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Abstract. Commercial agriculture has come under increasing pressure to reduce nitrogen fertilizer inputs

in order to minimize potential non-point source pollution of ground and surface waters. This has resulted

in increased interest in site-specific fertilizer management. This research aimed to develop techniques for

real time assessment of nitrogen status of corn using a mobile sensor with the potential to regulate nitrogen

application based on data from that sensor. Specifically, the research attempted to determine the system

parameters necessary to optimize reflectance spectra of corn plants as a function of growth stage and

nitrogen status. An adaptable, multi-spectral sensor and the signal processing algorithm to provide real

time, in-field assessment of corn nitrogen status were developed.

Keywords: variable rate application, spectroscopy, optical sensor, fertilization, NIR, minispectrometer

Introduction

Precision agriculture is based on using the inherent spatial and temporal variability
in a field as a basis to manage farm operations. This is a site-specific approach and
can reduce input costs, result in higher crop productivity and decrease environmental
pollution.
There are two basic methods of implementing site-specific management (SSM) for

the variable-rate application (VRA) of crop production inputs: map-based and
sensor-based. The map-based SSM method is based on the use of maps to represent
crop yields, soil properties, pest infestations, and VRA plans. The sensor-based SSM
method provides the capability to vary the application rate of crop production inputs
with no mapping involved.
The sensor-based method utilizes sensors to measure the desired properties, soil

properties or crop characteristics, on the go. Measurements made by such a system
are then processed and used immediately to control a variable-rate applicator. At
this point, the major challenge is to develop sensors that will work accurately in field
conditions at realistic working speeds. Sensor-based application systems must be
capable of accomplishing the sensing, data processing, and application rate adjust-
ment steps in one machine pass.
The present work describes the development of an optical sensing system for in-

field detection of leaf nitrogen status in corn.
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Background

Numerous studies have been conducted to assess nutrient status by measuring
spectral responses. (Bausch et al., 1998; Li et al., 1999; Read et al., 2002). Most of
the studies indicated that leaf or canopy reflectance near the 550 nm has good
correlation with leaf nitrogen content.
An indirect means to assess nitrogen stress in plants is by measuring the chloro-

phyll content of the leaves, using a chlorophyll meter, e.g. SPAD 502 (Piekielek
et al., 1995; Smeal and Zhang, 1994). In these studies, reasonable relationships
among yield, nitrogen content, and chlorophyll meter reading were found. However,
the chlorophyll meter required many measurements to assess plant status accurately.
Investigation of the relationship between chlorophyll content and narrow band
hyperspectral reflectance data revealed models that can predict chlorophyll content
both in the laboratory and in the field. (Tumbo et al., 2002a, b).
Utilizing aerial photographs or satellite imagery has been another way to assess

plant status and yield (Haboudane et al., 2002; Wooten et al., 1999). Nevertheless,
data available from satellite sources, both for commercial or research use, provide
wide spectral bands (50–100 nm) and low spatial resolution (10–30 m), and cannot
be used instead of close range narrow band (1–2 nm) remote sensing systems. A
number of airborne systems can provide narrow band (1.8–2.2 nm) hyperspectral
data (e.g. CASI, ITRES Research Ltd., Calgary, Alberta, Canada), but they are
less widely available and are beyond the scope of this work. Nonetheless, the
results of the work reported in this paper can be applied to data collected by
satellite or airborne, narrow band hyperspectral sensors when they become com-
mercially available.
In order to apply nitrogen at a variable rate, the nitrogen stress of the crop can be

