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Abstract A study was conducted to explore the potential use of a hand-held (proximal)

hyperspectral sensor equipped with a canopy pasture probe to assess a number of pasture

quality parameters: crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre

(NDF), ash, dietary cation–anion difference (DCAD), lignin, lipid, metabolisable energy

(ME) and organic matter digestibility (OMD) during the autumn season 2009. Partial least

squares regression was used to develop a relationship between each of these pasture quality

parameters and spectral reflectance acquired in the 500–2 400 nm range. Overall, satis-

factory results were produced with high coefficients of determination (R2), Nash–Sutcliffe

efficiency (NSE) and ratio prediction to deviation (RPD). High accuracy (low root mean

square error-RMSE values) for pasture quality parameters such as CP, ADF, NDF, ash,

DCAD, lignin, ME and OMD was achieved; although lipid was poorly predicted. These

results suggest that in situ canopy reflectance can be used to predict the pasture quality in a

timely fashion so as to assist farmers in their decision making.
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Introduction

Grazed pasture systems support New Zealand’s major export earnings from milk, meat and

wool production. The meat and milk industries require high quality pastures to maintain

productivity and profitability. In addition, pasture quality is a critical factor in determining

animal performance, stocking rates and methane emissions (FAO 2010). The key com-

ponents of pasture quality are CP, fibre, minerals, ash, organic matter digestibility (OMD),

sugars and metabolisable energy. Pasture quality is highly variable, and its feeding value

depends to a large extent upon the species composition of the pasture, its maturity, stage of

growth as well as topography and climatic factors (Holmes et al. 2007).

Intensification of NZ farming systems and consumer demand for changing product

specifications contribute to an increasing need for objective measurement and control of

pasture quality. The key components of feed quality estimates have typically been mea-

sured using conventional methods of wet chemistry according to the Association of Official

Analytical Chemists (AOAC 2005). These procedures are time consuming and expensive.

The need for faster and cost effective analysis options has led to the wide-spread use of

laboratory-based near infrared spectroscopy (NIRS) for estimating foliar chemistry without

any chemical treatments and analysis. Lab-NIRS has been widely accepted as a common

method to estimate chemical components in materials such as forage (Marten et al. 1983),

maize (Volkers et al. 2003), cereals (Stubbs et al. 2009), tuber crop flowers (Lebot et al.

2009), meat (Prieto et al. 2006) and soil (Kusumo et al. 2008). Analysing forage quality

using NIRS was initiated by the United States Department of Agriculture (USDA) because

it allowed more rapid processing of laboratory samples, multiple analyses with one

operation (Marten et al. 1985). However emerging demand is for ‘real-time’ analysis

which overcomes the issues of spatial and temporal variability in pasture quality.

Remote sensing technologies, particularly hyperspectral remote sensing, have enabled

field study of vegetative biochemical features at a canopy level and can also record spatial

differences (Zarco-Tejada 2000). This reduces the tedious process of intensive sampling and

lab analysis. In the early 1990s NASA initiated a programme called Accelerated Canopy

Chemistry Programme (ACCP) (NASA 1994). ACCP examined the relationships between

spectral data acquired from High Resolution Imaging Spectrometer (HIRIS) and measured

foliar chemistry. The nitrogen and lignin concentrations in forest canopy were predicted

successfully using this method with R2 values of 0.87 and 0.77, respectively (Martin and

Aber 1997). Despite the successful application of remote sensing in field crops, grassland

provides a more diverse set of challenges when adopting these technologies. In general,

pastures have greater diversity as spatial and temporal heterogeneity result from a number of

confounding factors, including: diverse species, morphology and interactions between the

grazing animals, the natural environmental conditions and management practices. To

accomplish this task, in such a complex environment, Schellberg et al. (2008) has recom-

mended use of a high resolution spectral sensor, where high spectral and spatial resolution

proximal sensors could provide reasonable information with high precision. Recently

portable or field spectroradiometers (hyperspectral sensors) have been developed with

similar features for research studies in various industries. Research by Sanches (2009),

Mutanga (2004) Biewer et al. (2009b) and Pullanagari et al. (2011) found significant

relationships between nitrogen concentration and in situ green vegetation. Although there

were problems of water interference with biochemical concentrations (Mutanga 2004), soil

background and canopy structure, satisfactory results with high accuracy were obtained.

