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Abstract Understanding relationships of soil and field topography to crop yield within a

field is critical in site-specific management systems. Challenges for efficiently assessing

these relationships include spatially correlated yield data and interrelated soil and topo-

graphic properties. The objective of this analysis was to apply a spatial Bayesian

hierarchical model to examine the effects of soil, topographic and climate variables on corn

yield. The model included a mean structure of spatial and temporal co-variates and an

explicit random spatial effect. The spatial co-variates included elevation, slope and

apparent soil electrical conductivity, temporal co-variates included mean maximum daily

temperature, mean daily temperature range and cumulative precipitation in July and

August. A conditional auto-regressive (CAR) model was used to model the spatial asso-

ciation in yield. Mapped corn yield data from 1997, 1999, 2001 and 2003 for a 36-ha

Missouri claypan soil field were used in the analysis. The model building and computation

were performed using a free Bayesian modeling software package, WinBUGS. The rela-

tionships of co-variates to corn yield generally agreed with the literature. The CAR model

successfully captured the spatial association in yield. Model standard deviation decreased

about 50% with spatial effect accounted for. Further, the approach was able to assess the

effects of temporal climate co-variates on corn yield with a small number of site-years. The

spatial Bayesian model appeared to be a useful tool to gain insights into yield spatial and

temporal variability related to soil, topography and growing season weather conditions.
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Abbreviations
CAR Conditional auto-regressive model

WinBUGS Windows version of Bayesian Updating using Gibbs Sampler

ECa Apparent electrical conductivity

Max.temp Mean maximum daily temperature in July and August

Temp.range Means daily temperature range of July and August

cPREC Cumulative precipitation in July and August

Introduction

Understanding within-field yield variability as affected by soil properties and field

topography is important in site-specific management practices. Topographic variables

such as elevation and slope have been shown to relate to crop yield (Yang et al. 1998;

Kravchenko and Bullock 2000; Jiang and Thelen 2004). Sometimes, these variables can

account for as much as 60% of the within-field variability (Yang et al. 1998). However,

these relationships vary across years depending on weather conditions. In site-specific

management, soil apparent electrical conductivity (ECa) has also become an important

tool in assessing soil suitability and productivity because it relates to a wide range of

soil chemical and physical properties that affect crop yield (McNeill 1992; Lund et al.

2000; Kitchen et al. 2003; Sudduth et al. 2005). Applications of mapped ECa have

included characterizing soil spatial variability (Corwin and Lesch 2005), delineating

management zones (Kitchen et al. 2005), and estimating topsoil depth for claypan soils

(Kitchen et al. 1999; Sudduth et al. 2003). Together, these soil and topographic vari-

ables can provide guidance for site-specific management decision-making, partly

because high resolution datasets can be obtained at reasonable costs using on-the-go

sensing technologies.

Yield monitoring and mapping technologies that enable measuring, geo-referencing and

recording grain yield with high precision and spatial resolution have created a great

opportunity to study the spatial and temporal variability observed in crop yield. Yield

monitors collect dense datasets in a pointwise fashion as the combine harvester moves

through the field, and these data can be imported to a GIS system for display, processing

and analysis. A common procedure for processing yield monitor data is to aggregate point

yield data to a network of grids with an appropriate cell size for analysis as areal data

(Birrell et al. 1996; Perez-Quezada et al. 2003).

Data analysis relating yield and soil and/or topographic variables has mostly adopted

classical multiple linear regression techniques. As non-linear alternatives, projection

pursuit regression (Sudduth et al. 1996), multiple quadratic regression (Kitchen et al.

1999), and neural network methods (Drummond et al. 2003) have also been employed.

However, none of these approaches were able to explicitly model the spatial association of

yield information. Further challenges for these analysis techniques include soil and

topographic variables that are often interrelated, causing over-fitting of the model, and the

general inability of these methods to assess the effects of temporal climatic conditions for

the number of site-years commonly available (Drummond et al. 2003).

Recent development of the spatial Bayesian hierarchical framework has gained

increasing popularity in ecological studies that often deal with spatial data (Wikle 2003;

Oleson and He 2004). One of the important advantages of spatial Bayesian models is that

the spatial effect can be explicitly expressed in the model by assuming a prior distribution
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with its parameters specified from the information of spatial neighbors. In soil science,

spatial Bayesian models have been applied to estimate the correlation coefficients of socio-

ecological variables most strongly associated with soil NO3–N and C, while accounting for

varying spatial associations among the two dependent soil variables caused by different

land use types (Oleson et al. 2006).

