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Abstract
We consider second order degenerate parabolic equations with real, measurable, and time-
dependent coefficients.We allow for degenerate ellipticity dictated by a spatial A2-weight.We
prove the existence of a fundamental solution and derive Gaussian bounds. Our construction
is based on the original work of Kato (Nagoya Math. J. 19, 93–125 1961).
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1 Introduction

We consider parabolic operators of the form

Hu := ∂t u + Lu := ∂t u − w−1 divx (A(x, t)∇xu), (x, t) ∈ R
n × R =: Rn+1, (1.1)

where the weight w = w(x) is time-independent and belongs to the spatial Muckenhoupt
class A2(R

n, dx), and the coefficient matrix A = A(x, t) is measurable with real entries and
possibly depends on all variables. Degeneracy of A is also dictated by the weight w in the
sense that A satisfies

c1|ξ |2w(x) ≤ A(x, t)ξ · ξ, |A(x, t)ξ · ζ | ≤ c2w(x)|ξ ||ζ |, (1.2)

for some c1, c2 ∈ (0,∞) and for all ξ, ζ ∈ R
n , (x, t) ∈ R

n+1. We refer to [w]A2 as the
constant of the weight and to c1, c2 as the ellipticity constants of A. We will frequently refer
to n, c1, c2, and [w]A2 as the structural constants.

Equations and operators as in Eq. 1.1 appear naturally in the study of the fractional
powers of parabolic equations and anomalous diffusions, see [17] and the references therein,
and in the context of heat kernels of Schrödinger equations with singular potential, see
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[14]. For contributions to the study of local properties of the solutions to Hu = 0 and the
Gaussian estimates, we refer to [5, 8]. Furthermore, recently in [4]we, togetherwithM. Egert,
established the Kato (square root) estimate for H allowing also for complex coefficients.
While this may be considered as of independent interest, the result proved here and the
results of [3] will be combined in a forthcoming work to give a generalization of the work in
[4] to weighted parabolic operators as in Eq. 1.1 satisfying Eq. 1.2.

Given 0 < T < ∞, we in this paper consider the Cauchy problem

(i) Hu = ∂t u − w−1 divx (A(x, t)∇xu) = 0 in R
n × (0, T ),

(ii) lim
t→0

u(x, t) = f (x). (1.3)

The equation in (i) is interpreted in the weak sense and according to the following definition.
We refer to the bulk of the paper for definitions and the functional setting.

Definition 1.1 A weak solution to Eq. 1.3 (i) on R
n × (0, T ) is a (real-valued) function

u ∈ L2
loc((0, T ],H1

w,loc(R
n)) such that

ˆ T

0

ˆ
Rn

u(x, t)∂tφ(x, t) dw dt =
ˆ T

0

ˆ
Rn

A(x, t)∇xu(x, t) · ∇xφ(x, t) dx dt (1.4)

for all φ ∈ C∞
0 (Rn × (0, T )).

The purpose of this note is to establish the existence of a kernel/fundamental solution asso-
ciated to H, to derive appropriate Gaussian upper bounds for the kernel in the nature of the
original (unweighted) estimates of Aronson [1], and to use the kernel to represent weak solu-
tions to Eq. 1.3. The quantitative estimates derive will only depend on n, c1, c2, and [w]A2 ,
i.e., on the structural constants.

Recall that in the case of uniform elliptic coefficients, i.e., w ≡ 1, the problem in Eq. 1.3
was studied in depth in [2]. In [2] Aronson considered the energy space L∞([0, T ],L2(Rn))∩
L2((0, T ],H1(Rn)), he proved that all solutions u in this space have a trace f ∈ L2(Rn), and
the solution is uniquely determined by this trace. He obtained existence, given initial data
in L2, and hence he defined an evolution operator � such that u(·, t) = �(·, t) f for t > 0.
In [1], pointwise Gaussian estimates of the evolution operator are proved. This result allows
one to define weak solutions to Eq. 1.3 by the integral representation

u(x, t) =
ˆ
Rn

Kt (x, y) f (y) dy =
ˆ
Rn

K (x, t, y, 0) f (y) dy, (1.5)

for f in various spaces of initial conditions, where K is the kernel/fundamental solution
associated to H. Uniqueness is proved in the class of the solutions satisfying

ˆ T

0

ˆ
Rn

e−a|x |2 |u(x, t)|2 dx dt < ∞, (1.6)

for some a > 0, and existence whenever f ∈ L2(e−γ |x |2dx). In particular, this result covers
the case f ∈ Lp(dx), 2 ≤ p ≤ ∞.

Given x ∈ R
n, t > 0, we introduce wt (x) =: w(B√

t (x)) where B√
t (x) is the Euclidean

ball of radius
√
t and center x inRn . This note is devoted to the proof of the following result.

Theorem 1.2 Given f ∈ L2
w(Rn) and T > 0, there exists a unique weak solution to the

problem in Eq. 1.3, such that

u ∈ L∞([0, T ],L2
w(Rn)) ∩ L2((0, T ],H1

w(Rn)), (1.7)
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and

u(·, t) → f (·) in L2
w(Rn) as t → 0+. (1.8)

The unique solution u can be represented as

u(x, t) =
ˆ
Rn

Kt (x, y) f (y)w(y) dy, for all (x, t) ∈ R
n × (0, T ), (1.9)

where Kt (x, y) = K (x, t, y, 0) is the fundamental solution of H, satisfying
ˆ
Rn

Kt (x, y)w(y) dy = 1, for all (x, t) ∈ R
n × (0, T ). (1.10)

Furthermore, there exist c, 1 ≤ c < ∞, and ν > 0, both depending only on the structural
constants, such that

Kt (x, y) ≤ c√
wt (x)wt (y)

e− |x−y|2
ct , (1.11)

for all t > 0, x, y ∈ R
n, and

|Kt (x + h, y) − Kt (x, y)| ≤ c√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct ,

|Kt (x, y + h) − Kt (x, y)| ≤ c√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct , (1.12)

for all t > 0, x, y, h ∈ R
n, satisfying 2|h| ≤ t1/2 + |x − y|.

Remark 1.3 The constant 1√
wt (x)wt (y)

in Theorem 1.2 can be changed into one of

1

wt (x)
,

1

wt (y)
,

1

max (wt (x), wt (y))
,

if the constant c is replaced with c̃ which also depends on the structural constants, see [7,
Rem. 3].

