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Abstract. Investment in precision farming technologies can be expensive and is not expected to be cost-

effective for every farm. Previous research and farm experience has shown that the amount of soil variability

across a farm and within a field is of key importance for determining potential benefits from the adoption of

precision farming. The research reported here evaluates the analysis of yield map sequences and electro-

magnetic induction (EMI) soil sensing as potentially cost-effective methods for identifying and mapping soil-

determined ‘‘management zones’’ within fields. Bothmethods are shown to provide useful information for the

provisional delineation of soil type boundaries and crop management zones, though soil examination in the

field is still necessary to confirm specific soil characteristics.
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Introduction

Precision farming can be defined as ‘‘the process of adjusting husbandry practices
within a field according to measured spatial variability’’ (Sylvester-Bradley et al.,
1999). As such it may have perceived benefits in the three main areas of (1)
improving the economic margins of crop production, (2) reducing the environmental
risk from agrochemicals and (3) greater assurance of crop quality and traceability
(Godwin et al., 2002). According to Sylvester-Bradley et al. (1999), the cost-effec-
tiveness of precision farming depends upon the cost of defining zones within fields,
the temporal stability of these zones and the difference in responsiveness (yield and
quality) between the zones to differential treatment. The ability to identify such
stable management zones effectively is therefore of prime importance for decision
making about precision farming.
Two approaches can be taken to identifying zones, either from the spatial varia-

tion in crop yield characteristics at a site, or the factors at that site which determine
the yield. It has been suggested that zones could be identified from collections of crop
yield maps over several years (Steven and Millar, 1997) and indeed recent studies
have attempted to do so, either from simple trends across fields (Godwin et al., 2002)
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or more complex pattern recognition analyses (Grenzedörffer and Gebbers, 2001;
Lark, 2001). Alternatively, many previous projects have demonstrated that the
variability of soil physical properties within fields is important to assess the potential
for variable rate management of some crop inputs (e.g. fertilisers) and for delineating
within-field management zones (Stafford et al., 1996). Beckett and Webster (1971)
reviewed statistical studies of soil variation and found that the distance over which
there is significant spatial correlation between samples is of the order of tens of
metres for physical properties and some chemical nutrients, even though up to half
the variability of a property may be found within 1m2. The cost of measuring and
mapping this variation by traditional sampling however, is prohibitive, and so
remote sensing methods to measure soil spatial variation have been sought (King
and Dampney, 1999).
Various authors have concluded that an EMI sensor can provide useful infor-

mation on the spatial variation of certain soil properties (King and Dampney, 1999),
and more general soil patterns within fields (Lück and Eisenreich, 2001). Such
patterns have been related to yield maps and maps of soil types within fields, both
visually (King and Dampney, 2000) and statistically (Anderson-Cook et al., 2002),
and the technique holds promise for a cost-effective way in which the variation of soil
properties can be measured rapidly over large areas. Interpretation of EMI maps of
soil for the identification of management zones requires more knowledge of the soil
properties that influence the mapped signal of apparent electrical conductivity. The
biggest contributor to electrical conductivity is the solute concentration in salt
affected soils (Williams and Hoey, 1987), but for most temperate soils (where salt
concentrations are small) the major influences are moisture and texture (clay con-
tent) (Brevik and Fenton, 2002). EMI sensors such as the Geonics EM38 produce an
integrated measurement of the apparent electrical conductivity (ECa) over a variable
depth of soil (depending on parent material) typically to 3 m or so, but most strongly
influenced by the surface 0.75–1.5 m depending on mode of operation (McNeill,
1980). This apparent electrical conductivity has been variously correlated with soil
moisture and clay contents (Brevik and Fenton, 2002; Johnson et al., 2001), and
bulk density and surface organic residues (Johnson et al., 2001), as well as crop
yields (Anderson-Cook et al., 2002). It has also been modelled with soil topography
(Clay et al., 2001), and Anderson-Cook et al. (2002) found they could successfully
classify soil to known types using ECa readings alone with over 85% accuracy.
This paper reports results and conclusions from recent research which has inves-

