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Abstract

In this paper, we establish a large deviation principle for the solutions to the stochastic
heat equations with logarithmic nonlinearity driven by Brownian motion, which is neither
locally Lipschitz nor locally monotone. Nonlinear versions of Gronwall’s inequalities and
Log-Sobolev inequalities play an important role.
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1 Introduction

In this paper, we study the small noise large deviation principle (LDP) of stochastic heat
equations with logarithmic nonlinear drift term driven by Brownian motion, which is written
as follows,

du(t,x) = Au(t, x)dt + u(t, x)log |u(t, x)|dt + o (u(t,x))dW;, t > 0,x € D,
u(t,x)=0, t>0,xe€adD,
u(0,x) =uog(x), xe€D,

(1.1

where D is a bounded domain in R? with smooth boundary. The coefficiento (-) : R — R
is a deterministic continuous function. W is an 1-dimensional standard Brownian motion
defined on a complete filtrated probability space (2, F, F;, P). In this paper, we assume
that the initial value ug is a deterministic element in L2(D).
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We like to point out that the drift coefficient b(z) = zlog|z| neither has linear growth
nor be locally Lipschitz. In fact, this function b is locally log-Lipschitz and of superlinear
growth. And eq. (1.1) does not fall into the category of stochastic partial differential equations
with locally monotone coefficients known in the literature. We refer the readers to [24] and
references therein.

PDEs with a logarithmic nonlinearity have been introduced in the study of nonlinear wave
mechanics. The logarithmic wave mechanics and logarithmic Schrodinger equations have
been studied by many authors, see [4, 22]. The logarithmic deterministic parabolic equations
have also been widely studied, we refer the readers to [5, 6, 11, 14] and references therein
for details.

The stochastic heat equations with logarithmic nonlinearity driven by Brownian motion
was studied in the paper [24] by Shang and Zhang. They proved that eq. (1.1) has a unique
global strong probabilistic solution when the diffusion coefficient o satisfies a locally Lip-
schitz condition and a certain superlinear growth. We would like also to mention the paper
[8] where the authors studied the stochastic reaction diffusion equations on the interval [0, 1]
driven by space-time noise with coefficients which are locally Lipschitz and satisfy some
superlinear logarithmic growth. Stochastic reaction diffusion equations on the whole line R
with logarithmic nonlinearity driven by space-time white noise were considered in [25]

The large deviation theory has wide applications in many areas, e.g. statistical mechanics,
risk management and hydrodynamics, see [ 1] for more applications. For the LDP of stochastic
differential equations (SDEs) and stochastic partial differential equations (SPDEs), there
exists a large amount of literature, we refer the readers to [3, 7, 9, 10, 12, 16, 19, 20, 23] and
references therein for details.

The purpose of this paper is to establish a Freidlin—Wentzell type LDP for the stochastic
heateq. (1.1). To obtain the LDP of the solutions, we will adopt the weak convergence method
introduced in [2]. Especially, we will use the more convenient sufficient conditions given in
the paper [19], see Theorem 2.6 below. To this end, we first establish the well-posedness of
the corresponding skeleton equation using the Galerkin approximations, where two versions
of nonlinear Gronwall’s inequality played an important role. To verify the conditions given
in [19], we first show they hold on a small time interval again using a version of nonlinear
Gronwall’s inequality and then extend it to the whole interval [0, T'] by induction. For the
weak convergence, our first step is to prove it under a weaker metric and then we improve
the convergence under a stronger metric.

The rest of the paper is organized as follows. In Section 2, we present the framework for
(1.1), give our hypotheses and introduce the weak convergence method of LDP. Section 3
is to introduce the main result. In Section 4, we establish the well-posedness of the skele-
ton equation. In Section 5, we prove the large deviation result. Section 6 is the Appendix
containing two versions of nonlinear Gronwall’s inequalities used in this paper.

2 Framework

In this section, we will set up the framework and briefly recall the weak convergence method
in the large deviation principle theory. Let H := L?(D) be the L> space with the norm and
the inner product respectively denoted by || - || and (-, -). Denote the Sobolev space HO1 (D)
by V, which is the completion of the space of compactly supported smooth functions C2° (D)
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under the norm
Ju]? = /D Vu(x)2dx. @.1)

There exists an orthonormal basis {e; }7°, of H consisting of the eigenvectors of the negative
Laplace operator under zero boundary conditions with the corresponding eigenvalues 0 <
Ai 1 o0, satisfying:

Ae; = —Xjej, eilagp =0, ieN. (2.2)

Moreover, {e;}72, is an orthogonal basis of V. Recall the Poincaré inequality, i.e.

L. VueV. 23)

In order to deal with the logarithmic term, we need the logarithmic Sobolev inequality (see
[15]) of the following form. For any ¢ > 0 and u € V, we have

d 1
/D ()| log lu(x)ldx < ef|ul)}, + (Zlog g) Ju® + e *t0g [u]. @4
Set
log, z :=log(l V z).

From the above logarithmic Sobolev inequality, it follows that for any ¢ > O andu € V,
f Ju ()| log . |u(x)|dx
D

d 1 1
<elul} + (§ 108 3 ) Jul” + " 10g ] + 5 es)

where m (D) denotes the Lebesgue measure of the domain D.
Identifying the Hilbert space H with its dual H* via the Riesz representation, we obtain
a Gelfand triple

VCHCV"
Denote by (f, v) the canonical dual pairing between f € V* and v € V. We have
(u,v) =(u,v), Yyue H, YveV. (2.6)
Set
u(@)(x) =u(t, x),  (u()loglu)|) (x) :=u(r, x)log |u(z, x)|,
o(u(t))(x) :=o(u(t, x)).

Then (1.1) can be reformulated as the following stochastic evolution equation

{ u(t) = uo + [y Au(s)ds + [y u(s)logu(s)lds + [y o (u(s))dWs,

u(0) =ug € H. 2.7

Definition 2.1 An H-valued {F;}-adapted continuous stochastic process (u,);>¢ is called a
solution of (2.7), if the following two conditions hold:

(i) u e L>([0,T]; V) forany T > 0, P-a.s.
(ii) u satisfies the eq. (2.7) in V*, P-a.s for any ¢ > 0.
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Now we introduce the hypotheses on the diffusion coefficient o.

