors (which

explained 59.05% of the variability); the resulting rotated matrix is presented in Table 2.

Factor analysis

Factor 1 included the mineral elements that had shown the greatest linear inter-dependence

(correlation matrix, not shown): Mg, Fe, S, B, Zn, Ca and Mn. Copper content was moved

to Factor 2, even though it had a high correlation with some of the elements in Factor 1.
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Finally, it is important to highlight the presence of N, an essential nutrient for vines, which

had previously shown a clear inter-dependence with Zn. In short, Factor 1 encompassed 8

of the 12 mineral elements analyzed in the petioles, the majority of which are very

important nutrients in vineyards. Factor 2 could also be considered to relate to the nutri-

tional state of the crop; however, unlike Factor 1, it only included three mineral elements:

K, Na and Cu. Focusing exclusively on the number of variables involved, it could therefore

be regarded as less important than Factor 1. It is also true that Factor 2 could be linked to

the Na content in petiole, probably due to the quality of irrigation water (not tested) and the

presence of clay soils and alkaline pH. Finally, the variables with the greatest loads in

Factor 3 were: the textural fractions of clay and silt, the percentage of CaCO3 in the soil,

the P content per petiole and the elevation of the terrain. Factor 3 could then be considered

a factor linked to available water for plants, since the physical characteristics of the soil

(texture) and the elevation (presumably associated with shallow soils) affects the water

holding capacity of soils and, to some extent, P mobility in soil and its subsequent

availability to the crop.

Having obtained scores for factors at each sampling point, a logistic regression model of

yield class on factors resulting from the factor analysis was formulated. In view of the

complexity that a logistic regression model with a polytomous response (low, medium and

high grape yield) and three independent variables (factors 1, 2 and 3) might involve, the

approach taken was to include in the model only those factors that showed significant

differences with respect to the yield cluster.

Analysis of variance of the factors (Table 3) demonstrated that only Factor 1 was

significant (p = 0.0111) when grape yield had been previously reclassified on the basis of

three clusters (low-L, medium-M and high-H), while in no case were factors significant in

the map reclassified on the basis of two clusters. Consequently, a logistic regression model

between yield (with three levels of response) and Factor 1 (mineral elements per petiole)

Fig. 4 Grape yield maps for field P30 (Pinot Noir). a Original map of grape yield corresponding to the 2002
vintage. b Reclassified map based on 2 clusters or levels of yield (low and high). c Reclassified map based
on 3 clusters or levels of yield (low, medium and high)
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was formulated. The resulting equations and associated probability curves for each yield

level are presented in Fig. 5. The probability of obtaining a high yield was small (less than

10%) for the whole range of variation of Factor 1. Therefore, discrimination was most

effective among areas of low and medium grape yield.

The probability (p2) of a medium grape yield increased with increasing values of Factor

1; on the other hand, the probability of a low grape yield (p1) diminished with the same

Table 2 Rotated factorial matrix for field P30 (Pinot Noir) in 2002

Variablea Factor 1 Factor 2 Factor 3

Depth (cm) 0.53246 -0.04506 -0.17726

Clay (%) 0.17197 0.25436 -0.73960

Silt (%) -0.24567 0.05083 0.79921

pHb 0.09424 -0.40293 0.08697

EC (lS cm-1)c -0.24328 -0.22389 -0.16370

Carbonates (%)d 0.07153 -0.09248 -0.8421

om (%)e -0.05050 0.10126 0.37162

N (g kg-1) 0.68453 -0.16117 -0.13955

P (g kg-1) 0.25426 -0.46385 0.57715

K (g kg-1) 0.17027 0.82932 0.34523

Ca (g kg-1) 0.75584 0.02828 -0.05075

Mg (g kg-1) 0.83832 0.48047 -0.08639

Fe (mg kg-1) 0.82793 0.47834 -0.00911

S (g kg-1) 0.76200 0.38108 -0.14882

Zn (mg kg-1) 0.84571 0.00930 -0.27482

Cu (mg kg-1) 0.56230 0.69344 -0.19902

Mn (mg kg-1) 0.81544 -0.05155 -0.09073

B (mg kg-1) 0.74696 0.45963 0.28474

Na (mg kg-1) 0.18482 0.80859 -0.03302

Elevation (m) -0.27951 -0.43878 0.56108

Slope (%) 0.26610 0.06417 -0.02073

Variance (%) 28.52 16.10 14.43

Bold values indicate ‘factor loadings’ that show a correlation between sampled variables and factors
a The sand fraction was not included in the analysis as it could be obtained as a linear combination of clay
and silt
b pH measured using a 1:2.5 soil:water dilution
c EC Electrical conductivity (1:5 soil:water ratio)
d CaCO3 equivalent
e om organic matter

Table 3 Effect of grape yield
level (cluster) on the factors
extracted in field P30 (Pinot
Noir)

2 Clusters
(low, high)

3 Clusters
(low, medium, high)

p [ F p [ F

Factor 1 0.8640 0.0111

Factor 2 0.2115 0.1030

Factor 3 0.7522 0.8249
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factor. In terms of odds, positive values of Factor 1 (F1 [ 0) increased the odds of a

medium yield, while negative values (F1 \ 0) tended to increase the odds of a low yield.

