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Abstract Diseases caused by nematodes and non-sporulating soil-borne fungi have low

mobility and are likely to be suitable targets for precision agriculture applications. Sensors

which assess the reflectance of plant leaves may be useful tools to detect soil-borne

pathogens. The development of symptoms caused by the plant parasitic nematode Het-
erodera schachtii and the fungal pathogen Rhizoctonia solani anastomosis group 2-2IIIB

alone or in combination was studied by leaf reflectance recorded with a hyperspectral

imaging system (range 400–1000 nm) for 9 weeks twice per week. Three image processing

methods were tested for their suitability to generate the most sensitive spectral information

for disease detection. Nine spectral vegetation indices were calculated from spectra to

correlate them to leaf symptom recordings. Supervised classification by spectral angle

mapper was tested for the discrimination of leaf symptoms caused by the diseases. The

symptoms of Rhizoctonia crown and root rot caused by R. solani and symptoms caused by

H. schachtii induced modifications that could be detected by hyperspectral image analysis.

Rhizoctonia crown and root rot symptom development in mixed inoculations was faster

and more severe than in single inoculations, indicating complex interactions among fun-

gus, nematode and plant. The results from this study under controlled conditions are

currently used to transfer the sensor technology to the field.
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Introduction

The plant parasitic nematode Heterodera schachtii (Schmidt) and the soil-borne fungal

pathogen Rhizoctonia solani (Kühn) [teleomorph Thanatephorus cucumeris (Frank) Donk]

are two major constraints in sugar beet production worldwide (Kiewnick et al. 2001;

Schlang 1991). Above-ground symptoms caused by the root-colonizing beet cyst nematode

(BCN) are stunted growth, decreased chlorophyll content and wilting of the canopy in the

late cropping season due to water stress (Cooke 1987; Schmitz et al. 2006). Rhizoctonia
crown and root rot (RCRR) caused by R. solani anastomosis group (AG) 2-2IIIB results in

yellowing of leaves, which later become necrotic. Furthermore, symptoms include wilting,

collapse and formation of a rosette of dying leaves on the soil (Herr 1996). Both soil-borne

organisms occur in patches in the field, have low active mobility and induce above-ground

symptoms on the canopy, which makes them suitable targets for precision agriculture tools.

Disease detection by reflectance measurements of plant canopies and mapping of disease

occurrence may help in the generation of management zones for disease control (Hill-

nhütter and Mahlein 2008). Disease control can include the site-specific application of

nematicides or fungicides, if registered. Furthermore, site-specific sowing of sugar beet

cultivars with different levels of tolerance or resistance against BCN and RCRR can be

realized. Detection of RCRR early in the cropping season can be used for harvest of

infested beets prior to severe harvest losses (Hillnhütter et al. 2011a).

Several studies have been conducted successfully on the detection of stresses caused by

nematodes and soil-borne fungal pathogens on plant canopy reflectance by non-imaging

multi- and hyperspectral sensors (Heath et al. 2000; Laudien 2005; Nutter et al. 2002). The

potential of a non-imaging hyperspectral sensor and the calculation of spectral vegetation

indices (SVIs), e.g., the normalized difference vegetation index (NDVI) for the assessment

of symptoms caused by BCN and RCRR on sugar beet plants under controlled conditions

was demonstrated by Hillnhütter et al. (2011b). In the present study, an imaging hyper-

spectral sensor was tested for the detection of above-ground symptoms of BCN and RCRR.

Imaging spectroscopy has several advantages over non-imaging spectro-radiometers

(Kumar et al. 2001). Spatial resolution of non-imaging sensors is low and contains mixed

information of plant material—diseased and non-diseased—and soil, whereas the infor-

mation can be separated using imaging systems (Bravo 2006). Imaging spectroscopy is the

fusion of imaging technology and spectroscopy, in which each pixel of the image is a

vector of high-resolution spectral information (Noble et al. 2003). Until recently, this

technology has been primarily used in remote sensing applications, but it has become

available also for near-range hyperspectral imagery and has been identified as a tool with

high potential for disease detection in crop production (Moshou et al. 2006).

