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Abstract

We consider second order degenerate parabolic equations with real, measurable, and time-
dependent coefficients. We allow for degenerate ellipticity dictated by a spatial A,-weight. We
prove the existence of a fundamental solution and derive Gaussian bounds. Our construction
is based on the original work of Kato (Nagoya Math. J. 19, 93-125 1961).
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1 Introduction

We consider parabolic operators of the form
Hu = du + Lu := du — w divy(A(x, V), (x,1) e R" x R=:R""' (L1

where the weight w = w(x) is time-independent and belongs to the spatial Muckenhoupt
class A>(R", dx), and the coefficient matrix A = A(x, ) is measurable with real entries and
possibly depends on all variables. Degeneracy of A is also dictated by the weight w in the
sense that A satisfies

cllEPwx) < A(x,DE &, A(x, DE - L] < caw()IENNL, (1.2)

for some c1,c» € (0,00) and for all £,¢ € R”, (x,1t) € R*H. We refer to [w]a, as the
constant of the weight and to ¢y, ¢; as the ellipticity constants of A. We will frequently refer
ton, ¢, c2, and [w] 4, as the structural constants.

Equations and operators as in Eq. 1.1 appear naturally in the study of the fractional
powers of parabolic equations and anomalous diffusions, see [17] and the references therein,
and in the context of heat kernels of Schrodinger equations with singular potential, see
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[14]. For contributions to the study of local properties of the solutions to Hu = 0 and the
Gaussian estimates, we refer to [5, 8]. Furthermore, recently in [4] we, together with M. Egert,
established the Kato (square root) estimate for H allowing also for complex coefficients.
While this may be considered as of independent interest, the result proved here and the
results of [3] will be combined in a forthcoming work to give a generalization of the work in
[4] to weighted parabolic operators as in Eq. 1.1 satisfying Eq. 1.2.

Given 0 < T < 00, we in this paper consider the Cauchy problem

(1) Hu = o,u — w! div, (A(x, )Veu) =0 inR" x (0, T),
(i1) lilr(l)u(x, t) = f(x). (1.3)
r—

The equation in (i) is interpreted in the weak sense and according to the following definition.
We refer to the bulk of the paper for definitions and the functional setting.

Definition 1.1 A weak solution to Eq. 1.3 (i) on R” x (0, T) is a (real-valued) function
u € L} ((0, TT, HL ,..(R™)) such that

loc w,loc

T T
/ / u(x,t)atd)(x,t)dwdt:/ / Alx,t)Vyiu(x,t) - Vi (x,t)dx dt (1.4)
0 n 0 n

forall ¢ € C°(R" x (0, T)).

The purpose of this note is to establish the existence of a kernel/fundamental solution asso-
ciated to H, to derive appropriate Gaussian upper bounds for the kernel in the nature of the
original (unweighted) estimates of Aronson [1], and to use the kernel to represent weak solu-
tions to Eq. 1.3. The quantitative estimates derive will only depend on n, c1, ¢, and [w]4,,
i.e., on the structural constants.

Recall that in the case of uniform elliptic coefficients, i.e., w = 1, the problem in Eq. 1.3
was studied in depth in [2]. In [2] Aronson considered the energy space L*°([0, T, L2(R")N
L2((0, T1, H' (R™")), he proved that all solutions u in this space have a trace f € L2(R"), and
the solution is uniquely determined by this trace. He obtained existence, given initial data
in L2, and hence he defined an evolution operator I' such that u(-,¢) = I'(-,¢) f fort > 0.
In [1], pointwise Gaussian estimates of the evolution operator are proved. This result allows
one to define weak solutions to Eq. 1.3 by the integral representation

u(x,n:/w Kt<x,y)f<y>dy=/RnK<x,z,y,0>f(y)dy, (15)

for f in various spaces of initial conditions, where K is the kernel/fundamental solution
associated to H. Uniqueness is proved in the class of the solutions satisfying

T
//e*“')“2|u(x,t)|2dxdz<oo, (1.6)
0 n

for some a > 0, and existence whenever f € L? (e_szdx). In particular, this result covers
the case f € LP(dx),2 < p < oo.

Given x € R", ¢t > 0, we introduce w; (x) =: w(B ﬁ(x)) where B ﬁ(x) is the Euclidean
ball of radius +/7 and center x in R”. This note is devoted to the proof of the following result.

Theorem 1.2 Given [ € sz R™) and T > 0, there exists a unique weak solution to the
problem in Eq. 1.3, such that

u € L®([0, T, L2

w

(R™) NL2((0, T1, H (R™)), (1.7)
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and
uG,t) = f()inL2 (R ast — 0F. (1.8)

The unique solution u can be represented as
u(x,t) = /]R" Ki(x,y)f(y) w(y)dy, forall (x,t) € R" x (0, T), (1.9)
where K;(x,y) = K(x,t,y,0) is the fundamental solution of H, satisfying
/Rn K (x,Yw(y)dy =1, forall (x,t) € R" x (0, T). (1.10)

Furthermore, there exist ¢, 1 < ¢ < oo, and v > 0, both depending only on the structural
constants, such that

c _@
Ki(x,y) < me [ (1.11)

forallt > 0,x,y € R", and

c || Vo ey?
Ko +h,y) = Ki(x, )] < ( )e i
AT R I i w ) \ 2 x =

P

c |h| v :
wt(x)w,(y) <t1/2+|x_y|> e ¢ s (112)

forallt > 0,x,y, h € R", satisfying 2|h| < t'/2 + |x — y|.

|Ki(x,y +h) — Ki(x, y)| =

1 . .
Remark 1.3 The constant Totge oy I Theorem 1.2 can be changed into one of

1 1 1

we(x)" wi(y) max (wy(x), we(y)’

if the constant ¢ is replaced with ¢ which also depends on the structural constants, see [7,
Rem. 3].