(H) There exist positive constants L and L, such that for all x, y € R,

lo(x) = (| = Lilx = y| + Lajx — y| (log, (Ix| v Iyl))% : (2.8)

Remark 2.2 The assumption (H) implies that o is continuous and there exist positive constants
L3, L4 such that for all x € R,

1
o (¥)| < L3 + Lalx| (log |x[)? . 2.9)
The following result is the Theorem 6.6 in [24] giving the well-posedness of eq. (2.7).

Theorem 2.3 Supposing hypothesis (H) hold. Then there exists a unique global solution u to
(2.7) for every initial value up € H.

Next, we turn to the definition of LDP.

Definition 2.4 Let £ be a Polish space with the Borel o-field B(£). A function I: £ —
[0, +0o¢] is called a rate function if I is lower semicontinuous and the level set {e € & :
I(e) < M} is a compact subset of £ for each M < oo.

Definition 2.5 A family of £-valued random variables {X¢}.~¢ is said to satisfy the LDP on
& with rate function I if for each Borel subset B of £,

—inf I'(e) < limigfs2 log P(X® € B) < limsupe®log P(X® € B) < — inf I(e).
£—

eeB e—0 ecB

Next we will introduce a sufficient condition for the LDP for a sequence of Wiener
functionals.

Let {W;};>0 be a real-valued Wiener process on a complete filtrated probability space
(2, F, F;, P). Suppose for each ¢ > 0, G° : C([0, T]; R) — £ is a measurable map and
X% =G*(W.).For N > 0, we set

A= {v : v is a real-valued {F; }-predictable process such that
T
/ |v(s,a))|2ds < 00, P—a.s],
0

T
Sy = {(p e L*([0,T],R) : / [p(s)|>ds < N},
0
Ay = {v e A:v(,w) e Sy. P-a.s}.

To establish the LDP of the Wiener functionals {X?},~, we will use the following sufficient
conditions established in [19], which are based on a criteria of Budhiraja-Dupuis in [2].

Theorem 2.6 Ifthere exists a measurable map G° : C([0, T]; R) — & such that the following
two conditions hold
(a) For every N < oo, for any family {h¢}.~0 € Ay and for any § > 0,

lim P(p(Y", X") > §) =0
e—0

where X"e := GE(W. + %fo he(s)ds), Yhe = Qo(f(; he(s)ds) and p(-, -) stands for the
metric of the space E.
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(b) For every N < oo and any family {h¢}e=0 C Sy that converges weakly to some element
hin L*([0, T1; R) as e — 0, we have Y — Y" in €.
Then the family X¢ = G#(W.) satisfies a large deviation principle with the rate function

1 T
10f) = inf [—/ v(o)Pds)).
eL2([0.TL:R): f=G(f; v(s)ds)) L2 Jo

with the convention inf{{}} = oo.

3 Statement of the main result

In the remainder of this paper, we will take the Polish space
£=C(0,T); H)NL*([0,TL: V)

equipped with the metric,
T
p(u, v)2 = sup Hu(s) — v(s)”2 +/ ||u(s) — v(s)”%,ds, Yu,vecl.
5€[0,T] 0

Assume that (H) is satisfied, then from Theorem 2.3, there exists a unique solution to the
following equation:

{ u' (1) = uo + Jo Auf(s)ds + [y u®(s)log [u (s)|ds + e [ o (u®(s))dWs, (3.10)
u®(0) =ug € H.

By the Yamada-Watanabe theorem in [17], the solution of (3.10) determines a measurable
map G° : C([0, T]; R) — & such that for all standard Brownian motion W, G*(W) is the
unique solution of (3.10).

We also need to consider the so-called skeleton equation

{ ul(t) = ug + [y Aul(s)ds + [y u” (s)log [u"(s)|ds + [ h(s)o (u"(5))ds,

ul(0) = uy € H, (3.11)

where h € L%([0,T];R) is a given deterministic function. Its well-posedness will be
shown in Section 4. Thus, there also exists a measurable map G : C(0,T];R) — & such
that Qo(fo' h(s)ds) is the unique solution of (3.11) for i € L%([0, T]; R).

Our main theorem is stated as the follows.

Theorem 3.1 Under hypothesis (H), the solution famility u® of (3.10) satisfies the LDP in
Cc(0,T]; H)yn L2([0, T1; V) with the rate function

1 T
I(f) = inf {7/ |h(s)|2ds}
{(heL2([0,TL;R): f=G0(J; h(s)ds)) L2 Jo

where go(fo' h(s)ds) is the unique solution of (3.11) with h € L2([0, T]; R).

Proof. The proof consists of two parts.

Partl: Establish the well-posedness of the skeleton eq. (3.11). This will be done in Section
4.

Part2: Verification of the conditions in Theorem 2.6. This is done in Section 5, see Theorem
5.4 and Theorem 5.5 below. B
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4 Skeleton equations

In this section, we will prove the uniqueness and existence of solutions to eq. (3.11). To this
end, we will use the following estimates concerning to the logarithmic term, whose proof can
be found in [24]. In the following, we’ll let C denotes an arbitrary constant, and C7 denotes
arbitrary constant depending on 7', which could be different from line to line. Also, we will
simply denote by ” -|l,» the norm in L%([0, T1; R).

ILs

Lemma4.1 Foranyu,v e V,e > 0,anda € (0, 1), we have
(ulog|u| —vlog|v], u — v)

d 1
<ol ol + (14 Giogg ) Ju= o+ Ju = ol og u = o]

1 2(1—a) 2(1—a) 2a
t T we (Hull + v )Hu—vll : @.1)

Lemma4.2 Foranyu,v e V,e > 0,anda € (0, 1), we have
[ 1) = v Prog, Guen v e da
D

d 1
<ol ol + (G087 ) = ol + s = of tog e~ o]

4
1 . —a o
+szage (1P 4 1) Ju—of?
1 l—a _ 2a
+m(4m(D)) Ju —v]|™, 4.2)

where m(D) is the Lebesgue measure of domain D.