In fact, the odds between the two yield groups (medium grape yield versus low grape yield)

could be calculated through Eq. 8,

p2

p1

¼ expð0:6768þ 2:3688 � F1Þ: ð8Þ

In this way, and for a value of Factor 1 equal to zero (F1 = 0), there was twice the

probability (1.97) of obtaining a medium grape yield as opposed to a low one. The increase

in the amount of Factor 1 in one unit meant that the odds of obtaining a medium grape

yield as opposed to a low one multiplied almost 11-fold odds ratio ¼ e2:3688
� �

.

Assessing the opportunity for variable crop nutrition

The logistic model results suggested that grape yield was influenced by the nutrition status

of the petiole. Therefore, one would expect that variable crop fertilization in this field was

warranted given the variable nutritional status of the vines. However, the practical utility of

the first model was the main concern. As Factor 1 groups different nutritional elements, it

is possible to make a variable-rate application to increase the presence of the mineral

contents involved (N, Ca, Mg, Fe, S, Zn, Mn, B) in areas with low yield levels. A potential

variant of this approach would be to obtain a model that relates the yield (cluster) to those

variables whose communality (variance that is related to the common factors) was

essentially explained by Factor 1. Following this logic, calcium (Ca) and manganese (Mn)

would have been the only Factor 1 variables that, besides having high correlations with the
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Fig. 5 Logistic regression curves for grape yield level (low-p1, medium-p2 and high-p3) based on Factor 1
(mineral content per petiole). p1 is the probability of a low grape yield, p2 is that of a medium grape yield,
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mentioned factor (0.75584 and 0.81544, respectively, Table 2), also showed practically no

correlation with the rest of the factors, although this did not happen for other nutrients. On

the other hand, only two of the 29 sampling points in field P30 were associated with a

grape yield typified as high. Even so, of the 27 remaining points, 12 were associated with

low yield and 15 with medium yield (the grape yield classification map based on three

clusters had already predicted a relatively limited presence of areas with a high yield). The

logistic regression model had again demonstrated the low incidence of areas with high

levels of grape yield in field P30. Having made these considerations, the two simple binary

logistic regression models were adjusted to predict the two main grape yield levels (low

and medium) observed in this field. Ca was used as an explanatory variable in one of the

models, while Mn content was the variable used in the other. In Tables 4 and 5, the two

regression models which had been formulated based on the odds of there being a low (p1)

as opposed to a medium grape yield (p2) are shown.

Algebraic treatment of the resulting equations produced the odds of obtaining a medium

yield as opposed to a low one, based on levels of Ca (9) and Mn (10) per petiole:

p2

p1

¼ expð�19:1197þ 0:9790 � CaÞ ð9Þ

p2

p1

¼ expð�5:8661þ 0:1029 �MnÞ; ð10Þ

where the goodness of fit was very satisfactory in both models, judging from the results of

the Hosmer and Lemeshow contrast (1989) and the respective indices of predictive

capacity (0.897 in the case of Ca and 0.908 for Mn).

There was a greater probability of obtaining a medium grape yield as opposed to a low

one if the Ca petiole content was above 19.5 g kg-1. Moreover, the odds of obtaining a

medium grape yield multiplied seven-fold with a 2.0 g kg-1 increase in the amount of Ca

present in the grapevine odds ratio ¼ e0:9790�2:0ð Þ. In the case of Mn, for a petiole content

of 57 mg kg-1, there was an equal probability of obtaining either of the two levels of grape

Table 4 Binary logistic regression parameters for model relating the grape yield (low vs. medium) to
amount (g kg-1) of Ca per petiole in field P30 (Pinot Noir)

Term Coefficient (b) Standard error v2 wald p [ v2 CI 95.0% for b

Lower Higher

Independent 19.1197 8.2066 5.4279 0.0198 3.0350 35.2043

Ca (g kg-1) -0.9790 0.4179 5.4888 0.0191 -1.7979 -0.1600

CI confidence interval

Table 5 Binary logistic regression parameters for model relating the grape yield (low vs. medium) to
amount (mg kg-1) of Mn per petiole in field P30 (Pinot Noir)

Term Coefficient (b) Standard error v2 wald p [ v2 CI 95.0% for b

Lower Higher

Independent 5.8661 2.1747 7.2763 0.0070 1.6038 10.1285

Mn (mg kg-1) -0.1029 0.0390 6.9631 0.0083 -0.1793 -0.0265

CI confidence interval
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yield. However, the odds of a medium grape yield as opposed to a low one were tripled

odds ratio ¼ e0:1029�10ð Þ if the content of this nutrient was increased by 10 mg kg-1.