tigated the mapping of soil physical properties and yields within fields using auto-
mated methods. They are two alternative approaches to identifying and mapping
potential management zones for precision farming. First, the use of yield map
sequences to subdivide the field into potential management zones was evaluated, and
statistical analyses were carried out to determine if the mean values of soil properties
within each defined management zone were significantly different. Second, the use of
electro-magnetic induction (EMI) for non-intrusive measurement of the apparent
soil electrical conductivity (ECa) was investigated, with the objectives of (1) identi-
fying the main soil factors influencing soil ECa, (2) studying the stability of ECa maps
under contrasting measurement conditions and (3) assessing their possible contri-
bution to management zone identification.
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Materials and methods

Yield mapping, management zones and soil sampling

An extensive collection of yield maps from farms covering a wide range of conditions
in England was reviewed and the maps screened for quality of data (Lark et al.,
2003). Sequences of yield maps from four fields on contrasting soil types (Table 1)
were used in this study. Each series of maps was analysed to identify sub-regions
(potential management zones) within each field where yields varied over time in a
similar way. Thus a zone might correspond to sites where the yields are always high,
or always low, or show some other temporal pattern, perhaps with large yields in all
but dry years. It is hypothesised that such sub-regions are likely to be subject to
similar limiting factors on yield which will commonly be soil physical properties. If
this is the case, then investigation of soil conditions within each zone, by direct
sampling, may allow us to plan how each zone is managed.
The strength of evidence for distinct sub-regions was measured by computing a

fuzzy cluster analysis on the yield data (Roubens, 1982), searching in turn for
2,3,…,9 classes. The normalised classification entropy statistics (NCE) was com-
puted for each classification, then the plot of NCE against number of classes was
interpreted (as described by Lark, 2001; Lark et al., 2003) to identify the optimum
number of classes for the field. This analysis allowed the subdivision of fields into
regions where the recorded yields most closely resembled a particular season-to-
season pattern (the so-called ‘‘class of maximum membership’’), which were treated
as potential ‘‘management zones’’. The analysis also records for each location in the
field a ‘‘membership value’’ (scale 0–1) which measures how closely the season to
season yield variation at that site resembles each of the typical patterns identified.
Procedures for the analysis are detailed by Lark (2001) and Lark et al. (2003).
The topsoil and sub-soil (100 and 600 mm depth, respectively, were sampled in each

field. Thefieldswere sampled at approximately regular grids (about 1 sampleha)1) and at
20 m intervals along fixed transects, which were parallel and approximately 50 m apart.
The samples were taken for laboratory analysis of particle size distribution, organic
carbon content (OC) and bulk density (BD) (Avery & Bascomb, 1982). Available water
(AW) contents were calculated using pedo-transfer functions (Mayr et al., 1999).
Statistical analyses were carried out to determine if the mean values of soil properties
within each definedmanagement zonewere significantly different. Regressions of the soil
properties on the membership values defined from the yield data were computed using a
maximum likelihoodmethod with a spatially correlated error model (Lark, 2000a), then
themean square error of a point prediction of each soil property using themean value for
the management zone or the regression equation, was calculated.

Soil survey by electromagnetic induction sensing

In the four fields detailed in Table 1, the use of a Geonics EM38 EMI sensor was
also studied. It was mounted in a metal-free cart and towed at 6-m pass spacings
behind an all terrain vehicle at about 15 km h)1.
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Principal component analysis was conducted on measured soil properties from the
intensive survey, to define a new set of uncorrelated soil variables that account for
most of the soil variation. An initial principal component analysis was conducted on
all the data from all four fields combined, because not all fields had sufficient data of
every variable to support a separate analysis. A plot of the first two principal
components showed that Fields 1–3 could be combined into a single dataset, and
results from the analysis of these data are presented here. Principal components were
obtained for this combined set of data. Most of these could be interpreted; for
example, one principal component might have large values for generally wet soils of
heavy texture and large organic content. Soil ECa data were then regressed on these
principal components using a maximum likelihood method (King et al., 2003), in
order to show which of these components appeared to account for significant vari-
ation in ECa. Since the principle components are uncorrelated, it is legitimate to
interpret their relative significance in the regression model, then relate this to the
initial interpretation of each component.
Additionally in each field, measurements on passes of 6-m intervals were compared

when carried out under dry (summer) and wet (winter) soil moisture regimes. Most
measurements were taken with the EM38 in vertical mode. Robustly estimated
variograms of the ECa data were used to determine the pass spacing that would