For the detection of leaf pathogens by reflectance, it is important to eliminate the

influence of soil reflectance on spectral information in order to obtain more sensitive data.

Threshold levels of NDVI are often used to discriminate leaf reflectance from soil

reflectance (Moshou et al. 2006). The NDVI was shown to be a suitable parameter for the

discrimination of vegetation from background (Rouse et al. 1974). For the assessment of

damage caused by soil-borne pathogens like H. schachtii and R. solani, however, soil

reflectance may be used for the quantification of disease incidence and plant biomass

which decreases with disease severity while the proportion of the soil increases.

Spectral vegetation indices are used routinely in remote sensing for the extraction of

information from hyperspectral data. Correlations of SVIs with yield, nutrient supply or

damage by pathogens have been reported for greenhouse and field experiments (Bajwa

et al. 2010; Mahlein et al. 2010; Yang and Everitt 2002). As pigment content provides
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information on the physiological state of leaves, pigment-specific SVIs may be correlated

to symptoms caused by BCN or RCRR. By calculating ratios from several bands at

different ranges of the spectrum, SVIs result in a reduction of data dimension and may

provide information on the content of pigments or water, and also on the tissue structure of

leaves (Mahlein et al. 2010).

Hyperspectral data may be also analysed using the spectral angle mapper (SAM)

developed by Kruse et al. (1993), a supervised classification method. The SAM assesses

the similarity of spectra of interest with n bands to reference spectra by calculating the n-

dimensional angle between spectra. It has been successfully applied for the classification of

different states of sorghum leaves (Yang et al. 2008) and in a variety of hyperspectral

remote and near-range sensing applications (Clark et al. 2005; Feilhauer et al. 2010; Mundt

et al. 2005; Qin et al. 2009). In this study, the method was tested for its suitability to

differentiate healthy leaves from leaves with symptoms of yellowing, wilting or necrotic

tissue.

The overall objective of this study was to examine the potential of near-range hyper-

spectral imaging to detect and identify sugar beet diseases caused by either BCN or RCRR

alone, or both organisms in combination. More specific objectives were: (i) to test various

methods of image pre-processing to obtain the most relevant spectral data for detection and

discrimination of disease symptoms; (ii) to investigate the influence of soil reflectance on

the correlation between SVIs and disease ratings; (iii) to test a supervised classification

technique for identification of symptoms caused by BCN and RCRR.

Materials and methods

Organisms

Seeds of sugar beet, cultivar Alyssa (susceptible to H. schachtii and R. solani, KWS

GmbH, Einbeck, Germany) were sown in multi-pots (0.05 9 0.5 9 0.28 m) and grown for

28 days at 25/22�C (day/night), 70 ± 10% relative humidity and a photo-period of

12 h d-1 ([300 lmol m-2 s-1, Phillips SGR 140, Hamburg, Germany). After 4 weeks,

plants were transplanted into boxes (1.2 9 0.8 9 0.25 m) containing 240 l substrate with

sand, soil from C- and A-horizon, respectively, and Seramis� (Mars GmbH, Mogendorf,

Germany) at a ratio of 2:0.6:0.4:0.4 (v/v). Thirty-two plants were planted into each box

with 0.15 m spacing between plants within rows and a row width of 0.2 m. Each box

comprised four rows with eight plants each. Plants were fertilized with 400 g long-term

fertilizer Osmocote� Plus (15:9:12, Scotts, Maysville, OH, USA) per box.

Heterodera schachtii was from the institutes’ stock cultures and was multiplied on

Brassica napus, cultivar Akela (Feldsaaten Freudenberger, Krefeld, Germany), grown in

sand. Cysts were extracted using a standard wet-screen decantation method and were

transferred to Oostenbrink dishes filled with 5 mM ZnCl2-solution for seven days to

stimulate hatching of juveniles of larval stage 2 (J2) (Oostenbrink 1960). The J2 were

washed on 25 lm sieves (Retsch, Haan, Germany), counted and subsequently used for

inoculation of the plants.