Texts devoted to the theory and applications of Bayesian hierarchical models include,

e.g., Gelman et al. (2005) and Banerjee et al. (2004), the latter focusing on spatial data

analysis applications. For the reader’s convenience, basic background information is

presented here. The Bayesian hierarchical framework is developed from Bayes’ rule of

probability which provides a relationship between joint probability distribution and con-

ditional distributions of two variables. For example, assuming there are two variables Y

and h, Bayes’ theorem states that the joint probability distribution of Y and h, p(Y, h), can

be obtained by the product of the conditional distributions and marginal distributions of Y

and h. Mathematically, Bayes’ rule is expressed as p(Y, h) = p(Y|h)p(h) = p(h|Y)p(Y).

Thus, the conditional probability of Y can be obtained by p(Y|h) = p(h|Y)p(Y)/p(h), and

likewise, the conditional probability of h by p(h|Y) = p(Y|h)p(h)/p(Y).

As summarized in Banerjee et al. (2004), given observed data y = (y1,…,yn) with

probability density function f(y|h), and a vector of unknown parameters h = (h1,…,hk), the

fundamental difference of Bayesian approach from the classical statistical models is the

former assumes that h is a random quantity sampled from a prior distribution p(h|k) based

on previous knowledge, where k is a vector of hyper-parameters (i.e., parameters for the

prior distribution). If k is known, inference concerning h is based on the posterior dis-

tribution of h,

pðhjy; kÞ ¼ pðy; hjkÞ
pðyjkÞ ¼

pðy; hjkÞ
R

pðy; hjkÞdh
¼ f ðyjhÞpðhjkÞ
R

f ðyjhÞpðhjkÞdh
ð1Þ

It can be seen in this relationship that both the data (f) and the prior knowledge (p)

contribute to the posterior. In reality, however, k is often not known. Thus, a second-stage

(or a hyper–prior) distribution h(k) is required, and Eq. 1 becomes

pðhjyÞ ¼ pðy; hÞ
pðyÞ ¼

R
f ðyjhÞpðhjkÞhðkÞdk

R
f ðyjhÞpðhjkÞhðkÞdhdk

ð2Þ

Usually, k can be replaced by its estimator, k̂, which maximizes the marginal distribution

p(y|k) with respect to h. Then inference about h can be based on the estimated posterior

distribution pðhjy; k̂Þ.
One obstacle to adopting Bayesian analysis applications for scientists working in fields

of ecology, agriculture and natural resources has been the programming skills required to

evaluate the full conditionals required by the Bayesian models. The development of the

free computer program ‘‘Windows version of Bayesian Updating using Gibbs Sampler’’

(WinBUGS, http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml), which has a

built-in Gibbs sampler, an algorithm commonly used for generating random samples in

Bayesian analysis, greatly facilitated Bayesian model formulation and computation. The

WinBUGS program eliminated the need for specifying the full conditional distributions of

the model, allowing the user to create their own models by providing only model distri-

bution and prior distributions of model parameters. White and Sun (2006) illustrated the

use and efficacy of this program using an ecological case study and reported that Win-

BUGS produced results compatible with those using the same model programmed in

FORTRAN.
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The objective of this project was to apply a spatial Bayesian hierarchical approach,

implemented using the WinBUGS program, to examine the effects of soil, topographic and

climatic variables on corn yield for a Missouri field.

Materials and methods

The dataset

The study site was a 36-ha corn-soybean field located near Centralia, Missouri. Elevation

of the field ranged from 262 to 266 m. Soil types found in the field were claypan soils and

included Mexico (fine, smectitic, mesic Aeric Vertic Epiaqualfs), Adco (fine, smectitic

mesic Aeric Vertic Eqiaqualfs), and Leonard (fine smectitic, mesic, Vertic Epiaqualfs).