Table 1. Details of study fields

Field Location Size of

study

area

Cropping Parent

material

Relationship between soils

and topography

1 Lincolnshire 7.5 ha 1997 (Winter

Wheat), 2000

(Winter Wheat)

Jurassic

limestone

Deep clay soils at east of field

on plateau, shallow soils

over limestone in west and

centre on sides and tops of

dry valleys, deep sandy soils

in floor of dry valleys.

2 Oxfordshire 18 ha 1996 (Winter

Wheat), 1998

(Spring

Beans), 2000

(Winter Wheat)

Cretaceous

chalk

Shallow clayey soils over chalk

over gently sloping field,

some deeper more flinty soils

on higher plateau-like

ground in east.

3 Bedfordshire 6 ha

(approx)

1999 (Winter

Wheat), 2000

(Winter Wheat)

Cretaceous

sands and

clays

Clayey soils in south falling

away on gentle slopes to

medium loamy soils in a

basin-like feature in centre

and deep sandy soils in east

on rising ground.

4 Bedfordshire 12 ha

(approx)

1994 (Winter

Wheat), 1998

(Winter

Barley), 1999

(Winter Wheat)

Cretaceous

sands

and clays

Clayey soils in north on flat

land with moderate slopes

up to deep sandy soils on a

ridge in the south.

KING ET AL.170



allow ECa to be mapped with a specified precision by ordinary kriging. Multivariate
spatial and cluster analysis was used in order to assess the stability of ECa patterns
with time.
These analyses enabled us to identify the specific soil properties that were most

influential in determining the soil variation measured by EMI. They also help in
determining whether it has potential as a surrogate means of identifying manage-
ment zones and thus site suitability for variable rate management.

Results

Yield mapping, management zones and pedological survey

Figure 1 shows the normalised classification entropy (NCE) class centres of Field 3
as an example of the output from the fuzzy cluster analyses of sequences of yield
maps (where possible 3 years or more). The results for all analyses on all fields can be
found in Lark et al. (2003). The cluster analysis of yield maps for each of the four
fields reported in this paper identified 4 class centres, and those from Field 3 are
shown on Figure 1(a). They were distributed across the field as shown in Figure 1(b).
Regression modelling of soil properties (Table 2) showed that the subsoil clay
content and subsoil sand content were significantly related to the class of maximum
membership. This might be expected as these soil properties have a major influence
on the soil AW. Yields were highest in class 4 and the subsoil in sub-regions of this
class had a high clay and low sand content. In areas of low yield (class 1), the subsoil
had a low clay content and high sand content. There were no significant relationships
with the other measured soil properties.
Table 2 summarises the regression statistics and statistics for the comparison of

class means. In Field 1, data is given for two areas within the field : area ‘‘A’’ had
yield map and ECa data but had limited soil variability, area ‘‘B’’ just had ECa data
but more soil variability. For each field, the variation of at least one of the soil
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Figure 1. (a) NCE class centres for yields for the two years 1999 and 2000 of Field 3, (b) Distribution of

the class of maximum membership in Field 3.
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Table 2. Summary statistics of class means and from regressions of class membership and ECa with soil

physical properties

Class meansa Class membershipb ECa

Variancec P Residual variance P Residual variance P

Field 1 (area A)

Topsoil clay 74.03 ns 72.69 ns 72.01 ns

Topsoil sand 304.6 ns 308.4 ns 320.6 ns

Topsoil org. C 0.09 ns 0.09 ns 0.093 ns

Topsoil AW 0.0009 * 0.001 ns 0.001 ns

Subsoil clay 354.3 * 391.4 ns 836.7 ns

Subsoil sand 700.3 ns 794.8 ns

Subsoil org. C 0.048 ns 0.051 ns 0.051 ns

Subsoil AW 0.0007 *** 0.0008 ** 0.002 ns

AW (1 m) 456.7 *** 581.0 *** 1260.0 ns

Field 1 (area B)

