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Abstract We examined the spatial structure of fruit yield, tree size, vigor, and soil

properties for an established pear orchard using Moran’s I, geographically weighted

regression (GWR) and variogram analysis to determine potential scales of the factors

affecting spatial variation. The spatial structure differed somewhat between the tree-based

measurements (yield, size and vigor) and the soil properties. Yield, trunk cross-sectional

area (TCSA) and normalized difference vegetation index (NDVI, used as a surrogate for

vigor) were strongly spatially clustered as indicated by the global Moran’s I for these

measurements. The autocorrelation between trees (determined by applying a localized

Moran’s I) was greater in some areas than others, suggesting possible management by

zones. The variogram ranges for TCSA and yield were 30–45 m, respectively, but large

nugget variances indicated considerable variability from tree to tree. The variogram ranges

of NDVI varied from about 14–27 m. The soil properties copper, iron, organic matter and

total exchange capacity (TEC) were spatially structured, with longer variogram ranges than

those of the tree characteristics: 31–95 m. Boron, pH and zinc were not spatially corre-

lated. The GWR analyses supported the results from the other analyses indicating that

assumptions of strict stationarity might be violated, so regression models fitted to the entire

dataset might not be fitted optimally to spatial clusters of the data.
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Introduction

Site-specific management (SSM) has been developed and applied to annual cropping

systems since the late 1980s, and there is an abundance of literature about the impact of

soil, microclimate and other landscape-scale influences on crop production. In a review

of SSM and related technologies, Plant (2001) stated that ‘‘Three criteria that must be

satisfied in order for SSM to be justified are, (1) that significant within-field spatial

variability exists in factors that influence crop yield, (2) that, causes of this variability

can be identified and measured, and (3) that, the information from these measurements

can be used to modify crop management practices to increase profit or decrease

environmental impact.’’ In relation to the first two criteria, much of the published work

to date has focused on annual cropping systems with mechanical harvesting technology

to provide spatial data on yield. The research on perennial crops generally lacks dis-

cussion about the effect of variation in the individual plant, on yield or on the

delineation of management zones; the latter are based on soil properties and landscape

scale factors.

The research that has been done does indicate that perennial crop yields vary spatially.

Whelan and McBratney (2001) included a comprehensive review of the available liter-

ature (Table 3), highlighting the spatial structure of the observed variability. The

variogram analyses cited had ranges from 22 m (for soil moisture) to 180 m (for soil P).

Pozdnyakova et al. (2005) measured and analyzed yields in cranberry bogs at three scales

representing within- and between-field variability. The results of their variogram analysis

indicated that at both spatial scales a spherical model provided a good fit with ranges of

about 3.5 m within fields and 2300 m between fields. Zaman and Schumann (2006)

showed that the normalized difference vegetation index (NDVI) and soil organic matter

(SOM) could be used to delineate low, medium and high yielding management zones for

variable-rate applications of soil amendments within a citrus grove. There was a strong

soil influence on productivity as excessive Cu in the low SOM areas of the grove induced

Fe deficiency, which was visible as chlorotic disorders of the foliage and stunted tree

growth. They fitted spherical variogram models to NDVI, soil and leaf nutrient data with

ranges of 234–255 m (the extent of the citrus grove was about 800 m 9 800 m). The soil

and plant variables recorded were significantly different in each of the delineated man-

agement zones. Similarly, Castrignanò et al. (2008) generated maps of the risk of soil

salinization for a citrus growing area. The maps categorized the risk as high, medium and

low salinity, based on soil properties and distance to the sea. Multi-collocated indicator

cokriging and factorial kriging were used; the variogram models had ranges of 750–

2000 m. Other recent research involving perennial crops certainly highlights the effect of

spatial influences at landscape scales, for example in grapes (e.g. Lamb et al. 2004;

Bramley and Hamilton 2004; Johnson et al. 2003) and citrus crops (Tumbo et al. 2002;

Whitney et al. 2001a, b).

Tree fruit differs from most annual and some perennial crops in that most of the

plants grown within an orchard block are cloned, suggesting that there should be min-

imal biological variability between them compared with annual crops. However, orchard

management and site-specific soil and climate effects are superimposed on this homo-

geneity. Some management practices such as pruning, thinning and harvesting are done

on a per tree basis, whereas other management practices, such as irrigation and fertilizer

application are applied uniformly over larger areas, up to entire orchard blocks.

