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Abstract. This study has evaluated the sampling density for creation of high-resolution digital elevation

models (DEMs) for precision agriculture purposes. The relationships between yield and topographical

factors were investigated in a study area located in the central Sweden province of Dalarna. The DEM

data sampling was carried out with a RTK-GPS system. A dense sampling scheme was employed and data

was divided into two for both interpolation and validation. Kriging interpolation was used for DEM

generation. From the DEM, topographical parameters were extracted and topographical indices were

estimated. The indices were calculated with slope length and its vertical and horizontal components. The

drainage area for a point of interest and the relationship of this area to the total drainage area were also

estimated. The relationship of yield and the topographical parameters and indices was investigated using

both circular and spatial statistics. A spatial regression was used to calculate a model for the relationship.

Up to 20% of the yield could be explained in the final model for one of the fields.
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Introduction

Yield variation and its relation to topography

The aim of site-specific agriculture is to optimise the use of spatial and temporal
management strategies. Such optimisation can improve crop yield and quality and
reduce the risks for nutrient and pesticide leakage. During the past decade, several
projects have focused on quantifying and characterising variation in factors such as
crop yield, soil properties and precipitation and their interrelationships.
Generally, yield variation has been expected to be related to variation in properties

of the underlying soil. Research has focused on topsoil depth, soil organic matter
content, clay content, pH, phosphorus content, and, of course, soil nitrogen content.
For instance, a negative correlation between crop yield and phosphorus content was
reported by Webster (Lake et al., 1997). Electrical conductivity and topographic
attributes were used for management zone delineation in Missouri, USA. The
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‘goodness’ of management zones was tested against grain yield data (Fraisse et al.,
2001). However, not all of the variation in yield can be explained by these variables.
Fiez et al. (1994) found a positive correlation between yield variation and soil water
content. Schneider et al. (1997) found a positive correlation between elevation and
potato yield in an irrigated field. In dry-land farming systems, the opposite rela-
tionships can be expected. Landscape position and plant available water were pos-
itively correlated with corn silage yield in a study by Afyuni et al. (1993). It has also
been noted that soil moisture affects yield in different ways depending on other
factors (e.g. temperature and radiation).
Digital elevation models (DEM) can be used to describe the surface elevation of the

landscape. DEMs are interpolated from known elevation points. Data sources for the
interpolation of topography include topographical maps, aerial photographs and
GPS-collected data (Burrough and McDonnell, 1998). In interpolation, the value of
an unknown point is estimated using the values of surrounding known points. In most
interpolation algorithms, a measured point close to the unknown point has a larger
influence than a point farther away from the unknown one. One of the most frequently
used interpolation algorithms is kriging (Burrough and McDonnell, 1998). Kriging is
a geo-statistical method that models continuous data as the sum of three components:
a structural component that shows the mean trend in the spatial dataset, a spatially
dependent stochastic component, and a spatially uncorrelated random component
that describes the noise (Cressie, 1991; Burrough and McDonnell, 1998). A semi-
variogram is used to determine the input parameters for the interpolation. Kriging has
been used for interpolating surface elevations by e.g. Gao (1997) and Blomgren (1999).
In precision agriculture, kriging has been used for several purposes, e.g. soil analysis
by Moore et al. (1993) and for spatial crop modelling by Sudduth (1997).
Apart from the interpolation algorithm, the result of a spatial interpolation also

depends on the spatial distribution of the input data points. It has been shown that
data sampled along isolines (lines with equal elevation steps in between) often
generate terraces or striping in DEMs due to the nature of most local interpolation
algorithms. A convenient way to handle this problem is to ensure that the density of
the data points is equal in all directions (Eklundh and Mårtensson, 1995).
Topographical parameters, such as slope, aspect, and drainage area, are relatively