This paper investigates the ability of a proximal hyperspectral sensor to estimate pas-

ture quality parameters (CP, ADF, NDF, ME, ASH, Lignin, Lipid, OMD and DCAD) on
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commercial NZ pastures. It can process large numbers of in situ samples cost effectively

compared with wet chemistry, creating an opportunity to improve pasture management.

Proximal hyperspectral sensors encompass spatial and temporal variations and near real

time data is produced to aid effective farm decision processes to be implemented. The

objective of this study was to evaluate the spectral differences related to in situ pasture

quality, as well as developing and validating relationships between acquired reflectance

data and pasture quality parameters.

Materials and methods

Study area

The study was conducted on four commercial farms across New Zealand, a total of 320

locations or subplots (Table 1) were sampled. The farms and paddocks within farms varied

in: ratio of green: dead and vegetative: non-vegetative plant material, geographical loca-

tion, botanical combinations of pasture, soil type, climate and livestock enterprise (dairy or

sheep and beef). All pastures were based on perennial ryegrass (Lolium perenne L.) and

white clover (Trifolium repens L.). A range of less dominate grasses and a small portion of

weeds such as: buttercup (Ranunculus spp.), catsear (Hypochaeris radicata), chickweed

(Stellaria media), docks (Rumex spp.), Californian thistle (Cirsium arvense) and yarrow

(Achillea millefolium), were also evident.

Spectral measurements

Canopy spectral measurements were taken during the autumn season of 2009, on 23rd–

26th March at Massey University Dairy Farm, Aorangi (sheep and beef), Palmerston

North; from 22nd–23rd April at Lincoln University Dairy Farm and from 27th to 28th May

at Ruakura Dairy Farm, Hamilton (Table 1). The spectral measurements were acquired in

situ using an ASD FieldSpec� Pro FR spectroradiometer (Analytical Spectral Devices Inc.,

Boulder, CO, USA).

The ground field-of-view was approximately 25� and covered a sample area of 0.25 m2.

The spectral range was 350–2 500 nm, with 1.4 nm resolutions in the 350–1 000 and 2 nm

in the 1 000–2 500 nm. This was re-sampled as 1 nm resolution spectral data (from

Table 1 The experimental site locations

Site no. Farm name Location Latitude
(N)

Longitude
(E)

Number of
samples

Number of
samples
considered
in analysis

1 Massey University
Dairy Farms

Palmerston
North

-40.3785 175.6029 80 30

2 Aorangi Research
Station, AgResearch

Palmerston
North

-40.2523 175.5901 40 18

3 Lincoln University
Dairy farm

Lincoln -43.6399 172.4413 100 92

4 Ruakura Dairy
farm, AgResearch

Hamilton -37.7777 175.3125 100 74
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350–2 500 nm) by using ASD, RS3TM

software. To ensure consistent illumination, the

canopy pasture probe (CAPP)-top grip, developed by Sanches (2009), was used. This

consisted of an inverted black bin coupled with a 50 Watt tungsten-quartz-halogen bulb as

the light source. The CAPP-top grip allowed acquisition of consistent reflectance spectra

using an artificial light source under variable natural lighting (e.g. cloudy) and weather

(e.g. windy) conditions. At each sub-plot, ten spectral measurements were acquired and

subsequently averaged, using View Spec Pro� software, to a single reflectance spectrum.

A total of 214 spectral measurements (Table 1) were included in the data analysis.