The petiole data obtained probably reflect differences in grape yield caused by soil and

topographic parameters. Root depth was lower (although not significant) in areas of low

yield (Table 6). This feature combined with a high soil pH may have resulted in a lower

availability of some nutrients in the soils with limited depth explored by roots. No defi-

ciencies were detected, but the results were similar to those found by Bramley et al. (2011).

The question remains whether this information can be used for management once the vine

condition is known (in June). Fertilization by foliar application, either just before flowering

or during ripening, is a well-known option in viticulture. However, another possibility is

the differential application of fertilizers in the post-harvest period, with the aim of storing

nutrients in the plants so that they will have an effect during the following campaign. In

this case (field P30, Pinot Noir), the yield patterns were consistent for different years and

differential management would be justified according to the extension of the field affected

(40% of the total area) and the relative simplicity of spatially delimitating its area.

Soil properties and grape quality: assessing the opportunity for variable soil

amendment

The analysis of spatial covariance between grape yield and grape quality was centred on

the work carried out in 2003 (Fig. 6). Clustering of the 2003 yield into two different zones

made it possible to differentiate between two types of grape quality. Thus, the low yield

zone (cluster 1) had a higher sugar content and lower total acidity than the high yield zone.

However, no differences were found in total phenolic content (index) contrary to the results

obtained by Bramley and Hamilton (2007) and Bramley et al. (2011).

The spatial correlation between the phenolic content of grapes and the Mn content of the

petiole has been already studied by Bramley (2001). In 2002, field P30 (Pinot Noir) showed

the lowest levels of this nutrient in areas where grape yield was also low. The differential

foliar application of Mn in post-harvest in 2002 could therefore have led, in 2003, to an

increase in grape yield and, simultaneously, an improvement in grape quality (in this case,

in the phenolic content of the grapes). As the nutritional state of vines depends, to a great

extent, on soil fertility, the question remains whether grape quality is ultimately influenced

by soil characteristics. To investigate the relationships between soil properties and the

grape quality parameters sampled in 2007, a canonical correlation analysis was used which

assumed the independence of the sampled locations. Of the seven pairs of canonical

variables obtained, only the first was significant (p = 0.0761, Fig. 7), with a correlation of

0.65, indicating that the colour of grape juice is mainly related to the presence of car-

bonates in soil. To be more precise (Table 7), the canonical variable V1 measures both the

colour of grape juice and the berries with low weight, and W1 measures low soil carbonate

Table 6 Differences in soil properties and vine nutrient status (petioles at flowering) during season
2002–2003 between the low and medium zones

Yield zone Root
depth (cm)

Organic
matter (%)

Clay
fraction (%)

Soil
pH

Ca
(g kg-1)

Mn
(mg kg-1)

Low (L) 49.6 a 0.99 a 48.2 a 8.22 a 1.82 a 46.9 a

Medium (M) 78.1 a 0.91 a 49.1 a 8.36 a 2.19 b 92.4 b
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content. It therefore appeared that soils with an excessive percentage of carbonates

(expressed as %CaCO3) also tended to produce grape juice with poor colour

characteristics.

The soils in the study area (Raimat, Spain) have high content of carbonates and, more

specifically, soils in field P30 (Pinot Noir) could initially be considered ideal for producing

excellent quality wines. However, it is generally accepted that, apart from a delay in grape

ripening which tends to produce more acidic wines, soils with an excessive presence of

Mean yield (t ha-1) 

6.345 

14.228 

Probable alcoholic degree 1

12.2 a

11.7 b 

Acidity 2

4.46 b 
4.70 a 

Phenolics 3

16.7 a 

14.8 a 

Yield (t ha-1) 

22.7 

0.3 

Cluster 1 
Cluster 2 

0 75 150 300 
m N 

Fig. 6 Grape yield map of the 2003 vintage (P30, Pinot Noir), reclassifying the grape yield map into two
clusters (low yield, cluster 1 and high yield, cluster 2) and comparing grape quality parameters. 1 (% vol.).
2 Total acidity expressed as g H2SO4 l-1. 3 Measure related to must absorbance at 280 nm

Fig. 7 Canonical correlation between grape quality (V1) and soil properties (W1)

Precision Agric (2012) 13:393–410 407

123



carbonates (active lime) can also produce deficiencies in nutrients such as boron and

manganese. For instance, Mn deficiency can produce signs of chlorosis early in the season.