easy to derive from a gridded digital elevation model. The grid has the form of a
matrix with equally sized cells in rows and columns. Each cell is assigned a value for
the characteristic that it represents. In DEMs, a cell value represents the elevation of
the midpoint of the corresponding area of ground. The cell size and the characteristic
that it describes are homogeneous within a DEM (Pilesjö, 1992).
Topographical indices are sometimes useful when explaining the topographical

influence on different phenomena. Simple indices explaining topographical position
have been used for decades (e.g. Skidmore, 1989), while more complex indices are
frequently used in hydrological modelling for instance. An example of the latter type
is the frequently used wetness index based on slope and drainage area (Moore et al.,
1991). This index has been tested for different drainage area algorithms against field
measurements by Schmidt and Persson (2003).
DEMs with a high accuracy are a necessity in precision agriculture and hydro-

logical modelling. Although commercial maps with a scale of 1:20,000 are available
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in Sweden, this resolution in contour interval (5 m) is not sufficient for fields that are
no larger than a couple of hectares. The resolution cannot be used to explain the soil
moisture movements needed to estimate plant available water. Instead, an accuracy
on decimetre or centimetre level is required.
Past research has mainly focused on the topography being divided into different

slope classes, and has not treated the slope as a continuous surface. Instead, classes
such as top slope, mid slope and foot slope have been used (Changere and Lal, 1990;
Manning et al., 2001).

Objectives

The objectives of this study were:

• to evaluate the field sampling distribution and density for creation of accurate
DEMs in cultivated landscapes and

• to investigate the relationship between yield variation of potato and a number
of topographical parameters and indices.

To achieve these objectives, a number of steps were undertaken. First, elevation
data were collected. This was followed by interpolation of the data into gridded
DEMs. From these DEMs, the topographical parameters and indices were extracted
and estimated and then comparisons between yield and topography were made.

Materials and methods

Study area

Two fields in the province of Dalarna, central Sweden, served as the study sites
(latitude 60�24¢35¢¢, longitude 15�47¢10¢¢). The fields have homogeneous sandy, silty
soils. They are situated on a flood plain formed by the movements of a river. A hillside
towards the river is the dominating characteristic of the two fields. Undulating fea-
tures within the fields are superimposed on the slope and are more pronounced for the
larger of these fields (the fields are called ‘larger’ and ‘smaller’ below). The maximum
and minimum elevations differ by 15.1 m. The maximum gradient is 12.1�. The mean
gradient of the fields is 5.6� with a standard deviation of 1.8�.

Generation of digital elevation models

Field data collection. All elevation data were registered by the NAVSTAR Global
Positioning System (GPS). A RTK (Real Time Kinematic) system, consisting of two
Trimble Site Surveyor 4400 units, recorded positions both vertically and horizontally
with a precision of millimetres, using both carrier wave measurements and code
measurements (Hofmann-Wellenhof et al., 1997).
The mobile GPS unit was carried by an all terrain vehicle (ATV). The GPS an-

tenna was mounted above one of the front wheels of the ATV to assure sampling in
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the corners and along the edges of ditches. Sampling across the fields was then
conducted along transects approximately 6 m apart (Figure 1). The sampling density
was 1 point per 1.5 m along the transects, determined by the GPS receiver frequency
and the velocity of the ATV (approximately 3 km/h). An example of the GPS sample
geometry is shown in Figure 1a.
After data collection, the dataset was split into two. Every second sampled point

was used for interpolation while the remaining points were used for validation. This
yielded one interpolation dataset (IDS) and one evaluation dataset (EDS) for the
area to be interpolated. For both fields together, the full IDS as well as the EDS
consisted of 13,369 points each.