As discussed, in the non-degenerate case w = 1, Theorem 1.2 is well known, and we refer
to [1, 12] for the existence of the fundamental solution. After the groundbreaking work of
Nash in [18], in which certain estimates of the fundamental solutions and Hélder continuity
of the weak solutions were established, there were several important contributions in the
field. As mentioned in [1], two-sided Gaussian bounds for the fundamental solutions were
proved by employing by now the standard parabolic Harnack inequality. Subsequently, in
[11] it was shown that Nash’s method can also be used to prove Aronson’s Gaussian bounds.

The quantitative estimates stated in Theorem 1.2 were proved in [6, 7] assuming in addition
that A is symmetric and independent of . We note that there are certain differences between
[1, 2] and the approach used in [6, 7]. Indeed, in contrast to [1, 2, 6, 7] employ an argument
along the lines of Davies [9] to derive Gaussian bounds. The latter argument relies on off-
diagonal estimates, the Harnack inequality, and an L*° (R") — sz (R™) bound for the solution
operator. Also, for the existence part, in [6, 7] the fact that £ = —w! div, (A(x)Vy) is
induced through the accretive sesquilinear form,

/ AVt - Vo dx,
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is used. As a consequence, the exponential operator ¢~'£ is well-defined and the action of

e ! L on sz (R™) induces the fundamental solution. However, this idea does not work if A is
time-dependent.

The contribution of this note is that we generalize the result of Cruz-Uribe and Rios in [6,
7, Thm. 1.3] to operators with (not necessarily symmetric) time-dependent coefficients. To
accomplish this, we have to proceed differently compared to [6, 7], avoiding the use of the
exponential operator e”ﬁ, and we do so by first returning to the outstanding work of Kato
[15]. In [15, Thm. I], existence and uniqueness of solutions to the initial value problem for
the evolution equation

du
dr

were studied. Here, the unknown # = u(¢) and the inhomogeneous term f(¢) are functions
from the interval [0, T'] to a Banach space X, whereas .A(¢) is a function from [0, T'] to
the set of (in general unbounded) linear operators acting in X. Given initial data in X, in
[15] the existence and uniqueness of solutions to the abstract Cauchy problem in Eq. 1.13
are proved assuming, roughly speaking, that (i) —A(?) is the infinitesimal generator of an
analytic semigroup of operators; (ii) for some 7 = 1/m, where m is a positive integer, the
domain of (A(#))" is independent of r; (iii) A(¢) varies smoothly with ¢, see [15] and our
discussion below.

In particular, to use [15, Thm. I, Thm. III] and to prove Theorem 1.2, we first note that in
our case, A(t) is formally induced through

+ A)u = f(t),0<t <T, (1.13)

n

(A(Ou, v) := (Lu, v) :/ A(x,1)Vyu - Vev dx.

While .A(¢) initially is an unbounded operator on L%) (R™), we consider its restriction to
D(A(1)) := {u € H,(R") : A(t)u € L2 (R")}. (1.14)

Assuming sufficient regularity in ¢, (i) above follows from ellipticity. Furthermore, (ii) with
m = 2 is a consequence of the solution of the Kato problem for degenerate elliptic operators,
see [8]. However, if we have sufficient regularity in ¢, then (ii) also follows from [15] for
some m > 3 and in this sense the solution of the Kato problem is not needed. Independent
of method to conclude (ii), we prove, after an initial regularization of A in the time compo-
nent and following [15], the existence of a kernel/fundamental solution to certain operators
approximating our original operator. We then prove appropriate off-diagonal estimates by
following the argument in [9, Lem.1], and we proceed as in [6, 7] to establish upper Gaussian
bounds. Finally, we remove the regularization parameters and pass them to the limit in a
convergence argument.
After some preliminaries, the rest of the paper is devoted to the proof of Theorem 1.2.

2 Preliminaries and Basic Assumptions

For general background and the results concerning weights cited here, we refer to [19,
Ch. V]. The weight w = w(x) is a real-valued function belonging to the Muckenhoupt
class A>(R", dx), that is,

[w]a, := sup <][ w dx) <][ w™! dx) < 00, 2.1)
o \Jo 0
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where the supremum is taken with respect to all cubes O C R”. We introduce the measure
dw(x) := w(x)dx on R", and we write w(E) := fE dw for all Lebesgue measurable sets
E C R"™. It follows from Eq. 2.1 that there are constants € (0, 1) and 8 > 0, depending
only on n and [w] 4,, such that

1
-1 @)E w(E) <|E|)Zn 22
P (IQI =wo g 22

whenever E C Q is measurable and where | - | denotes Lebesgue measure in R”. In particular,
there exists a constant D only depending on [w]4, and n, called the doubling constant for
w, such that

w(2Q) < Dw(Q) for all cubes O C R". (2.3)

Since, by equation Eq. 2.1, the function i belongs to Ay(R", dx), Eq. 2.3 holds for %

For every p > 1 and K C R”, the space L/, (K) is the space of all measurable functions
f :R* — C such that

1/l = (/K 1P dw)p - .