Samples were excluded due to soil contamination the sample submitted for NIR analysis

and missing samples. The radiance was converted into reflectance so as to optimise the

reflectance by using scans from a reference panel. In this case, a matt white ceramic tile

was used as a reference which has been proven as a reasonable and reliable reflectance

standard (Sanches et al. 2009). Figure 1 illustrates the population mean reflectance

(Fig. 1a), and first derivative mean reflectance of 214 pasture measurements at wavebands

ranging from 500–2 400 nm, (Fig. 1b). The first derivative reflectance illustrates most of

the variation is in the visible to near infrared with wavelengths of 550–1 000 nm followed

by 1 460–1 800 and 2 000–2 300 nm. This indicates the importance of the visible-near

infrared region for the study of green vegetation, and is consistent with previous research

(Biewer et al. 2009a).

(a)

(b)

Fig. 1 a Mean reflectance, b mean and standard deviation of first derivative reflectance of acquired pasture
samples (n = 214)
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Sampling

Subplots in each paddock were selected randomly. At each subplot, a wooden framed

quadrant with inside edge dimensions of 0.5 9 0.5 m, was positioned on the pasture so as

to obtain spectral signatures. At each site, after spectral measurements, the herbage sam-

ples were cut to ground level with an electric shearing hand piece. The dominant species

and ancillary data (e.g. weeds, treading damage, and species present) were visually

assessed and recorded separately.

Chemical Analysis

The clipped pasture samples were collected in polythene plastic bags and transported to a

laboratory immediately for processing. The samples were oven-dried at 60�C for 24 h and

ground to pass a 1 mm sieve. The CP, acid detergent fibre (ADF), neutral detergent fibre

(NDF), ash, DCAD, lignin, lipid, metobolisable energy (ME) and OMD contents were

estimated using near-infrared reflectance spectroscopy—NIRS at FeedTECH (Corson et al.

1999) laboratory based at AgResearch in Palmerston North, New Zealand.

Data processing and statistical analysis

Data manipulations

The objective of the research was to build relationships between acquired spectral signa-

tures and pasture quality parameters which are important for livestock management.

The spectral data were manipulated to remove spectral abnormalities which occur ran-

domly across the spectrum and to improve absorption features. These abnormalities might

be due to internal (detectors and electronic circuits and baseline fluctuations) (Ozaki et al.

2005) and external factors (light leak and humidity). View Spec Pro� (ASD Inc.) pro-

gramme was used to process the raw spectra and eliminated unusual spectra (other than

typical green vegetation spectrum) which might reduce the calibration accuracy. In acquired

reflectance, spectral data were removed at the two edges of spectra, 350–500 and 2 400–

2 500 nm, due to natural light leak into the CAPP. The collected contiguous hyperspectral

data (1 900/1 nm wavebands) were reduced to 380/5 nm wavebands using Microsoft Visual

Basic� software. Data transformation, pre-processing and pre-treatment were followed,

(Viscarra Rossel 2008) to enhance spectral properties. Initially, transformation, converting

spectral data in R units to log (1/R) units, was used to reduce non-linearity. The Savitzky–

Golay filter, (Savitzky and Golay 1964) pre-processing smoothing procedure, was then used

to improve signal-to-noise ratio. The Savitzky–Golay filter had a window size of 30 and

polynomial order of 4. The next step of the pre-processing procedure was to compute the

first derivative (Tsai and Philpot 1998) of reflectance differentiation to enhance the

absorption spectral features and to minimise background noise. The first derivative (FD)

transformation of the reflectance spectrum calculated the slope values from the reflectance

which can be derived from the following Eq. 1 (Mutanga et al. 2005):

R
0

k ið Þ ¼
Rk jþ1ð Þ � Rk jð Þ
� �

Dk
ð1Þ

where R0 is the first derivative reflectance at a wavelength i midpoint between wavebands

j and j ? 1. Rk(j?1) is the reflectance at the j ? 1 waveband, Rk(j) is the reflectance at the
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j waveband and Dk is the difference in wavelengths, between j and j ? 1. As a final step of

data manipulation, mean centering of pre-treatment was assigned which may minimise

multicollinearity (one variable correlated with other variables) (Aiken and West 1991). It

also increased precision and stability of estimates by reducing the standard error and

producing least squares of estimates.