Rhizoctonia solani (AG 2-2 IIIB) was provided by the Plant Protection Service of North

Rhine-Westphalia. A sand-flour protocol developed by Zens et al. (2002) was used for

inoculum production; 50 g of sand mixed with 1.5 g wheat flour and 7 ml tap water in a

200 ml Erlenmeyer flask sealed with a cotton plug was autoclaved at 121�C for 50 min.

After cooling, the medium was inoculated with three mycelia pieces (Ø 5 mm) of R. solani
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taken from cultures grown on potato dextrose agar (PDA) (24 g l-1 potato dextrose broth

(PDB) [Becton, Dickinson and Company, Le Pont de Claix, France] ? 18 g l-1 agar

[AppliChem, Darmstadt, Germany]) for 14 days. The flasks were incubated at 24�C in the

dark for 14 days and were shaken every second day to optimize fungal growth.

Inoculation

Rhizoctonia solani sand-flour inoculum (2.5 g) was placed into 5 cm deep cavities in the

soil of the boxes before transferring the sugar beet seedlings onto the inoculum into the

cavities which were finally filled up with substrate. Nematodes were inoculated into two

cavities (3 cm deep) in the soil with a pipette tip near the base of the plant. Each cavity

received 1 ml tap water with 3000 J2 of H. schachtii (=6000 J2 plant-1).

The experiment included four treatments; untreated control plants; sugar beet inoculated

with H. schachtii alone; inoculated with R. solani alone; inoculated with both organisms in

combination. Each treatment had 32 plants and the experiment was conducted twice, which

resulted in a total of 256 plants.

Evaluation of plants and pathogens

The experiments were terminated 9 weeks after inoculation. Fresh weight of beets and

shoots were determined for each plant. The percentage surface rot of beets caused by R.
solani was rated on a scale of: 0 = healthy, no symptoms, to 6 = beet completely rotted,

plant dead (Zens et al. 2002). Leaf symptoms induced by RCRR were rated according to a

protocol of Zens et al. (2002) which classifies wilting, yellowing or necrosis of leaves on a

scale from 0 = plant healthy, no symptoms on petioles, to 6 = leaf brown and necrotic.

The number of eggs and juveniles of H. schachtii were determined after harvest by

sampling 100 g of soil with a soil core sampling tool (Oakfield Apparatus Inc., Oakfield,

WI, USA) from the sites where sugar beet plants had grown. The cysts of nematodes were

extracted using a wet-screen decantation technique with a sieve combination of 500 and

250 lm aperture (Ayoub 1980). The cysts were transferred to 15 ml homogenization tubes

(Braun, Melsungen, Germany) in which they were crushed. The number of eggs and J2 per

plant was then counted under a stereoscope with 40-fold magnification in a 2 ml RAS-

counting slide (Hooper et al. 2005) with sloping sides consisting of a 2 mm high plastic

ring glued on a plastic plate of 75 9 37 mm.

Hyperspectral imaging

Data acquisition and pre-processing

Leaf reflectance of plants was recorded starting 5 days after inoculation (dai) to 64 dai

twice per week. Hyperspectral images were obtained by a line scanner (ImSpector V10E,

Spectral Imaging Ltd., Oulu, Finland) in combination with a mirror scanner, which was

mounted under a rack specially constructed for this sensor. Images were recorded in a dark

room and the sensor was surrounded by six ASD Pro-Lamps (Analytical Spectral Devices

Inc., Boulder, CO, USA) in order to provide optimum illumination. The ImSpector has a

spectral range from 400 to 1000 nm, a spectral resolution of 2.8 nm and a slit width of

14 mm. After focussing the camera using a black and white test target, the white reference

(Spectral Imaging Ltd., Oulu, Finland) and the boxes with plants to be recorded were
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placed in exactly the same position to the camera for each measurement. Images were

obtained from 1.5 m above canopy with a spatial resolution of 0.2 cm2 pixel-1. The

operator software SpectralCube (Spectral Imaging Ltd., Oulu, Finland) was used to record

the images to the hard disc. First, the frame rate and the exposure time had to be optimized.

A dark current image was taken by closing the shutter of the camera. Subsequently, the

plants were recorded with the white reference and another image, with changed exposure

time, without white reference.