These soils were somewhat poorly or poorly drained and have a restrictive layer with high

clay content (the claypan) occurring below topsoil at a highly variable depth. Corn yield

data for 1997, 1999, 2001 and 2003 were used in the analyses. These yield data were

collected using commercial yield monitors mounted on combine harvesters. During the

harvest, the combine usually traveled at approximately 5–8 km h-1 and yield data were

recorded every second. Thus, depending on swath width, a single yield data point repre-

sented an average yield for an area approximately 6–10 m2. An automatic yield data

processing program—Yield Editor (Sudduth and Drummond 2007)—was used to remove

questionable and unrealistic yield data points caused by operating errors such as abrupt

changes of speed, partial swath and combine stops and starts. Descriptive statistics of corn

grain yields are given in Table 1. Growing season precipitation records showed that dro-

ughty conditions prevailed in July, 1999 and July, 2003. In August 2003, monthly

precipitation was above the long-term average, but the timing of the rain events was too

late to alleviate the water stress of the corn plants (Fig. 1). Thus, corn yield was severely

reduced in these 2 years. Continuous surfaces of yield data were generated using ordinary

kriging with an exponential semivariogram using the ArcGIS Spatial Analyst (ESRI,

Redlands, CA, USA) and then were output to a 30 m by 30 m cell resolution, resulting in a

total of 390 data cells. The interpolated yield maps are shown in Fig. 2. The choice of 30 m

cell size was mainly a consideration of data capacity of the WinBugs program, even though

others have also used a 30-m resolution to evaluate the relationship between crop yield and

soil information for the same field (Sudduth et al. 1996; Drummond et al. 2003). At this

resolution some fine spatial structures maybe lost, but by visual examination of kriged

maps the general spatial pattern was largely preserved.

Table 1 Descriptive statistics of corn grain yield and growing-season weather conditions

Year Corn yield Weather variablesa

Mean (Mg ha-1) SD (Mg ha-1) CV (%) Max.temp (�C) Temp.range (�C) cPREC (mm)

1997 7.2 1.1 0.15 29.7 16.3 150

1999 2.6 0.68 0.26 31.3 15.8 128

2001 6.1 0.92 0.15 30.3 13.0 116

2003 2.1 1.1 0.66 31.2 19.1 87

a Max.temp, mean maximum daily temperature; Temp.range, mean daily temperature range; cPREC,
cumulative precipitation
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Elevation of the field was mapped using a total station surveying instrument and

standard mapping procedures. Soil ECa was measured using an on-the-go Dualem-2S

sensor (Dualem Inc., Milton, Ontario, Canada)1 every second on a 10-m transect spacing.

The Dualem-2S sensor had two effective sensing depths of 1.2 and 3.0 m, and the 1.2-m

sensing depth was used. The speed of travel of the sensor was approximately 7.2 km h-1.

Both elevation and ECa data were kriged to the same spatial extent as the yield data.

Maximum slope in degrees was derived from the interpolated elevation data using Spatial

Analyst in ArcGIS (ESRI 2007). The Spatial Analyst calculates slope values along the rate

of maximum change in elevation for each cell to its neighbors using a 3 by 3 search

window. The kriged elevation and ECa maps are presented in Fig. 3.

Three weather variables for the period of July and August were included as temporal co-

variates in the model. They were mean maximum daily temperature (Max.temp), mean

daily temperature range (Temp.range) and cumulative precipitation (cPREC; Table 1).

These particular climatic variables were chosen because they have been shown to signif-

icantly affect corn yield using a dataset collected over 100 years in Central Missouri (Hu

and Buyanovsky 2003).

The model

The baseline model

The baseline model was a linear regression model including a mean structure of co-variates

(elevation, slope, soil ECa, Max.temp, Temp.range, and cPREC), and a random spatial

effect.

Let Yi,j denote the observed yield at cell i in year j, and assume

Yi;j ¼ Xi;jbþ Zi þ ei;j ð3Þ

where ei;j represents the measurement errors which are assumed to be independent and

identically distributed (iid) as N(0, r2
e), Zi is the spatial effect of cell i. b is the n 9 1
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Fig. 1 Growing season (April–September) precipitation (mm). The cross bar of the hollow boxes indicates
30-year average for the month (i.e., average from 1971 to 2000)

1 Mention of trade names or commercial products is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by University of Missouri or the USDA.
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parameter coefficient vector of co-variates and Xi;j is the 1 9 n covariate vector. The

spatial co-variates were considered fixed in this case.