Data Analysis

After data manipulation, multivariate statistics were used by adopting the PARLES soft-

ware, developed by Viscarra Rossel (2008) to develop relationships between processed

spectral data and measured variables of interest. Among multivariate statistics, partial least

squares regression (PLSR) is a prominent modelling method which effectively deals with

numerous, multicollinear variables and also when the number of explanatory (number of

wavelengths) variables is greater than the number of observations (Wold et al. 2001).

Before the application of PLSR, principal component analysis was adopted to identify the

spectral outliers but in this case none were found.

The calibration model was developed using the PLS technique, then the regression

model was developed to predict the unknown quality estimates known as validation or test

set. The regression model (2) was represented by (Kawamura et al. 2008):

Y ¼ bXþ e ð2Þ

where Y was the dependent variable (pasture parameters), X was the independent variable

(spectral reflectance), b was the coefficient, and e was the residual. The calibration model

was built with the minimum number of components required to minimise the RMSE full

cross-validation (leave-one-out method). This predicts each sample, with a PLSR model

constructed using the remaining samples (n - 1) and is a method of estimating the accuracy

of the calibration model internally (Kusumo et al. 2009). The validation errors were then

combined into statistical measurements to test the performance of the calibration model. For

external validation, the total dataset (214) was divided into 1:1 ratio as calibration (107) and

validation (107) sets. The calibration model was used to predict the unknown samples or

validation set, thereby estimating the practical accuracy of the developed model. The whole

dataset was divided by ranking the samples from smallest to largest. Even and odd number

samples were recognised as calibration and validation sets respectively.

Quantifying Model Accuracy

The accuracy of the calibration and validation models was evaluated by statistical mea-

surements; R2 (coefficient of determination), RMSE (root mean square error), RMSE%

(root mean square error percentage), bias, RPD (ratio prediction to deviation) and Nash–

Sutcliffe efficiency (NSE). In general, R2 indicates the degree of collinearity between

predicted and measured data and describes the percentage of variation of the X variable in

the Y variable. Although R2 has been widely used for model evaluation, this statistic is

oversensitive to outliers and insensitive to additive and proportional differences between

model predictions and measured data (Legates and Jr McCabe 1999).

The difference of standard deviation between the measured and the predicted values of

functional properties of pasture was measured as RMSE (root mean square error). The

RMSECV and RMSEP, RMSE measure of cross-validated calibration and validation sets

respectively, were calculated according to Eq. 3. The RMSE is an absolute measure of fit
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whereas R2 is a relative measure of fit. Lower values of RMSE indicated a better fit. RMSE

is a measure of how accurately the model predicts the response, and is the most important

criterion for fit if the main purpose of the model is prediction.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ŷ� yð Þ2

n

s

ð3Þ

where ŷ indicates predicted value and y was the measured laboratory value, �y was the mean

of measured values and n was the number of samples. Although, RMSE is more sensitive

to outliers and therefore, RMSE% was also calculated using Eq. 4.

RMSE% ¼ 100
RMSE

�y
ð4Þ

The bias, mean difference between the reference data and NIRS-predicted data indi-

cated the systematic error in the model and was computed according to Eq. 5.

Bias ¼ 1

n

Xn

i¼1

ŷ� yð Þ ð5Þ

The RPD is the ratio of the standard deviation of laboratory values of pasture

characteristics to the RMSE. This calculation was made to show how much more

accurate (measured by the standard error) a prediction from the model was than simply

quoting the overall mean (Kusumo et al. 2008). The RPD values were calculated from

Eq. 6.

RPD ¼ SD yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðŷ�yÞ2

n

r ð6Þ

In addition, the Nash–Sutcliffe efficiency (NSE) statistic also called the model effi-

ciency was used to examine the relative magnitude of the residues compared to the var-

iance in measured data and was calculated from Eq. 7 (Nash and Sutcliffe 1970). The

values of NSE ranged between -a to 1.0. The acceptable NSE values were from 0 to 1,

whereas the negative values (\0) were deemed unacceptable which indicated poor model

performance (Moriasi et al. 2007) and (Miehle et al. 2006). However, it is strongly sen-

sitive to the variation within the data (Schut et al. 2006).