According to Bramley (2001), restrictions in the availability of Mn to vines (probably

caused by calcium carbonate and high soil pH) could explain the low phenolic content in

grapes (and, as a consequence, the poorer colour characteristics that are reflected by the

canonical variable V1). This consideration led to the possibility of correcting the probable

Mn imbalance and other possible mineral nutrient deficiencies by applying an appropriate

variable soil amendment. Furthermore (Bramley et al. 2011), the present results support the

view that soil properties (physical and chemical) presumably influence the nutritional

status of vines and, therefore, they may ultimately determine some grape quality attributes.

The opportunity of applying variable crop/soil fertilization would therefore seem jus-

tified, as both yield and quality are closely related to the nutritional state of the vines. The

differential application of soil chelates could be a good option for some nutrients. How-

ever, foliar applications are probably the most viable option in field P30 (Pinot Noir) due

to, on average in soil, the high total carbonate content (26% CaCO3 equivalent) and

alkaline pH (8.0). A foliar application just before flowering with chelating products is an

option. But the differential application of foliar fertilizers in post-harvest, before the leaf

fall, could be a reasonable strategy to employ when the goal is to accumulate these

nutrients in the vines and to thereby influence the vintage of the following campaign.

Conclusions

Within-field variability of grape yield and quality raises important questions concerning

whether site-specific crop management could be used in vineyards. In our study, both the

magnitude and the spatial structure of this variability seem to make the adoption of some

differential management strategies a feasible option. Problems arise, however, when

looking for causes of this variability, with the density of the soil and crop sampling being

key considerations in this type of research. Data analysis is also important, and multi-

variate statistical methods are a good choice for easy and accurate interpretation of results.

As well as the soil and crop properties that can influence the variability of grape yield,

mineral concentration per petiole (basically relating to N, Ca, Mg, Fe, S, Zn, Mn and B)

played the greatest role in differentiating areas of low and high production. Field P30

(Pinot Noir) was variable in topography. However, topographic variables (elevation and

slope) did not influence the variation in the grape yield and it could only be ascertained that

Table 7 Correlations of sampled variables Y (quality) and X (soil) with the canonical variables V1 (grape
quality attributes) and W1 (soil characteristics)

Y variables V1 X variables W1

Weight of 100 berries (g) -0.4348 Clay (%) -0.1610

Probable alcoholic degree (% vol.) 0.2327 Sand (%) -0.0276

Acidity (g H2SO4 l-1) -0.2049 Electrical conductivity (dS m-1) 0.0880

Anthocyanins (mg berry-1) 0.3617 Carbonates (%CaCO3) -0.7146

Polyphenols (mg berry-1) -0.0905 Organic matter (%) 0.1512

Coloura of grape juice 0.8089 AWRC (mm) 0.1918

Soil depth (cm) -0.1285

a Colour: sum of levels of must absorbance at 420, 520 and 620 nm
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high values for soil depth (the depth explored by the roots) tended to have a positive

influence upon grape production. With regard to grape quality attributes, soil fertility and

soil physical and chemical properties are of great importance. In this sense, the presence of

soil carbonates in European vineyards probably leads to deficiencies in some mineral

nutrients (e.g., Mn), reducing the availability of this micro-element to vines, and affecting

the desired level of grape colour in red grapes.
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Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011). Variation in vine vigour, grape yield and vineyard
soils and topography as indicators of variation in the chemical composition of grapes, wine and wine
sensory attributes. Australian Journal of Grape and Wine Research, 17, 217–229.

Bramley, R., & Proffitt, T. (1999). Managing variability in viticultural production. The Australian
Grapegrower & Winemaker, 427, 11–16.

Bramley, R. G. V. & Williams, S. K. (2001). A protocol for winegrape yield maps. In G. Grenier &
S. Blackmore (Eds.) Proceedings of the 3rd European conference on precision agriculture
(pp 773–778). France: Agro Montpellier.

Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2010). Within-season temporal variation in
correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12,
103–117. doi:10.1007/s11119-010-9159-4.

Hidalgo, J. (2006). La calidad del vino desde el viñedo (The quality of wine from the vineyard). Madrid,
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