Spatial effect modeling

A conditional auto-regressive (CAR) model was used to account for the spatial association

among yield (i.e., Zi in Eq. 3). In general, a CAR model can be expressed as follows:

   3.2 - 6.1
   6.1 - 7.0
   7.0 - 7.4
   7.4 - 7.7
   7.7 - 7.9
   7.9 - 9.2

Mg ha-1

   1.1 - 2.0
   2.0 - 2.4
   2.4 - 2.6
   2.6 - 2.8
   2.8 - 3.2
   3.2 - 4.8

Mg ha-1
 1997  1999

2001
Mg ha-1

   3.5 - 5.4
   5.4 - 5.9
   5.9 - 6.1
   6.1 - 6.4
   6.4 - 6.7
   6.7 - 8.4

2003
Mg ha-1

   0.3 - 1.3
   1.3 - 1.6
   1.6 - 1.9
   1.9 - 2.2
   2.2 - 2.8
   2.8 - 8.2

Fig. 2 Yield maps for 1997, 1999, 2001, and 2003. The dimension of each map cell is 30 m by 30 m
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ðYijym;m 6¼ iÞ�N
X

m

bimym; s
2

 !

; i ¼ 1; . . .; n: ð4Þ

where m denotes the set of ‘‘neighbor cells’’ around cell i. It is assumed that Yi has a normal

distribution with conditional mean given by the average of its neighbors, ym, and a com-

mon variance component, s2. bim are elements of a symmetric matrix B, which is called an

adjacency matrix, where bim are equal to 1 if cell i and cell m are adjacent, and 0 otherwise.

The CAR model allows for the ‘‘borrowing’’ of information from adjacent cells in esti-

mating parameters for each individual cell.

Specification of prior distributions and hyper-parameters

As mentioned above, each model parameter needed a prior distribution, and the parameters

of the prior distribution (i.e., hyper-parameters) were also needed to complete the model. In

our dataset, all the coefficients of co-variates in Eq. 3 were given a normal distribution

N(0, r2
0), where r2

0 is a positive constant. The model parameters, variance (r2
e), and the

spatial variance (s2), were assumed to follow the inverse gamma distribution IG(a, b),

which is a common prior distribution specification for error variance (Gelman et al. 2005).

Therefore, the two variance terms were specified as:

r2
e � IG ae; beð Þ and s2� IGðaz; bzÞ ð5Þ

where the hyper-parameter values of (ae, be) and (az, bz) are positive constants.

All hyper-parameters (i.e., r2
0, ae, be, az, and bz) were given such that prior distri-

butions were non-informative. Non-informative priors have large or infinite variance so

parameter estimations are largely driven by data and less by the prior-distributions

specified.

(a) (b) 

   262.2 - 263.2
   263.2 - 263.8
   263.8 - 264.1
   264.1 - 264.4
   264.4 - 264.9
   264.9 - 265.9

Elevation (m) ECa (mS m    )-1

   21.7 - 37.1
   37.1 - 40.5
   40.5 - 43.4
   43.4 - 45.5
   45.5 - 48.3
   48.3 - 65.4

Fig. 3 Elevation (a) and ECa (b) maps of the field. The dimension of each map cell is 30 m by 30 m
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A complete list of prior distributions and hyper-parameters are summarized in Table 2.

Further, a diagram illustrating the inter-relationships between model components (Eqs. 3–

5) is given in Fig. 4.

Bayesian computation using WinBUGS

Posterior distributions are estimated using the Gibbs sampler in WinBUGS. If the model

has k parameters, h = (h1,…,hk)
0, the Gibbs sampler generates random samples from each

of the full conditional distributions {p(hi|hj=i, y), i = 1,…,k} in the model. Given initial

values of hð0Þ2 ; . . .; hð0Þk

n o
, The Gibbs sampler iterates as follows (Banerjee et al. 2004):

Step 1: Draw h tð Þ
1 from p h1jhðt�1Þ

2 ; hðt�1Þ
3 ; . . .; hðt�1Þ

k ; y
� �

Step 2: Draw h tð Þ
2 from p h1jhðtÞ1 ; h

ðt�1Þ
3 ; . . .; hðt�1Þ

k ; y
� �

Table 2 Prior distributions and hyper-parameter values for co-variates (b), model variance (r2
e) and spatial

variance (s2)

Parametera Prior distribution with
hyper-parameters
(same as in the text)

Hyper-parameter
values

Prior distribution
specification used
in WinBUGS

Hyper-parameter values
in WinBUGS coding
syntax

ECa N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

Slope N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

Elevation N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

Tamp.range N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

Max.temp N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

cPREC N(0, r2
0) N(0, 1000) N(0, 1/r2

0) N(0, 0.001)

s2 IG(az, bz) IG(2, 1) Gamma(az, 1/bz) Gamma(2, 1)

r2
e IG(ae, be) IG(2, 1) Gamma(ae, 1/be) Gamma(2, 1)

a Temp.range, mean daily temperature range in July and August; Max.temp, mean maximum daily tem-
perature in July and August; cPREC, cumulative precipitation in July and August