We denote LY, := L2 (R").
We define (, )., as the inner product induced by the norm || ||; 2 . Using the A»-condition,
we have

L2 c LL.(R", dx), (2.4)
and the class C§°(R") of smooth and compactly supported test functions is dense in L2 viathe
usual truncation and the convolution procedure [16, Sec. 1]. Finally, we write H}U = Hllv (R™)

for the space of all f € sz for which the distributional gradient V, f is (componentwise) in
sz, and we equip the space with the norm

- Hlggr = (- 113, + (V- 13,02

By construction H! is a Hilbert space and the standard truncation and convolution techniques
yield that C8° (R™) is dense in H,lu ,see [16, Thm. 2.5]. We also introduce the space Hlll;ylo (R" x
(0, T)) as the completion of C§°(R" x (0, T')) with the norm

(1130 1085 13 + 19 - 13,,)'72
Given an operator £ defined on a subset of L2, we introduce
D(L) :={ueL? : L(u)eL?).
1

A quadratic form @ : H%U — Ris said to be closed if for every sequence u,, € H,,, satisfying

lim ®[uy, —uy] =0and lim [lu, —ul2 =0,
m,n— 00 i—00 w

for some u € L2, we have u € H, and that
lim ®[u,, —u] =0.
n—o0
From now on, the notation A < B means that A < ¢B for some constant ¢, depending at

most on the structural constants unless otherwise stated. The notations A 2 B and A ~ B
should be interpreted similarly.
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3 Proof of Theorem 1.2: Uniqueness

We here prove the uniqueness part of Theorem 1.2 by proceeding along the lines of the
corresponding proof in [2, Lem. 1]. To prove uniqueness, it is enough to prove that if « is a
weak solution to the problem in Eq. 1.3 such that

u € L([0, T1, L2 (R")) N L2((0, T], HL (R™)),

and such that u(-,#) — 0 in L%U(R”) ast — 0T, then u = 0 a.e. in R* x [0, T]. We note
that by an approximation in C§°(R" x (0, T)), test functions in the space H]w”]o (R" x (0, T))
are allowed in the weak formulation of Eq. 1.3. To proceed, we fix T” € (0, T) such that
u(-, T € L%} (R™), and we introduce

t/h, t €0, h],
Cn() =11, teh, T —2h)],
(T"—h—1)/h, t € (T'—2h, T —h],

where 0 < h < T’ /2. Using &, and the Steklov average of u, define

o) £ ux,s) ds, (1) € R x [0, T — hl,

bn(x, 1) == {0, (x,t) e R" x (T" = h,T].

Then, ¢, € Hllu”lo (R"™ x (0, T)). Furthermore, using ¢y, as the test function in Eq. 1.3, and
letting h — 0, we deduce that

T/
/ u*(x, 0) dw—/ u(x, T dw=/ / A(x, 1)Vyu - Veu dx dt > 0.
n Rn O n

Hence,

/ u?(x, T') dw 5/ u%(x,0) dw = 0,
n R"

and u(x, T') = 0 for a.e x € R". This completes the proof.

4 Proof of Theorem 1.2: Existence and Kernel Representation

We here prove the existence part of Theorem 1.2 and the stated representation in terms of
a kernel. Our first step is to use [15, Thm. III], and to do so we in particular have to work
with coefficients which are smooth in the time variable. Hence, we have to prove uniform
estimates for a class of approximating operators and then pass to the limit. We divide the
argument into a number of relevant steps.

4.1 Existence of Linear Evolution Operators Following Kato
Let p € C;°(—1, 1) be a non-negative function which integrates to 1. Given / € Ry and

pi1(t) = lp(lt), we introduce A;(-,t) = p; * A(-, 1), i.e., we mollify the matrix-valued
function A in the time variable only. Define the sesquilinear form

&' (H)(u, v) ::/]R w*lA,(x,z)vxu-deH*l/ uv dw,

n
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for every u, v € H} and £/ through
(Lju, v} = ' () (u, v).

Formally,
L) = —wdivy (A (x, 1) Vy) + 1/1.

In ll; and ®!(¢), ¢ should be seen as a parameter.
Let @/ ()[u] := ®'(t)(u, u) for every u € H! . Then,

Im &' (N)[u] < ?Re @' (D[u], Re® (D)[u] = minfer, 1/} ully , “@.1)
1 w

foreverytr e R,u € H}U .Letu, € Hl]u be a sequence such that
Jim ey — w3 =0,
foru € L2, and
lim Re @ ()[upm — un] = 0.
m,n— o0
Then, by Eq. 4.1, u, is a Cauchy sequence in the Hilbert space H}U Hence,
nlggo lun — “”Hllv =0,

and
1lim Re @' (1)[uy] = &' (1)[ul.