NSE ¼ 1�
Pn

i¼1 ŷ� yð Þ2
Pn

i¼1 ŷ� �yð Þ2

 !

ð7Þ

Accurate and precise prediction was shown by high R2, NSE and RPD, and low RMSE

and RMSE %.

After PLSR modelling, the magnitude of each waveband (x) in modelling of y computed

using PLS-regression weighted coefficients and represented by variable importance for the

projection (VIP) (Wold et al. 2001) and calculated by Eq. 8. A larger score indicates the

waveband had greater importance in building a model that predicts y, while the waveband

having a lower score (\1) had less importance in developing a model.

VIPkðaÞ ¼ K
X

a
w2ak

SSYa

SSYt

� �
ð8Þ
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The Eq. 8, where VIPk(a) is the importance of the kth predictor (wavelength) variable

based on a model with a factors (PLS-components), Wak represents PLS-weights of kth

variable in a ath PLS-factor, SSYa is the explained sum of squares of Y by a PLSR model

with a factors, SSYt is the total sum of squares of Y explained in all a factors of a PLS

model.

Results

Summary statistics of NIRS data

The dataset (n = 214) comprised of 107 assays for the calibration set and 107 assays for

the validation set. The descriptive statistics of pasture quality estimates were analysed by

bench-top laboratory NIRS with respective calibration set and validation sets and are

presented in Table 2.

In this experiment a wide range of quality estimates were found. The variation was

mainly due to biotic (botanical composition and weeds) and abiotic (slope, soil, altitude

and climate) factors (Mutanga and Skidmore 2003) and also samples acquired from dif-

ferent locations and different growth stages. To build a robust calibration model Marten

et al. (1985) recommended a wide range of datasets.

To summarise the descriptive statistics illustrated in Table 2, the lignin had the widest

variation expressed as a CV(%) with a range of values from 1.30 to 5.14% followed by

lipid (0.97–4.24% DM), crude protein (8.08–28.41% DM), NDF (28.29–67.32% DM),

DCAD (305.30–874.40 mEq kg-1 DM), ADF (19.40–38.19% DM), OMD (48.77–92.23%

DM) ash (7.30–13.58% DM) and ME (8.39–13.16 MJ kg-1 DM) in calibration and vali-

dation sets. Overall, lignin had the greatest CV of 30.61 and 30.7% while ME had a low

CV (10.34 and 10.26% in the calibration and validation datasets respectively).

Correlation among the pasture quality parameters

A strong linear intercorrelation existed, listed in Table 3, between various measured

quality parameters. The majority of the parameters have intercorrelation at a significance

level of p \ 0.001. The CP had shown a strong positive correlation (R2), significance at

level of p \ 0.001, with ash (0.73), DCAD (0.81), lipid (0.62), ME (0.88), OMD (0.88)

while having a strong negative correlation (p \ 0.001) with ADF (-0.84), NDF (-0.80)

and lignin (-0.75). ADF had shown significant correlation with all pasture quality

parameters with a range of R2 (-0.94 to 0.94) values. Similarly, NDF had significant

correlation with all quality constituents except ash. Ash had stronger correlation with CP

(R2 0.73) while other components correlated with moderate R2 values. Lignin and lipid had

significant correlations with all quality parameters except with ash.

Principal component analysis

After mathematical transformations of the reflectance spectra, a principal component

analysis (PCA) was conducted to visualise the spectral variance and detect any influence of

each object’s spectral data within the whole dataset (Esbensen et al. 2009). In the process

of PCA decomposition, the available spectral data were transformed into non-linear

principal components or latent variables. This described the majority of variation present in
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the spectra. Furthermore, the score plot spectral distinctions were useful for identifying

outliers and to discriminate the spectral differences as clusters which were used for model

development.