Therefore we would expect to see both tree to tree variability, as well as landscape scale

effects based on the soil, microclimate and management. Wang et al. (2006) recorded
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yield, cost and profit data by tree over a 0.87 ha block of 272 pear trees. They used data

envelope analysis, a non-parametric linear modeling method used in economics, to

determine the revenue capacity efficiency for each tree, and to identify the limiting

inputs (soil properties, micro- and macro-nutrients, or other environmental effects). Much

of the soil data was aggregated, and spatial differences were compared by dividing the

field into 14 blocks. However, even with this coarse blocking factor, spatial effects were

evident.

In this paper we used this same unique data set of individual tree yield and trunk size

data as Wang et al. (2006), but also included higher spatial resolution soil data and

remotely sensed data to address unanswered questions related to management zones for

these tree fruit. We also applied spatial statistics that have not been used for precision

agriculture, and that might be useful for justifying management zones. Specifically, we

wanted to determine whether yield (per tree) and tree sizes were spatially correlated or

unrelated over the field, and if correlated to determine the spatial structure. We used the

autocorrelation statistic, Moran’s I (described later), which was applied both globally and

locally. We also examined whether spatial stationarity (Brunsdon et al. 1998) holds, i.e.,

whether linear regression models described for the entire orchard block hold equally well

for any subset of the block. This has important implications for management zones: if these

relationships do not hold, at what spatial scales do the models differ? To address these

questions, we investigated spatial stationarity by applying geographically weighted

regression (described later).

Description of the orchard site

The research orchard used for this study is described in Wang et al. (2006). It is located

near Hood River, Oregon, approximately longitude 121�410 west and latitude 45�410 north.

Soil samples from the site indicate that the soil texture is a sandy loam with an average of

16 cmol kg-1 organic matter. The mean growing season (March–August) precipitation

measured at the site weather station from 1971 to 2004 was 0.208 m (Oregon State Uni-

versity 2005), therefore, the tree fruit crops depend on additional water from irrigation. The

research orchard is a pear (Pyrus communis) rootstock trial of d’Anjou variety planted on

four different rootstocks (Fig. 1). The orchard is approximately 170 m west to east and

60 m north to south in extent. The tree spacing is approximately 3 m along the rows, which

run west to east, and 6 m between rows.

Tree and soil measurements

We focused on data that were recorded and related to individual trees. Trunk cross-

sectional area (TCSA) was determined from circumference measurements made in 2003

just above the graft line of each tree. Yield data were collected in 2002 and 2003,

expressed as total fruit picked (kg) per tree. Remote sensing was used to access crop vigor

during 2002 and 2003. Space Imaging IKONOS imagery (www.spaceimaging.com) were

acquired in June, July and August of 2002, and Digital Globe Quickbird imagery

(www.digitalglobe.com) was acquired in June of 2003. The imagery was converted to
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reflectance values based on within scene targets and the normalized difference vegetation

index (NDVI; Rouse et al. 1974) was determined as:

NDVI ¼ RnIR � Rred

RnIR þ Rred

; ð1Þ

where RnIR is the near infrared band and Rred is the red band of the imagery. The 0.6 m

panchromatic band was registered to an orthorectified aerial image, and the tree crowns

were delineated. The corresponding pixel for each tree was selected from the co-registered

NDVI image. Soil samples were taken in 2005 and 2006 near a subset of the trees in the

orchard block (Fig. 1). The soil was sampled at a depth of 0–0.015 m from 4 to 5 sites

within a 1 m radius of each tree and mixed together to form a composite sample. Soil

analysis of these samples was done by a commercial laboratory using standard techniques

to determine TEC, pH, organic matter and crop nutrients. A subset of the soil samples was

analyzed for soil texture (sand, silt and clay).

Statistical methods

For the analysis of spatial heterogeneity and stationarity, we used Moran’s I (Moran 1948),

localized application of Moran’s I (Anselin 1995), geographically weighted regression

(Fotheringham et al. 2002) and variogram analysis. We briefly introduce and describe our

application of these statistical tools and then provide some explanation of our determi-

nation and relevance of spatial stationarity.