As discussed, in the non-degenerate casew ≡ 1, Theorem 1.2 is well known, and we refer
to [1, 12] for the existence of the fundamental solution. After the groundbreaking work of
Nash in [18], in which certain estimates of the fundamental solutions and Hölder continuity
of the weak solutions were established, there were several important contributions in the
field. As mentioned in [1], two-sided Gaussian bounds for the fundamental solutions were
proved by employing by now the standard parabolic Harnack inequality. Subsequently, in
[11] it was shown that Nash’s method can also be used to prove Aronson’s Gaussian bounds.

The quantitative estimates stated in Theorem1.2were proved in [6, 7] assuming in addition
that A is symmetric and independent of t . We note that there are certain differences between
[1, 2] and the approach used in [6, 7]. Indeed, in contrast to [1, 2, 6, 7] employ an argument
along the lines of Davies [9] to derive Gaussian bounds. The latter argument relies on off-
diagonal estimates, theHarnack inequality, and anL∞(Rn) → L2

w(Rn)bound for the solution
operator. Also, for the existence part, in [6, 7] the fact that L = −w−1 divx (A(x)∇x ) is
induced through the accretive sesquilinear form,

ˆ
Rn

A(x)∇xu · ∇xv dx,
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is used. As a consequence, the exponential operator e−tL is well-defined and the action of
e−tL on L2

w(Rn) induces the fundamental solution. However, this idea does not work if A is
time-dependent.

The contribution of this note is that we generalize the result of Cruz-Uribe and Rios in [6,
7, Thm. 1.3] to operators with (not necessarily symmetric) time-dependent coefficients. To
accomplish this, we have to proceed differently compared to [6, 7], avoiding the use of the
exponential operator e−tL, and we do so by first returning to the outstanding work of Kato
[15]. In [15, Thm. I], existence and uniqueness of solutions to the initial value problem for
the evolution equation

du

dt
+ A(t)u = f (t), 0 < t < T , (1.13)

were studied. Here, the unknown u = u(t) and the inhomogeneous term f (t) are functions
from the interval [0, T ] to a Banach space X, whereas A(t) is a function from [0, T ] to
the set of (in general unbounded) linear operators acting in X. Given initial data in X, in
[15] the existence and uniqueness of solutions to the abstract Cauchy problem in Eq. 1.13
are proved assuming, roughly speaking, that (i) −A(t) is the infinitesimal generator of an
analytic semigroup of operators; (ii) for some h = 1/m, where m is a positive integer, the
domain of (A(t))h is independent of t ; (iii) A(t) varies smoothly with t , see [15] and our
discussion below.

In particular, to use [15, Thm. I, Thm. III] and to prove Theorem 1.2, we first note that in
our case, A(t) is formally induced through

〈A(t)u, v〉 := 〈Lu, v〉 =
ˆ
Rn

A(x, t)∇xu · ∇xv dx .

While A(t) initially is an unbounded operator on L2
w(Rn), we consider its restriction to

D(A(t)) := {u ∈ H1
w(Rn) : A(t)u ∈ L2

w(Rn)}. (1.14)

Assuming sufficient regularity in t , (i) above follows from ellipticity. Furthermore, (ii) with
m = 2 is a consequence of the solution of the Kato problem for degenerate elliptic operators,
see [8]. However, if we have sufficient regularity in t , then (ii) also follows from [15] for
some m ≥ 3 and in this sense the solution of the Kato problem is not needed. Independent
of method to conclude (ii), we prove, after an initial regularization of A in the time compo-
nent and following [15], the existence of a kernel/fundamental solution to certain operators
approximating our original operator. We then prove appropriate off-diagonal estimates by
following the argument in [9, Lem.1], and we proceed as in [6, 7] to establish upper Gaussian
bounds. Finally, we remove the regularization parameters and pass them to the limit in a
convergence argument.

After some preliminaries, the rest of the paper is devoted to the proof of Theorem 1.2.

2 Preliminaries and Basic Assumptions

For general background and the results concerning weights cited here, we refer to [19,
Ch. V]. The weight w = w(x) is a real-valued function belonging to the Muckenhoupt
class A2(R

n, dx), that is,

[w]A2 := sup
Q

(
−
ˆ
Q

w dx

) (
−
ˆ
Q

w−1 dx

)
< ∞, (2.1)
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where the supremum is taken with respect to all cubes Q ⊂ R
n . We introduce the measure

dw(x) := w(x) dx on R
n , and we write w(E) := ´

E dw for all Lebesgue measurable sets
E ⊂ R

n . It follows from Eq. 2.1 that there are constants η ∈ (0, 1) and β > 0, depending
only on n and [w]A2 , such that

β−1
( |E |

|Q|
) 1

2η ≤ w(E)

w(Q)
≤ β

( |E |
|Q|

)2η

, (2.2)

whenever E ⊂ Q is measurable andwhere |·| denotes Lebesguemeasure inRn . In particular,
there exists a constant D only depending on [w]A2 and n, called the doubling constant for
w, such that

w(2Q) ≤ Dw(Q) for all cubes Q ⊂ R
n . (2.3)

Since, by equation Eq. 2.1, the function 1
w

belongs to A2(R
n, dx), Eq. 2.3 holds for 1

w
.

For every p ≥ 1 and K ⊂ R
n , the space Lp

w(K ) is the space of all measurable functions
f : Rn → C such that

‖ f ‖Lp
w(K ) :=

(ˆ
K

| f |p dw

) 1
p

< ∞.

We denote Lp
w := Lp

w(Rn).

We define 〈 , 〉w as the inner product induced by the norm ‖ ‖L2
w
. Using the A2-condition,

we have

L2
w ⊂ L1

loc(R
n, dx), (2.4)

and the class C∞
0 (Rn) of smooth and compactly supported test functions is dense in L2

w via the
usual truncation and the convolution procedure [16, Sec. 1]. Finally, wewrite H1

w := H1
w(Rn)

for the space of all f ∈ L2
w for which the distributional gradient ∇x f is (componentwise) in

L2
w, and we equip the space with the norm

‖ · ‖H1
w

:= (‖ · ‖22,w + (‖∇x · ‖22,w)1/2.

By construction H1
w is a Hilbert space and the standard truncation and convolution techniques

yield that C∞
0 (Rn) is dense inH1

w , see [16, Thm. 2.5]. We also introduce the spaceH1,1
w,0(R

n×
(0, T )) as the completion of C∞

0 (Rn × (0, T )) with the norm

(‖ · ‖22,w + ‖∂t · ‖22,w + ‖∇x · ‖22,w)1/2.