This proves that Re ®/(¢) is a closed quadratic form.
Now,

|® (1)[u] — @' (5)[u]| = ‘/R (Ar(x, 1) = Ay(x, $)Vou - Vi dx|.
forall s, € R, u € H} . Noting that
w (@) (A (x, 1) — Aj(x, ) = /w*‘(x)A(x, ) (pi(r — 1) — pi(t —5)) dr,
we deduce that
lw™ ) (Ar(x, 1) = A, )] S / lpi(t = 1) = pi(z = )| dr S Lo pll<lt — s,

for all 5,¢ € R, where the second implicit constant also depends on p. Hence, by Eq. 4.1,
we have

S 13 plipelt — s|Re @ (s)[ul,

~

19/ (O] = @' )l S Udrpllelt = slIVaullf

forall s, € R, u € H., . Now applying [15, Thm. IIT], we can conclude the following.

Theorem 4.1 For every T > 0, there exists a unique bounded linear evolution operator
Ui(t,s) : sz — sz, defined for 0 < s <t < T, with the following properties:
1. Ui(t, s) is strongly continuous for0 < s <t < T and

1) U(t,t) =1, forallt > 0,

() Ui, s)U(s,r) = Ui(t,r), forall 0 <r <s.
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2. For 0 < s < t, the range of U(t, s) is a subset of D(L}), LIUj(t,s) : L2 — L2 isa
bounded operator, Uj(t, s) is strongly differentiable in t, and

(i) 9, Uy (t, ) f + LIUI(t, 8) f =0, forall f €12 .

For simplicity, we will write £; instead of £/, hence suppressing the superscript . We
will need the following result.

Lemmad4.2 If f € sz is a real-valued non-negative function, then U;(t,0) f is also real-
valued and non-negative for all t > 0.

Proof By property (i) of Theorem 4.1, the lemma is immediate for r = 0. Let f € sz be a
real-valued non-negative function and consider ¢ > 0. Using the inequality

0 <Re(L;U(t,0) f, Ui(t,0) f —Re Uy (t,0) fw,
we have

0 = Re(L;U(t,0) f, Ui(t,0) f —Re Up(,0) f)w
= —Re(3;U;(r,0) f, Uy(r,0) f —Re U(1,0) f)w

1 1
50U 0) £, Ui(t, 0) fhw + S0 (Re Un(r, 0) £, Re Ui (£, 0) f .-
Integrating from O to ¢ in this inequality, we have

(U2, 0) f, Ui, 0) flw = (Re Ui(1,0) f,Re U (2, 0) f .

In conclusion, ImU;(¢,0)f = 0 and U(¢,0)f is a real-valued function. Since both
L1U;(t,0) f and f belong to qu, we deduce that

IV2Ui (@, 0) fllp 2 < (LiUi(2, 0) f, U2, 0) fw < 00,
and that 0, U;(¢,0) f € sz. By a standard argument, 9;|U; (¢, 0) f1|, V. |U;(t,0) f| € sz and

B Ui (2, 0) f, Vi Ui (2, 0) f) if U(z,0)f =0,

@ Uit 0)F1, ValUi (1, 0) 1) = {(—a,U,a,O)f, Y Sy

Using this, we deduce

0 < Re(L;Ui(t,0) f, Ui(t, 0) f — Ui (2, 0) f)w
=Re(=3; Ui (1, 0) f, Ui(,0) f — [Ui(2, 0) f w

1
= =5 @I, 0)f = Ui, 0) f1), Ur(t, 0).f = U2, 0) f )w

1
== 70U 0 f = U, 0) f1, Ui, 0) f = [U, 0) f -

Integrating from O to 7 in this inequality, we have U; (¢, 0) f = |U;(t, 0) f| and hence U (¢, 0) f
is non-negative. O

4.2 An Off-diagonal Estimate and its Implications

Given two closed subsets E, F C R”", we let dist(E, F) denote the Euclidean distance
between the sets.
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Lemma4.3 Let E, F C R" be two closed subsets and let d := dist(E, F). Then, there exists
a constant ¢ > 0, depending only on the structural constants, such that

a2

WU O 1)1 ) S ez

foreveryt > 0 and forall f € sz(E).

Proof The argument is similar to [9, Lem. 1]. Let v (x) := dist(x, F) and ¢ (x) := e*¥ ™),

where « is a negative constant to be determined later. Then, by Young’s inequality for prod-
ucts, and the fact that ||V /||~ < 1, we have

dllpUi(z, 0)(flE)||ii = —2(LUi(t, 0)(f1E). $*Ui(t, 0)(f1£))w

IA

—2{A V. (Ui(t, 0)(f1£)), Vo (@ Ui(t, 0)(f1£)))w

IA

2¢o
~2e1|9Va (Ui, 0)(F1ENIF> + =2 16Va (Ui, 010D
+320%ca | QUL (1, 0)(f1E) 11T -
where A > 0 is a degree of freedom. Letting A = ¢2/c1, we obtain

2 20[26‘% 2
at||¢Ul(t70)(f1E)||L%U =< ||¢U1(f70)(f1E)||leu~

€1

Hence,

2.2
20 cat

16U 01012 <7 g1,

In conclusion,

/F|Uz<r,0>(f1£)|2 dw s/R \Ui(2,0)(f1£)1*¢* dw

2.2
2a 5t

=5 g2,

e ( Mzc%' +20¢d)

<1

N

IF1EN
We conclude the proof by letting « = —(dcy)/ (20§t).