Yield Data Data variance 

Spatial effect  

Prior for spatial 
 effect 

Hyper parameters Priors

Covariates 

ijY

Hyper
parameters 

Fig. 4 Diagram of the spatial Bayesian hierarchical model described by Eqs. 3–5
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�
�
Step k: Draw h tð Þ

k from p h1jhðtÞ1 ; h
ðtÞ
2 ; . . .; hðtÞk�1; y

� �

Thus, when t is sufficiently large, hðtÞ1 ; . . .; hðtÞk

n o
can be shown to converge to the true joint

posterior distribution p(h1,…,hk|y).

Model implementation

Three versions of the baseline model (Eq. 3) were implemented. The first version, Model

(a), was run for each year with neither temporal co-variates nor the spatial effect Zi in the

model; the second version, Model (b), was run for each year with the spatial effect Zi, but

without temporal co-variates; and the last version, Model (c), was run for the 4-year

combined dataset with the three temporal co-variates and the spatial effect Zi.

For each version of the baseline model, posterior densities for each model parameter

were obtained after 100,000 iterations, with the first 10,000 iterations discarded as ‘‘burn-

in’’. Model runtime for all model versions was less than 10 min using a Pentium IV

computer.

Results and discussion

By-year analysis without spatial effect

Parameter posterior means, standard deviations (SD) and 95% credible intervals obtained

using Model (a) are given in Table 3. Soil ECa was negatively related to corn yield in

three (1997, 1999 and 2001) out of the four site-years, with statistical significance in

1997 and 1999 (i.e., the 95% credible intervals excluded zero). For claypan soils, neg-

ative correlations between ECa and crop yield under droughty growing seasons has been

previously reported, especially when rainfall was below normal in July and August

(Kitchen et al. 1999). In agreement with these findings, 1997 and 1999 had well-below-

normal precipitation during July or August (Fig. 1). Slope was negatively and

Table 3 Posterior means, standard deviations, and 95% credible intervals obtained using Model (a)

Parameter Mean (SD) (95% Credible interval) Parameter Mean (SD) (95% Credible interval)

1997 2001

Soil ECa -0.038 (0.007) (-0.053, -0.024) Soil ECa -0.008 (0.006) (-0.019, 0.003)

Slope -1.283 (0.181) (-1.638, -0.927) Slope -0.504 (0.142) (-0.782, -0.226)

Elevation 0.028 (0.059) (-0.088, 0.144) Elevation 0.074 (0.048) (-0.020, 0.169)

re
a 0.895 (0.032) (0.835, 0.960) re 0.694 (0.025) (0.647, 0.744)

1999 2003

Soil ECa -0.016 (0.005) (-0.026, -0.007) Soil ECa 0.005 (0.008) (-0.011, 0.020)

Slope -0.538 (0.117) (-0.766, -0.310) Slope -0.668 (0.194) (-1.046, -0.288)

Elevation 0.050 (0.041) (-0.029, 0.130) Elevation -0.301 (0.063) (-0.422, -0.178)

re 0.567 (0.020) (0.529, 0.608) re 0.957 (0.034) (0.892, 1.027)

a re, model standard deviation, in Mg ha-1
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significantly related to yield for all four site-years. The relationships between slope and

crop yield are generally negative (Yang et al. 1998; Kravchenko and Bullock 2000; Jiang

and Thelen 2004) because steep slopes usually result in severe erosion characterized by

thinner topsoil, higher clay content, lower infiltration rate, and greater runoff and, hence,

lower soil productivity. Another topographic variable, elevation, was negatively signif-

icant only in 2003. Relationships of elevation to crop yield varied, depending on location

and year. As Kravchenko and Bullock (2000) pointed out, the effect of elevation on yield

is reflected through water availability, and this effect is more readily observed under

extreme weather conditions and field topography. The elevation change was gradual in

our field and thus elevation did not affect crop yield in most of the site-years. The

negative relationship in 2003 was probably because more soil water was stored in the

low-elevation areas of the field. The low-elevation areas (depositional areas) had greater

topsoil (silt loam) thickness, and topsoil usually provides about twice as much plant

available water capacity as the underlying claypan. On the other hand, erosional areas,

especially the highly eroded side-slopes where claypan was near the soil surface, often

show deficiencies in soil water storage due to slow recharge of the clay material (Jiang

et al. 2007). This effect was particularly an issue in 2003 because below-normal pre-

cipitation was also recorded for the fall/winter recharge period before the 2003 growing

season (data not shown). This resulted in very low level of soil water, except for the

depositional areas in the low elevations.