The resulting biplot (Fig. 2) illustrated 90% of variance in total spectra: PC1 (principal

component 1) accounts for 75% and PC2 (principal component 2) accounts for 15% of the

variance. Geographical location had little impact on spectral variation. The location-spe-

cific spectral discrimination was not strong, therefore the score values of four quadrants in

the score plot (Fig. 2) were evaluated with recorded ancillary data and visual images.

PLSR models for calibration and validation datasets

From the calibration and validation datasets the quality estimates of CP, ADF, NDF, ash,

DCAD, lignin, ME and OMD were significantly predicted using the spectral data

(Table 4). The results of the prediction models and regression equations were described in

Table 4. High levels of coefficient of determination (R2) values ranging from 0.71–0.83

were accompanied by low RMSE values, indicating high accuracy. From this, it can be

deduced that the performance of the PLSR models were consistent among the calibration

and validation datasets with a slight variation of R2 values (0–5.2%) and RMSE values

(0–13%). Although R2 is a commonly used calibration statistic, it is not the best measure of

the merit of a calibration model because it depends on range (Davies and Fearn 2006). To

offset this problem, RPD was calculated for the above parameters and found to range in

value between 1.88 to 2.46. Under laboratory conditions, the desired level of prediction

accuracy is: R2 [ 0.8 and RPD [ 2 (Kusumo 2009). For field measurements, however,

lower RPD values are acceptable according to Biewer et al. (2009b). The NSE values for

the above pasture quality parameters ranged between 0.63 and 0.83, which indicated

competent performance of the models.

Fig. 2 Score plot of first and second principal components from the PCA of reflectance spectra
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In contrast, the remaining quality parameter, lipid was not predicted well by the spectra

with results of low R2 values: 0.52, and 0.18 respectively. Although lipid had a wider range

(CV, 24–28%) in the dataset, the precision and accuracy were low.

Important wavebands explaining the variance of pasture quality components

The contribution of each waveband can be visualised by computing the variable impor-

tance in projection (VIP), which is illustrated in Fig. 3. As expected, the majority of the

important first derivative reflectance wavebands with high VIP scores occurred in the

visible region (500–750 nm) (Fig. 3). This was attributed to absorbance of visible radiance

by green vegetation. In addition to this, the near infrared region (800–1 000 nm) and

shortwave infrared region from 1 900–2 400 nm had shown importance in corresponding

to each pasture quality parameter.

Discussion

The majority of forage quality prediction experiments using hyperspectral sensors, so far,

are confined to reasonably well controlled experimental sites and have produced satis-

factory results (Albayrak 2008; Mutanga et al. 2005; Beeri et al. 2007). In order to evaluate

the practical application of these sensors and to develop suitable methodologies for the

analysis of data, this study was conducted under commercial field conditions. Using single

wavebands or broad band indices to explain the variation in foliar chemistry is limited

(Zhao et al. 2005). Single band values are not directly related to any plant chemical

constituent due to overlapping of chemical absorption features. Therefore, the use of

contiguous spectral wavebands, with a full-spectrum approach, was investigated to

determine if the relationships between reflectance measurements and in situ pasture quality

could be improved. The models were developed using acquired and processed spectral data

using 380 wavebands with 5 nm resolution and data produced from lab-NIRS measure-

ment of pasture quality. Although many mathematical transformations are available to

develop a ‘‘best functional relationship’’ between measured pasture quality parameters and

in situ reflectance measurements, the first derivative (FD) of Log (1/R) was found to be

useful in prediction with an improved statistical accuracy compared to reflectance alone.

This study has shown that using PLSR analysis resulted in predictive models with high R2,

RPD and NSE, and lower RMSE and RMSE % values. Biewer et al. (2009b) stressed the

importance of using full spectral data using a modified partial least squares regression

(MPLSR) algorithm for estimating quality parameters of CP, ME, ash and ADF in highly

variable mixed swards with high R2 and RPD values rather than two-wavebands ratios (low

R2 values). A similar pattern was also observed with the results of (Mutanga et al. 2005).