We introduce the cylinders
Cr(xo. 10) :={ (x, 1) : |t —to] < r%, |x —xo| < ZV},

CF(x0,10) =1 (x, 1) : 3r? /4 <t — 19 < r?, |x — x| < r/Z},

Co (x0,10) :={ (x, 1) : =3r%/4 <1 — 1y < —r?/4, |x —x0| < r/Z},

for all » > 0 (xq, 19) € R" x R. We refer to [5, Thm. 2.1], for autonomous coefficients, and
[13, Thm. A] for the proof of the following Harnack inequality.
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Lemma4.4 Let (xg,10) € R" x R, r > 0. If u is a non-negative weak solution of Hu = 0 in
Qr(xo, o), then

sup  u(x, 1) S inf  wu(x,0).
Cy (x0,10) G (x0.10)

To use the argument of Davies [9, Thm. 3] to prove the upper Gaussian bound, we prove
the following estimate.

Lemma4.5 Let ¢ € Cg°(R") and p := ||Vy¢pllL . Then,

Iwre Ui, 1) Pl S e fllz, 0<r <1, 4.2)

for all real-valued functions f € L%U, where a > 0 is a constant, depending on the structural
constants.

Proof To prove the lemma, we proceed along the line of [6, 7, Sec. 5.1], using the previous
lemmas. First, by the linearity of Uj(z, 0), it is enough to consider the case that f is non-
negative. Second, by homogeneity, it suffices to prove that

e~ UI(1.0)(e? 1) (O)] < e | ll2 - (4.3)

Indeed, assume that Eq. 4.3 holds for every non-negative function f € qu, and consider the
functions u(x, 1) := e~ ?U;(t, r)(e? f)(x). Now, we consider ¢, 7 > 0 as fixed parameters
and let

VT (y, 8) = u(xo + Nt —ry, r 4+ (t —1)s),

for xo € R" fixed and for all y € R", s € R,. For ¢, r > 0 fixed, we have that d;v"" (y, 5)
equals

e (—% divy AiC, 7+ (E = 1)$) Vi + ?)U(r + (= s, 1) 0o+ VI T ),

and v (y,0) = f(xo + +/f —ry) forall y € R". Hence,
V' (y,5) = e U (5,006 £ (y), fory e R,
by the property of uniqueness, where
YO = fo+ V1 =ry), ¢ () i=do+V1—ry), foryeR"
Furthermore, U, l”r(s, 0) is as in Theorem 4.1 but induced by the operator

t—r
T

—(w"") " dive(A)" Vi) +
where
A (v, 5) i=Ai(xo + Nt —ry, r+(t —r)s), w(y) i=wlxo+ 1 —ry), foryeR"

Since A)"" satisfies

aAlEPw™ () < AP, 9)E £, |AY (3, 9)E - £ < caw " (WIENIL],

forall y,&,¢ € R", s € Ry, w"" is an Ap-weight, and [w’"], = [w]y, the result stated in
the lemma is now implied by applying Eq. 4.3 to the function v’
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Finally, we prove Eq. 4.3. To start the argument, let f € L2 be a fixed non-negative
function and let Qg C R” be the cube centered at the origin with £(Qp) = 9. We let
O = 3KQy, and, for k > 1, {Qk’f}izil be a partition of Qj \ Qk—1 into cubes of side-

length 351, Define f© := f1g, and f*J := f1,;. Then,

oo 3"—1
e~ U1, 0)(e? HHO)] < D > e ?Ui(1, 0)(e? £57)(0)]
k=1 j=1
3t—1
+ ) 1e?Ui(1,00(e? fO)(0)). (4.4)
j=1

LetukJ (x, 1) := Uj(t, 0)(e¢fk*f)(x) andk > 1. Then, by Lemma4.2, ukd is anon-negative
weak solution of o;u + L;u = 0. For y € R", s € Ry, define the function vk’f(y, §) =

uk'j(Sky, s) which satisfies 9;v%/ + vak’/ = 0 where
~k 1 -
Ly = —wh) Vv, (AF V) 4+ 171,
and Af (v, s) := A;(3y, 5), wk(y) := w(3¥y). Then, by Lemma 4.4,

sup 05 (y,9) S inf oM (y.s).
070, %) 01 (0.5

Hence,

1 21 1

0, 1) < (wk(3l<0>>>_j(/ﬁ/ kT (v, 5) P dw%y)ds)i.
: § JBLO

By change of variable, this implies that

_1 21 1

. 2 3 . 2

W0, 1) 5 (w <0>) ( / 8 / W (v, 9P dw"(y)ds) :
7 2 .B%(O)

Now, e¢fk'j is supported in Qk’j and dist(Qk’j, B (O)) > % Hence, by Lemma 4.3,
T

o

k7 (0, 1)

1 1

21
-2 A% g _ . 2
S(og@) ([, [ O 0k aut o) as)
s Jov
1
-2 N .
g(w (0)> oS3 3L o)y ey @.5)
7 w