This two inequality plays an important role in establishing the uniqueness of (1.1) and
(3.11), as well as verifying the conditions (a) and (b). The proof is mainly based on the
logarithmic Sobolev inequality, with the remaining terms estimated by the concavity of the
log function and the fact that the growth of the log function is slower than x“ for any a > 0
as x — 0o, we refer the readers to Lemma 3.1 and Lemma 3.2 in [24] for details.

Theorem 4.3 Suppose hypothesis (H) holds. Then the uniqueness of solutions holds for eq.
(3.11).

Proof. Fix h € L%([0, T1; R). Let u”, v" € L2([0, T1; V) N C([0, T1; H) be two solutions
of (3.11). Then

t

t
ul(t) — " (1) =/ (Au"(s) — Av(5))ds +/ (" (s) log |u" ()| — v" ()
0 0

t
log [v" (s)])ds +/ (0" (s)) — o (v (5)))h(s)ds.
0

For 0 < § < 1, we define the following deterministic stopping time, with the convention
that inf{(J} = oo:

.8 ::inf[t €0, 71: [ul@) - ") > 5}-
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Set
= sup [ @]) v ( sup [oho]) v (/T [ o)|[2ds) v (/T o 0|2 ds).
0<t<T 0<t<T 0 v 0 v
Let Z; := u"(t) — v"(¢). By the chain rule, we get

Atd

t
||Zmr5 “2 + 2/0 “ZS H%/ds
s

INT
= 2/ (" (s) log [u" (s)| — v"(s) log [v" ()], u" (s) — v"(5))ds
0

8

INT
+ 2/ (0" (5)) — o (" (5)), u" (s) — v"(5))h(s)ds
0

8 8

1 INT INT
< 5/0 12 |2ds + C/o 2, |ds
1 el n o 2(—a) n, 20— 2a
timme L (WP ) 2 as
tATd ) tAT? 5
+/0 Iz h(s)zds—i-/o |o@"(s)) — o (s))|ds
tAT® )
w2 [ 20 og 2. as. a3

where the last inequality follows by taking ¢ = % in Lemma 4.1 and Holder’s inequality.
By (H) and Lemma 4.2 with ¢ = 22—2, we have
2

tAtd
fo |o " (s)) — o (" ()| ds

1 tAT? 5 IATS 5 ) )
55/0 ||Zs||vds+<3/0 |z ds+cfo 12, | tog | Zs | ds

¢ N 20w L 20 w 20
+ m/o (I[P + [t P + @m)' =) | 2, *ds.
4.4)

Since § < 1, we have

8

INT 2
/O 12,7 10g | Z: | ds <o. 4.5)

Now combining (4.3)-(4.5) together and using the definition of 7% we obtain
tAT®

2 2

|zl + [ Nzilas

8

INT
5/ C(1+1h)?)] Zs | ds +
0

8

e - 2(1—a) 2a
/0 (€ 1 M2-) |z, ds.

C
(1 —a)e
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Writing Y; := || Zi a1 }2, for some constant C; > 0 independent of o, we have

t leot_i_MZont t
Y, < | C(1+|h(s)?)Y,d: 7/1/“(1..
t_/o (L4 1h(s)|*)Yyds + T

Now by Lemma 6.1 in the Appendix, and using Holder’s inequality, we have

1

t 11—« 2—2a t T—a
Y, < [/ %exp ((l—a)/ C(1+|h(r)|2)dr> ds:|]
0 1 s

1
M2720{ lea T t o
+ C dsptT—e
( Cl Cl > {/(; exp( T,Hh”L%) S}
_ ] (Zt“)% M2+(2ta)% clxc
— | (—=—)T= X — )T x X .
=2('¢ C T,IIhHLzT

IA

Choosing 7* small enough such that 7* < % A T and letting @ — 1, we obtain
Y, =0,Vrel0,T"].

This implies that we must have t® > T* and hence Z; = 0, V ¢ € [0, T*]. Since T* is
independent of the initial value, starting from 7* and repeating the same arguments, we can
deducethat Z;, = Oon[T*, 2T*AT]. Continuing like this, we eventually get Z, = Oon [0, T],
proving the uniqueness. l

Next, we establish the existence of the solution of the skeleton equation. To this end, we
first study the Galerkin approximating eq. of (3.11).

Let H,, denote the n-dimensional subspace of H spanned by {ej, ..., e,}.Let P, : V* —
H, be defined by

n

Pgi=) (g eei (4.6)

i=1

Fix h € L2([0, T1; R). For any integer n > 1, we consider the following equation in the
finite-dimensional space H,,:

{dun(t) = Aup(t)dt + Pplun (1) log |u, (1) |1dt + Pylo (un(1))1h(1)d1,

u, (0) = Pyuo. @.7)

Slightly modifying the proofs of Theorem 2.1 and Theorem 2.2 in [12], we arrive at the
following results whose proof is omitted.

Theorem 4.4 [f hypothesis (H) holds, then there exists a unique global solution u, to eq.
(4.7).

The next step is to show that the Galerkin approximating solutions {u,} admits a limit «
which will be a solution of the skeleton eq. (3.11). To this end, we will give some uniform

estimates of the approximating solutions.

Lemma 4.5 Under assumption (H), the following estimate holds

T
sup|: sup [un(®)| + / ||un<s>||zvds] < o0,
n tel0,T] 0
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Proof. From (4.7), it follows that

t t
lun)|)* = || Paeo|* - 2/0 n () |3 s + 2/0 (1t (5) 108 1t ()], tt (5))ds

t
+ 2/ (a(un(s)), u,,(s))h(s)ds. 4.8)
0
By (2.4), we have
d
(un(s)10g |un ()], un(s)) < Hun(S)HV + 0+ 10g4)”un(S)H + Hun(S)H log [[un(s)].
4.9)

Using (H) and (2.5), we get

(0 (Un(9)), un(s))| < /D |o (1 (s, X)) [un (s, x) |dx
§/D(L3+L4|u,1(s,x)|(log+|un(s,x)|)%)|un(s,x)|dx
S/D(C+C|u,,(s,x)|2+L4|un(s,x)|210g+|un(s,x)!)dx
< C 4+l + La (6 s )2 + (5 tog