Interpolation. After data collection, the IDS was interpolated with ordinary kriging
to create continuous surfaces representing the topography. Following an analysis of
the semi-variogram, the range was set to 55 m, the sill to 0.5 and the nugget to zero.
The whole area, the two fields and several surrounding fields, was interpolated since
data collection was not restricted to the field boundaries. The surface was then
interpolated with a cell resolution of 1 m. Since the accuracy of the RTK was better
than 0.001 m, the number of decimals in the interpolated cells were set to 3 (i.e. mm
accuracy). After this, the individual fields were extracted from the ‘main’ DEM data.
The interpolated surfaces were evaluated against the EDS. Elevation values were

extracted in the interpolated surfaces corresponding to the positions of the evalua-
tion data points. The elevation values of these cells were then compared to the
elevation data points measured with the RTK in the field (i.e. the EDS). Descriptive
statistics for the datasets were calculated. Since errors may be positive or negative,
the absolute values of error were analysed. In addition, the root mean square error
(RMSE) was calculated for the interpolated surfaces.
In order to test the effect of different data sampling densities, two additional

datasets were created. From the full dataset (IDS) of 13,369 points, every second
point along the sampled transects was removed, creating the second interpolation

Figure 1. Boundaries of the smaller (a) and larger field (b). Data collected with an ATV driven across

the field along transects 6 m apart as seen in (a). A position with x, y and z values was collected every

1.5 m. Coordinates in Swedish National Grid (RT90), meters (m).
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dataset (IDS2, n = 6684). For the third interpolation dataset (IDS3), two out of
every three points were removed (n = 4456).
Striping and/or terracing was revealed by visualising the interpolated surfaces, and

by studying the potential water flow (often referred to as ‘flow accumulation’) over
the interpolated surfaces. The latter was simulated with a flow accumulation algo-
rithm presented in Pilesjö et al. (1998). Since the potential water flow also concen-
trates in smaller depressions and valleys in the terrain, the simulation easily detects
these sorts of landforms. This way of revealing illogical disturbances on the surface
due to interpolation errors was used to optimise the input data in order to create a
DEM representing the true surface.
Figure 2 illustrates a hypothetical lack of fit between the possible isolines in the

field and the interpolated isolines extracted from a ‘striped’ DEM. The lack of fit
may occur when sampling is performed perpendicular to the isolines (i.e. when data
is sampled ‘up-down’, as well as parallel to the possible isolines. In both cases, the
anomalies depend on the distance weighting of the known input data points.
Point A in Figure 2a is situated in a concave slope between two sample transects.

The up-slope points are weighted equally with the down-slope points in the inter-
polation. Since A is situated on a concave slope, the differences in elevation are
greater up-slope than down-slope (within the same distance). This yields an over-
estimation of A, and the isolines will bend downwards. The more concave the slope,
the greater the striping effect. If the slope were convex, the result would be an
underestimation, and the isolines would bend upwards. In Figure 2b, the data points
are sampled parallel to the isolines. The striping in this example can be explained by
an over-representation of data points with one and the same elevation value. Close
to the known points, interpolated values are more or less equal to the known values.

Figure 2 (a–b). Schematic graph of interpolation bias due to elevation sampling in transects perpen-

dicular (a) and parallel (b) to the ‘true’ isolines; see the text for explanation.
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In the centre, between the transects, there is a higher density of interpolated isolines.
These factors result in terraces/striping.

Estimation of topographical parameters. The basic characteristic of a DEM is the
elevation dataset, which in itself constitutes a topographical parameter. With this
parameter and the knowledge of the raster geometry, other parameters may be
obtained. It was decided to estimate slope (gradient) and aspect (slope direction), as
well as slope length and drainage area.
Second-order trend surfaces were calculated within a 3 by 3 cells window moving

over the DEM (see Eq. (1)). The slope and aspect at the mid-point in these trend
surfaces were then used to represent the window (Pilesjö et al., 1998). The param-
eters were estimated according to Eqs. (2) and (3), following Pilesjö et al. (1998):

zðx; yÞ ¼ b0 þ b1xþ b2yþ b3xyþ b4x
2 þ b5y

2 ð1Þ

slope ¼ arctan sqrtðb21 þ b22Þ ð2Þ
aspect ¼ 180� arctanðb2=b1Þ þ 90ðb1=jb1jÞ ð3Þ

where bi are coefficients, z is the elevation value on the second order trend surface
and x, y are the horizontal position coordinates.
Slope length (L) and drainage area up to the water divide (D) were estimated

according to Pilesjö et al. (1998).