either mapped off-line to generate application maps, or measured with an on-line
sensor that can assess the nitrogen stress in real time in the field. Stone et al. (1996)
developed a sensor system for crop nitrogen status and weed detection using pho-
todiode detectors and interference filters. They tested the sensor with winter wheat
and reported that total forage N uptake was highly correlated with normalized
difference vegetation index (NDVI). Sui et al. (1998) developed a spectral reflectance
sensor to detect nitrogen status of cotton plants with four spectral bands of blue,
green, red and near infrared light. They tested the sensor in two situations: with
artificial and with natural illumination. They used a neural network to determine
nitrogen deficient and non-nitrogen deficient plants. They reported that preliminary
test results for diagnosing nitrogen status in cotton were promising. A commercially
available nitrogen sensor has also been developed (‘Hydro N Sensor’, by Hydro Agri
GmbH, Deutschland). It measures crop canopy reflectance spectra from 3–4 m
above the ground (Norsk-Hydro, 2002). Such sensors are sensitive to crop coverage
and more suitable for fields with full soil coverage.
Lee et al. (1999) studied the effect of different corn varieties on spectral models for

leaf nitrogen content prediction. They found that under laboratory conditions, leaf
nitrogen content can be modelled by spectral reflectance data in spite of phenological
differences between the different varieties that were tested.
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In a recent work (Read et al., 2002), it was shown that narrow band spectral
reflectance data can be used to evaluate nitrogen status in cotton leaves. The work
was performed on single leaves under laboratory conditions. This last work increases
the demand for research in developing technology for in-field, single leaf narrow
band sensing. Such technology will enable transfer of results produced in the lab to
field conditions.

Objective

The objective of this work was to develop a sensing system for in-field assessment of
plants (corn) leaf nitrogen status, based on single leaf reflectance. The system
parameters necessary to optimize in-field measurement of reflectance spectra of corn
plants were determined as a function of growth stage. The optical and geometrical
configuration of the measuring device was designed. A hyperspectral mobile sensing
system and processing algorithms to provide real time, in-field assessment of leaf
nitrogen status were developed.

Materials and methods

Illumination

In-field leaf nitrogen assessment was performed in a stationary, controlled envi-
ronment, as well as in non-stationary conditions. In stationary mode, a custom
sampling device was used. In non-stationary mode, non-contact leaf reflectance
measurement was performed inside a mobile dark chamber. The dark chamber in-
cluded a custom optical configuration that was specifically designed and constructed
for that purpose.
In both stationary and non-stationary measurements, a commercial mobile mini

spectrometer (S2000, Ocean Optics Inc., USA) was used in order to acquire leaf
reflectance spectra in the field. The mini spectrometer covered the range from 530 to
1100 nm, and had a 50 lm wide slit. It was equipped with a 2048 pixels CCD array
with signal to noise ratio of 250 : 1 and was connected to an A/D data acquisition
board. The optical spectral resolution of the system, which is determined by the slit
width and the diffraction grating, was 1.8 nm (full width half maximum, FWHM).
Each spectral scan took 25 ms.
Natural illumination is not always available (night, clouds) and varies in intensity

and spectral characteristics through the day (Harvey, 1997; Tumbo et al., 2002c).
For narrow band applications such as the present one, it exhibits an irregular non-
smooth spectral curve due to absorption by gases in the atmosphere. In addition,
inexpensive mini-spectrometric systems, which can potentially be used in a com-
mercial sensing system, exhibit non-linear response across the available dynamic
range. As a result, in spectral ranges that are particularly irregular in the solar
irradiance spectrum, unwanted noise appears in the calculated leaf reflectance
spectra. In order to avoid the potential noise and to eliminate the need for additional
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reference signals to compensate for the temporal variations of the solar irradiance,
both in stationary and in non-stationary systems, artificial illumination was used.

Stationary measurements

For stationary measurements, a halogen light source (LS-1, Ocean Optics Inc., USA)
was used, in combination with a fiber optic reflectance probe. The reflectance probe
included six 400 lm diameter optical fibers arranged in a circle which illuminated the
sample and a sensing fiber which transferred the reflectance signal to the sensor. A
sampling cell was designed and constructed for leaf reflectance measurements in the
field, under artificial illumination. The sampling cell maintained a constant distance
between the leaf sample and the reflection probe (illumination and signal collection). It
was constructed fromblack opaquematmaterial, andwas shaped as a cone (12� slope).
The reflection probe was inserted in the top of the cone and the sample was placed at
the open base of the cone (Figure 1). A white ceramic disk, as seen in Figure 1, was
used as a reference signal. White reference signal was sampled before each leaf was
measured. Dark reference signal was sampled by turning illumination off and covering
the sensing fiber. Dark reference signal was sampled every 30 leaves. The spectrometer
was operated with 25 ms integration time and averaged 3 spectra per acquisition.