Given an operator L defined on a subset of L2
w , we introduce

D(L) := {u ∈ L2
w : L(u) ∈ L2

w}.
A quadratic form� : H1

w → R is said to be closed if for every sequence un ∈ H1
w , satisfying

lim
m,n→∞ �[um − un] = 0 and lim

i→∞ ‖un − u‖L2
w

= 0,

for some u ∈ L2
w, we have u ∈ H1

w and that

lim
n→∞ �[un − u] = 0.

From now on, the notation A � B means that A ≤ cB for some constant c, depending at
most on the structural constants unless otherwise stated. The notations A � B and A ∼ B
should be interpreted similarly.
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3 Proof of Theorem 1.2: Uniqueness

We here prove the uniqueness part of Theorem 1.2 by proceeding along the lines of the
corresponding proof in [2, Lem. 1]. To prove uniqueness, it is enough to prove that if u is a
weak solution to the problem in Eq. 1.3 such that

u ∈ L∞([0, T ],L2
w(Rn)) ∩ L2((0, T ],H1

w(Rn)),

and such that u(·, t) → 0 in L2
w(Rn) as t → 0+, then u = 0 a.e. in R

n × [0, T ]. We note
that by an approximation in C∞

0 (Rn × (0, T )), test functions in the space H1,1
w,0(R

n × (0, T ))

are allowed in the weak formulation of Eq. 1.3. To proceed, we fix T ′ ∈ (0, T ) such that
u(·, T ′) ∈ L2

w(Rn), and we introduce

ζh(t) :=

⎧⎪⎨
⎪⎩
t/h, t ∈ [0, h],
1, t ∈ (h, T ′ − 2h],
(T ′ − h − t)/h, t ∈ (T ′ − 2h, T ′ − h],

where 0 < h < T ′/2. Using ζh and the Steklov average of u, define

φh(x, t) :=
{

ζh(t) −́t+h
t u(x, s) ds, (x, t) ∈ R

n × [0, T ′ − h],
0, (x, t) ∈ R

n × (T ′ − h, T ].
Then, φh ∈ H1,1

w,0(R
n × (0, T )). Furthermore, using φh as the test function in Eq. 1.3, and

letting h → 0, we deduce that
ˆ
Rn

u2(x, 0) dw −
ˆ
Rn

u2(x, T ′) dw =
ˆ T ′

0

ˆ
Rn

A(x, t)∇xu · ∇xu dx dt ≥ 0.

Hence, ˆ
Rn

u2(x, T ′) dw ≤
ˆ
Rn

u2(x, 0) dw = 0,

and u(x, T ′) = 0 for a.e x ∈ R
n . This completes the proof.

4 Proof of Theorem 1.2: Existence and Kernel Representation

We here prove the existence part of Theorem 1.2 and the stated representation in terms of
a kernel. Our first step is to use [15, Thm. III], and to do so we in particular have to work
with coefficients which are smooth in the time variable. Hence, we have to prove uniform
estimates for a class of approximating operators and then pass to the limit. We divide the
argument into a number of relevant steps.

4.1 Existence of Linear Evolution Operators Following Kato

Let ρ ∈ C∞
0 (−1, 1) be a non-negative function which integrates to 1. Given l ∈ R+ and

ρl(t) = lρ(lt), we introduce Al(·, t) = ρl ∗ A(·, t), i.e., we mollify the matrix-valued
function A in the time variable only. Define the sesquilinear form

�l(t)(u, v) :=
ˆ
Rn

w−1Al(x, t)∇xu · ∇xv dw + l−1
ˆ
Rn

u v dw,
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for every u, v ∈ H1
w and Lt

l through

〈Lt
l u, v〉w := �l(t)(u, v).

Formally,
Lt
l = −w−1 divx (Al(x, t)∇x ) + 1/l.

In Lt
l and �l(t), t should be seen as a parameter.

Let �l(t)[u] := �l(t)(u, u) for every u ∈ H1
w . Then,

Im�l(t)[u] ≤ c2
c1

Re�l(t)[u], Re�l(t)[u] ≥ min{c1, 1/l}‖u‖2
H1

w
, (4.1)

for every t ∈ R, u ∈ H1
w . Let un ∈ H1

w be a sequence such that

lim
n→∞ ‖un − u‖L2

w
= 0,

for u ∈ L2
w , and

lim
m,n→∞Re�l(t)[um − un] = 0.

Then, by Eq. 4.1, un is a Cauchy sequence in the Hilbert space H1
w . Hence,

lim
n→∞ ‖un − u‖H1

w
= 0,

and
lim
n→∞Re�l(t)[un] = �l(t)[u].

This proves that Re�l(t) is a closed quadratic form.
Now,

|�l(t)[u] − �l(s)[u]| =
∣∣∣∣
ˆ
Rn

(Al(x, t) − Al(x, s))∇xu · ∇xu dx

∣∣∣∣.
for all s, t ∈ R, u ∈ H1

w . Noting that

w−1(x)(Al(x, t) − Al(x, s)) =
ˆ

w−1(x)A(x, τ )(ρl(τ − t) − ρl(τ − s)) dτ,

we deduce that

|w−1(x)(Al(x, t) − Al(x, s))| �
ˆ

|ρl(τ − t) − ρl(τ − s)| dτ � l‖∂tρ‖L∞|t − s|,

for all s, t ∈ R, where the second implicit constant also depends on ρ. Hence, by Eq. 4.1,
we have

|�l(t)[u] − �l(s)[u]| � l‖∂tρ‖L∞|t − s|‖∇xu‖2
L2

w
� l‖∂tρ‖L∞|t − s|Re�l(s)[u],

for all s, t ∈ R, u ∈ H1
w . Now applying [15, Thm. III], we can conclude the following.

Theorem 4.1 For every T > 0, there exists a unique bounded linear evolution operator
Ul(t, s) : L2

w → L2
w , defined for 0 ≤ s ≤ t ≤ T , with the following properties:

1. Ul(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T and

(i) Ul(t, t) = 1, for all t ≥ 0,

(ii) Ul(t, s)Ul(s, r) = Ul(t, r), for all 0 ≤ r ≤ s.
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2. For 0 ≤ s < t , the range of Ul(t, s) is a subset of D(Lt
l ), Lt

lUl(t, s) : L2
w → L2

w is a
bounded operator, Ul(t, s) is strongly differentiable in t , and

(iii) ∂tUl(t, s) f + Lt
lUl(t, s) f = 0, for all f ∈ L2

w .