Topsoil clay 40.35 ***

Topsoil sand 173.6 ***

Topsoil org. C 0.147 ns

Topsoil AW

Subsoil clay 255.7 **

Subsoil sand 825.7 *

Subsoil org. C 0.073 ns

Subsoil AW 0.001 *

AW (1 m) 1159.0 ns

Field 2

Topsoil clay 50.87 ns 50.86 ns 52.18 ns

Topsoil sand 56.87 * 59.32 ns 34.33 ***

Topsoil org. C 1.74 ns 1.645 ***

Topsoil AW 0.001 ns 0.0012 * 0.0011 ***

Subsoil clay 92.41 ns 91.95 ns 87.71 ns

Subsoil sand 75.98 ns 77.54 ns 63.11 ***

Subsoil org. C 0.663 * 0.665 * 0.660 *

Subsoil AW 0.0005 * 0.0006 ns 0.0006 ns

AW (1 m) 437.9 ns 456.8 ns 436.4 ns

Field 3

Topsoil clay 73.44 ns 77.6 ns 44.98 ***

Topsoil sand 267.6 ns 271.0 ns 145.9 ***

Topsoil org. C 0.212 ns 0.233 ns 0.105 **

Topsoil AW 0.001 ns 0.001 ns 0.001 ns

Subsoil clay 222.0 ns 184.6 *** 207.6 **

Subsoil sand 621.5 ** 517.0 *** 625.9 **

Subsoil org. C 0.046 ns 0.466 ns

Subsoil AW 0.001 ns 0.001 * 0.001 *

AW (1 m) 988.2 ns 782.6 * 845.2 *

Field 4

Topsoil clay 16.58 *** 16.5 *** 20.1 ***

Topsoil sand 90.14 *** 88.6 *** 102.6 ***

Subsoil clay 26.7 *** 26.0 *** 27.8 **

Subsoil sand 85.65 *** 83.4 *** 85.9 ***

aFour classes were determined in each field, though this is fortuitous and not pre-determined.
bDominant classes only, minor classes were not included in the regression analyses.
cWithin class variance comparable directly with the residual variance for the regressions.
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properties was significantly related to the classification on the yield data, suggesting
that analysis of yield maps was useful for identifying potential management zones
based on soil physical properties. Texture (sand and clay content) and AW seemed to
be the main properties predicted.

Soil survey by electromagnetic induction sensing

EMI surveys were carried out across the four fields at two times in the year, when the
soil was at field capacity and also after harvest when it was near maximum dryness.
The resulting map of apparent electrical conductivity (ECa) for Field 3 at field
capacity is given as an example in Figure 2(a) (also in King et al., (2003)), and after
harvest in Figure 2(b).
Figure 2 shows an example of ECa readings taken in vertical mode at a high data

density. A visual comparison of the above ECa map with a relevant soil map, such as
that shown in Figure 3 (soils described by Wright, 1987), indicated a clear pattern of
larger ECa readings in the parts of the field dominated by the heavier clay loam soils,
compared with smaller values from the lighter soils. This pattern held true in general
at both wet and dry times of the year suggesting that a large part of the signal from
this field was governed by the clay content of the soil. This is also suggested by the
fact that the site mean ECa was only marginally smaller in the summer compared
with the winter, and leads to the identification of two distinct classes of response for
this field. Site hydrology also shaped the pattern however, as the valley feature in the
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   -5 t 5
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 26 to 37