Non-stationary measurements

In non-stationary measurements, the same mini-spectrometric system was moved
above the canopy. In this case, leaves could not be manually attached to any sam-
pling cell, as in stationary measurements. Therefore, a different sampling device was
designed in order to imitate the optical conditions that were used in the stationary

Figure 1. Sampling cell for the reflection probe.
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measurements. The objective of the sampling device was to create controlled and
constant artificial illumination to maintain as constant as possible the distance
between leaf, sensing optical fiber and illumination source, and to restrict intrusion
of solar radiation to the optical system. For that purpose, a mobile dark chamber, as
depicted in Figure 2, was constructed for moving the mini-spectrometer system
above the crop canopy. Two layers of black opaque curtains prevented sunlight from
penetrating into the chamber. The sensor assembly inside the dark chamber was
designed to provide the necessary geometrical and optical conditions for non-contact
reflectance measurements of leaves, (Figure 2c). It included a 400 lm diameter
collecting optical fiber with a 15� field of view, for transferring the reflected light to
the spectrometer; a 40 W collimated tungsten light beam, for illuminating the leaves.
The collecting fiber was placed in a vertical position (aiming downwards) and the
illumination beam was placed at an angle of 45� to the optical fiber. This optical
configuration provided signals with acceptable intensity only when an object (leaf)
was in the effective sampling area, i.e. intercepted the common path between the
illumination beam and the optical fiber. The range of distances between canopy and
sensor for effective spectra acquisition was 170–250 mm. Leaves that were not in the
path of the illumination beam did not reflect any light. Leaves that intercepted the
illumination beam but were closer or further away from the designed sampling
distance were outside the field of view of the optical fiber and therefore not seen by
the sensor. Reflectance from the soil background was also filtered out from the
sensor’s field of view since it was not illuminated by the light beam. Therefore, the
signals acquired by the sensing system were only from leaves at the designed distance
from the illumination source and the optical fiber.
Spectra acquisition was performed while the sensing system moved above the crop

canopy. The dark chamber was manually pushed along the crop lines and the sensing
unit acquired and analyzed spectra continuously. A video camera was also placed in
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Figure 2. (a) Side and (b) front view of mobile dark chamber. (c) Detailed sensor assembly.
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the dark chamber and top view images of the sensor assembly along with the crop
were acquired. A spectrum that was within predefined intensity limits was interpreted
as leaf spectrum and was saved. The corresponding leaf, identified on the video
screen, was then harvested and sent to the laboratory for nitrogen content analysis.

Crop plots

Corn plots were established at MIGAL experimental farm near Kiryat Shmona
(N33�9’15’’, E35�37’10’’). Corn variety Sweet corn cv Jubilee was grown during
summer 1999 and 2000. Six nitrogen treatments (Table 1) were applied in six rep-
lications in a random block experiment. Each replication consisted of six rows (6 m
wide). Each row was 20 m long. All the plots were irrigated by a drip irrigation
system. The fertilizer was injected in the irrigation water and was computer con-
trolled. The six nitrogen treatments were designed to provide plants with a wide
range of nitrogen stress.
Spectral reflectance data was acquired from the last fully expanded leaf. Only

plants from the two central lines (out of six) of each replication were sampled. Each
sampled leaf was placed in a labeled bag and sent to the laboratory for nitrogen
content analysis. In both years, the plots were sampled at tasseling (VT stage), while
year 2000 plots were sampled at sixth leaf stage (V6 stage) as well (Hill, 1997). In the

Table 1. Nitrogen treatment plots

Growth stage

(number of samples)