The three images—dark current, white reference and raw image—obtained for each

treatment were normalized using the program ENVI 4.6 ? IDL 7.0 (ITT Visual Infor-

mation Solutions, Boulder, CO, USA) by a special IDL tool. A normalized image was

produced by comparing the raw image to the dark current image (minimum) and the white

reference (maximum). The Savitzky–Golay smoothing filter (Savitzky and Golay 1964)

obtained from ITT Visual Information Solutions’ Code Contribution Library was applied

to the spectra of the normalized images. The filter was adjusted to the fifth node left and

right and a polynomial of third order.

Soil exclusion and spectral vegetation indices

Three approaches were tested for data extraction. In approach I, the complete image was

defined as a region of interest (ROI) and spectral data were extracted from all pixels, plants

and soil reflectance. For approach II, a mask for plant biomass was created by calculating

the NDVI (Table 1) of the normalized image to exclude soil reflectance and to extract

reflectance data of plant pixels only (NDVI [ 0.5). The mask was applied to the nor-

malized image and then reflectance was exported (Fig. 1a, b, c, d). For approach III, the

margins of all leaves per plant were circumscribed manually by polygon-type ROIs;

subsequently the mean spectrum of each plant within an image was extracted (Fig. 1e). In

contrast to approach II, this leaf approach was used to obtain spectral information for the

leaves of plants only, excluding petiole and soil reflectance.

For each ROI, the mean spectrum was calculated by ENVI and exported as ASCII file.

This file was imported to MS Excel 2007 (Microsoft Corporation, Redmond, WA, USA) to

calculate nine SVIs of spectra in a time series (Table 1). Spectral vegetation indices from

remote sensing were tested for their correlation to ratings of above-ground disease

symptoms depending on the method of image processing.

Table 1 Spectral vegetation indices used for correlation with leaf symptoms caused by Rhizoctonia crown
and root rot

Index Equation Reference

NDVI (R800 - R670)/(R800 ? R670) Rouse et al. (1974)

Carter Index II R695/R760 Carter et al. (1996)

Lichtenthaler Index I (R800 - R680)/(R800 ? R680) Lichtenthaler et al. (1996)

OSAVI (1 ? 0.16) 9 (R800 - R670)/(R800 ? R670 ? 0.16) Rondeaux et al. (1996)

mCAI (R545 ? R752)/2 9 (752–545)–R(R 9 2.8) Laudien (2005)

NDI (R750 - R705)/(R750 ? R705) McNairn and Protz (1993)

SRPI R430/R680 Penuelas et al. (1995)

PWI R970/R900 Penuelas et al. (1997)

PRI (R550 - R531)/(R550 ? R531) Gamon et al. (1992)
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Supervised classification

Hyperspectral images obtained by pre-processing approach II were used for supervised

classification within the program ENVI (Fig. 1d). Four classes were formed; class 1:

healthy; class 2: wilting; class 3: yellowing; class 4: tissue necrotic and brown. For each

class, ROIs with 50 to 60 pixels were created in different images at locations with char-

acteristic symptoms (n = 5). These classified ROIs were used to extract the pixels’ mean

spectra, which were saved as endmembers in a spectral library and used as references in the

classification algorithm (Fig. 2).

The supervised classification method SAM was used, in which each pixel of the image

was classified according to the endmember’s spectra. For post-classification, a confusion

matrix was applied to the classified image with five truth ROIs class-1 selected for

Fig. 1 Different stages of image processing: a normalized raw image, b NDVI transformed normalized raw
image for creating a mask, c binary mask created from image (b), d mask applied to the normalized raw
image (a), e regions of interest (ROIs) on leaves

Fig. 2 Spectral library of
signatures of sugar beet leaves
with four classes of leaf damage/
disease symptoms
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validation of the classification result. The confusion matrix results in an overall accuracy

by summing the number of pixels classified correctly, divided by the total number of

pixels. Additionally, the kappa coefficient (j)—a statistical measure of inter-rater agree-

ment for qualitative items—was calculated; it is a more robust measure than simple percent

agreement calculation since j takes into account the agreement occurring by chance

(Cohen 1960).