4 9( ))}
+ [n(6)] 10g 0 )])- (4.10)

|Mn (s) ||

Here 6(-) : Ry — R, is any given positive-valued function defined on the positive real
axis. Taking 6(s) = m, and combining (4.8)-(4.10) together, we find

'
||u,1(t)H2—i-/‘0 Hun(S)H%,ds
'
= liolF ot [ Junc (1 1o+ toxhcol v Do)

t
+ c/ Jita ()] 1og ) [[* (1 + 1)1 )ds.
0

Then by Lemma 6.2 in the Appendix, there exists some Cr | i, >0 independent of n such
T
that,

t
Jun )] +/0 Jun ()]s < (Juo]® + DT a5
This gives the desired estimate:
T
sup[ sup Hu,,(t)”z—i—/ Hun(s)H%,ds] < 0.
n Li1ef0,T] 0
|

Let WAP([0, T]; V*) be the space of measurable functionals u(-) : [0, T] — V* with

the finite norm defined by
T u@) — u(s)|}-
V*dt+/ / i s[17Pp ———————dtds. 4.11)

” ”Wﬂp([or ) ::/ |M(f)
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Next result shows that {u,,},-0 is a bounded subset of WAP([0, T']; V*) for some B and p .

Lemma 4.6 Under hypothesis (H), let 0 < < %, then we have

Slip{”“" || Wﬁ-z([O,T];V*)} =

Proof. Since
t t t
un(t)—un(s):f Aun(r)dr—f-/ Pn[un(r)log(un(r))]dr—i—/ Pn[a(un(r))]h(r)dr.

It follows that

itn(®) = ()3 <3 % / )] r) / Jua ) tog ity (Ot )
f o)) V*h(r)dr) |
<3 x (J1 4+ o+ J3). 4.12)

By Lemma 4.5 and Holder’s inequality,

t
Ji < (/ ||u,,(r)||f,dr> |t —s|. (4.13)

By the Sobolev’s embedding theorem and Riesz theorem,

v vt 2
—d+2
Thus we can choose ¢ > 0, 2 > g* > dz—d such that when d > 3,

[xlog |x|| < Co(1 + |x]'*9),
q*(1+¢) <2,

for some C, > 0. Therefore,

e < ( / (|un<r,x>|log|un<r,x>|)"*dx>q
D

1
—cic ( [ e x>|q*<l+8>dx)" < C+ Cllunr)]'.
D

*"“

”un(r) log |un(r)||

Hence

D < (1 + sup sup ||u,,(r)||]+€)|t — s|2. (4.14)
n ref0,T]

Similarly, using the growth condition (2.9) it follows that

sup sup ||o(un(r))| ye < 00.
n rel0,T
As a result,
t
I < C[/ h(r)zdr]yz —s|. (4.15)
S
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Combining (4.12)-(4.15) together and by Lemma 4.5, for 8 < %, there exists a constant
C Il 2 » independent of n, such that
T

linliyso = [ ot [ [ 10 dtds<c”,,”2<oo

In the case when d = 1 or 2, we can choose an arbitrary ¢* € (1, 2) and the same result
follows. W

Now we can establish the precompactness of the approximating solutions.
Lemma4.7 {u,} is precompact in L2([0,T]; H)NC([0, T]; V*).

Proof. From the proof of the Lemma 4.6 and the compact embedding H < V*, we conclude
by the Arzela-Ascoli’s theorem that {u, } is precompactin C ([0, T]; V*). On the other hand, it
is known that L2([0, T1: V) N WA-P([0, T]; V*) is compactly embedded into L%([0,T; H)
(see Theorem 4.5 in [13]). Lemma 4.5 and Lemma 4.6 together yield that {u, } is bounded in
L2([0, T]; V) n WA-P([0, T1; V*). So {u,} is also precompact in L>([0, T']; H). R

Here is the main result of this section.

Theorem 4.8 Suppose (H) holds. Then for every initial value uy € H, there exists a unique
solution to (3.11).

Proof. By Lemma 4.7, there exists a subsequence (still denoted by {u,}) such that u,, — u
in L2([O, T1; H)YNC(0,T]; V*). Since H . H is lower-semicontinuous on V*, we have for
anyt € [0, T],

”u(z)H2 < linrgiorcl)f Hu,,(t)”2 < sup sup ||un(t)H2 <C.
n tel0,T]

Moreover, since u, converges weakly (up to a subsequence) to « in L2([O, T1; V), it follows

from Lemma 4.5 that ’
/0 ) [3ds < oo.

Furthermore, by Lemma 4.5 and the growth condition (2.9), we deduce the following results:
() up(s,x) = u(s,x) ae.(s,x)e[0,T] x D,
(ii) up — u weakly in L>([0, T; V),
(iii) Au, — Au weakly in L2([0, T]; V*),
(iv) Py[unlogluy|] = ulog|ulin L ([0, T]; V*) forany 1 < r <2,
) P[0 (ua()] = o () in L*([0, T]; V¥).

Now we let n — oo in the equation satisfied by u, to see that u satisfies

t

¢ t
u(t) = ug +/ Au(s)ds +/ u(s)log|u(s)|ds +/ o(u(s))h(s)ds,
0 0 0

namely, u is a solution of the skeleton equation. The continuity of u as an H-valued process
follows from the above equation and the Lions-Magenes lemma (see e.g. Lemma 3.1.2 in
[26]). Therefore we obtain the existence of solutions to eq. (3.11). The uniqueness was proved
in Theorem 4.3. W
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5 Large Deviation Principle
5.1 Moment estimate

In this section, we will establish moment estimates for the solutions of (3.10) and (3.11) in
preparation for the verification of the sufficient conditions stated in Theorem 2.6. Throughout
Section 5, we suppose that hypothesis (H) is satisfied and ug € H.