Zhao et al. (2007) also reported the significant performance, with improved R2 values, of

PLSR models used to predict forage quality parameters, compared with simple reflectance

ratio and multiple regression (MAXR) with 10-waveband models.

Principal component analysis (PCA) showed the reasons for major spectral discrimi-

nation in the score plot may be due to the presence of dead material (highlighted by the

rectangle, Fig. 2), variance in botanical composition and pasture colour (highlighted by the

circle, Fig. 2). On the top-left corner of the score plot, the samples in the marked region

contained some dead material, and the top-right quarter of the score plot samples had light

green coloured pasture. These observations were consistent with Sanches (2009). In
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Fig. 3 Variable importance in projection (VIP) plot showing the importance of each waveband in
developing a model of pasture quality attributes across the electromagnetic spectrum; X-axis represents
wavelength (nm) and Y-axis represents VIP-scores

364 Precision Agric (2012) 13:351–369

123



addition, Biewer et al. (2009b) has highlighted the spectral reflectance values obtained

from dried grass swards and regarded these as outliers to improve the model accuracy.

Principal component regression (PCR) was applied to investigate the predictive ability

of pasture quality parameters, but weaker relationships were obtained, with R2 values of

0.15–0.45 (data not shown). However, PCA is useful for recognising major sources of

variance (fraction of green and dead vegetation) rather than small variances (chemical

concentrations) in the vegetation spectral data. This implied that the majority of spectral

variance might be influenced by confounding factors such as canopy structure, chemical

interactions with other factors, soil background and botanical composition. To offset this

problem, PLSR analysis was performed where the spectral PLS-components were more

strongly directed towards parameters of interest by providing these parameters with extra

weight (Esbensen et al. 2009).

In this study, the pasture quality estimates of CP, ADF, NDF, ash, DCAD, lignin, ME

and OMD were predicted with high accuracy, a wide range of chemical constituents of

pasture samples caused by natural heterogeneity in permanent pastures (Schellberg et al.

2008) may support improved accuracy. Added to this, fertiliser application rates, varieties

and measurement times also contributed to create a large variance (Nguyen et al. 2006).

For developing a best fit model a wide range of data within the dataset is essential

(Williams and Norris 1987). However, lipid was not predicted well, which might be due to

the lower fraction present in the sample. Despite satisfactory results in prediction of

biochemical concentrations in green vegetation there is no consistency of statistical

Fig. 3 continued
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accuracy in various experimental studies (Mutanga et al. 2005; Schut et al. 2006;

Kawamura et al. 2008). It could possibly depend on the range of samples used in datasets

and the influence of confounding factors (biotic and abiotic). Moreover, there is high level

of intercorrelation (Table 3) between quality parameters, which will assist with more

precise predictions. However, there are still opportunities to improve the accuracy of

models which might be influenced by various interference factors such as: different

botanical and floristic composition, weeds (Schut et al. 2006), growth stages, soil back-

ground effects (Kokaly 2001) and canopy structure.

Developing calibration equations using the data estimated by laboratory-NIRS has some

limitations since there were significant errors associated with prediction and in addition to

this, standard error (SE) varies with each chemical compound. For example, the SE of CP

of hay was higher than ADF, might be due to an absence of precise methods to analyse

detergent fibres rather than CP (Marten et al. 1985). In addition, Biewer et al. (2009b) has

explained the relative importance of using wet chemistry values as a reference for reducing

the prediction errors as seen in NIRS analysed samples. Considering this statement, this

study has used laboratory-NIRS to predict chemical composition of dried samples of each

sward. Therefore the accuracy of the measurements might be slightly lower compared to

standard procedure (wet chemistry). This suggests that the wet chemistry might improve

the model accuracy.