Statistical analysis

The program PASW 18 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis of

data. Plant fresh weights were tested for homogeneity of variance and subsequently

exposed to analysis of variance (ANOVA). Subgroups were built using Tukey’s test with a

probability level of p \ 0.01. Plant weights were further analyzed by multi-factorial multi-

variate analysis of variance (MANOVA) at a probability level of 0.01 with the factors

R. solani, H. schachtii and R. solani 9 H. schachtii. MANOVA was used to test for

statistical significance of the interaction between the organisms (Sikora and Carter 1987).

Beet and leaf weights were tested for correlation at a probability level of 0.01 by Pearson’s

correlation coefficient. Correlations between plant weights, leaf symptom rating, RCRR

beet rating and NDVI values were also calculated. Nine SVIs were correlated to leaf

symptom ratings using Spearman’s rank correlation coefficient. Leaf symptom ratings for

RCRR were compared for each date using t test (p \ 0.05). Also the R. solani-initiated

beet surface rot rating and the number of eggs and J2 per plant were compared using the

t test (p \ 0.05).

Results

Visual development of plant-pathogen interactions

No differences were detected in plant development and leaf reflectance among treatments

until 28 dai; neither H. schachtii nor R. solani produced visible above-ground symptoms.

Leaf wilting became visible on BCN inoculated plants from 28 to 40 dai. Wilted leaves

were detected predominantly for plants inoculated with H. schachtii alone. These obser-

vations were in accordance with the higher number of eggs and larvae in boxes inoculated

with BCN alone compared to the combined inoculation (Table 2).

Forty days after inoculation, the first leaf symptoms caused by RCRR became visible at

the petioles of the oldest leaves (Fig. 3). Leaf symptom ratings showed significant dif-

ferences between the R. solani inoculated treatments starting 47 dai (Fig. 3). These

symptoms, however, were not visible until 50 and 54 dai in the closed canopy of plants

Table 2 Influence of Heterodera schachtii and Rhizoctonia solani alone or in combination on the number
of J2 larvae and eggs of H. schachtii per 100 g soil, and R. solani caused surface beet rot rating

Treatment Number of eggs and J2 RCRR beet rating

Heterodera schachtii 12,375 ± 408 b –

Rhizoctonia solani – 2.97 ± 0.31 a

H. schachtii ? R. solani 5,987 ± 257 a 5.13 ± 0.27 b

Columns with different letters indicate significant difference (t test, p \ 0.05, n = 32)
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inoculated with the combination of H. schachtii and R. solani and with R. solani alone,

respectively.

The number of eggs and larvae of H. schachtii was significantly higher in the treatment

with the nematode alone compared to the mixed inoculation. Vice versa, beet rot was

significantly more severe in the mixed inoculation compared to plants inoculated with R.
solani alone (Table 2).

Leaf weights were closely correlated to beet weights (r = 0.83, p \ 0.01). Leaves and

beets of plants inoculated with the combination of R. solani and H. schachtii had the lowest

biomass of all treatments (Fig. 4). According to the synergy factor (SF) modified after

Fig. 3 Effect of Rhizoctonia solani alone and in combination with Heterodera schachtii on the
development of sugar beet leaf symptoms. Bars indicate standard error of the mean (n = 32)

Fig. 4 Mean leaf and beet weight of sugar beet plants inoculated with either Heterodera schachtii or
Rhizoctonia solani alone or with the combination of both pathogens. Bars represent standard error of mean.
Different letters indicate significant difference among treatments according to Tukey’s test (p \ 0.01,
n = 32)

24 Precision Agric (2012) 13:17–32

123



Hillnhütter et al. (2011b), leaf weight was impacted in an additive way by disease complex

(SF = 1), whereas beet weight resulted in synergistic damage (SF = 1.2). Multi-variate

statistical analysis showed no interaction between BCN and RCCR for leaf and beet fresh

weights, respectively (F = 0.01, df = 2, p = 0.98 and F = 0.68, df = 2, p = 0.40).

Effect of image processing on information from hyperspectral reflectance

Three different approaches to image processing were tested for their suitability to monitor

symptom development caused by H. schachtii, R. solani, and the combination of both

pathogens, respectively.