For any fixed N > 0 and for any family {h.}.~0 € Ay, by the Girsanov theorem and
Yamada-Watanabe theorem (see [17]), X" := GF(W.+ % fo he(s)ds) is the unique solution
of the following equation,

eXhe (1) = ug + [y AX"e(s)ds + [y X" (s)log | X e (5)|ds + & [y o (X" (5))d W,
+ Jo o (X" ()he (s)ds,
Xhe(0) =up € H.
(5.1)

Moreover, X"« (-) belongs to E(= C([0, T]; H) N L2([0, T1; V). For any fixed N > 0,
we denote by Y« the solution of (3.11) (the skeleton equation) with & replaced by &, € Ay,
iey = G% fo he(s)ds) according to the definition of the mapping G% By Lemma 4.5 there
exists a constant C such that

T
sup { & ||L°°([0,T];H) + / &
e>0 0
To prove the LDP, we need a uniform moment estimate for {X h8}0<8<1. To this end, we
define a family of stopping times:

vds| < Cx, P-as. (5.2)

oy =inf [re ©. 7 X"

> m},

t
of =inf {1 € @, T]:/ |t [as = 2},
0

3 _ & 5
TM,L_TM/\UL/\T’

with the convention that inf{f}} = oco. We have 73, < 00, 0] < 0o, P-a.s by Girsanov’s
transformation. Inspired by Lemma 6.1 in [24], we define an auxiliary function ® : [0, co) —

[0, 00)
v =on([ 2 m)
7) ;= ex _ ),
P THx 30
where
@) logx x>e,
X) =
P z x €[0,e).
Then

() = P(2) x P"(2) < 0.

1+z+2p)°

We have the following estimate.

Theorem 5.1 Forany T, N > 0 and any family {h.}.~0 < Ap, there exists a constant Ct_y
such that

T
D [ el

sup E[ suqu>(”ng %/ds] < q)(HMOHZ)CT,N-

£e(0,1) tel0,T
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Proof. For any L, M > 0, by (5.1) and It6’s formula, we get

INTy
It P2 [

2
tATIf/I,L Vds

5 ATy N N N ATy L N i
= |luol| +2/(; (X7 log | X7e], XJ<)ds +28/(; (o(XP), Xge)d Wy

t/\r,fLL t/\r}fLL
+82/ o) 2ds+2/ he(s) (o (XPe), X7€)ds.
0 0

Applying again 1t6’s formula to the real-valued process ” thir,f,, . H 2, we obtain
tAT},
o(lxis, Pz [ e P xas

/\rg_
:q>(||u0}|2)+2s/ "o x ) (o (xhey, Xhe)aw,

t
0

2)ds

INTY
e [ (bt . b o
0

?) (o (xhe), Xhe)2ds

tATE
+ 267 / e @ (|| xhe
0

tATE
e [ oo e as
0

AT (| yhe |2 hey yh
+2/0 h()®' (|| X7 %) (o (Xe), XJ<)ds
= [+II+ - - +VL

It follows from Lemma 4.1 and Lemma 4.2 that

1 dlog8

AT
=2 [ o ) I + S+ o X2 s
0
(5.3)
By the similar method as for (4.10), there exists a positive constant C; such that
lo(x2)) < c(/ X2 (0 log, X2 ()] dx +1)
D
1
<G <9||st v+ (log 2+ D)X | + | X1 | og [ X2 | + 1), (5.4)

where 6 = ﬁ. Hence we find that

€

IN he
V< / ™, L 82(1)/(H X?g ”
0

s

2
X
4V> ds. (5.5)

*(log, X3 [” +1) +

) (c +C xP
Similarly as (5.4), there exists a positive constant C3 such that,

T+

1
(o X2y, x2)] = 3 (006) | X0 |2 + (log - + 1)t

2 he
86) log | X7 | + 1),

(5.6)
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where 0 (s) = m in (5.6). Hence we see that

viz D[ iy s+ o [ @ ()0 e ) P
+ Lhe o)1 X2 > tog | X2 | + [he(s)] s, 5.7)
Since ®” < 0, we have
IV <0. (5.8)
Combining (5.3), (5.5). (5.7) and (5.8) together, due to the fact that
142 + x%log, (x) < C4(1 +x2 + x%p(x?)) (5.9)

for some C4 > 0, we have

. 2 INTy 5 5
o|xsi, )+ [ @ Pl s

Yo (xhe), Xt yaw,

rATS
< (o) +2¢ sup \/ | xte
ref0,¢] ' J0
INT]
o e
0
rATS
< (o) +2¢ sop | [ @
ref0,t]1JO

IATS
[ e
0

By Gronwall’s inequality, it follows that

(1 + 1he)P) (1 + | X2 | Tog, | X% *)ds

+ x5

(o (xte), xe)aw,

(1 + |he(s)])ds.

2
Vds

. ) ATy ¢ )
sup o(|xti )+ [ el
s€[0,1] : 0

2 SATi L h he\ /(1 vhe |2 C(t+N?)
=(@(uo]?) +2 stlop]\ [ . e (|x AW, |)e :
s€|0,1

Taking expectations on both sides of the above inequality, and then using BDG’s inequality,
we obtain

) 5 ATy 5 B
o sup @i, ]+ E[ [} @(0ons )2 ]

sel0,1]

IATS 1
§{®(||uo||2)+2E[(/0 " (e (xhe), xle) 2 (| X Z)st)z]}ea”NZX (5.10)
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2y . . . . .
Denote the constant €T +N%) in the above inequality by Cs. We now give an estimate of the
second term on the right hand side of the above inequality.

i~ | Y J 1
E[(/O F oo, xi) e (| xi ) as)” |
[(/OMI;LL ||0(X?£)H2HXhS ||2<1>/(”th H2)2ds)%]

<E
1
o
<l s (10, Pols, / o063y IO I3, 1900
2
= o[ s (memn @(lxt, I / lo (g, PO IR0 | 1Pas]
=11+ Iy, (5.11)

where § remains to be chosen. Due to (5.9), we have

2
I = C4oE| z}:)pﬂ@(”XsmML” )] (5.12)

For I, using (2.9), (2.5) and Lemma 4.2, we get that

Ho(x

e )

<[ (2L3+2L4IX?;T @[ tog, [X05. @])ax
D

<C+2L% | x"