By Lemma 4.3 and a similar estimate as above, we obtain

O (1, 0) (e £2)0)] < 0%7) 1702 - (4.6)
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Now, by summing Eqs. 4.4, 4.5, and 4.6, we see that

e U1, 0)(e? £)(0)]

oo 3'—1 1

oo 31 —1 L L

9032k 4 3k+1 2 . 2

< (eWuZ}j(w%(m) (233 ﬁp)) <||f°||55,+§ 5 ||f"”||f;ﬂ>
k=1 j=1 k=1 j=1

o 2 P -1 2k %
- (69667’) 4o Ej(wi(0)> ol=e3 )) 1 £l
k=1 * ‘

2
SN fllz

where o depends on the structural constants. In the inequalities above, Cauchy-Schwarz
inequality is used on the first inequality, and Eq. 2.3 is used on the last inequality. This
completes the proof of Eq. 4.3. O

4.3 Kernel Estimates for the Operator U,(t, 0)

We here prove the Gaussian upper bound estimates for U;.

Theorem 4.6 There exists a kernel K,l (x, y) associated with the operator U(t, 0) such that
U2, 0)(f)(x) :/]R Kl G, ) f () dw(y), .7

forall f € L%) (R™) and x € R". Furthermore, there exist a constant ¢, | < ¢ < 00, and

v > 0, both depending only on the structural constants, such that

! <& P
Kiben 5 D000 ’ “9

forallt > 0,x,y € R", and such that

ct

1 ( |k )” oy
e ,
Vw w (y) \ 112 + |x = y|

1 |h| Vo
IK!(x,y +h) — Kl (x, )| < ( )e T, (4.9)
! ! Vw w, () \ 112+ |x — y|

forallt > 0,x,y,h € R, where 2|h| < 2 4 [x — yl.

IK!(x +h,y) — Kl (x, )| <

Proof By Lemma 4.2 and a duality argument,

— 2
le™Ur (e, ) (Vwre? Nllz < e 1l (4.10)
for every f € L}v and ¢ € Ci°(R"), where p = [|Vi¢|l~ and « is a positive constant

depending on structural constants. By property (ii) in Theorem 4.1, we have
Ui(t,0) = Ui(t,1/2)Ui(1/2, 0),

for all + € R4.. Hence, by combining Eqs. 4.2 and 4.10, we obtain

I/wre ™ Un(e, 0)(Ware? F)llLs < e £y @.11)
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for every f € L} . Therefore, by the Dunford-Pettis theorem [10, Thm. 1.3.2], there exists
a kernel K ,l’d’ which satisfies

Ve U 0 o = [ K o) duo),
forall f e L], ¢ € C°(R"), x € R". Furthermore,
KPP (e, )] S e,
forallt > 0, x, y € R". Choosing ¢ = 0, a kernel K,Z (x, y) is obtained such that
UL(E, 0 () () = /R Kl £ duly),
forall f € L} . Note that K/ (x, y) = me¢(x)’¢(y)Kf’¢(x, y) and hence

1
K ()] S e P00, (4.12)
Vwi(x)wy(y)
for every ¢ € C3°(R") such that ||V, ¢|lL~ = p. By an approximation argument we can
assume that ¢ is a Lipschitz function in Eq. 4.12. Taking infimum of ¢ (x) — ¢ (y) on Eq. 4.12
over Lipschitz functions ¢ satistying ||V ¢| > = p, we obtain

K} (x, 9| < ;ew"z_p'“‘_”‘,
Vw (x)w (y)
for all p > 0. Then, putting p = % concludes that

1 lx—y[2
- pT Tdar
Joow

for all x, y € R",t > 0. Finally, Eq. 4.13, Lemma 4.4, and an argument due to Trudinger,
see the proof of [20, Thm. 2.2], imply the inequalities in Eq. 4.9. O

K (x, )| < (4.13)

4.4 Completing the Argument: Passing to the Limit

We need the following remark for the Holder regularity of solutions.

Remark 4.7 Given f € L%U, forevery [ € R, the solution Uj(¢, 0) f(x) is Holder continuous
on small closed disks D C R" x R4, such that 2D C R" x R, with bounds depending on
the radius of D, the structural constants, and [|U; (¢, 0) f [ p), see [13, Thm. B]. Note that
in [13, Thm. B] an extra assumption on w is required, see property (AS5) in [13, Thm. B],
to obtain interior Holder regularity. However, the author uses this assumption only to derive
the estimates (3.11) and (3.12) in [13], which hold for the equation in Theorem 4.1(iii).

Now, we show that K ,l (x, y) is also Holder continuous on compact subsets of R” x R” x R..
Lemma 4.8 For every | € Ry, the functions Ktl (x,y) is Holder continuous on compact

subsets of R" x R" x Ry with bounds independent of I.