Biomass and plant vitality

The NDVI was calculated as a parameter for biomass/leaf area index and plant vitality for

complete images including soil reflectance (approach I), images without soil reflectance

(approach II), and images with leaf tissue only (approach III).

Calculations of the average NDVI from complete images overall resulted in slightly

lower values than for the other image processing methods (Fig. 5). Leaf wilting of plants

inoculated with H. schachtii resulted in lower NDVI values from 28 to 40 dai, for approach

I (Fig. 5a). In contrast, methods excluding soil reflectance resulted in only marginal

changes of NDVI. Forty dai, the BCN-inoculated plants recovered from wilting as dem-

onstrated by NDVI values.

Starting 50 dai, the NDVI of sugar beet inoculated with both pathogens decreased; this

effect was detected by all processing approaches (Fig. 5a, b, c). Using approach I, the

NDVI of canopies of non-inoculated plants was higher than that of sugar beet inoculated

with R. solani alone 64 dai and later (Fig. 5a). Image processing approach III—use of leaf

pixels only—resulted in the discrimination between these treatments 7 days earlier

(Fig. 5c). Approach II—exclusion of soil reflectance—was less sensitive in the discrimi-

nation of leaf symptoms caused by the pathogens (Fig. 5b).

The leaf weight of sugar beet plants was correlated to the NDVI calculated from

approach one (r = 0.61, p \ 0.01). As leaf symptom ratings were related to RCRR beet rot

rating (r = 0.93, p \ 0.01), the NDVI was also correlated to RCRR beet rot rating (r = -

0.84, p \ 0.01).

Spectral vegetation indices

Nine SVIs were tested for their suitability to discriminate between healthy plants and sugar

beet with BCN infection and RCRR, respectively. The SVIs calculated from reflectance

spectra considerably differed in their correlation to leaf symptoms depending on the image

processing approach. Approach I, which included soil reflectance, resulted in the highest

correlation between leaf symptom rating and NDVI (Table 3) by far. Approach II—

exclusion of soil pixels—gave the highest correlations of pigment-specific SVIs to leaf

symptom ratings. Especially indices related to photosynthesis—PRI, Lichtenthaler Index I,

SRPI—gained the best correlations to visual symptom ratings (r = -0.85 to -0.88). In

contrast, NDVI and PWI had the lowest correlation coefficients when using image pro-

cessing approach II. The plant water index (PWI) was the only SVI which showed a

significantly better correlation to leaf symptom ratings when applying image processing

approach III (Table 3).
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Fig. 5 Influence of image processing (a approach I [complete image], b approach II [soil reflectance
excluded], c approach III [leaf reflectance only]) on NDVI calculated from spectra of sugar beet inoculated
with either Heterodera schachtii or Rhizoctonia solani alone or with the combination of both pathogens.
Error bars represent the standard error of the mean
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Supervised classification

Based on four classes of increasing leaf damage severity, SAM classification was applied

to images processed by approach II (Fig. 6). The confusion matrix of SAM results—

comparison of classification to the four truth ROIs class-1—indicated an overall accuracy

of 79.4%. With a Kappa coefficient of j = 0.72, a substantial agreement was achieved.

There was some misclassification when comparing spectral library classification to truth

ROIs. When comparing class 1 to 2, it resulted in 30% misclassification, because truth

ROIs did not match with the spectral library classes (Table 4).

Table 3 Spearman’s correlation coefficient for the relation between leaf symptoms caused by Rhizoctonia
crown and root rot and nine spectral vegetation indices depending on the pre-processing approach of
hyperspectral images from sugar beet plants (p \ 0.01, n = 64)

Index Image processing approach

Complete image Soil excluded Leaves only

NDVI -0.93 -0.69 -0.74

Carter Index II 0.73 0.71 0.73

Lichtenthaler Index I -0.71 -0.86 -0.74

OSAVI -0.73 -0.82 -0.69

mCAI -0.71 -0.79 -0.65

NDI -0.73 -0.80 -0.67

SRPI -0.62 -0.85 -0.74

PWI 0.34 0.09 0.32

PRI -0.71 -0.88 -0.78

Fig. 6 Masked hyperspectral image a with different levels of damaged leaves and b the spectral angle
mapper (SAM) classified image based on four classes (green class 1, healthy; cyan class 2, wilting; yellow
class 3, yellowing; red class 4, necrotic and brown) from spectral library (Color figure online)
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Discussion