Generation of topographical indices. The parameters used to estimate the six
topographical indices generated are presented in Figure 3. Four indices are based on
slope length (Figure 3a), and two are based on drainage area (Figure 3b).

Slope length indices. Depending on how distances between different points in the
DEM are defined, a number of different slope length indices can be designed and
estimated. When generating the two slope length indices (SLI1 and SLI2), the dis-

Figure 3. Topographical indices based on (a) the components of slope length and (b) drainage area.

Point of interest is marked P.
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tance (L1) between the water divide and the point of interest (P) was defined and
estimated as following the topography (see Figure 3a). That was also the case when
estimating the distance (L2) between the point of interest and the lowest point in the
drainage basin, i.e. outlet :

L1 ðSLI1Þ

L1=ðL1 þ L2Þ ðSLI2Þ

If the horizontal or vertical distance along the flow path is presumed to be signifi-
cantly influential on yield, it is relevant to generate slope length indices based on
these distances. To test the influence of horizontal and vertical distances, a hori-
zontal index (HI) and a vertical index (VI) were created (see Figure 3a):

H1=ðH1 þH2Þ ðHIÞ

V1=ðV1 þ V2Þ ðVIÞ

Drainage area index. The drainage area indices (DAI1 and DAI2) were defined and
estimated as the ratio between the area (D1) above the point of interest (P), and the
total drainage area of the drainage basin, D2 (see Figure 3b):

D1 ðDAI1Þ

D1=D2 ðDAI2Þ

The drainage areas were estimated according to Pilesjö et al. (1998).

Estimation of potato yield. The potato yields were estimated using a mapping
technique that is under development in Sweden. The yield mapping system is based
on an optical sensor that uses image analysis to count and gauge the size of the
tubers (Persson, 1998). The system has been tested for 5 years in the field and in a
laboratory test, which showed a deviation from the measured values of less than 2%
for tuber sizes (Persson et al. 2004). The data used in this study was collected during
the harvest period (September through October) 2002. Together with the size and
amount measurements, the positions were logged with a GPS system every second.
The sensor calibration was based on a regression model with an R2 = 0.98. Since

the sensor readings (cross-sectional area) were correlated to weight, the relationships
should not be linear. The model equation, y = 0.010x1.26, fitted to the data in the
calibration was used to calculate the yield biased on the field data.
The delay for a tuber passing through the harvester was 32 s. The band conveyors

carrying the tubers were all set to a constant speed during data collection. The delay
was corrected for in the post-processing of the harvest data and positions were
calculated.
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Yield variation and its relation to topography. In order to investigate the spatial
influence of topographical factors on yield of potato, the estimated parameters and
indices were statistically tested versus yield data. The relationships between the
topographical data and yield were tested by the use of Pearson’s correlation coeffi-
cient. C-association (Fisher, 1993) was used for testing the relationship between
aspect and yield. Spatial regression and stepwise multiple regression were used in
order to explain the variation in yield.
The C-association is a way of correlating a linear variable (X) to a circular variable

(Q), e.g. yield and aspect. As Q performs a cycle from 0 to 360�, the expectance
E(X|Q= h) performs a sine-curve oscillation over the same range. The C-association
method ranks the variablesX and Q from a sample and the ranking order numbers are
then named: s1… sn and r1… rn, respectively. A value between 0 and 1 is obtained forDn

(Eq. (4)), where a value close to unity suggests a high correlation. A significance test for
the C-association was also used, called the Un-statistic (Mardia, 1972; Fisher, 1993).

Dn ¼ anðT2
c þ T2

s Þ; ð4Þ

where

Tc ¼
Xn

i¼1
si cos ri; Ts ¼

Xn

i¼1
si sin ri

and

an ¼
1=½1þ 5 cot2ðp=nÞ þ 4 cot4ðp=nÞ� n even

2 sin4ðp=nÞ=½1þ cosðp=nÞ�3 n odd

�

(equations from Fisher, 1993).