Moran’s I is an index of the degree of spatial autocorrelation, as described by Cliff and

Ord (1981):

Fig. 1 Layout of research orchard with soil sampling locations
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I ¼
n
Pn

i¼1

Pn
j¼1 Wij xi � �xð Þ xj � �x

� �

Pn
i¼1

Pn
j¼1 Wij xi � �xð Þ2

: ð2Þ

The global autocorrelation (I) is computed for the variable of interest (X) based on the

variable mean (�x) and contiguity matrix Wi,j for all n spatial units indexed by i,j. The

expected mean and variance for random distributions is determined as

E Ið Þ ¼ 1

n� 1ð Þ : ð3Þ

EN Ið Þ ¼ n2s1 � ns2 þ 3s2
0

s2
0 n2 � 1ð Þ ; ð4Þ

where

S0 ¼
Xn

i¼1

Xn

j¼1

Wij; ð5Þ

S1 ¼
1

2

Xn

i¼1

Xn

j¼1

Wij þWji

� �2
; ð6Þ

and

S2 ¼
Xn

i¼1

Xn

j¼1

Wij þ
Xn

j¼1

Wji

 !2

: ð7Þ

Then the test statistic under a null hypothesis of complete spatial randomness is:

z =
I � E Ið Þ
r2 Ið Þ : ð8Þ

Positive values of I indicate spatial dependence among values. If Z C 1.96 and I & 1.0

then X is strongly spatially structured at the a = 0.025 level of confidence; if Z B -1.96

and I & -1.0 then X is uniform at a = 0.025; if -1.96 \ Z \ 1.96 and I & 0 then X is

uncorrelated.

Anselin (1995) showed that Moran’s I can be applied locally to evaluate the degree of

autocorrelation for a given location, where the summation for i,j is over a local neigh-

borhood, resulting in a value Ii computed for each sample. The localized Moran’s I provides

a test of locational relevance of the global Moran’s I and thus serves to provide locational

information on deviations from an expectation of strict stationary (Anselin 1995). As with

the global Moran’s I, large positive values indicate strong local autocorrelation. In addition,

the expected value, variance, Z statistic and probability of Z, p(Z), were computed for each

sample. In this paper, we have used the term spatial clustering to indicate neighborhoods of

trees or soil samples displaying a high degree of spatial autocorrelation. The size of these

neighborhoods was determined based on the dimensions of the kernel used, and the degree

of clustering was measured by p(Z). Both the global and localized Moran’s I were com-

puted using ArcGIS software (ESRI, Redlands, CA, USA).

Geographically weighted regression (GWR) provides a tool for identifying when

the assumptions of strict stationarity do not hold, as well as a means of mitigating any

violations using localized model fitting. For our applications, a local linear regression was
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fitted to each tree or soil sample. Model parameters were determined based on the samples

within the band width (kernel size) surrounding that tree, allowing the relationships being

measured to vary over space:

y gð Þ ¼ b0 gð Þ þ b1 gð Þx1þ b2 gð Þx2þ � � � bn gð Þxnþ e gð Þ; ð9Þ

where (g) refers to a location at which estimates of the GWR parameters are obtained and

the b are the regression coefficients. The parameters are determined as:

b0 ¼ XTWðgÞX
� �

� XTWðgÞY ; ð10Þ

where W(g) is a matrix of weights specific to location g such that observations nearer to g
are given greater weight than observations further away. This local linear regression

generates a coefficient of determination, R2, and model parameters at each point (tree).

Details of the method are described in Fotheringham et al. (2000, 2002). The GWR

analysis was done with the GWR3 software (University of Newcastle upon Tyne, New-

castle upon Tyne, England). To determine the optimum band width for localized fitting, we

minimized Akaike’s information criterion (AIC; Akaike 1974), following Hurvitch et al.

(1998) and Fotheringham et al. (2002):

AIC ¼ 2K þ n ln
2pRSS

n

� �

þ 1

� �

; ð11Þ

where k is the number of parameters (one for this research), n is the number of samples,

and RSS is the residual sum of squares.

Fixed band widths starting with this optimum size were used and then increased until

the results were not significant. Adaptive band widths were also used to determine the

number of samples to include in a kernel, as an alternative to a fixed distance. We com-

puted the significance for the spatial variation in the estimates of the model parameters

using a Monte Carlo significance method (Hope 1968; Fotheringham et al. 2000). This

significance tests the null hypothesis of spatial independence, that is, of the likelihood of

the spatial model parameters given that the global regression model actually holds.