I+ [x WMLH logIIXW B BT

v/\rM L ” \%4 v/\rM L |

Here ¢’ is also to be determined. Taking § = m, g = . TN and combining (5.10)-

8C4C2
(5.13) together, we see that

tAT}f/I,L
e swp o(lxs, )]+ [ [ or(x

s€[0,1]

)

t
= crwauol +¢ [ E[o(lxly, [)]as

Using Gronwall’s inequality, we obtain

) T/\'L'&_L , N
sup E[ sup o|xti [+ [ @
e€(0,1) s€[0,T] 0

Xt

2 2
vds] = crna(Juol’).
Since Ty, ; =ty Aof AT — T as L, M — oo, applying the Fatou lemma we get

2 T
)+ [ o(x

9x

sup E[ sup <I>(||X,h€

vds] = o(uo[*)Cr -
£€(0,1) t€[0,7]

Corollary 5.2 For any T, N, M > 0 and any family {h.}.~0 C Ay, there exists a positive
constant Cr n, um, such that

T Aty 2
swp x5 L= m sw £ [0 ar] = Crv

t€[0,T] e€(0,1)
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Proof. From the definition of 7}, it follows immediately that

sup | X)5. | <M. Vee D).

t€(0,T]

For0 <x <M, ®'(x) > cp for some ¢y > 0. It follows from Theorem 5.1 that

T ATy, ’ T ATy, 2 5 ’
cm % E[/ X2 [Lds ]| < E[/ (| x2e [ xE [Lds | = @(uo|HCr ..
0 0
Hence,
T ATy, 2
sup E[ ”th th] < CT,N,M-
£€(0,1) 0
|
Corollary 5.3 Forany 7, N, M > 0 and any family {A.}.~0 C An, we have
sup P(tf; <T)— 0, as M — oo, (5.14)
£€(0,1)
sup P(o] <T)—0, asL — +oo. (5.15)
e€(0,1)

Proof. It follows from Theorem 5.1 that

sup D(M)P(ty, <T) < S(L(I)PI)EI:(I)(”th “2)] < o(|Juo|*)Cr -
ee(L,

£e(0.1) T
So,
([uo]*)Cr.v
Pt <T) < — 120 =N
geslffn (=) = D (M)

For any M > 0, we have

— 0, as M — oo. (5.16)

sup P(oj <T)

ee(0,1)
r he 1|2
= sup P(/ | x| yde > L)
£€(0,1) 0
1 T ATy,
< sup —E[/ | X zvdt]+ sup P(ty <T). (5.17)
ec,1) L 0 £€(0,1)

By Corollary 5.2, let first L — oo and then M — oo to get (5.15). W

5.2 Verification of condition (a) in Theorem 2.6

As a part of the proof of the main result Theorem 3.1, in this section, we will verify condition
(a) in Theorem 2.6. We will first show that (a) holds on a small interval and then extend it
to the whole interval [0, T'] by piecing the small intervals together. Before the proof, we
introduce the following notation for two functions u(-) and v(-).

b
a0 = sup ) v+ [ Juts) —violas.
s€la, a

and write p,(u, v) := po,q(u, v). In the rest of the paper, we will denote the metric p of
space &€ by pr.
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Theorem 5.4 For every N < oo, any family {h¢}e=o € Ay and any § > 0,

lim P(pr (v, x") > 5) =0 (5.18)

where X"e = ge(w. + éf() he(s)ds), Yhe == go(fd he(s)ds) and pr (-, -) stands for the
metric of the space £ = C([0, T]; H) N L2([0,T]; V) defined above.

Proof. We first prove (5.18) on a small interval.

Let’s define

T s = Top Af{t € (0. T1: |X)* — 1}

>5},

for any fixed 0 < § < 1, with the convention that inf{(}} = co, where IIT/I,L =1 ATy AT
was defined as at the beginning of Section 5. We will write 75, ; ; as ¥ for simplicity. By
1t0’s formula,

i 0 5 tAT® N i
[ X5 =Y, +2/0 | x5 — v

2
tATE tAT® vds

&

INT
= 2/ (X log | X]e| — Yhe log |vPe|, X]e — Y]e)ds
0

tATE
+ 2/ (0(Xhe) — o (vhe), Xhe — Y]\ ho(s)ds
0

IAT tAT®
+ 28/ (o(Xt), Xt —Y])dW, + 82/ | (x| ds. (5.19)
0 0

We will give estimates for each term. By Lemma 4.1, (5.2) and the definition of t°, it
follows that

tATE
2 /0 (X! log |X"e| — Yt log | Y]], XDe — ¥]*)ds

1 tATé 5 (ATE )
= 5/ [ xge = v fyds + C/ | xk — vk | (1 +log | X! — Y!<||)ds
0 0
2M2—2ot tATE
+ m/o | Xk — v |*as. (5.20)

By the assumption (H) and Lemma 4.2, there exists a constant Cg > 0 such that for s < t¢,

(o (X)) —oxfe), X — 1)

< C6/ X% (x) — Y ()P (1 + log (1X | v Y] ]))dx
D

!
= Co( || Xt = Yo | +0) | X} = vl [, + log LA ’
2 2M2(17a) _,’_lea 3
X = v Plog | X = Y| + —5 g X - v ). 621
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For s < ¢, log | X{* = ¥{"| < 0. Taking 0(s) = gepriyrory» it follows from (5.21) that
there exists a positive constant C7 such that

tATE
2 i = e Xl - v s
0

L h he ||2 e NP he ||2
= 5/ | xge = v vds+/ CQL+ e ()P | X2 — vhe|2as
0 0
M2(1—a) tATE i L
+ m/o e () |[| Xg* — ¢ [ Fds. (5.22)

Combining (5.19), (5.20) and (5.22) together, we find

tATé he he 12
e e A

21—

/ ”XSAT‘ S/\'ES ” C(l + |h8(5)| dS + ot)C7 / | sA-r‘ S/\IS ” a(l + |h8(s)‘)ds

INT

+ 682/ Ha(X?E)||2ds +2¢ sup ‘/ (U(X?E), xhe —yle)awy).
0 ref0,¢.1'J0

By Lemma 6.1 in the Appendix, the above implies that

Y’

sATE T TsaTe

) tATE N N
sup || X1 [ e e
s€[0,1] 0
s{(c& / lo(x™ )|7ds +2¢ sup ‘ / J(X?S),X?S - Yshg)dWS
0 rel0,z]
‘ 20—
X exp ((1 - a)/ c(1+ Ihg(s)|2)ds) +/
0 0

1
X exp l—a)C/ (1 + |he(r)] )dr)ds}l

rATE l—a
/ (oxto, Xt — vl )aw, )
0

(«
X exp ((1 - a)/ (1+ [he(r)] )dr)}lla 2%{ /(;t M2;17—a) (1+ [he(9)])
(
Nl
(

2
Vds

-

(1 +1he()1)

{ Ce /HG(XYME)‘st+28 sup
relf0.]