Proof Let fix x € R", t,1 € R. Define the functions

Sor () = 1B, ()

w(Br(2))
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forevery 0 < r < 1,z € R". Then,

ULt 0) for (1) = /R KL for () duy)

by Theorem 4.6 and U (¢, 0) f- (x) is Holder continuous on small closed disks D C R" xR,
such that 2D C R" x R, see Remark 4.7, and the Holder bounds depend on radius of D,
the structural constants, and [|U;(z, 0) f7, lL>p). Now, by letting ¢ = 0 in Eq. 4.11, we
obtain

[Ui(2,0) fz.r(x)] 5

1
”fzr/«/w;t”]ﬂlv = 5
\/w(Bﬁ(x))w(Bﬁ/z(Z))

1
Jw(B ;)

for every x € R”, ¢t > 4r%. Consequently,

1

- Kl(x,y)d
wB @) 0 (. y) dw(y)

is Holder continuous on compact subsets of R” x R with bounds independent of /, r. Letting
r — 0 and using the Lebesgue differentiation theorem, we obtain, for every fixed z € R",
that K/ (x, z) is Holder continuous on compact subsets of R” x R, with bounds independent
of /. Using the triangle inequality, we have

K70 y) = Ky 001 < K () = Kp G y01 + Ky = K )
HIKI L Y) = K] Gy,
forevery x, y,x', y' e R, 1, h,l € R,.
Hence, using this we conclude the lemma by Theorem 4.6 and the previous result that

K ,l (x, z) is Holder continuous on compact subsets of R” x R, for every fixed z € R", with
bounds independent of /. O

To complete the proof of Theorem 1.2, we pass to the limit / — oo in Theorem 4.6. To start
the argument, we first note that

OV, 0) fIF> = =2(L1Uy (1, 0) f, Up (2, 0) fru < =2¢1 [ VxUi (1, O) f 17 -

Hence,
10 0) fI72 < I
' 5 T (4.14)
|19 0P dwas < S
0 Jrr 2¢y w
and .
/ / Ui(s, 0) f* dwds < T[], (4.15)
0 R}’l w

for all + € [0, T]. In conclusion, up to a subsequence Uj(t, 0) f (x) converges weakly to
an element in L2([0, T, sz) as [ — oo. We denote the limit U (¢, 0) f (x). Moreover, we
have that {V, Uj(t, 0) f} converges weakly to V, Uz, 0) f in L>([0, T], L% (R", R")). As a
consequence of this, Egs. 4.14, 4.15, we obtain

U(t,0)f € L([0, T1, L2 (R")) N L*((0, T1, HL, (R™)), (4.16)
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and

T
sup ||U<r,0)f||§2+/ / VUG, 0 fP dwds S 112,
w 0 RVI w

rel0.T1 ., @.17)
/ / U (s, 0)f1* dwds<T|| I, .
0 Jre w
Furthermore, u(x, t) := U(¢, 0) f(x) is a weak solution to
du+ Lu=0inR" x (0, T). (4.18)

Recall that
U600 = [ Kl £O) du) forall (v, 1) € B x 10,71
Rl‘l

Using this, the uniform boundedness and the Holder continuity of K ,Z (x, y) on compact
subsets of R” x R" x R, with bounds independent of /, see Theorem 4.6 and Lemma 4.8,
and the Arzela-Ascoli theorem, we conclude that there exists a K;(x, y) such that K tl (x,y)
converges, up to a subsequence, uniformly to K, (x, y) on compact subsets of R” x R” x R .
Also,

/ K (x,y)w(y)dy =1, forall (x,1) € R" x (0, T). (4.19)
R?

To prove this, note that

1 _le—yi?
/n «/wz(x)wz(y)e = dw)

[e.¢]
< </ L4 M+ —2202_1)’/ L 4 ())
< w(y e a w(y
Nwi (x) \JB,(x) Vwi (y) P By, ()\Byi—1, (x) v/ W (Y)

Selx, ),

using Eqgs. 2.2 and 2.3, where c(x, t) is a constant which depends on x and ¢. In conclusion,
Eq. 4.19 is aresult of pointwise convergence of Ktl (x,y)to K (x, y)as! — oo, Theorem 4.6,
and Lebesgue’s dominated convergence theorem. Hence, by Theorem 4.6, there exists c,
1 <c¢ < 00, and v > 0, both depending only on the structural constants, such that

le—y[?

C
K;(x, < — a 4.20
) = o) (%20

forall > 0, x, y € R", and such that

|Ki(x +h,y) — Ki(x, y)| =

c

c |h| ) eyl
e
Vw w, (y) (,1/2 + [x =yl

¢ ( 2] )Ue_ i @21
Vw w, () \ 112 +|x — y| ' '

forallr > 0,x, y, h € R”, satisfying 2|h| < t'/2 + |x — y|.
We next prove that

|Ki(x,y+h)— Ki(x,y)| <

U,0)f(x) = / K:(x,y) f(y) dw(y) forall (x,7) € R" x (0, T). (4.22)
R"
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To do this we first note, using Theorem 4.6 and Remark 1.3,

=y

e (4.23)

1
Kl(x,y) < 5
1

forall x,y € R",r € R, and

|x—v\2 2x—y[?