Variogram analysis (Deutsch and Journel 1998) was used to quantify the spatial scales of

yield, TCSA and NDVI. GenStat (Payne et al. 2008) was used to compute the experimental

variograms and to fit several models. Variograms of the soil properties were estimated by

the residual maximum likelihood (REML) method using the MLREML program of Pardo-

Igúzquiza (1997) as this method may require fewer data (e.g., Pardo-Igúzquiza 1998; Kerry

and Oliver 2007) than the more usual method of moments variogram estimator. In this

approach, linear combinations of the data (generalized increments) are used rather than the

original data. The model parameters are calculated directly from the generalized increments

of a covariance matrix of the full data. Note that for the REML method there is no

experimental variogram, so only the fitted model and parameters are shown.

Stationarity and isotropy

Several definitions of stationarity are used in this study and are either implemented as

assumptions or tested for validity. Stationarity implies that a generating process is con-

sistent over the study area for which observations are obtained, and it is essential for the

creation of consistent point and interval estimators resulting from spatial processes.
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Usually, a process is assumed to be stationary, but new methods have been developed to

assess whether this is the case. The assumptions of stationarity and isotropy required for

the statistical tools used in our study are summarized in Table 1.

Strict stationarity assumes that the distribution of the generating process is consistent

over the study area and is invariant to changes in location (Schabenberger and Gotway

2005a). Strict stationarity implies that a single generating process and finite-dimensional

single and joint distributions apply to all the data in the set of observations. The assumption

can be evaluated by calculating Moran’s I function. In the computation of Moran’s I, only a

single sample mean and variance are used as the observations are all assumed to be derived

from the same generating distribution regardless of location. If strict stationarity is violated

by a spatially dependent process that cannot be observed directly, then estimates based on

the assumption might not be consistent or efficient estimators of the parameters of the

generating distribution. For an estimator that is computed from spatially generated data, if

the variable response is not stationary, the estimator cannot be guaranteed to be consistent

or unbiased. Several recent studies highlight this issue for regression analysis in particular

(Anselin and Kelejian 1997; Beran and Hall 1992; Lahiri et al. 2002).

The residual maximum likelihood (REML) variogram estimator requires a joint normal

distribution and depends on the weaker assumptions of second-order stationarity where the

mean, l = E[X(s)], is constant for all s, and the a priori variance of the process,

r2 ¼ E[f XðsÞ � lg2�is assumed to be finite and, as for the mean, the same everywhere.

When two points si and sj do not coincide, their covariance, C, depends on their separation

and not on their absolute positions, and this applies to any pair of points separated by the

lag h = si - sj (a vector in both distance and direction), so that

C si; sj

� �
¼ E X sið Þ � lf g X sj

� �
� l

� �	 


¼ E X sð Þf g X sþ hð Þf g � l2
	 


¼ C hð Þ;
ð12Þ

which is also constant for a given h. This constancy of the first and second moments of the

process constitutes second-order or weak stationarity.

Sometimes the variance appears to increase indefinitely as the extent of the area

increases. The covariance cannot be defined then because we cannot insert a value for l

Table 1 Stationarity and isotropy assumptions for statistical methods used

Assumptions Moran’s I
(global spatial
autocorrelation)

LISA and kriging
(local spatial
autocorrelation)

Residual
maximum
likelihood
(REML)
variogram
estimator

Variogram
(geostatistics)

GWR (local
regression
estimates)

Stationarity Strict Local Second-
order

Intrinsic and
second-order

Local

Isotropy vs.
Anisotropy

Isotropy Isotropy;
Anisotropy can
be managed
through the
variogram model
in kriging

Isotropy; anisotropy
managed by
subsetting data
according to
direction between
pairs of
observations

Depends on
kernel range
and weights
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into Eq. 12. This is a departure from second-order stationarity. Matheron’s (1963) solution

to this is the weaker intrinsic hypothesis of geostatistics (Cressie 1993). Although the

general mean might not be constant, it would be for small lag distances and so the expected

differences would be zero as follows:

E X sð Þ � X sþ hð Þ½ � ¼ 0; ð13Þ

and the expected squared differences for those lags define their variances

E = X sð Þ � s sþ hð Þf g2
h i

¼ var X sð Þ � X sþ hð Þ½ � ¼ 2c hð Þ; ð14Þ

where c(h) is the semivariance at lag h. As for the covariance, the semivariance depends

only on the lag and not on the absolute positions of the data. If the process X(s) is second-

order stationary, the semivariance and covariance are equivalent. However, if the process is

intrinsic only there is no equivalence because the stationary covariance function (Eq. 12)

does not exist. The following equation gives Matheron’s (1965) variogram estimator which

is the method commonly used

ĉ hð Þ ¼ 1

2 m hð Þð Þ
Xm hð Þ

i¼1

x sið Þ � x si þ hð Þ2
� �h i

; ð15Þ

where m(h) is the number of paired comparisons.