+

(l—a)C/ (1+|h8(r)|)dr>ds} h
cet [ o

xexp/ (1 + [he(s)?)d )}

o [ R0 ! B
+2W{/ (1 + |h€(s)|) exp ((1 —(X)C/ (1+ |h£(l”)|2)dr>ds}
o G s

ATE

r
] ds +2¢ Sﬁ)pt]’./(; (o(XPe), xIe — YSh*’)dWxD
rell,

(5.23)
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Without lose of generality, we assume ¢ < T, then we have

/0' ’”2217_@(1 + |h5(s)|) exp ((1 —a)C [ (1 + Ihg(r)lz)dr>ds

M2(l—a)
- /0 o (14 ) exp (1 = @rC)as

t 1 1
< ([ (b as) et & (4 expcn)) ™
0 Cy
1
< (t% +N%)t% x —(M*Cy)' ™
C7
1
< (T74N2)t2 x —(M2Cy)' ™.
Cr
Now, taking expectations on both sides of (5.23), V¢ < T,

tATE
Tee[ [ Ixk - vt as]
0

raté

(o(Xhe), xhe —

rATé

el swp | 7
re

<CrN2T<E Cs / lox! o)

1

ol L\ T2 ol
+(2°(T2 4+ N2) 120-0) x

| ds +2¢ sup

M2Cy.

=
¢

Let now & — 0 to obtain that

) IATE
J«e[ [ -y
0

5 ool 11 1115
<M CN[2 (T + N33 xc—] .
7

lim sup E[”X,Ms —yl

tATE
e—0

%,ds]

2
We take T* = m AT and let o« — 1 to see that fort < T*,
A ) AT )
lim E[”meg — ]+ £ / [ x2e = vl as] =o. (5.24)
0

By the definition of 7° =}, ;, ; and Chebyshev’s inequality,

P( sup || X} — v/
1€10,7%]

> a) (5.25)

2]’

which tends to 0 as ¢ — 0 by Corollary 5.3 and (5.24). Similarly, we also can see that

T*
P Ix v
0

1
< swp P(rp =)+ sup P(ch = T%) + B[ Xfi e — Ve
£e(0,1) £e(0,1) 3

Vs > 8%) — 0, ase 0. (5.26)
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Hence

P(pr*(x”s, Yhey? > 252)

T*
< P(/ | xPe — yhe
0

—> 0, ase — 0. (5.27)

%,ds > 62) + P( sup HX;’G — Y,he > 8)
tel0,T*]

Thus, we have verified condition (a) of Theorem 2.6 on a small interval [0, T*]. Now consider
the equations satisfied by X"s and Y” on the interval [T*, T] with respectively the initial
values X}}i and Y#i. Since ||X?i - Y#i
arguments as above, we can show that

— 0 in probability P as ¢ — 0, using the same

P(,OT*,ZT*/\T(thv yhey?r > 282) — 0, (5.28)
and similarly for n > 2,
P()O(n—l)T*,nT*AT(XhEv yhey? > 252) — 0. (5.29)
Since there exists some n > 0 such that nT* > T, we finally obtain that
P(pr(xhe, yhey? > 5) -0,

ase — 0.1

5.3 Verification of condition (b) in Theorem 2.6

In this section, we will show that condition (b) of Theorem 2.6 holds. Recall that

Yhe(t) = ug + [y AY"e(s)ds + [y Yhe(s)log | Y= (s)|ds + [y he(s)o (Y (5))ds,
Yhe(0) = up € H,
(5.30)

Y" denotes the solution of (5.30) with &, replaced by A. Recall also
£=C(0,T]; H)NL*([0, T]; V).
The following theorem shows that condition (b) in Theorem 2.6 is indeed satisfied.

Theorem 5.5 For every N < oo and any sequence {h¢}e~o C Sy, if he converges to some
element h weakly in L2([O, T1; R) as e — 0, then we have Yhe > Yhin €.

Proof. From the proof of Lemma 4.5, we can see that

T
e
0

Using the same arguments as in the proofs of Lemma 4.6 and Lemma 4.7, we can prove
that {th}£>0 is a precompact subset of L2([0, T1; H)NC([0, T]; V*). Then there exists a
sequence &, — 0 and some v € L2([0, TT; H)NC(0, T]; V*) such that

sup[ sup] || Y,hg %/ds] < 00. (5.31)

& t€l0,T

T
sup ¥ — ()], + / T L —
E[O, T] 0 n—0o0

t
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Also, by the lower semi-continuity of the corresponding norms, it follows from (5.31) that
T 2
sup Hv(t) || < 0o and / ”v(t) Hvdt < 00. (5.32)
1€[0,T] 0

Now we’ll show that v = Y". Using the Sobolev imbedding, up to a subsequence, the
following holds:

(i) Y"n — vin C([0, T]; V*) N L*([0, T1; H),
(ii) Y"en — v weakly in L>([0, T1; V),
(iii) AY"n — Av weakly in L*([0, T]; V*),
(iv) Y"en log |Y"en | — vlog|v|in L" ([0, T]; V*) forany 1 < r < 2,
(v) a(Y.h‘g") — o(v(-)) in L*([0, T]; V¥).
Passing to the limit in the equation satisfied by Y”en as n — oo, we see that v is a
solution of the eq. (5.30) with &, replaced by & using the weak convergence of .. Due to

the uniqueness of the solution of the skeleton equation, we have v = Y”. Because the limit
point v is unique, this enables us to conclude that

sup || Y,hf — Y,h]
1€[0,T]

T
et /0 [vie =¥ |Pds — 0. (533)

To complete the proof, it remains to show that { yhey actually converges to Y " under the
stronger metric pr (-, -). Apply the chain rule and Lemma 4.1 to find that

e vz [ e = v s
:folm‘” tog 1] — ¥{'log Y|, ¥/ — ¥!yds + /0’ (o )hes) = o (¥Oh(s), i — ¥!)s
< [Fir - v [ - vl Pas [t - v Prog vt - v as

[ (I PO PO I - v s

+ /Ot (o (r)he () = o (¥ )his), vl = ¥l )ds.