Treatment

1999 2000

code Description VT V6 VT

Leached Prior to seeding, excess irrigation was applied to

wash out the remainders of nitrogen from the

soil. No additional nitrogen was applied

29 24 40

N0 Soil was not washed before seeding, but no

additional fertilizer was applied

29 26 40

N12 125 kg hectare)1 nitrogen fertilizer was applied

at V6 stage

29 14 40

N25 Prior to seeding, 125 kg hectare)1 nitrogen fertilizer

was applied, and an additional of 125 kg hectare)1

was applied at V6 stage

29 18 40

N50 Prior to seeding, 250 kg hectare)1 nitrogen fertilizer

was applied. An additional 250 kg hectare)1 was

applied at V6 stage

29 15 40

N100 Prior to seeding, 500 kg hectare)1 nitrogen fertilizer

was applied. An additional 500 kg hectare)1

was applied at V6 stage

29 23 40
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non-stationary measurements, the mobile system was moved at a speed of approx-
imately 1 km h)1 over the crop.
Leaf nitrogen content prediction models, based on regression equations of ground

data and leaf spectral reflectance were developed both for stationary and non-
stationary measurements. The prediction models were based on partial least squares
regression (PLSR). Also, the effect of the applied nitrogen treatment on leaf nitrogen
content is reported (analysis of variance). Using the fertilizer treatments that were
found to have significantly different mean leaf nitrogen content, a descriptive pre-
sentation of the relationship between specific spectral bands and the fertilizer
treatments are shown.

Results and discussion

Acquired spectra were pre-processed in order to normalize them and thus minimize
the variations due to illumination intensity changes and distance between the leaf and
the optical fiber input. Normalization was achieved by differentiating the spectra
vectors along with signal smoothing. Since the optical FWHMbandpass of the system
was 1.8 nm and each pixel on the photodiode array represented about 0.33 nm, the
smoothing procedure was performed with a five pixels window (1.65 nm), which
therefore did not reduce the narrow wavelength sensitivity of the spectrometer.
Figure 3 shows a sample leaf reflectance spectrum, and its first derivative.
Leaf nitrogen content as measured in the laboratory was then used as the inde-

pendent variable to build regression models that linked spectral reflectance to leaf
nitrogen status. The first derivative of the reflectance spectra was used in single
wavelength linear regression (SLR) models as well as in PLSR models.

Nitrogen content prediction in stationary measurements

A first attempt was made to use a single wavelength in order to predict the nitrogen
content of the leaves. Single wavelength correlation between measured leaf nitrogen

500 700 900 1100

wavelength [nm]

Reflectance 1st derivative

748 nm

Figure 3. Sample leaf reflectance spectrum and its first derivative.
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content and the slope of the reflectance curve (first derivative of reflectance)
(Figure 4a) revealed that there are two main spectral regions which are highly cor-
related to leaf nitrogen content: from 530 to 780 nm (with six distinct peaks within)
and from 1000 to 1070 nm (with one distinct peak). Wavelengths between 780–
1000 nm where poorly correlated to leaf nitrogen. The highest single wavelength
correlation coefficients and the corresponding wavelengths are summarized in
Table 2. These results agree with results found in the literature for narrow band
single wavelength correlation between first derivative of reflectance spectra and leaf
nitrogen content (Read et al., 2002).
PLSR models based on the first derivative of the spectra were built, using LTCAL

software (L.T. Industries). Part of the data set (2/3 randomly selected of 174 sam-
ples) was used for calibrating the models and another part (the remaining 1/3) was
used for validation. A four factor PLSR model was found to yield a minimum
standard error of prediction (SEP). Table 3 summarizes the results of calibration and
validation of the PLSR model with four factors. The standard error of calibration
(SEC) was 2.1 g kg)1, while the linear regression coefficient, r2, between the mea-
sured and predicted values was 0.80. The respective coefficients for the validation set
were SEP=2.7 g kg)1 and r2=0.78. Figure 5 shows graphically the relationship
between the predicted and measured leaf nitrogen content in the calibration and the
validation sets.