Model residuals of yield (predicted yield–measured yield) are mapped in Fig. 5. Spatial

patterns in the residuals were similar to those seen in the yield maps (Fig. 2). Clearly, these

spatial patterns in the yield were preserved in the residuals without a spatial component in

the model. Large positive residuals (over-estimation) were mostly in the most-eroded side-

slope areas, whereas large negative residuals (under-estimation) occurred along the lower

drainage-way and the outlet on the north. Another distinctive pattern can be found around

the south-west corner of the field. The south end of the field had not been in crop pro-

duction until 1980, and the south-west portion of the field was the location of an old

farmhouse and livestock housing area. Therefore, animal manures, as well as less eroded

soil, contributed to the higher yield in that part of the field (under-estimation).

By-year analysis with spatial effect

Parameter posterior means, standard deviations and 95% credible intervals obtained using

Model (b) are given in Table 4. In general, consistent relationships were found for soil and

topographic co-variates with those obtained by Model (a). For example, soil ECa was

negatively significant in 1997 and 1999 and slope was negatively significant for all four

site-years. The standard deviations of the soil ECa and slope estimates were comparable

between Models (a) and (b). The standard deviation of elevation, however, increased for all

four years compared with Model (a). For example, in 2003 the standard deviation increased

to 0.107 Mg ha-1 in Model (b) from 0.063 Mg ha-1 in Model (a) and as a result, elevation

was no longer significant. This result was possibly because the spatial association of yield

was related to elevation changes in parts of the field. With the spatial effect added, the

model standard deviations (re) decreased for all 4 years, from an average of

0.778 Mg ha-1 for Model (a) to 0.382 Mg ha-1 for Model (b). The standard deviations of

the spatial effect (s) were lower for the dry and low-yielding years (1999 and 2003) and

higher for the high-yielding years (1997 and 2001). The correlation coefficient was 0.7 (not

shown).
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Spatial effect maps are presented in Fig. 6. The Model (b) spatial maps were, in large,

opposite of the residual maps using Model (a) (Fig. 5). For the spatial effect, patterns of

negative values were observed in the eroded side-slope areas and patterns of positive

values were found along the drainage outlet areas and in the south-west corner of the field.

Visually, more resemblance seemed to exist between 1999 and 2003, the two dry years,

and between 1997 and 2001, the two moderately-dry years. Allowing for the small number

of site-years, this result suggests that the spatial patterns of yield can be temporally

consistent under similar weather patterns. This result agreed with Sadler (1998) and Jiang

et al. (2007), who found that spatial pattern of corn yield was temporally consistent when

soil water was limited.

1997 1999Mg ha-1
Mg ha-1

(18) 1.0 – 1.5 

(28) >= 1.5 

(44) 0.5 – 1.0 

(77) 0.0 – 0.5 

(106) �0.5 – 0.0 

(83) �1.0 � �0.5 

(34) < �1.0 

(14) >= 1.0 

(58) 0.5 – 1.0 

(127) 0.0 – 0.5 

(128) �0.5 – 0.0 

(42) �1.0 � �0.5 

(18) �1.5 � �1.0 

(3) < �1.5 

(19) < �1.0 

Mg ha-1
Mg ha-12001 2003

(34) >= 1.0 

(87) 0.5 – 1.0 

(112) 0.0 – 0.5 

(70) �0.5 – 0.0 

(39) �1.0 � �0.5 

(23) �1.5 � �1.0 

(25) < �1.5 

(10) >= 1.5 

(28) 1.0 – 1.5 

(47) 0.5 – 1.0 

(92) 0.0 – 0.5 

(130) �0.5 � 0.0 

(64) �1.0 � �0.5 

Fig. 5 Residual (predicted yield–observed yield) maps of corn yield obtained using Model (a), without a
spatial component. Numbers in parentheses are number of cells in each yield range. The dimension of each
map cell is 30 m by 30 m
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Residual maps obtained using Model (b) are presented in Fig. 7. With yield spatial

association accounted for by the CAR model, residuals were greatly reduced, the spatial

patterns observed in the residual maps from Model (a) were resolved and the residuals

began to look more or less random. This indicated that the spatial CAR model successfully

explained the spatial association of yield.