For simplicity, we will write Ll instead of Lt
l , hence suppressing the superscript t . We

will need the following result.

Lemma 4.2 If f ∈ L2
w is a real-valued non-negative function, then Ul(t, 0) f is also real-

valued and non-negative for all t ≥ 0.

Proof By property (i) of Theorem 4.1, the lemma is immediate for t = 0. Let f ∈ L2
w be a

real-valued non-negative function and consider t > 0. Using the inequality

0 ≤Re〈LlUl(t, 0) f ,Ul(t, 0) f − ReUl(t, 0) f 〉w,

we have

0 ≤ Re〈LlUl(t, 0) f ,Ul(t, 0) f − ReUl(t, 0) f 〉w
= −Re〈∂tUl(t, 0) f ,Ul(t, 0) f − ReUl(t, 0) f 〉w
= −1

2
∂t 〈Ul(t, 0) f ,Ul(t, 0) f 〉w + 1

2
∂t 〈ReUl(t, 0) f ,ReUl(t, 0) f 〉w.

Integrating from 0 to t in this inequality, we have

〈Ul(t, 0) f ,Ul(t, 0) f 〉w ≤ 〈ReUl(t, 0) f ,ReUl(t, 0) f 〉w.

In conclusion, ImUl(t, 0) f = 0 and Ul(t, 0) f is a real-valued function. Since both
LlUl(t, 0) f and f belong to L2

w , we deduce that

‖∇xUl(t, 0) f ‖L2
w

� 〈LlUl(t, 0) f ,Ul(t, 0) f 〉w < ∞,

and that ∂tUl(t, 0) f ∈ L2
w. By a standard argument, ∂t |Ul(t, 0) f |,∇x |Ul(t, 0) f | ∈ L2

w and

(∂t |Ul(t, 0) f |,∇x |Ul(t, 0) f |) =
{

(∂tUl(t, 0) f ,∇xUl(t, 0) f ) if Ul(t, 0) f ≥ 0,

(−∂tUl(t, 0) f ,−∇xUl(t, 0) f ) if Ul(t, 0) f < 0.

Using this, we deduce

0 ≤ Re〈LlUl(t, 0) f ,Ul(t, 0) f − |Ul(t, 0) f |〉w
= Re〈−∂tUl(t, 0) f ,Ul(t, 0) f − |Ul(t, 0) f |〉w
= −1

2
〈∂t (Ul(t, 0) f − |Ul(t, 0) f |),Ul(t, 0) f − |Ul(t, 0) f |〉w

= −1

4
∂t 〈Ul(t, 0) f − |Ul(t, 0) f |,Ul(t, 0) f − |Ul(t, 0) f |〉w.

Integrating from0 to t in this inequality,we haveUl(t, 0) f = |Ul(t, 0) f | and henceUl(t, 0) f
is non-negative. ��

4.2 An Off-diagonal Estimate and its Implications

Given two closed subsets E, F ⊂ R
n , we let dist(E, F) denote the Euclidean distance

between the sets.
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Lemma 4.3 Let E, F ⊂ R
n be two closed subsets and let d := dist(E, F). Then, there exists

a constant c > 0, depending only on the structural constants, such that

‖Ul(t, 0)( f 1E )‖L2
w(F) � e

(
− cd2

t

)
‖ f ‖L2

w(E),

for every t > 0 and for all f ∈ L2
w(E).

Proof The argument is similar to [9, Lem. 1]. Let ψ(x) := dist(x, F) and φ(x) := eαψ(x),
where α is a negative constant to be determined later. Then, by Young’s inequality for prod-
ucts, and the fact that ‖∇xψ‖L∞ ≤ 1, we have

∂t‖φUl(t, 0)( f 1E )‖2
L2

w
= −2〈LlUl(t, 0)( f 1E ), φ2Ul(t, 0)( f 1E )〉w
≤ −2〈Al∇x (Ul(t, 0)( f 1E )),∇x (φ

2Ul(t, 0)( f 1E ))〉w
≤ −2c1‖φ∇x (Ul(t, 0)( f 1E ))‖2

L2
w

+ 2c2
λ

‖φ∇x (Ul(t, 0)( f 1E ))‖2
L2

w

+λ2α2c2‖φUl(t, 0)( f 1E )‖2
L2

w
,

where λ > 0 is a degree of freedom. Letting λ = c2/c1, we obtain

∂t‖φUl(t, 0)( f 1E )‖2
L2

w
≤ 2α2c22

c1
‖φUl(t, 0)( f 1E )‖2

L2
w
.

Hence,

‖φUl(t, 0)( f 1E )‖2
L2

w
≤ e

( 2α2c22 t
c1

)
‖φ f 1E‖2

L2
w
.

In conclusion, ˆ
F

|Ul(t, 0)( f 1E )|2 dw ≤
ˆ
Rn

|Ul(t, 0)( f 1E )|2φ2 dw

≤ e
( 2α2c22 t

c1

)
‖φ f 1E‖2

L2
w

� e
( 2α2c22 t

c1
+2αd

)
‖ f 1E‖2

L2
w
.

We conclude the proof by letting α = −(dc1)/(2c22t). ��
We introduce the cylinders

Cr (x0, t0) :=
{
(x, t) : |t − t0| < r2, |x − x0| < 2r

}
,

C+
r (x0, t0) :=

{
(x, t) : 3r2/4 < t − t0 < r2, |x − x0| < r/2

}
,

C−
r (x0, t0) :=

{
(x, t) : −3r2/4 < t − t0 < −r2/4, |x − x0| < r/2

}
,

for all r > 0 (x0, t0) ∈ R
n × R. We refer to [5, Thm. 2.1], for autonomous coefficients, and

[13, Thm. A] for the proof of the following Harnack inequality.

123



A. Ataei and K. Nyström

Lemma 4.4 Let (x0, t0) ∈ R
n ×R, r > 0. If u is a non-negative weak solution ofHu = 0 in

Qr (x0, t0), then

sup
C−
r (x0,t0)

u(x, t) � inf
C+
r (x0,t0)

u(x, t).

To use the argument of Davies [9, Thm. 3] to prove the upper Gaussian bound, we prove
the following estimate.