Table 2. Correlation coefficients of single wavelength leaf nitrogen prediction

Stationary measurements Non-Stationary measurements

Wavelength (nm) Correlation coefficient Wavelength (nm) Correlation coefficient

640 0.78 748 0.86

692 0.78 695 0.70

740 0.74 540 0.65

1039 0.72 664 0.60

596 0.57

1111 0.52
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Figure 4. Single wavelength correlation coefficient for (a) stationary measurements (b) non-stationary

measurements.
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Nitrogen content prediction in non-stationary measurements

The main goal of the dark chamber and the optical setup inside the chamber was to
eliminate interference of sunlight and maintain as much as possible constant sam-
pling, non-contact geometry. In order to demonstrate the physical setup of the
optical configuration principle, a video camera was placed in the dark chamber and
top view images of the sensor assembly along with the crop were acquired. Fig-
ure 6(a) shows a sample image of the sensor assembly in the dark chamber, during
data acquisition, when a leaf is in the field of view of the sensing system. Figure 6(b)
shows sample acquired reflectance spectra in two situations, demonstrating the re-
sults obtained using the designed system for achieving noise filtering and maintaining
constant sampling geometry. When a leaf that is illuminated by the light beam is
inside the sensor’s field of view, it produces a spectrum signal of significant intensity
and it can be acquired and processed (curve (i) in Figure 6(b)). Soil background as
well as the rest of the crop leaves are not illuminated and make a small contribution
to the reflectance signal (curve (ii) in Figure 6(b)). Therefore, in non-stationary
measurements, the collimated illumination beam along with the optical design of the
sensor-beam geometry yielded satisfactory results in terms of reducing the noise due
to variable background and maintaining a constant distance between the sensor and
the sample point on the canopy. White reference signal was acquired using the same
white ceramic disc used with stationary measurements.
Single wavelength correlation was performed on the combined data set from stages

V6 and VT. Results were similar to those obtained for stationary measurements.
Figure 4(b) shows the correlation coefficient between leaf nitrogen content and first

Table 3. Results of leaf nitrogen prediction in stationary mode using a four factor PLSR model and

spectra first derivative

Calibration Validation

SEC (g kg)1) r2 SEP (g kg)1) r2

2.1 0.80 2.7 0.78
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Figure 5. Graphical representation of PLSR models calibration and validation of stationary measure-

ments.
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derivative of spectral reflectance, as a function of wavelength. Similar spectral
regions (530–780 nm and 1000–1070 nm) exhibit high correlation with leaf nitrogen
content, although the measurements were performed in non-contact field conditions
and the optical configuration was less controlled than in the stationary measure-
ments. Table 2 summarizes the highest correlation coefficients and their corre-
sponding wavelengths. The highest single wavelength correlation coefficient was
observed at 748 nm (r=0.86). Figure 7 is a scattergram of the relationship between
leaf spectra first derivative at 748 nm and leaf nitrogen content. A one variable least
squares linear regression model was fitted to the data. The SEC of the linear
regression model was 2.9 g kg)1 while the regression coefficient of the model was
r2=0.75.
Partial least squares regression models were then constructed, based on the first

derivative of leaf reflectance spectra in order to predict leaf nitrogen content. The
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Figure 6. (a) Sample image of the sensor assembly in the dark chamber, during data acquisition.

(b) Spectra acquired continuously while moving above the canopy with the dark chamber. (i) leaf, (ii) no

leaf in field of view.
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models were validated using the ‘‘leave one out’’ validation scheme. Two maturity
stages were modelled: V6 and VT stage. Table 4 summarizes the results of the
models’ calibration and validation. When separate models were built for each
maturity stage, SEP was 3.3 g kg)1 and 2.1 g kg)1 for V6 and VT respectively. When
all data was compiled in one data set, a seven factor PLS model was found to yield a
SEC of 2.5 g kg)1. Validation of the model with in-field acquired data showed that
the nitrogen status of the corn leaves can be predicted with a SEP of 2.7 g kg)1.
Figure 8 shows graphically the relationship between the predicted and measured leaf
nitrogen content, in the calibration and the validation sets.