<<

0m 100m 200m
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Figure 2. Map of the distribution of ECa (in vertical mode) across Field 3; (a) measured when soil was at

field capacity in the spring (March), and (b) measured when the soil was near maximum dryness after

harvest (August).
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top left of the figure shows as an area of marginally higher readings, and was
probably due to subsoil moisture. Similar maps for the other fields can be related to
changes in soil type and hydrology across each site, and also demonstrate a basic
stability of pattern across wet and dry seasons.
Regression modelling (Table 2) showed that ECa was strongly related to topsoil

clay and sand but also related to some degree to most other measured soil physical
properties in both topsoil and subsoil. Similarly on all fields, the ECa data detected
significant differences in at least some soil properties . In some cases (e.g. Field 1B and
Field 3), the yield classification was more closely related to subsoil rather than topsoil
properties compared to the ECa data. This might be expected as yield will tend to
integrate the effect of soil properties throughout the rooting depth of the crop which can
be over 1m, whereas the EMI technique will interact with soil independently of the
growing crop. Comparing the residual variances over all fields shows that neither yield
maps nor ECa were consistently more useful for predicting soil physical properties.
A principal components analysis of the soil properties data revealed that data from

three of the four fields studied behaved in a similar manner and that, within this
combined dataset, the variation was accounted for by eight principal components,
the first four of which accounted for 90%. The latent vectors and how they relate to
the soil properties (positively or negatively) are shown in Table 3. The four most
influential components have been plotted against each other in Figure 4. The
apparent electrical conductivity (ECa) was regressed on these principal components
and, since the principal components are un-correlated, those which make a signifi-
cant contribution to explaining variation in ECa (PC1 > PC6 > PC2 > PC8)
could be identified (Table 4).

Wtk

cNBE

BE

BE

Ea

Ox

0 m 100 m 200 m

Figure 3. The soils mapped on Field 3. Ea ¼ Evesham; BE ¼ Bearsted; Wtk ¼Waterstock; cN ¼ Cot-

Cottenham; Ox ¼ Oxpasture (Wright, 1987).
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From Table 4, it can be seen that PC1, PC2 and PC8 were negatively correlated
with ECa values whilst PC6 was positively correlated. Figure 4 shows the weighting
of the original soil variables in these four components. The large circular symbols in
Figure 4 indicate where large ECa values are expected in the plot and the small
circular symbols show where small ECa values are to be expected. Hence large clay
contents and bulk densities in both topsoil and subsoil are associated with large ECa

(Figure 4(a)). However, large topsoil and subsoil sand content, and large subsoil
organic carbon content were associated with low values of ECa (Figure 4(a)). Less
influentially, large topsoil organic carbon content can also contribute to high ECa

values (Figure 4b) and, in some cases, large bulk densities in both topsoil and subsoil
can be associated with low ECa readings as well as high (Figure 4(b)).
The ECa datasets from the four fields studied here, were all analysed spatially by

kriging. Variances were calculated for each dataset according to the most commonly
used estimator of the variogram, Matheron’s (1962), and three other robust esti-
mators. Figure 5 shows the four estimators for a dataset from field 1, which indicates
the difference between the scale of difference between Matheron’s and the other three
robust estimators. Validation of these estimators for all the datasets according to the
cross-validation procedures described by Lark (2000b) and King et al. (2001),
showed that Matheron’s model over-estimated the variogram in most cases (except

Table 3. Latent vectors for each principal component. (BD = Bulk density, C = Carbon)

Soil

layer

Soil

variable

Principle Component

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Top Clay )0.438 )0.176 0.107 0.082 0.197 )0.501 )0.468 0.500

Sand 0.444 0.027 )0.129 )0.081 )0.300 0.419 )0.533 0.479

Organic C 0.081 )0.837 )0.282 0.050 0.380 0.251 0.045 )0.027
BD )0.314 0.233 )0.059 )0.733 0.430 0.328 )0.117 )0.009

Sub Clay )0.425 )0.238 )0.014 )0.055 )0.508 0.128 )0.447 )0.534
Sand 0.432 0.159 0.088 0.132 0.465 )0.200 )0.525 )0.481
Organic C 0.338 )0.212 )0.233 )0.614 )0.258 )0.581 0.062 )0.052
BD )0.158 0.293 )0.909 0.224 0.038 )0.091 )0.045 )0.025

Figure 4. Elements for the latent vectors for: (a) PC1 and PC6, and (b) PC2 and PC8 of static soil

properties in combined datasets from three sites (T ¼ topsoil, S ¼ subsoil, BD ¼ bulk density,