Lemma 4.5 Let φ ∈ C∞
0 (Rn) and ρ := ‖∇xφ‖L∞ . Then,

‖√wt e
−φUl(t, r)(e

φ f )‖L∞ � eα(t−r)ρ2‖ f ‖L2
w
, 0 ≤ r < t, (4.2)

for all real-valued functions f ∈ L2
w , where α > 0 is a constant, depending on the structural

constants.

Proof To prove the lemma, we proceed along the line of [6, 7, Sec. 5.1], using the previous
lemmas. First, by the linearity of Ul(t, 0), it is enough to consider the case that f is non-
negative. Second, by homogeneity, it suffices to prove that

|e−φUl(1, 0)(e
φ f )(0)| � eαρ2‖ f ‖L2

w
. (4.3)

Indeed, assume that Eq. 4.3 holds for every non-negative function f ∈ L2
w , and consider the

functions u(x, t) := e−φUl(t, r)(eφ f )(x). Now, we consider t, r > 0 as fixed parameters
and let

vt,r (y, s) := u(x0 + √
t − r y, r + (t − r)s),

for x0 ∈ R
n fixed and for all y ∈ R

n, s ∈ R+. For t, r > 0 fixed, we have that ∂sv
t,r (y, s)

equals

e−φ

(
− 1

w
divx Al(·, r + (t − r)s)∇x + t − r

l

)
U (r + (t − r)s, r)(eφ f )(x0 + √

t − r y),

and vt,r (y, 0) = f (x0 + √
t − r y) for all y ∈ R

n . Hence,

vt,r (y, s) = e−φt,r
U t,r
l (s, 0)eφt,r

f t,r (y), for y ∈ R
n,

by the property of uniqueness, where

f t,r (y) := f (x0 + √
t − r y), φt,r (y) := φ(x0 + √

t − r y), for y ∈ R
n .

Furthermore, Ut,r
l (s, 0) is as in Theorem 4.1 but induced by the operator

−(wt,r )−1 divx (A
t,r
l ∇x ) + t − r

l
,

where

At,r
l (y, s) := Al(x0 + √

t − r y, r + (t − r)s), wt,r (y) :=w(x0 + √
t − r y), for y∈R

n .

Since At,r
l satisfies

c1|ξ |2wt,r (y) ≤ At,r
l (y, s)ξ · ξ, |At,r

l (y, s)ξ · ζ | ≤ c2w
t,r (y)|ξ ||ζ |,

for all y, ξ, ζ ∈ R
n, s ∈ R+, wt,r is an A2-weight, and [wt,r ]2 = [w]2, the result stated in

the lemma is now implied by applying Eq. 4.3 to the function vt,r .
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Finally, we prove Eq. 4.3. To start the argument, let f ∈ L2
w be a fixed non-negative

function and let Q0 ⊂ R
n be the cube centered at the origin with �(Q0) = 9. We let

Qk := 3k Q0, and, for k ≥ 1, {Qk, j }3n−1
j=1 be a partition of Qk \ Qk−1 into cubes of side-

length 3k+1. Define f 0 := f 1Q0 and f k, j := f 1Qk, j . Then,

|e−φUl(1, 0)(e
φ f )(0)| ≤

∞∑
k=1

3n−1∑
j=1

|e−φUl(1, 0)(e
φ f k, j )(0)|

+
3n−1∑
j=1

|e−φUl(1, 0)(e
φ f 0)(0)|. (4.4)

Let uk, j (x, t) := Ul(t, 0)(eφ f k, j )(x) and k ≥ 1. Then, by Lemma 4.2, uk, j is a non-negative
weak solution of ∂t u + Ll u = 0. For y ∈ R

n, s ∈ R+, define the function vk, j (y, s) :=
uk, j (3k y, s) which satisfies ∂tv

k, j + L̃k
l v

k, j = 0 where

L̃k
l := −(wk)−1 divx (A

k
l ∇x ) + 1/l,

and Ak
l (y, s) := Al(3k y, s), wk(y) := w(3k y). Then, by Lemma 4.4,

sup
Q−
1 (0, 138 )

vk, j (y, s) � inf
Q+
1 (0, 138 )

vk, j (y, s).

Hence,

vk, j (0, 1) �
(

wk(B 1
2
(0))

)− 1
2
(ˆ 21

8

19
8

ˆ
B 1
2
(0)

|vk, j (y, s)|2 dwk(y) ds

) 1
2

.

By change of variable, this implies that

uk, j (0, 1) �
(

w 3k
2
(0)

)− 1
2
(ˆ 21

8

19
8

ˆ
B 1
2
(0)

|vk, j (y, s)|2 dwk(y) ds

) 1
2

.

Now, eφ f k, j is supported in Qk, j and dist
(
Qk, j , B 3k

2
(0)

) ≥ 3k
2 . Hence, by Lemma 4.3,

|uk, j (0, 1)|

�
(

w 3k
2
(0)

)− 1
2

e−c32k
(ˆ 21

8

19
8

ˆ
Qk, j

e2(φ(x)−φ(0))| f k, j (y, s)|2 dwk(y) ds

) 1
2

�
(

w 3k
2
(0)

)− 1
2

e
(
−c32k+3k+1

√
n
2 ρ

)
‖ f k, j‖L2

w
. (4.5)

By Lemma 4.3 and a similar estimate as above, we obtain

e−φ(0)|Ul(1, 0)(e
−φ f 0)(0)| � e

(
9

√
n
2 ρ

)
‖ f 0‖L2

w
. (4.6)
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Now, by summing Eqs. 4.4, 4.5, and 4.6, we see that

e−φ(0)|Ul(1, 0)(e
φ f )(0)|

�
(
e9

√
nρ +

∞∑
k=1

3n−1∑
j=1

(
w 3k

2
(0)

)−1

e
(
−2c32k+3k+1√nρ

)) 1
2
(

‖ f 0‖2
L2

w
+

∞∑
k=1

3n−1∑
j=1

‖ f k, j‖2
L2

w

) 1
2

≤
(
e9ce

9n
c ρ2 + 3ne

9n
c ρ2

∞∑
k=1

(
w 3k

2
(0)

)−1

e
(
−c32k

)) 1
2 ‖ f ‖L2

w

� eαρ2‖ f ‖L2
w
,

where α depends on the structural constants. In the inequalities above, Cauchy-Schwarz
inequality is used on the first inequality, and Eq. 2.3 is used on the last inequality. This
completes the proof of Eq. 4.3. ��

4.3 Kernel Estimates for the Operator Ul(t, 0)

We here prove the Gaussian upper bound estimates for Ul .