Analysis for four-year data combined with spatial effect

Parameter posterior means, standard deviations and 95% credible intervals obtained using

Model (c) are given in Table 5. The Temp.range and Max.temp were negatively related to

corn yield, similar to the findings in Hu and Buyanovsky (2003), who reported high corn

yields were related to cooler and stable daily temperatures from June through August.

Surprisingly, cPREC was not significant, emphasizing that the timing of precipitation

during the critical development stages corn plants can be more important than the total

amount (Hu and Buyanovsky 2003). When data were combined, the model standard

deviation was substantially increased to 0.606 Mg ha-1, compared with the average SD

value (0.382 Mg ha-1) of Model (b). This increase was because overall yield variance

increased when data were combined. The standard deviation for the spatial effect, however,

decreased to 0.900 Mg ha-1 from an average of 1.204 Mg ha-1 using Model (b). These

results demonstrated the spatial Bayesian model was able to fit the additional complexities

introduced by the inclusion of climate co-variates, and was able to detect the effect of

weather conditions on corn yield with a small number of site-years, fewer than generally

needed in more traditional methodologies such as multiple regression and some non-linear

fitting techniques (Drummond et al. 2003).

The spatial effect map for the 4-year combined yield is presented in Fig. 8. The

combined map seemed to be smoother than the spatial effects mapped for individual years

using Model (b) (Fig. 6). Nonetheless, the most distinctive patterns were retained. This

map indicated how strongly and persistently the corn yield was spatially associated within

the study period.

Table 4 Posterior means and 95% credible intervals for regression coefficients, and model and spatial
error, using Model (b)

Parameter Mean (SD) (95% Credible interval) Parameter Mean (SD) (95% Credible interval)

1997 2001

Soil ECa -0.020 (0.007) (-0.034, -0.005) Soil ECa 0.003 (0.006) (-0.009, 0.016)

Slope -1.001 (0.201) (-1.397, -0.611) Slope -0.218 (0.171) (-0.553, 0.118)

Elevation -0.131 (0.103) (-0.332, 0.074) Elevation -0.067 (0.096) (-0.252, 0.122)

sa 1.392 (0.10) (1.20, 1.577) s 1.018 (0.111) (0.803, 1.237)

re
b 0.384 (0.045) (0.302, 0.475) re 0.441 (0.041) (0.359, 0.520)

1999 2003

Soil ECa -0.011 (0.004) (-0.020, -0.002) Soil ECa 0.008 (0.008) (-0.008, 0.023)

Slope -0.569 (0.121) (-0.809, -0.333) Slope -0.885 (0.222) (-0.884, -0.454)

Elevation -0.124 (0.084) (-0.287, 0.043) Elevation -0.184 (0.107) (-0.392, 0.028)

s 0.794 (0.054) (0.689, 0.899) s 1.612 (0.089) (1.435, 1.785)

re 0.266 (0.022) (0.225, 0.311) re 0.356 (0.043) (0.278, 0.447)

a s, spatial effect standard deviation in Mg ha-1

b re, model standard deviation in Mg ha-1
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Conclusions

A spatial Bayesian hierarchical approach was employed to model the relationships of soil,

topographic and climate variables to corn yield. Our results generally agreed with previous

research findings in the literature. Compared with other methodologies, the Bayesian

hierarchical approach distinguishes itself by being able to explicitly model the spatial

association of yield data. This is an advantage to the classical linear regression technique,

which assumes independence of the dependent variables in the model. Thus, all data points

could be utilized in the analysis, which greatly increased the efficiency of the data and the

power of statistical inference. The CAR model successfully captured the structures of

spatial association of corn yield both for individual years and for 4 years combined. Model

1997 1999
(25) < �1.5 

(27) �1.5 � �1.0 

(34) �1.0 � �0.5 

(65) �0.50 � 0 

(132) 0 – 0.5 

(94) 0.5 – 1.0 

(13) >= 1.0 

Mg ha-1 Mg ha-1

(1) >= 1.5  

(10) 1.0 – 1.5  

(50) 0.5 – 1.0 

(117) 0 – 0.5 

(151) �0.5 � 0 

(2) < �1.0 

(59) �1.0 � �0.5 

(4) >=1.0 

(54) 0.5 – 1.0 

(144) 0 – 0.5 

(124) �0.5 – 0 

(56) �1.0 � �0.5 

(8) < �1.0 

2001 Mg ha-1 2003
(21) < �1.0 

(84) �1.0 � �0.5 

(131) �0.5 � 0 

(79) 0 – 0.5 

(37) 0.5 – 1.0 

(18) 1.0 – 1.5 

(20) >= 1.5 

Mg ha-1

Fig. 6 Spatial effect maps for corn grain yield using Model (b). Numbers in parentheses are number of cells
in each yield range. The dimension of each map cell is 30 m by 30 m
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errors were reduced by about 50% when adding the spatial effect component to the model.