Nematode-inoculated plants started to wilt after completion of the first generation cycle of

H. schachtii due to the penetration of the second generation into the roots. The develop-

mental stage of nematodes was calculated by the heat sum-model according to Čuri and

Zmoray (1966) which confirmed time of initiation of first symptoms. After a heat sum of

465�C (32 dai), first wilting symptoms of leaves were detected. The plants recovered after

about 10 days by the production of secondary roots which led to a reduction of leaf and

beet masses (Cooke 1987).

Sugar beet inoculated with H. schachtii alone showed more severe wilting than plants

inoculated with R. solani and H. schachtii together. The activity of R. solani is likely to

inhibit the development of H. schachtii due to primary damage of the potential habitat of

the obligate biotrophic nematode depending on vital root tissue. In contrast, development

of RCRR was faster and more severe in the presence of BCN as compared to sugar beets

attacked by R. solani alone. The fungal pathogen may be able to use the penetration sites

of H. schachtii to enter the plants (Bergeson 1972). This leads to the conclusion that

H. schachtii promotes the development of the fungal pathogen, whereas the fungus inhibits

the development of the nematode. Synergistic effects between pathogens could not be

proven statistically, in contrast to Hillnhütter et al. (2011b), which may be due to differ-

ences in experimental set-up. Nevertheless, the synergy factor showed a synergistic

damage to the beet weight as reported by Hillnhütter et al. (2011b).

Significant correlations between biomass of leaves and beets demonstrated the close

inter-relationship between leaves as the source of assimilates for beet development and the

below-ground part for the uptake and allocation of water and nutrients. This balance

between leaves and beets is the reason for the large potential of NDVI measurements for

the assessment of below-ground damage of plants due to pathogens. Non-destructive

hyperspectral sensing may be used in time series experiments on host-pathogen interac-

tions as well as in screening systems for crop resistance to soil-borne pathogens and pests

(Hillnhütter et al. 2010).

Three approaches to image processing were tested for their usefulness to assess the

development of sugar beet symptoms due to the activities of H. schachtii and R. solani.
The NDVI was confirmed to be a reliable indicator of ground cover and biomass of plants

as reported by Rouse et al. (1974). Sensitivity was suitable to detect the wilting of leaves

due to the penetration of second generation of H. schachtii larvae into roots, as well as the

transient recovery of plants. Typically, symptoms of BCN include wilting due to drought

Table 4 Confusion matrix of four classes ImSpector image of spectral library endmembers with ground
truth data

Class Ground truth

Class 1 Class 2 Class 3 Class 4 Total

Spectral library Unclassified 0 0 10 1 3

Class 1 71 0 0 0 22

Class2 28 83 10 6 32

Class 3 1 17 80 8 25

Class 4 0 0 0 85 18

Total 100 100 100 100 100

Agreement and disagreement of class-to-class comparison are given in percent
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stress induced by root damage (Cooke 1987). Since leaves of wilted plants did not cover

the soil as leaves of healthy plants did, increased soil reflectance decreased NDVI when

approach I was used. This approach was similar to a non-imaging approach resulting in a

spectral mixing of reflectance from crop and soil. In contrast, image processing approaches

leading to pure plant reflectance resulted in only marginal changes of NDVI despite

considerable leaf wilting. The NDVI per se is not suitable to assess the water status of plant

tissue. Spectral vegetation indices sensitive to drought stress, therefore, should be tested for

the detection of spectral differences between nematode-infested and unaffected plants.

Above-ground symptoms of RCRR include mainly yellowing of sugar beet leaves and

the formation of a rosette of dying leaves on the soil in later stages (Herr 1996). Leaf

symptoms were closely correlated to NDVI obtained from image approach I, whereas

image processing approaches eliminating the soil gave considerably weaker correlations.