Theorem 4.6 There exists a kernel K l
t (x, y) associated with the operator Ul(t, 0) such that

Ul(t, 0)( f )(x) =
ˆ
Rn

K l
t (x, y) f (y) dw(y), (4.7)

for all f ∈ L2
w(Rn) and x ∈ R

n. Furthermore, there exist a constant c, 1 ≤ c < ∞, and
ν > 0, both depending only on the structural constants, such that

K l
t (x, y) � c√

wt (x)wt (y)
e− |x−y|2

ct , (4.8)

for all t > 0, x, y ∈ R
n, and such that

|Kl
t (x + h, y) − Kl

t (x, y)| � 1√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct ,

|Kl
t (x, y + h) − Kl

t (x, y)| � 1√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct , (4.9)

for all t > 0, x, y, h ∈ R
n, where 2|h| ≤ t1/2 + |x − y|.

Proof By Lemma 4.2 and a duality argument,

‖e−φUl(t, 0)(
√

wt e
φ f )‖L2

w
� eαtρ2‖ f ‖L1

w
, (4.10)

for every f ∈ L1
w and φ ∈ C∞

0 (Rn), where ρ = ‖∇xφ‖L∞ and α is a positive constant
depending on structural constants. By property (ii) in Theorem 4.1, we have

Ul(t, 0) = Ul(t, t/2)Ul(t/2, 0),

for all t ∈ R+. Hence, by combining Eqs. 4.2 and 4.10, we obtain

‖√wt e
−φUl(t, 0)(

√
wt e

φ f )‖L∞ � eαtρ2‖ f ‖L1
w
, (4.11)
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for every f ∈ L1
w . Therefore, by the Dunford-Pettis theorem [10, Thm. 1.3.2], there exists

a kernel Kl,φ
t which satisfies

√
wt e

−φUl(t, 0)(
√

wt e
φ f )(x) =

ˆ
Rn

K l,φ
t (x, y) f (y) dw(y),

for all f ∈ L1
w, φ ∈ C∞

0 (Rn), x ∈ R
n . Furthermore,

|Kl,φ
t (x, y)| � eαtρ2

,

for all t > 0, x, y ∈ R
n . Choosing φ = 0, a kernel Kl

t (x, y) is obtained such that

Ul(t, 0)( f )(x) =
ˆ
Rn

K l
t (x, y) f (y) dw(y),

for all f ∈ L1
w . Note that Kl

t (x, y) = √
wt (x)wt (y)eφ(x)−φ(y)Kl,φ

t (x, y) and hence

|Kl
t (x, y)| � 1√

wt (x)wt (y)
eαtρ2

eφ(x)−φ(y), (4.12)

for every φ ∈ C∞
0 (Rn) such that ‖∇xφ‖L∞ = ρ. By an approximation argument we can

assume that φ is a Lipschitz function in Eq. 4.12. Taking infimum of φ(x)−φ(y) on Eq. 4.12
over Lipschitz functions φ satisfying ‖∇xφ‖L∞ = ρ, we obtain

|Kl
t (x, y)| � 1√

wt (x)wt (y)
eαtρ2−ρ|x−y|,

for all ρ > 0. Then, putting ρ = |x−y|
2αt concludes that

|Kl
t (x, y)| � 1√

wt (x)wt (y)
e− |x−y|2

4αt , (4.13)

for all x, y ∈ R
n, t > 0. Finally, Eq. 4.13, Lemma 4.4, and an argument due to Trudinger,

see the proof of [20, Thm. 2.2], imply the inequalities in Eq. 4.9. ��

4.4 Completing the Argument: Passing to the Limit

We need the following remark for the Hölder regularity of solutions.

Remark 4.7 Given f ∈ L2
w , for every l ∈ R+ the solutionUl(t, 0) f (x) is Hölder continuous

on small closed disks D ⊂ R
n × R+, such that 2D ⊂ R

n × R+, with bounds depending on
the radius of D, the structural constants, and ‖Ul(t, 0) f ‖L∞(2D), see [13, Thm. B]. Note that
in [13, Thm. B] an extra assumption on w is required, see property (A5) in [13, Thm. B],
to obtain interior Hölder regularity. However, the author uses this assumption only to derive
the estimates (3.11) and (3.12) in [13], which hold for the equation in Theorem 4.1(iii).

Now, we show that Kl
t (x, y) is also Hölder continuous on compact subsets ofRn ×R

n ×R+.

Lemma 4.8 For every l ∈ R+, the functions K l
t (x, y) is Hölder continuous on compact

subsets of Rn × R
n × R+ with bounds independent of l.

Proof Let fix x ∈ R
n, t, l ∈ R+. Define the functions

fz,r (·) := 1

w(Br (z))
1Br (z)(·)
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for every 0 < r < 1, z ∈ R
n . Then,

Ul(t, 0) fz,r (x) =
ˆ
Rn

K l
t (x, y) fz,r (y) dw(y)

byTheorem4.6 andUl(t, 0) fz,r (x) isHölder continuous on small closed disks D ⊂ R
n×R+,

such that 2D ⊂ R
n × R+, see Remark 4.7, and the Hölder bounds depend on radius of D,

the structural constants, and ‖Ul(t, 0) fz,r‖L∞(2D). Now, by letting φ ≡ 0 in Eq. 4.11, we
obtain

|Ul(t, 0) fz,r (x)| � 1√
w(B√

t (x))
‖ fz,r/

√
wt‖L1

w
≤ 1√

w(B√
t (x))w(B√

t/2(z))
,

for every x ∈ R
n, t > 4r2. Consequently,

1

w(Br (z))

ˆ
Br (z)

Kl
t (x, y) dw(y)

is Hölder continuous on compact subsets ofRn×R+ with bounds independent of l, r . Letting
r → 0 and using the Lebesgue differentiation theorem, we obtain, for every fixed z ∈ R

n ,
that Kl

t (x, z) is Hölder continuous on compact subsets ofRn ×R+ with bounds independent
of l. Using the triangle inequality, we have

|Kl
t (x, y) − Kl

t+h(x
′, y′)| ≤ |Kl

t (x, y) − Kl
t (x, y

′)| + |Kl
t (x, y

′) − Kl
t (x

′, y′)|
+|Kl

t (x
′, y′) − Kl

t+h(x
′, y′)|,

for every x, y, x ′, y′ ∈ R
n, t, h, l ∈ R+.