/e_ <} (/ F O du( ))(/ e_—d)
n w(x) _w,z(x) w0 Y s wly) )

for all (x,7) € R” x R4. Using Eq. 2.3, we have

2y

1 -5 1 26-1) 1
e AT
wi (x) Jrr w(y) wi (x) \J B (x) w(y) By ()\Bopoy (v) W(Y)

Sclx, ),

where c(x, t) is a constant which depends on x and ¢, and hence

\x—v|2

-
/n 0 () NACY)

In conclusion, by pointwise convergence of K tl (x,y) to K;(x, y) as! — oo and Lebesgue’s
dominated convergence theorem, we obtain

“ <ot r)( /R 0P dw(y>>. 4.24)

Jm Ui, 0)f (x) = /Rn Ki(x, y) f(y) dw(y), (4.25)

forall x € R". Let ¢ € CSO(R" x (0, T)), let K C R"” be a compact set, and let ¢ > 0 be
such that the support of ¢ is contained in K X (e, T'). Using Eq. 2.2 and Lemma 4.5, we have
ANz

Ui, 00 f(0)] S NoRoh

forall (x,7) e R" x R, and

1l e, 0] )
/ | dw(x) dr S TEK. @l=l £z

Wy (.x
where ¢(K, €) is a constant which depends on K and €. Thus, by Eq. 4.25 and Lebesgue’s

dominated convergence theorem, we obtain

T
lim / / Ui, 0) f ()b (x, 1) dw(x) di
]Rﬂ

=00 Jo

T
:/() //n o Ki(x,y)fep(x,t) dw(y)dw(x)dt (4.26)

whenever f € L%). As Uj(t, 0) f (x) converges weakly to U (¢, 0) f(x) in L%([0, T1, sz), we
have that

T T
/0 /R"(Uz(t,O)f(x))Mx,t) dw(x)dt — /0 /R”(U(t,o)f(x))qﬁ(x,t) dw(x) dt,
4.27)
as [ — oo and whenever ¢ € Cj°(R" x (0, T)). Then, Eqs. 4.27 and 4.26 imply Eq. 4.22.
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Finally, we have to prove that U (¢, 0) f(-) — f(-) in Li, (R") as t — OT. Assume first
that f € C5°(R") with support on a ball B C R". For every ¢ > 0, denote c¢B as the ball
keeping the center of B and dilating its radius by c¢. Then, by Cauchy-Schwarz inequality,
Eq. 4.19, and Lemma 4.3,

2
U0 f — fII% 5/ ’/ K e DI () — dw(x)
w 2B|JR"

2k+2 B\2k+l B

</ (/ Ki(r DI — P dw(y))(/ Ki(x, ) dw(y))dw(x)
2B Rn Rn
+Ze—4/ 1@ dw(x)

//Kz(x IO = f(x)|2dw(y)dw(x)+t|\f||L2,

+Z/ |U(t,0) f(x)> dw(x)
k=1

for t € R4. As the second term on the right-hand side goes to zero as t — 0, it is enough
to control the first term. Now, for 7, § € R small enough, we have

/ / K, If ) = @ dw(y) dw(x)
2B JRe

< PwRB)|V P + / / KoGr IO = FOOI dw(y) dw(x)
28 JRM\ Bs (x)

and, by Eqgs. 2.2, 2.3, 4.23, and pointwise convergence of Kll (x,y) to K¢(x,y)asl — oo,
we arrive at

/ / Ko »IFG) = £ dw(y) dw(x)
2B JR™"\Bs(x)

2 1 _I}’—X\z
SIfliEee e” o dw(y)dw(x)
28 Wr(x) JRrr\Bs(x)

o0

1 Ly—x?
—f1E [ > / T au(y) dw ()
2B wt(x) —1 ¥ Byis (O\Byr—15(x)

_2k=D)g2

Sllfllfoo/ ) Z o w(Byrg(x)) dw(x)
=1

22<

< 1F 1P / s 5% DR By (x)) dw(x)

m—=

t
2
SIfI3 Bl
)
where m is the smallest integer, such that m > % Hence, letting first + — 0, we obtain

limsup U (1, 0)f = fII}2 S 8*w2B)IV flif.

t—0
Since § can be arbitrarily small, we deduce lim;_,o ||U(¢,0) f — f ||12~2 = 0. We next use the

fact that C§°(R") is dense in L%U (R™). Indeed, consider f € sz (R") and let f; € C5°(R") be
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such that f; — f in L%U(R”) as j — oo. We construct a solution u (x, t) := U(t, 0) f; (x)
as above for every j. Then, by Eq. 4.17 and the linearity and uniqueness part of Theorem 1.2,
we have

T
sup =y %, + [ [ 19w dwds S5 = I, o
t€[0,T] w 0 JRn w

T
| P dwds ST7 = £, o
0 n w
as j — oo. Hence,

lu0) = FOIEs SheC.0) =u;COlE + 10 = FOIE + 1650 = FOIE
Shuj G0 = £OIF + 170 = FOIE -

Let ¢/ > 0 be small, and choose j large enough so that
£ = FOIF2 <€/2.
With j fixed, we choose 8 > 0 small enough so that

luj (1) = fiO)1% < €/2forallt € [0,8).

We can then conclude, for €’ > 0 given, that

lu( 1) = fOIf; < e forallz € [0,5).

This proves that U (¢, 0) f — f in sz (R") as t — 0%, whenever f € L%U (R™). The proof
of Theorem 4.6 is therefore complete.
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