If a generating process is stationary for small subregions or geographical subsets and the

generating process can be disaggregated into simpler stationary processes where the mean

is consistent over short distances or for smaller subsets, then the process is said to exhibit

local stationarity (Schabenberger and Gotway 2005b). The local indicators of spatial

association (LISA) statistics assume local stationarity and estimate local differences using

proximal dyadic pairs of observations. The LISA (e.g. localized Moran’s I) is a local

disaggregation of the global Moran statistic that enables the local assessment of spatial

dependence and the evaluation of globally or strictly non-stationary dependence. The

GWR estimates also assume local stationarity as defined by weighted locally stationary

processes using a variety of sampling kernels. Within an estimation kernel, observations

are assumed to be generated from a locally stationary process. The methods developed by

Fotheringnham et al. (2000) can determine statistically significant kernel ranges or sizes

within which stationarity is locally consistent. For kriging, local stationarity is also suf-

ficient because it is a local estimator.

Results and discussion

To address our first objective, that is, determining whether yield and tree size (TCSA) are

spatially clustered or autocorrelated, we computed Moran’s I for the entire orchard. Table 2

gives Moran’s I for the yields of 2002 and 2003 both by rootstock, and based on all of the

rootstocks combined. Note that the Moran’s I values are positive, with large positive Z values

that are significant (p \ 0.01). For comparison, Moran’s I for rootstock (which we would

expect to be non-clustered) is -0.047 with a Z value of -7.18. This indicates that the yields

for 2002 and 2003 are spatially correlated. Likewise, the Moran’s I values (Table 2) for the

tree trunk TCSA measurements also suggest spatial clustering of the tree characteristics,

regardless of whether the trees were analyzed according to rootstock or when combined. In

addition to TCSA, we analyzed NDVI as a surrogate measure of tree vigor. As with the yields
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and TCSA, global Moran’s I was computed for the available image dates when the trees were

in full canopy cover in 2002 and 2003. The Moran’s I and corresponding p (Z) given in

Table 3 indicate that NDVI is also spatially clustered or autocorrelated.

If these variables are spatially correlated; what are the scales of the spatial structures? We

applied the localized Moran’s I to assess the degree of autocorrelation for each tree relative

to its neighbors. For this, the orchard was not subdivided on the basis of rootstock and a

30 m kernel was used, in order to include trees both within the row and across rows. The

resulting maps of local Moran’s I for yield and TCSA are shown in Fig. 2. Negative values

of Moran’s I are plotted as ‘NS’. Positive values are plotted according to the probability of

the corresponding Z value. The maps of yield and TCSA show similar patterns for the

resulting probabilities, with more significant values of Z (larger positive values of Moran’s

I) at both the eastern and western ends of the orchard block, indicating stronger similarities

among adjacent trees in these areas. Likewise, localized Moran’s I was computed for NDVI

for 2002 and 2003 (Fig. 2). The resulting maps differ somewhat among image dates, but are

similar to TCSA, especially for the June 2003 NDVI data. The combined results suggest that

there are distinct zones that could be differentiated for management.

Given the evidence of spatial correlation and differences in neighborhood correlations,

we wanted to address the question of strict spatial stationarity: do regression models

described for the entire block hold for every subset of the block equally? We evaluated this

Table 2 Global Moran’s I for TCSA and yield by rootstock

n 278 69 66 68 72
TCSA (All) TCSA (69) TCSA (97) TCSA (217) TCSA (333)

Moran’s I 0.04 0.04 0.09 0.10 0.05

Z 7.05 3.18 5.77 6.11 4.02

p(z) \0.001 0.0025 \0.001 \0.001 \0.001

Yield 2002 (All) Yield 02 (69) Yield 02 (97) Yield 02 (217) Yield 02 (333)

Moran’s I 0.09 0.12 0.10 0.04 0.08

Z 14.90 7.52 6.67 3.20 5.33

p(z) \0.001 \0.001 \0.001 0.0024 \0.001

Yield 2003 (All) Yield 03 (69) Yield 03 (97) Yield 03 (217) Yield 03 (333)