OC ¼ organic C).
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two), whereas robust indicators were generally acceptable. The full analyses of the
variograms is given in King et al. (2003), but an important practical implication of
this consideration is found in the assessment of the optimal spacing between passes
of the EMI sensor across a field.
Variograms were obtained for all datasets (Figure 5) and the cross validation

procedure was used to select the most appropriate estimator for each (Table 5). Also
given in Table 5 are the spacing between passes necessary to give an estimation error
(range of ±1 s.e.) which is no more than 10% of the mean of the signal across the
whole field (or 25% if the former cannot be achieved at >5 m). Choice of estimator is
important in this analysis as the use of Matheron’s estimator for Field 1 would have
indicated the need for twice as many passes as Dowd’s, which described the data better.
The data in Table 5 also indicate that little change in spacing is required on

different occasions and, indeed, kriged estimates of the change in ECa between

Table 4. Regression model of ECa (vertical, spring) on principal components of soil properties

PC Coefficient variance t ratio p

1 )5.221 0.375 )8.53 <0.001

2 )4.054 1.104 )3.86 <0.001

3 )1.929 1.399 )1.63 >0.05

4 )0.553 1.827 )0.41 >0.05

5 )1.654 2.541 )1.04 >0.05

6 8.653 3.717 4.49 <0.001

7 )5.961 10.733 )1.82 >0.05

8 )15.300 32.027 )2.70 0.01
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Figure 5. Variograms for data from Field 1 (‘‘wet’’ soil) for four different estimators. Top left ¼Matheron

(1962); Top right ¼ Cressie-Hawkins (1980); Bottom left ¼ Dowd (1984); Bottom right ¼ Genton (1998).
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occasions indicate that the fields tended to be uniform. Although the absolute values
of soil ECa changed significantly according to the prevailing soil moisture levels at
the time of measurement, kriged estimates of the change in ECa showed that the
spatial patterns of ECa were generally stable for all fields studied irrespective of
whether measurements were undertaken under moist or dry soil conditions (King et al.,
2003). Furthermore, a cluster analysis of the ECa data from each field showed that there
was virtually no change in the order of NCE cluster centres between ‘‘wet’’ and ‘‘dry’’
dates of ECa measurement (King et al., 2003). The three cluster centres identified for
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Figure 6. NCE cluster centres for ECa readings taken on both dates (March and August 2000) at Field 1.

Table 5. Pass spacing (m) required for an error of <10% of the mean (<25% in brackets)

Field Date Mode Estimator Point Kriging Block Kriging

(10 m block)

Field 1 1 V Dowd 19 42

1 H Dowd <5 (15) 11

2 V Dowd <5 (16) 11

2 H Matheron <5 (<5) 13

Field 2 1 V Matheron <5 (>60) 32

1 H Cressie-Hawkins <5(<5) 10

2 V Genton <5(44) 17

3 V Dowd 14 21

3 H Cressie-Hawkins 7 17

Field 3 1 V Dowd <5 (20) 12

1 V Dowd <5 (24) 11

Field 4 1 V Dowd <5 (17) 11

1 H Cressie-Hawkins >60 >60

2 V Dowd <5 (24) 13
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field 1 are shown as an example in Figure 6. On other fields, the order was also usually
the same, though centres may come closer together in drier conditions.

Discussion

The cost of precision farming techniques can only be justified if the variability of a
site and differences in yield potential warrant it. We have demonstrated here that by
using the information from an investment already made in yield mapping equipment,
a judgement may be made on the basis of the maps obtained as to whether discrete
zones of differential yield actually exist within a field and persist over several years.
Other methods of identifying zones from yield maps have simply obtained mean
yields over several years and related site locations in a field to this overall mean
(Grenzedörffer and Gebbers, 2001; Godwin et al., 2002). This method is only useful
when yield variations are very consistent between seasons. In particular they will not
pick out zones where variable site conditions (e.g. hydrology) may produce above or
below average yields depending on weather conditions. The cluster analysis tech-
niques employed here produce zones which are coherent in themselves and behave in
a predictable manner compared with other zones.
In addition, the analysis of soil properties measured across the fields (reported in