The Spatial regression. Since distributed data are often autocorrelated, the coeffi-
cients for a regression may vary spatially. The method of spatial regression provides
a tool to take into account the residuals for the neighbouring, autocorrelated values
(Rogerson, 2001). For the response variable (y) and for each of the predictors (x) in
the regression, new values (y* and x*) were calculated by:

yi
� ¼ yi � q

Xn

j¼1
wijyj; ð5Þ

xi
� ¼ xi � q

Xn

j¼1
wijxj; ð6Þ

where q is a measure of the correlation strength and wij is the weight of influence
from autocorrelated surrounding values (equations from Rogerson, 2001). When q is
zero, the spatial regression reverts back to a normal linear regression model.
The w-values included in the calculations of x* and y* may be based on a distance

weight, which determines the spatial influence. In our case, a semi-variogram was
used to derive the maximum distance of spatial influence. This distance was set to
30 m and the weight (w) was set to 1/distance2. The regressions were then tested for a
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number of q. The q that generated the lowest standard error of the estimate was used
for further analysis.
The new set of response and predicting variables was used in a stepwise multiple

regression. The threshold for including and excluding a variable was set to a 0.15.
Only models where all parameters were significant (P = 0.05) were kept.

Results

Field sampling and evaluation of the interpolation

Visual examination revealed that striping occurred in some of the interpolated
surfaces (Figure 4). A comparison with the elevation data points sampled in the field
17 (Figure 1) indicated that the striping was concentrated parallel to the sampling
transects. When studying interpolations based on the first of the reduced dataset
(IDS2), the negative influence of the dense sampling scheme was still apparent,
though to a lesser extent. Figure 5 shows this surface where water from a flow

Figure 4. The flow pattern from the full dataset. The striping is obvious over the whole field. The dar-

ker the map more accumulated the flow. Coordinates in Swedish National Grid (RT90), meters (m).
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accumulation calculation is forced along the stripes. The pattern was not visible for
IDS3 (Figure 6), which was reduced by two out of every three points.
The results of the evaluation for each dataset are presented in Tables 1, 2, and 3,

respectively. Mean values of the interpolated surfaces were within centimetres of the
mean value of the sampled data. The maximum error was greater, in the order of a
couple of decimetres. However, for one of the reduced datasets (IDS2), the inter-
polated surface had a maximum error of about 2 dm. The root mean square error
was calculated to 0.036 m for the best interpolation.
Scatter plots over the value from interpolated surfaces of IDS, IDS2 and IDS3

against the EDS is presented in Figure 7(a–c). Correlation coefficients (r2) was 0.999,
0.996 and 0.999 for IDS, IDS2 and IDS3, respectively.

Yield variation and its relation to topography

On the larger field, the yield ranged from 9 to over 52 t/ha (Figure 8). A lower yield
was harvested on the smaller field (Figure 9), a minimum of 4.8 and a maximum of
27.2 t/ha were recorded. Descriptive statistics for yield are presented in Table 4.

Figure 5. A dataset reduced by removal of every second point and the kriging algorithm disguise the

pattern where flow accumulation is low. The striping is revealed where flow accumulation becomes

higher. The darker the map, the more accumulated the flow. Coordinates in Swedish National Grid

(RT90), meters (m).
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The C-association for testing the hypothesis of a relationship between aspect and
yield was calculated for each field. For the smaller and larger fields, the Dn-values
were 0.04 and 0.03 respectively, with a Un-statistic of 9.1 and 6.8, respectively. The
critical value for Un is 9.1 for a significance level of 99%. This leads to an acceptance
of the null-hypothesis that aspect and yields are independent. The aspect was
therefore not included in the final multiple regression model for topographical
influence on yield.