Further, the approach was able to assess the effects of temporal variables (i.e., climatic

variables) on corn yield with a small number of site-years. When more site-years become

available, it is conceivable and reasonable to consider a temporal random effect to capture

the time dependency in the corn yield over time. The Bayesian model provides the flex-

ibility to accommodate that possibility. The flexible nature of the model also makes it

possible to consider the inclusion of additional spatial (e.g., soil or topographic) variables

when appropriate.

The WinBUGS software and its spatial module, GEOBUGS, proved to be useful tools in

constructing spatial Bayesian models. However, some limitations need to be noted for the

1997 1999Mg ha-1 Mg ha-1

(2) >= 0.5 

(18) 0.25 – 0.5 

(179) 0.0 – 0.25 

(170) -0.25 – 0.0 

(19) -0.5 - -0.25 

(2) < -0.5 

(4) >= 1.0 

(6) 0.5 – 1.0 

(16) 0.25 – 0.5 

(146) 0.0 – 0.25 

(190) -0.25 – 0.0 

(25) -0.5 - -0.25 

(3) < -0.5 

(1) >= 0.75 

(16) 0.25 – 0.5 

(0) 0.5 – 0.75 

(194) 0.0 – 0.25 

(17) -0.5 - -0.25 

Mg ha-12001 Mg ha-1 2003
(4) < -0.5 

(158) -0.25 – 0.0 

(7) >= 0.75 

(18) 0.5 – 0.75 

(48) 0.25 – 0.5 

(116) 0.0 – 0.25 

(128) -0.25 – 0.0 

(53) -0.5 - -0.25 

(15) < -0.5 

Fig. 7 Residual (predicted yield–observed yield) maps of corn yield obtained using Model (b), with a
spatial component. Numbers in parentheses are number of cells in each yield range. The dimension of each
map cell is 30 m by 30 m
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sake of future development of the software. First, the ability of the software to handle large

datasets is limited. For example, we attempted to run a 10 m by 10 m cell-size resolution

(which would give 3634 data points) for yield and each covariate; WinBUGS was unable

to handle this. Second, WinBUGS has primitive color schemes for displaying spatial

results. Also, it lacks an exporting function by which spatial results can be output to a data

file, which then can be imported to a GIS or other package for display and further analysis.

Table 5 Posterior means and 95% credible intervals for regression coefficients, and model and spatial
effect standard deviations, using Model (c)

Parametera Posterior mean (SD) (95% Credible interval)

Soil ECa -0.006 (0.005) (-0.016, 0.004)

Slope -0.660 (0.136) (-0.926, -0.395)

Elevation -0.005 (0.092) (-0.184, 0.174)

Temp.range -0.227 (0.008) (-0.243, -0.211)

Max.temp -2.876 (0.032) (-2.938, -2.814)

cPREC 0.001 (0.001) (-0.001, 0.003)

sb 0.900 (0.052) (0.799, 1.003)

re
c 0.606 (0.012) (0.583, 0.630)

a Temp.range, mean daily temperature range of July and August; Max.temp, mean maximum daily tem-
perature in July and August; cPREC, cumulative precipitation in July and August
b s, spatial effect standard deviation
c re, model standard deviation

Mg ha-1

(14) 1.0 – 1.5

(39) 0.5 – 1.0

(148) 0.0 – 0.5 

(123) -0.5 – 0.0 

(60) -1.0 - -0.5 

(6) < -1.0 

Fig. 8 Strength of spatial
association, demonstrated using
Model (c), for the combined corn
yield of 1997, 1999, 2001, and
2003. Numbers in parentheses are
number of cells in each yield
range. The dimension of each
map cell is 30 m by 30 m
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As a result, subtle changes in spatial patterns may be challenging to discern. Overall, the

WinBUGS software was able to facilitate the adoption of the spatial Bayesian approach by

providing relatively easy access to the full Bayesian formulation and computation to

scientists working in soil science and other natural resource fields where spatial data are

commonplace.
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