Therefore,

2 ! 2
e =t [ = v as
t t
<c [t =i Pas [ v - v e v - vllds

t
+Cq / (&
0

12
+/ (0 )he(s) = o (Yh(s), Yl = v))ds
0

= [+II+II+IV.

O P e - v s

We will finish the proof of the Theorem if we show that the right hand side converges to 0,
uniformly over ¢ € [0, T]. Since Yhe — y"in C(0, T; V)N L2([O, T]; H), taking into
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account (5.31) we see that [+II+IIT — O uniformly over ¢ € [0, T']. Write
t
v =/ (o )he(s) = o (YOh(s). Yl = v))ds
0
t
= [ (hes) = ) (o v = ¥ )as
0
t
# [ he (o — o, v~ vh)as
0
=1V +1V,.
The estimate for IV is as follows. For any M > 0, let

Ay ={s €[0,T]: Jo(¥"H| < M}, AS, =10,T1\ Ap.

Obviously, for each M > 0,
! 2 g 2
/ (e (Y ()1, YEe —¥]) ds < MZ/ ¥l —vH|"ds — 0, ase — 0,
0 0
which yields that

t
/ (he(s) — h()) (0 (Y14, Y — YM)as — 0,
0

uniformly over ¢ € [0, T'] as ¢ — 0. Hence to show IV — 0, it suffices to prove that

t
sup / (he(s) = h()) (o (V" () 4s,, Y — Ys”)ds‘ -0, asM — oo, (534
£ 0
uniformly over ¢ € [0, T']. By Holder’s inequality,
t
sup ’/ (he(®) = ) (0 (V5D 1, Y = ¥1)ds|
£ 0

|yt — v}

T
ESUP/O [he(s) = h()| o (¥}

L7 (D) | L (py L a5, ds

T 1 T
v [ rer=woPas)’ ([ et

1
o o c L
L,/(D)ds> m(AS,) |

< sup sup ||0(Ysh)
e s<T

(5.35)
where «,o’,rr" are positive real numbers such that
1 1 1 1 1
7+—/+7=1,7+—=1,and1<r<2.
o o 2 ror
By (5.32) and (2.5), there exists a positive constant Cx such that
h r NI
sup oY) vy = Cn / oH||"ds < Cw. (5.36)
s<T 0
Hence
4y < 2 [ eamyras < S 5.37
m( M)_WOHO(S)” S_m~ (5.37)
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Combining (5.35)-(5.37) together, to prove (5.34), it remains to show that

T
sup [ |1ie v
e JO

In fact, applying the interpolation inequality, Sobolev’s embedding inequality, (5.31) and
r’, pe(2,00)and$ € (0, 1) with

o /
L,/(D)ds < o0, forsomea,r > 2. (5.38)

(5.32), we can find positive constants o,

_ 5, 1-5
=5+
1
2

[—

R =

such that

T T
sup [ =5 pyds < s [ v = v =¥

L (D)
T 2
<Cy sup/ H Yshf — Ysh ||Vds < 0.
e Jo

Such constants «, ', §, p exist when d > 3. For d = 1 or 2, we simply take p = 3, and

(5.39)

Iz

1 1) 1-46
7 =5+ 3,
a(l—68) =2.

Therefore (5.34) holds. As a result, [V; — 0 uniformly over ¢t € [0, T] as e — 0.
Now we turn to the convergence of IV3, by (5.31) and (5.32) it suffices to show that

T T
/ |o ¥ty — o (v |?ds = / / o (Y (x)) — o (Y (x))[*dxds — 0. (5.40)
0 D

Since Yshf (x) — Ysh (x) for a.e. (s, x), it suffices to show that for some o > 2,

T
sup/ / |U(Yshs(x)) - U(Ysh(x))|adxds < 0.
3 0 D

By the growth condition on o, it suffices to prove that for some 8 > 2

T
SUP/ / ’Yshs(x)’ﬁdxds < 00.
e JO D

, using the interpolation inequality, Sobolev’s embedding inequality

(5.41)

Now taking 8 = %
and (5.31), as the proof of (5.39), we can see that (5.41) holds. H

Appendix

In this section, introduce two nonlinear-type Gronwall’s inequality used in the paper.
Lemma 6.1 Let a,b,Y be nonnegative functions on R, and there are constants ¢ > 0, 0 <

o < 1 such that
t
Y1) <c +/ (a(s)Y(s) +b(s)Y(s)°‘)ds, Vi>1p>0.

0]
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Then for any t > ty,

Y(t) < {cl_a exp <(1 —a) /[a(r)dr> +
to
1

t t ==
(11— a)/ b(s) exp ((1 — oz)/ a(r)dr) ds} 1
1o N

The proof of this lemma above can be found in p.360 of [18].
Next we introduce a version of Gronwall’s inequality with logarithmic nonlinearity.

Lemma 6.2 Let X, a, M, c1, ca be nonnegative functions on Ry, M be an increasing function
and M (0) > 1, and ¢y, ¢y be locally integrable functions on R.. Assume that for any t > 0,

t

t
X(t)+a(t) < M(t) +/ c1(s)X(s)ds —I—/ c2(s)X (s)log X (s)ds,
0 0

and the above integrals are finite. Then for any t > 0,
t
X(0) +a() = MO exp (eXp (C2() f c1(s) CXP(—Cz(S))dS>
0

where Ca(t) := fot ca(s)ds.
The proof can be seen in Lemma 7.2 of [24].
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