The NDVI proved to be highly sensitive to changes in soil cover of crops. However, it

seems not to be suitable for the detection of disease-specific modifications of plant tissue.

Vice versa, pure plant pixel approaches are not very suitable for the assessment of crop

biomass, unless the pixels classified as biomass are quantified.

The SVIs tested besides NDVI are mainly pigment specific (Lichtenthaler Index I,

Carter II, mCAI, NDI, OSAVI, PRI, SRPI) or give information on the water status of plants

(PWI). They are commonly used in remote sensing, but—similar to NDVI—largely lack

specificity for the detection of plant diseases. Nevertheless, approach II with elimination of

soil reflectance significantly increased their correlation to leaf symptom ratings. This

approach has been described by Moshou et al. (2006) in order to remove soil reflectance for

the discrimination of yellow rust from nutrient stress of wheat leaves. For RCRR-rating in

sugar beet, the PRI had the highest correlation to leaf symptoms. It has been developed for

tracking of photosynthetic light use efficiency (Gamon et al. 1992). The PRI proved to be

more precise in the detection of physiological changes in leaves resulting from disease

development than the NDVI as also stated by Gamon et al. (1992). Also the Lichtenthaler

Index I, developed for the assessment of leaf fluorescence (Lichtenthaler et al. 1996) and

the SRPI, related to carotenoids and chlorophyll a content of plant tissue (Penuelas et al.

1995), showed higher correlations to leaf symptoms.

The extraction of reflectance data by leaf-specific ROIs (approach III) gave the weakest

correlations between SVIs and leaf symptoms incited by RCRR. This method was used by

Rascher et al. (2007) for the assessment of leaf photosynthesis. The authors discussed its

usefulness because of the manual selection of leaf area by ROIs and the non-normal

distribution of data. Furthermore, manual selection is more time consuming than the use of

a mask based on NDVI threshold values. Correlations between leaf symptoms and NDVI,

Carter Index, and PWI were better in approach III than in the approach excluding soil only.

This may be due to omitting the beet crown and petioles in ROIs. In addition, dead leaves

selected by ROIs had spectral properties similar to the soil and contributed to the

assessment of necrotic plant tissue as a leaf symptom of RCRR. A differentiation between

BCN- and RCRR-affected sugar beet plants actually is only possible by taking into account

the differences in the time of appearance of shoot symptoms.

Due to the lack of specificity of SVIs to characterize leaf symptoms of different dis-

eases, a supervised classification method was tested. The SAM was useful to classify

different disease states of leaves. A substantial inter-rater agreement shows the applica-

bility of imaging sensor systems for disease symptom ratings. The spatial resolution of

hyperspectral images in combination with the classification applicability is an enormous

advantage to non-imaging sensors. Hyperspectral imaging in combination with SAM

classification has been used successfully for quality management in fruits (Qin et al. 2009)
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and could also be a useful tool for sugar beet breeders. Furthermore, the SAM method was

used for the differentiation between above-ground symptoms of BCN and RCRR,

respectively, and also for the quantification of RCRR severity from aerial field data

(Hillnhütter et al. 2011a). The discrimination of symptoms and quantification of disease

incidence reported by Hillnhütter et al. (2011a) can be used for site-specific management

strategies in future studies.

Conclusions

Unprocessed images of sugar beet canopies allowed the assessment of differences in plant

biomass as measured by NDVI. The elimination of pixels representing the soil or non-

relevant plant tissue enabled the use of pigment-specific SVIs for the detection of physi-

ological changes in plant tissue due to the development of root diseases. Therefore, leaf

symptoms caused by either BCN or RCRR have to be investigated more in detail on the

tissue level for characteristic differences in spectral reflectance. Disease-specific SVIs and/

or combinations of existing SVIs may be applied in hyperspectral imaging of plant diseases

in order to achieve an identification of diseases, improved quantification, and early

detection of symptoms. The SAM classification seems to be a promising tool for the

discrimination and quantification of diseases. This sensor technology in combination with

leaf symptom classification can be effectively used by breeding companies for resistance

tests. Furthermore, hyperspectral imaging can be used in field experiments to detect and

discriminate stresses.
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