Hence, using this we conclude the lemma by Theorem 4.6 and the previous result that
Kl
t (x, z) is Hölder continuous on compact subsets of Rn ×R+, for every fixed z ∈ R

n , with
bounds independent of l. ��

To complete the proof of Theorem 1.2, we pass to the limit l → ∞ in Theorem 4.6. To start
the argument, we first note that

∂t‖Ul(t, 0) f ‖2L2
w

= −2〈LlUl(t, 0) f ,Ul(t, 0) f 〉w ≤ −2c1‖∇xUl(t, 0) f ‖2L2
w
.

Hence,
‖Ul(t, 0) f ‖2L2

w
≤ ‖ f ‖2

L2
w
,

ˆ t

0

ˆ
Rn

|∇xUl(s, 0) f |2 dw ds ≤ 1

2c1
‖ f ‖2

L2
w
,

(4.14)

and ˆ t

0

ˆ
Rn

|Ul(s, 0) f |2 dw ds ≤ T ‖ f ‖2
L2

w
, (4.15)

for all t ∈ [0, T ]. In conclusion, up to a subsequence Ul(t, 0) f (x) converges weakly to
an element in L2([0, T ],L2

w) as l → ∞. We denote the limit U (t, 0) f (x). Moreover, we
have that {∇xUl(t, 0) f } converges weakly to ∇xU (t, 0) f in L2([0, T ],L2

w(Rn,Rn)). As a
consequence of this, Eqs. 4.14, 4.15, we obtain

U (t, 0) f ∈ L∞([0, T ],L2
w(Rn)) ∩ L2((0, T ],H1

w(Rn)), (4.16)
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and

sup
t∈[0,T ]

‖U (t, 0) f ‖2
L2

w
+

ˆ T

0

ˆ
Rn

|∇xU (s, 0) f |2 dw ds � ‖ f ‖2
L2

w
,

ˆ T

0

ˆ
Rn

|U (s, 0) f |2 dw ds≤T ‖ f ‖2
L2

w
.

(4.17)

Furthermore, u(x, t) := U (t, 0) f (x) is a weak solution to

∂t u + Lu = 0 in R
n × (0, T ). (4.18)

Recall that

Ul(t, 0) f (x) =
ˆ
Rn

K l
t (x, y) f (y) dw(y) for all (x, t) ∈ R

n × [0, T ].

Using this, the uniform boundedness and the Hölder continuity of Kl
t (x, y) on compact

subsets of Rn × R
n × R+ with bounds independent of l, see Theorem 4.6 and Lemma 4.8,

and the Arzelà-Ascoli theorem, we conclude that there exists a Kt (x, y) such that Kl
t (x, y)

converges, up to a subsequence, uniformly to Kt (x, y) on compact subsets ofRn ×R
n ×R+.

Also, ˆ
Rn

Kt (x, y)w(y) dy = 1, for all (x, t) ∈ R
n × (0, T ). (4.19)

To prove this, note that
ˆ
Rn

1√
wt (x)wt (y)

e− |x−y|2
4αt dw(y)

≤ 1√
wt (x)

(ˆ
Bt (x)

1√
wt (y)

dw(y) +
∞∑
k=1

e− 22(k−1) t
4α

ˆ
B2k t (x)\B2k−1 t (x)

1√
wt (y)

dw(y)

)

� c(x, t),

using Eqs. 2.2 and 2.3, where c(x, t) is a constant which depends on x and t . In conclusion,
Eq. 4.19 is a result of pointwise convergence of Kl

t (x, y) to K (x, y) as l → ∞, Theorem 4.6,
and Lebesgue’s dominated convergence theorem. Hence, by Theorem 4.6, there exists c,
1 ≤ c < ∞, and ν > 0, both depending only on the structural constants, such that

Kt (x, y) ≤ c√
wt (x)wt (y)

e− |x−y|2
ct , (4.20)

for all t > 0, x, y ∈ R
n , and such that

|Kt (x + h, y) − Kt (x, y)| ≤ c√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct ,

|Kt (x, y + h) − Kt (x, y)| ≤ c√
wt (x)wt (y)

( |h|
t1/2 + |x − y|

)ν

e− |x−y|2
ct , (4.21)

for all t > 0, x, y, h ∈ R
n , satisfying 2|h| ≤ t1/2 + |x − y|.

We next prove that

U (t, 0) f (x) =
ˆ
Rn

Kt (x, y) f (y) dw(y) for all (x, t) ∈ R
n × (0, T ). (4.22)
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To do this we first note, using Theorem 4.6 and Remark 1.3,

Kl
t (x, y) � 1√

wt (x)
e− |x−y|2

ct , (4.23)

for all x, y ∈ R
n, t ∈ R+, and

∣∣∣∣
ˆ
Rn

e− |x−y|2
ct

wt (x)
| f (y)| dw(y)

∣∣∣∣
2

≤ 1

w2
t (x)

(ˆ
Rn

| f (y)|2 dw(y)

)(ˆ
Rn

e− 2|x−y|2
ct

w(y)
dy

)
,

for all (x, t) ∈ R
n × R+. Using Eq. 2.3, we have

1

w2
t (x)

ˆ
Rn

e− 2|x−y|2
ct

w(y)
dy ≤ 1

w2
t (x)

(ˆ
B1(x)

1

w(y)
dy +

∞∑
k=1

e− 22(k−1)
ct

ˆ
B2k (x)\B2k−1 (x)

1

w(y)
dy

)

� c(x, t),

where c(x, t) is a constant which depends on x and t , and hence

∣∣∣∣
ˆ
Rn

e− |x−y|2
ct

wt (x)
| f (y)| dw(y)

∣∣∣∣
2

� c(x, t)

(ˆ
Rn

| f (y)|2 dw(y)

)
. (4.24)

In conclusion, by pointwise convergence of Kl
t (x, y) to Kt (x, y) as l → ∞ and Lebesgue’s

dominated convergence theorem, we obtain

lim
l→∞Ul(t, 0) f (x) =

ˆ
Rn

Kt (x, y) f (y) dw(y), (4.25)

for all x ∈ R
n . Let φ ∈ C∞

0 (Rn × (0, T )), let K ⊂ R
n be a compact set, and let ε > 0 be

such that the support of φ is contained in K × (ε, T ). Using Eq. 2.2 and Lemma 4.5, we have

|Ul(t, 0) f (x)| �
‖ f ‖L2

w√
wt (x)