Moran’s I 0.09 0.07 0.11 0.07 0.10

Z 15.90 4.54 6.71 4.64 6.59

p(z) \0.001 \0.001 \0.001 \0.001 \0.001

TCSA Trunk cross-sectional area

Table 3 Global Moran’s I for NDVI for all rootstocks

June-02 July-02 August-02 June-03

n 278 278 278 278

Moran’s I 0.04 0.09 0.10 0.04

Z 7.06 5.78 6.11 3.18

p(z) \0.001 \0.001 \0.001 0.003

NDVI Normalized difference vegetation index
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using GWR, and selected models based on measurements that showed large correlation

coefficients (not shown). These were the yields for 2003 and 2002, and also the yield for

each year (as dependent variables) and TCSA. The GWR was also computed for several

image dates for NDVI on TCSA, and for June 2003 NDVI on June 2002 NDVI.

The results of the GWR based on yield and TCSA were somewhat contradictory. The

localized R2, intercept and coefficients show obvious patterns (Fig. 3). Likewise, the local

R2 values and decrease in AIC generally show an improvement over the global values

(Tables 4, 5). The residuals from the GWR appeared random (Moran’s I resulted in a Z
score of -1.8, not shown) and slightly smaller than when using global regression as seen in

Fig. 3d, which again indicates an improvement in the fit of the model. However, the spatial

significance tests failed for the models at some kernel sizes greater than the initial one

selected by the minimization of the AIC. For the fixed bandwidths, the tests resulted in

Fig. 2 Local Moran’s I, computed with a 30 m kernel (window) and using all rootstocks
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Fig. 3 Local geographically weighted regression applied to the relationship of 2003 yield on 2002 yield
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Fig. 4 Variograms of: a tree cross-sectional area (TCSA), b 2002 yield and c yield 2003. Variograms were
computed for all trees (n = 278) and all directions. TCSA was computed with a lag value of 15 m, whereas
the yields for 2002 and 2003 were computed with lags of 3 m. The model functions are: Circ. is circular and
Pentaspher. is pentaspherical, and the parameters are: c0 is the nugget variance, c ? c0 is the sill variance
and a is the range of spatial dependence
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p [ 0.1 for the coefficient of 2002 yield at bandwidths of 20 m and 30 m, and for most of

the 2002 and 2003 yield results on TCSA (Table 3). When using the bandwidth based on

the number of samples (adaptive bandwidth), the spatial test was significant at p \ 0.1 only

for the 2003 yield on 2002 yield, and p was[0.1 for the other two models (Table 4). All of

the regression models for GWR on NDVI failed the spatial significance test. Since the poor

model fitting overall suggested that the models were not entirely explaining the variance in

the dependent variables, other models were fitted with additional variables, such as soil

characteristics and elevation, without any noticeable improvements (not shown).

The variogram analysis results for TCSA and yield for 2002 and 2003 are shown in

Fig. 4. Variograms were computed based on individual rootstocks (not shown) as well as

for all rootstocks combined, but were found to be very similar. Likewise, the variograms

computed in all directions, across rows, along rows and in the direction of elevation change

(130 degrees from grid north) were similar, therefore only the omni-directional results are

shown (Fig. 4). After experimenting with different lag intervals for the variogram of

TCSA, an interval of 15 m was used which corresponds with the distance between the

same rootstock values. The lag value used for the 2002 and 2003 yields was 3 m, i.e., the

distance between the trees. The variograms for TCSA and yield have ranges of 30–45 m

and large nugget variances (Fig. 4). Variograms determined for NDVI recorded on several
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based on three times the model’s distance parameter
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dates showed little difference in structure by direction or rootstock (not shown). Figure 5

shows the variogram for each NDVI image date over all directions and all rootstocks. The

variogram models for June and July of 2002, and June of 2003 indicate ranges of

approximately 14 m, which represents a local neighborhood given the tree spacing (3 m

between trees and 6 m between rows). The variogram for NDVI August 2002 has a range

that is similar to that for yield 2002.

The TCSA, yield and NDVI are directly related to tree by tree variability, but how does

their variation relate to the underlying spatial structure of the orchard’s soil? As for the tree

properties, we computed Global Moran’s I and variograms for the soil properties. The

results of these analyses varied according to the soil property or nutrient. Organic matter,

TEC, Zn, Cu and Fe have significant values for the global Moran’s I (Table 6). Variograms

of the soil properties were estimated by the residual maximum likelihood (REML) method

(Pardo-Igúzquiza 1997, 1998) as there were fewer soil data than tree and NVDVI data.