Figure 6. Flow accumulation run on the DEM from kriging interpolation with data reduced by two

out of every three points gives a result that is both intuitively and physically correct. The darker the

map the more accumulated the flow. Coordinates in Swedish National Grid (RT90), meters (m).

Table 1. Descriptive statistics of interpolation accuracy (n = 1817) on the full dataset (IDS)

GPS data Kriging interpolation

Mean (m) 99.999 100.008

Minimum (m) 97.031 97.071

Maximum (m) 102.921 102.877

Variance 1.033 1.027

Std. Dev. 1.016 1.013

RMSE for this dataset was 0.036.
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Table 2. Interpolations on dataset reduced by every second point (IDS2) compared with ground truth

data (n = 1810)

GPS data Kriging interpolation

Mean (m) 99.993 100.001

Minimum (m) 97.031 97.519

Maximum (m) 102.916 102.709

Variance 1.026 0.901

Std. Dev. 1.013 0.949

RMSE for this dataset was 0.177.

Table 3. Interpolations on dataset reduced by 2 out of 3 points (IDS3) compared with ground truth

data (n = 1810)

GPS data Kriging interpolation

Mean (m) 99.993 100.001

Minimum (m) 97.031 97.025

Maximum (m) 102.916 102.879

Variance 1.026 1.022

Std. Dev. 1.013 1.018

RMSE for this dataset was 0.043.

Figure 7. Scatter plots over the interpolated values from IDS (a), IDS2 (b) and IDS3 (c) against EDS.

Number of evaluation points are 1817, 1810 and 1810, respectively.
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In the ensuing spatial and stepwise multiple regressions of yield, the predictors
were elevation, gradient and the topographical indices. In the calculation of the
spatial influence for the regression, the lowest standard error of estimate was found
for q-values of 0 and 0.05 for the smaller and larger field, respectively. The data were
then used in the stepwise multiple regressions for each field, in which the number of

Figure 8. Yield map of the larger field. Coordinates in Swedish National Grid (RT90), meters (m).

Figure 9. Yield map of the smaller field. Coordinates in Swedish National Grid (RT90), meters (m).
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predictors were reduced to elevation, gradient and the horizontal index (HI) for the
smaller field. For the larger field, the predictors were elevation, the horizontal index
(HI) and the drainage area index, which relates the area of a point of interest to the
total drainage area for the slope (DAI2). In the multiple regression, the T-statistics
was used to test if the coefficient was significant. The P-value shows the probability
level for rejecting the null hypothesis that the variable does not contribute signifi-
cantly to the model (given the inclusion of the other variables). The results for the
smaller and larger field are presented in Tables 5 and 6, respectively.

Discussion

DEM generation

When sampling data for DEMs, a dense sampling scheme is preferred because much
data may be collected to facilitate evaluation.
The patterns revealed in the first interpolations showed some systematic errors

over the whole surface, caused by a dense sampling scheme. The striping, though not
always obvious, greatly impacts on subsequent analyses (like drainage area) and is
not revealed by descriptive statistics. With drainage pattern analysis, these errors
may be detected more easily.

Table 5. Statistics for the coefficients to the model for the smaller field

Predictor Coeff SE coeff T P

Elevation 0.6842 0.24 )2.91 0.00

Gradient )27.57 8.48 )3.25 0.00

Horizontal index (HI) )0.07 0.02 )4.45 0.00

R2 = 0.20.

Table 6. Statistics for the coefficients to the model for the larger field

Predictor Coeff SE coeff T P

Elevation )0.75 0.16 )4.73 0.00

Horizontal index (HI) )0.03 0.01 )3.37 0.00

Drainage area index 2 (DAI2) )6.92 3.63 )1.91 0.06

R2 = 0.18.