,

for all (x, t) ∈ R
n × R+, and

ˆ T

0

ˆ
Rn

‖ f ‖L2
w
|φ(x, t)|√

wt (x)
dw(x) dt � T c̃(K , ε)‖φ‖L∞‖ f ‖L2

w
,

where c̃(K , ε) is a constant which depends on K and ε. Thus, by Eq. 4.25 and Lebesgue’s
dominated convergence theorem, we obtain

lim
l→∞

ˆ T

0

ˆ
Rn

(Ul(t, 0) f (x))φ(x, t) dw(x) dt

=
ˆ T

0

ˆˆ
Rn×Rn

Kt (x, y) f (y)φ(x, t) dw(y) dw(x) dt (4.26)

whenever f ∈ L2
w. AsUl(t, 0) f (x) converges weakly toU (t, 0) f (x) in L2([0, T ],L2

w), we
have thatˆ T

0

ˆ
Rn

(Ul(t, 0) f (x))φ(x, t) dw(x) dt →
ˆ T

0

ˆ
Rn

(U (t, 0) f (x))φ(x, t) dw(x) dt,

(4.27)

as l → ∞ and whenever φ ∈ C∞
0 (Rn × (0, T )). Then, Eqs. 4.27 and 4.26 imply Eq. 4.22.
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Finally, we have to prove that U (t, 0) f (·) → f (·) in L2
w(Rn) as t → 0+. Assume first

that f ∈ C∞
0 (Rn) with support on a ball B ⊂ R

n . For every c > 0, denote cB as the ball
keeping the center of B and dilating its radius by c. Then, by Cauchy-Schwarz inequality,
Eq. 4.19, and Lemma 4.3,

‖U (t, 0) f − f ‖2
L2

w
≤

ˆ
2B

∣∣∣∣
ˆ
Rn

Kt (x, y)|( f (y) − f (x))| dw(y)

∣∣∣∣
2

dw(x)

+
∞∑
k=1

ˆ
2k+2B\2k+1B

|U (t, 0) f (x)|2 dw(x)

≤
ˆ
2B

(ˆ
Rn

Kt (x, y)| f (y) − f (x)|2 dw(y)

)(ˆ
Rn

Kt (x, y) dw(y)

)
dw(x)

+
∞∑
k=1

e− 22k
ct

ˆ
B

| f (x)|2 dw(x)

�
ˆ
2B

ˆ
Rn

Kt (x, y)| f (y) − f (x)|2 dw(y) dw(x) + t‖ f ‖2
L2

w
,

for t ∈ R+. As the second term on the right-hand side goes to zero as t → 0, it is enough
to control the first term. Now, for t, δ ∈ R+ small enough, we haveˆ

2B

ˆ
Rn

Kt (x, y)| f (y) − f (x)|2 dw(y) dw(x)

≤ δ2w(2B)‖∇ f ‖2L∞ +
ˆ
2B

ˆ
Rn\Bδ(x)

Kt (x, y)| f (y) − f (x)|2 dw(y) dw(x)

and, by Eqs. 2.2, 2.3, 4.23, and pointwise convergence of Kl
t (x, y) to Kt (x, y) as l → ∞,

we arrive at ˆ
2B

ˆ
Rn\Bδ(x)

Kt (x, y)| f (y) − f (x)|2 dw(y) dw(x)

� ‖ f ‖2L∞

ˆ
2B

1

wt (x)

ˆ
Rn\Bδ(x)

e− |y−x |2
ct dw(y) dw(x)

= ‖ f ‖2L∞

ˆ
2B

1

wt (x)

∞∑
k=1

ˆ
B2k δ

(x)\B2k−1δ
(x)

e− |y−x |2
ct dw(y) dw(x)

� ‖ f ‖2L∞

ˆ
2B

1

wt (x)

∞∑
k=1

e− 22(k−1)δ2
ct w(B2kδ(x)) dw(x)

� ‖ f ‖2L∞

ˆ
2B

1

wt (x)

∞∑
k=1

e− 22(k−1)
ct δ2Dkw(Bδ(x)) dw(x)

� ‖ f ‖2L∞|B| t
m− n

η

δ
2m− n

η

,

where m is the smallest integer, such that m > n
η
. Hence, letting first t → 0, we obtain

lim sup
t→0

‖U (t, 0) f − f ‖2
L2

w
� δ2w(2B)‖∇ f ‖2L∞ .

Since δ can be arbitrarily small, we deduce limt→0 ‖U (t, 0) f − f ‖2
L2

w

= 0. We next use the

fact thatC∞
0 (Rn) is dense in L2

w(Rn). Indeed, consider f ∈ L2
w(Rn) and let f j ∈ C∞

0 (Rn) be
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such that f j → f in L2
w(Rn) as j → ∞. We construct a solution u j (x, t) := U (t, 0) f j (x)

as above for every j . Then, by Eq. 4.17 and the linearity and uniqueness part of Theorem 1.2,
we have

sup
t∈[0,T ]

‖u − u j‖2L2
w

+
ˆ T

0

ˆ
Rn

|∇x (u − u j )|2 dw ds � ‖ f − f j‖2L2
w

→ 0,

ˆ T

0

ˆ
Rn

|u − u j |2 dw ds � T ‖ f − f j‖2L2
w

→ 0,

as j → ∞. Hence,

‖u(·, t) − f (·)‖2
L2

w
�‖u(·, t) − u j (·, t)‖2L2

w
+ ‖u j (·, t) − f j (·)‖2L2

w
+ ‖ f j (·) − f (·)‖2

L2
w

�‖u j (·, t) − f j (·)‖2L2
w

+ ‖ f j (·) − f (·)‖2
L2

w
.

Let ε′ > 0 be small, and choose j large enough so that

‖ f j (·) − f (·)‖2
L2

w
< ε′/2.

With j fixed, we choose δ′ > 0 small enough so that

‖u j (·, t) − f j (·)‖2L2
w

< ε′/2 for all t ∈ [0, δ′).

We can then conclude, for ε′ > 0 given, that

‖u(·, t) − f (·)‖2
L2

w
� ε for all t ∈ [0, δ′).

This proves that U (t, 0) f → f in L2
w(Rn) as t → 0+, whenever f ∈ L2

w(Rn). The proof
of Theorem 4.6 is therefore complete.
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