Prediction of nitrogen treatment

Analysis of variance of the effect of the applied nitrogen treatment on leaf nitrogen
content showed that not all fertilizer treatments yielded to significant differences of
leaf nitrogen content. Table 5 shows that in year 2000, the six applied fertilizer
treatments form only four groups in which the means are significantly different from
one another. Assuming that for significantly different fertilizer treatments this is an
indication of the induced nitrogen stress, and that the latter is expressed as deficiency
of nitrogen content in the leaf, spectral response was used in order to cluster the data
according to their fertilizer treatment group.
Clusters of nitrogen treatment groups were plotted based on the first derivative of

the spectra of the non-stationary measurements. The two wavelengths that exhibited
the highest single wavelength correlation coefficient in each of the distinct high
correlation regions (748 nm and 1040 nm) were chosen. Figure 9(a) shows the
clusters of the statistically different treatment groups. The two extreme groups are
almost completely separable (‘‘N100’’, ‘‘N50’’ and ‘‘N0’’, ‘‘N25’’) although the ac-
tual concentration of nitrogen in each leaf is not known and certainly not uniform
among all leaves in each treatment. Part of the observed variability is due to the
natural variability that exists in the data set (different levels of leaf nitrogen content
in the same fertilizer treatment) and part due to the model error. Figure 9(b) shows
that the intermediate treatments are spread along the whole range and this may
suggest that two wavelengths are not enough to describe the phenomenon or that it is
affected by additional factors. Although for the extreme groups the clusters are
separable, the present results are not conclusive for the intermediate treatments.

Table 4. Calibration and validation results of PLSR and SLR models for non-stationary measurements

Calibration Validation

Growth Stage Model SEC (g kg)1) r2 SEP (g kg)1) r2

V6 PLSR (7 factors) 2.5 0.46 3.3 0.46

VT PLSR (4 factors) 1.9 0.87 2.1 0.83

V6+VT PLSR (7 factors) 2.5 0.81 2.7 0.81

V6+VT SLR 2.9 0.75 – –
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Further research should be conducted to incorporate additional information layers
such as soil attributes.
The sensing principle of the system described in the present work can be combined

with real-time VRT fertilizing systems. The optical head (illumination and optical
fiber) can be positioned at the level of the average last fully developed leaf at the time
of application, at an offset from the center of the row. Each row may be equipped
with an individual optical head, all directed to one multi-channel spectrometer
(multi-channel spectrometers with eight channels or more are commercially available
at relatively low cost). Implementation of PLS spectral model involves calculation of
linear regression equation which can be implemented in a microcontroller without
significant computational complexity. The estimated value of nitrogen level in the
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leaves can then be passed to the management module of the VRT applicator which
sets the local fertilizer application rate.

Conclusion

The results of this work showed that leaf nitrogen status can be predicted in-field,
using a non-contact optical sensor based on single leaf spectral reflectance. The
optical design of the sensor eliminated interference from soil background. The
maturity stage of the crop affected the accuracy of the regression model that links
between reflectance spectrum and nitrogen content of the leaves. Specifically, the best
prediction results were obtained when a separate model was built for VT stage.
Combination of all maturity stages together, yielded to a better prediction model
than V6 alone.
Non-contact, single leaf spectra acquisition during motion did not reduce the

quality of the signals or the accuracy of the prediction models. Similar results to the
stationary measurements were obtained by the apparatus.
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Table 5. Comparison of mean leaf nitrogen content between different fertilizer treatments

V6 VT

Treatment code

Average

(g kg)1)

Standard

deviation (g kg)1)

Average

(g kg)1)

Standard

deviation (g kg)1)

Leached 33.1c 1.7 25.7c 1.9

N0 25.3a 2.3 16.8a 2.6

N12 30.9b 2.1 22.7b 2.4

N25 26.4a 2.8 16.5a 2.5

N50 31.8b 1.5 28.0d 1.2

N100 34.0c 1.5 27.8d 1.5

Treatments with the same letter superscript have means that are not significantly different (P=0.05).
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Further research should be conducted to incorporate direct prediction of nitrogen
treatment based on leaf spectral reflectance combined with additional sources of
information.
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