Table 2) showed that in all fields at least some measured soil variables were signif-
icantly associated with the zonation of the field based on yield data. This provides a
firm indication that the zones identified were determined by site variation and could
therefore be managed differentially. The measurement of soil physical variables,
however, remains an expensive procedure if samples have to be taken from many
locations across fields to identify or confirm differentially manageable zones. EMI
equipment can be operated quickly and relatively cheaply.
Geostatistical analysis of ECa data from 9 separate passes (Table 5) showed that, to

obtain point predictions of ECawith an error of less than 10%, a pass spacing of<5 m
was usually needed. However, spacing of around 20–25 m commonly gave point pre-
dictions with errors of less than 25%, and to obtain an estimation error of<10% for a
10 msquare block commonly required apass spacing of only 10–20 m.Travel at speeds
of 10–20 km h)1 is practically realistic, and with a pass spacing of around 24 m
(a common tractor tramline spacing) which King et al. (2001) considered to be an
acceptable compromise forpractical purposes, largefields canbe surveyedwithin aday.
Soil clay content has often been correlated with ECa readings, either directly

(Dalgaard et al., 2001) or with other textural components (Schmidhalter et al.,
2001), but usually within single sites or soil types. Here we have demonstrated the
importance of texture, both clay and sand contents, in determining ECa values across
several soil types at three sites on more than one occasion. At the fourth site, clay
content was also highly correlated with the most influential principal components of
ECa, even though the dataset was statistically distinct from the other three. Clay will
have a direct effect on ECa readings (McNeill, 1980) but sand contents will primarily
act through their modification of site hydrology. Where sand contents are high (and
clay contents commensurately lower), soils will usually be more permeable with
lower moisture contents and hence lower ECa readings. Soil moisture content was

KING ET AL.178



not itself directly related to ECa readings in this study but its influence has been
demonstrated many times previously (e.g. Bobert et al., 2001) and was observed to
determine the overall values of ECa readings on both wet and dry occasions in this
study. However, the differential in moisture contents across the sites in the two
contrasting seasons proved insufficient to alter the basic pattern of ECa maps pro-
duced and hence the technique’s value as a site surveying tool is sustained.
Although some work has shown a general relationship between yield and ECa

(Nuedecker et al., 2001), this only indicates that the factors which contribute to
fertile soils (such as high clay, organic matter and moisture contents) are also those
that give high conductivity readings. We do not propose that ECa maps could be
used directly to determine management zones. Rather, their use is in determining the
spatial distribution and variability of soil texture within a site which has been shown
here to be mutually influential on both ECa and crop yield zonation. Expert
knowledge of soils on a site will always be important in determining the optimum
management of that site. However, it is becoming clear that EMI and yield maps can
be cheap and easily obtainable methods for not only deciding whether site variation
warrants precision farming techniques but also to identify management zones over
which to apply those techniques. We have shown that both variables are related to
soil variation, though neither is consistently better than the other, and both are very
useful.

Conclusions

It can be seen from these results that both yield and ECa data contain information
that relates directly to the spatial distribution of some soil properties, though neither
were consistently better at predicting the soil properties over all fields. Whilst ECa

measurements may be more directly dependant upon certain soil physical properties,
the yield data is more likely to be an integrated response to those properties which
are most important for crop growth.
Although not widespread yet, yield mapping provides a way of using already

collected data to determine whether discrete zones of differential yield actually exist
across a field. We have shown that at least some soil physical properties in each field
correlate to such zones identified in yield data. These properties were invariably
texture or available water holding capacity, and varied across the site in a manner
that determined the yield zonation. Thus such discrete zones could be open to dif-
ferential management.
EMI sensing proves itself to be a relatively inexpensive way of collecting spatial

data on the relevant soil physical properties (such as AWC and clay content), that
may tell us something about discrete zones of differential yield within a field.
Both yield and ECa maps, however, are only tools to aid the determination of

potential management zones within a field and should be allied to expert site
assessment and knowledge. Neither can they determine what the optimum man-
agement for zones should be however, but they can help to indicate whether dif-
ferential management of such zones would be a profitable course of action.
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