Variograms were estimated successfully by REML for Fe, OM, Cu and TEC (Fig. 6); these

have longer ranges (31–95 m) than those for the tree properties (14–44 m). Variograms

could not be estimated for Zn, B and pH. These results suggest that Cu, Fe, Om and TEC

are spatially structured.

As an additional test of spatial stationarity, we applied GWR to model TEC on OM.

Although we realized that this is not of particular interest as a model for prediction, the

relationship has a large global R2, and we used it to determine whether a localized model

improved the fit, and at what scale. The soil data were interpolated using an inverse

distance weighting quadratic function, which is localized and makes no assumptions of

stationarity. The results are given in Table 7. Based on minimization of the AIC, a kernel

of 13 samples was used. The localized R2 values did show improvement for most of the

orchard block compared with the global regression, and the AIC has reduced significantly

Table 6 Global Moran’s I for soil

TEC pH Organic matter Ca Mg

n 61 61 61 61 61

Moran’s Ia 1.02 0.01 0.29 0.25 0.21

Z 20.08 0.47 5.84 5.01 4.42

p(z) \0.001 0.36 \0.001 \0.001 \0.001

Mn Cu Fe P B

n 61 61 61 61 61

Moran’s Ia 0.26 0.61 0.17 0.45 0.05

Z 5.56 12.26 3.63 9.14 1.47

p(z) \0.001 \0.001 \0.001 \0.001 0.14

Zn Sand Silt Clay

n 61 61 61 61

Moran’s Ia 0.18 -0.04 0.10 0.05

Z 3.97 0.12 2.60 1.74

p(z) \0.001 0.40 0.01 0.09

a Note: these were computed with 30 m distance, inverse distance weighted, except 60 m fixed kernel used
for soil texture
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from the global value. The spatial tests (Table 7) indicate significance at p \ 0.0001.

Overall, these results again suggest that the soil data are non-stationary in the strict sense.

The scales of the spatial structure differ somewhat between the tree-based measure-

ments (yield, size and NDVI) and the soil properties. Variograms of yield and TCSA have

ranges of approximately 30–45 m. The large nugget variances for yield and tree size

indicate considerable variability from tree to tree. Variograms of NDVI for several image

acquisition dates indicate a short range of variation of approximately 14–27 m. Variograms

of OM, Fe, TEC and Zn have a longer range of spatial dependence, from 31 m to 95 m.
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Fig. 6 Variograms of soil properties estimated by residual maximum likelihood (REML), where Exp. is
exponential, and the parameters are: c0 is the nugget variance, c ? c0 is the sill variance and a0 is an
approximate range for the exponential function based on three times the model’s distance parameter

Table 7 Comparison of global regression with GWR results for total exchange capacity on organic matter

Global R2 Local R2 AIC Bandwidth
(n samples)

Monte Carlo spatial
significance test, p value

Min, Max % n [ Global Intercept Coefficient

Global
parameters

0.71 524.8

GWR 0.52, 0.99 98 100.3 13* [0.001 [0.001

* Band width selected by AIC minimization
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In summary, analyses using both global and localized Moran’s I suggest that yield,

TCSA and NDVI are strongly spatially clustered or autocorrelated. The autocorrelation

between trees (determined by a localized Moran’s I) is greater in some areas than others.

Most soil variables also show significant spatial correlation in the global Moran’s I; the

exceptions are pH, soil texture and B. The GWR analyses support the conclusions of non-

stationarity, in the strict sense, of the data, but the GWR spatial significance tests failed at

some scales, so we were unable to use these analyses to determine the spatial scales.

Conclusions

So what do these results suggest for management of the orchard block? The spatial structure

of clustering of tree TCSA, yield and NDVI, as shown by the Moran’s I values, would

suggest management zones on a scale of about 30 m. However, the large nugget variances

and short ranges of variograms for many of the crop variables measured (e.g. 14–27 m for

NDVI) favor management by tree, in spite of the longer scales of variation for some of the

soil variables as determined by variogram analysis. The spatial non-stationarity, in the strict

sense, in these data has implications in addition to the impacts on management zones.

Regression models fitted to the entire dataset might be not be fitted optimally if there are

spatial clusters in the data. Future assessment of perennial crop datasets such as this might

include techniques such as autoregression to build spatial effects directly into the models. In

addition, Markov random fields would enable further examination of specific spatial effects

at different scales within a model.
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