Table 4. Descriptive statistics for the yield of the two fields

Smaller field Larger field

Mean (t/ha) 13.16 31.35

Minimum (t/ha) 4.86 9.56

Maximum (t/ha) 27.24 52.46

Std. Var. 4.55 6.00
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The descriptive statistics are used to gauge the similarity of the three different
interpolations using the three interpolation datasets (i.e. IDS1, IDS2 and IDS3). The
statistics in the tables (Tables 1–3) do not differ appreciably. The scatter plots
(Figure 7) do not show much difference either. The correlation coefficients are close
to 1 for all three datasets. However, a visual assessment of estimated drainage area
clearly shows that the datasets make the flow accumulation behave quite differently,
and that the flow pattern is improved as data are reduced. Taking into account that
the striping only occurs on a very limited area of the DEM with a difference in
elevation on the centimetre scale, the impact of the stripes is very low in the statistic.
In conclusion, we strongly recommend data to be reduced before interpolation. A

rule of thumb would be to equalise inter-transect distance and the distance between
points in each transect.

Topographical indices

Different topographical indices have been suggested in the literature over the years.
Many indices use the length of slopes and the drainage area. In the present study, we
decided against indices that are too complex since factors other than topography
may influence the yield significantly. Hence, the first four indices used describe a
point on the slope in relation to the slope length in horizontal, vertical and ‘true’
length (SLI1, SLI2, HI and VI). The fifth and sixth indices DAI1, and DAI2, are
somewhat more advanced when it comes to their calculation. The drainage area
above the point on the slope and in relation to the total drainage area of the slope is
calculated. The form-based calculation of water movement in the algorithm (Pilesjö
et al., 1998) takes into account whether the water diverges or converges duo to a
convex or concave slope. The indices were significantly correlated to yield.

Yield variation and its relation to topography

Topographical influence accounted for up to 20% of yield variation according to the
multiple spatial regression model for one of the fields. This suggests that the com-
position of the landscape must not be excluded as a parameter that influences yield.
Field management must take into account both the direct factors such as water
distribution as well as the secondary factors such as nutrient distribution and
redistribution due to topography.
The aspect of slopes in the fields investigated here was not associated with the yield

according to the C-association test. Aspect might be a factor in areas with a greater
gradient and perhaps in latitudes where the day length (in summer) is shorter. This is
because an important yield factor is the solar radiation that the plant receives (de
Temmerman et al., 2002).
The fields do not have any accentuated micro-topography, which means that the

elevation values and gradient values are the major parameters to take into account
for the spatial regression and its limits. The distance of influence, the weight (w) in
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the spatial regression, was set to 30 m, which was large enough to include the pos-
sible spatial autocorrelation. For both fields, the q-values were low indicating a low
spatial correlation between the residuals. For the smaller field, the correlation
strength (q) was zero, so the regression became a linear model. For the larger field, a
small q was found and was taken into the calculations.
Multiple regression was chosen because a single topographical parameter cannot

alone explain the whole variation in yield. A non-linear model might explain more of
the variation using topographical parameters but, since other direct factors (e.g. soil)
are not included, a linear model does not overestimate the influence in the way that a
non-linear model might do (Rogerson, 2001).
In the case of the smaller field, the final model included elevation, gradient and the

index that describes the slope position of the point horizontally (HI). For the larger
field, the predictors included in the final model were elevation, horizontal slope
position of the point (HI) and the index describing the relationship between drainage
areas (DAI2). The significance levels for the parameters in this second model were
greater, although the drainage area index falls just outside the 95% significance level.
The drainage area and the vertical slope position both represent parameters directly
affecting the water distribution in the field and, hence, the water available to the
plant and nutrient dispersion.

Conclusions

The sampling scheme may contribute errors to the DEM, and thus caution is advised
when collecting data for interpolation. Care should be taken with data point dis-
tribution, density and the interpolation algorithm itself.
The study clearly revealed differences between the spatial distributions of sampled

data points. An even distribution of points is strongly recommended. Errors may not
be obvious in the statistical evaluation, but may be revealed by the estimation of flow
pattern.
Topographical factors had an influence on the yield, explaining about 20% of the

yield. The impact of topography implies that the management, strategies for preci-
sion farming should include the landscape configuration.
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