The predictive contribution of each waveband can be visualised by computing the VIP,

an output of PARLES (Viscarra Rossel 2008) and shown in Fig. 3. However, as expected,

the majority of the important first derivative reflectance wavebands occurred in the visible

region (400–750 nm), near infrared region (800–950 nm) and in the shortwave infrared

region (1 950–2 350 nm). This can be attributed to absorbance of visible radiance by

chlorophyll, which is abundant in green vegetation. Past studies have shown that there was

a strong relationship between chlorophyll concentration and nitrogen content in plants due

to the presence of N–H bonds (Curran 1989). The leaf organic materials such as: lignin,

protein, starch, cellulose, hemicellulose and sugar have common fundamental molecular

bonds such as O–H and C–H. The vibrational and bond stretching absorbance’s associated

with these bonds lie across the spectral region of shortwave infrared from 1.720 to

2.350 lm (Kokaly and Clark 1999). The wavelength at 2.078 lm is responsible for O–H

stretch/O–H deformation bond, which are the prominent bonds in starch or sugar (Curran

1989) and water. Absorptions around 1 960, 1 980, 2 100, 2 240 and 2 340 nm are

responsible for O–H, N–H, O=H and O–H combinations, C–H (aromatic), C–H and O–H

combination bonds respectively (Curran 1989) which are the common bonds in pasture

quality parameters.

Protein is the major nitrogen containing biochemical component in plants. For CP, the

peaks with higher VIP values surrounded the wavebands from 695–990 nm, and from

1 950–2 400 nm. Absorption in the spectral region from 2 100–2 200 nm has also been

attributed to N–H bonds in proteins (Martin and Aber 1997). The absorptions at 2.054 and

2.172 lm is directly related to the presence of C–N and N–H bonds in proteins (Kokaly

2001). This implies that the visible and near infrared wavebands are reliable when esti-

mating biochemical concentrations in pasture.

Accurate and real-time estimation of pasture quality enables farmers to adopt precise

management practices. Such practices include fertilizer application which can be applied in

response to pasture quality status thereby, fertilizer use has been optimised. Moreover, field

or spatial variability maps can be obtained when the sensor integrated with global posi-

tioning system (GPS) which allow for the identification chronically poor and high pro-

ductive areas. These variability maps allow farm mangers to maintain pasture evenly
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across the field using site-specific practices. Murray and Yule (2007) clearly indicated the

economic benefit and increased fertilizer use efficiency by adopting the variable rate

application technology as site-specific practice.

Regular monitoring of forage nutrient status provides an opportunity to schedule

rotations in an efficient way in order to meet the requirements of stock while maintaining

threshold levels in the field, thereby supplements can be provided when there is an

inadequate level of nutrient from pasture. Based on the information of available nutrients at

the paddock level, stocking rate would be allocated as to meet animal needs. Finally, the

successful adoption of precise management practices on grasslands leads to economic and

environmental benefits and better utilization of pastures and ensures animal health and

performance.

Conclusion

This paper explains the potential use of in-field hyperspectral proximal sensing to estimate

mixed pasture quality using a PLSR algorithm. Satisfactory results were obtained that

reflect the strong relationship between spectral measurements and pasture quality param-

eters. The PLSR models predicted measured attributes with reasonable precision (high R2,

NSE and RPD values) and accuracy (low RMSE and RMSE % values) compared to other

models.

The PLSR algorithm performed better in estimating pasture quality attributes such as

CP, ADF, NDF, ash, DCAD, lignin, ME and OMD, while, the estimates of lipid was

predicted with lower precision for various reasons. The information produced using in-field

hyperspectral proximal sensing of pasture would help pastoral farmers and graziers to

improve their productivity, on-farm performance and build business resilience, by enabling

them to make more accurate and timely decisions. These are, but not limited to: manip-

ulation of stocking rates, grazing intervals, optimising timing of grazing individual pad-

docks, benchmarking each paddock within their farm to optimise and tailor capital inputs

of fertiliser, plan from which paddocks conserved feed is to be made, and gauge what the

quality of the pasture is before harvesting. To extend the results of this study towards a

practical outcome for farmers, it is recommended that further research be carried out to

investigate the spectral changes in permanent pastures throughout the year and across the

seasons with the view of evaluating the need for seasonal calibration of NIRS to pasture

quality.
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