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Abstract
In this paper, we prove that stochastic porous media equations over σ -finite measure spaces
(E,B, μ), driven by time-dependent multiplicative noise, with the Laplacian replaced by
a self-adjoint transient Dirichlet operator L and the diffusivity function given by a maxi-
mal monotone multi-valued function � of polynomial growth, have a unique solution. This
generalizes previous results in that we work on general measurable state spaces, allow non-
continuous monotone functions �, for which, no further assumptions (as e.g. coercivity) are
needed, but only that their multi-valued extensions are maximal monotone and of at most
polynomial growth. Furthermore, an L p(μ)-Itô formula in expectation is proved, which is
not only crucial for the proof of our main result, but also of independent interest. The result
in particular applies to fast diffusion stochastic porous media equations (in particular self-
organized criticality models) and cases where E is a manifold or a fractal, and to non-local
operators L , as e.g. L = − f (−�), where f is a Bernstein function.

Keywords Wiener process · Porous media equation · Dirichlet form ·Maximal monotone
graph · Yosida approximation · L p-Itô formula in expectation

Mathematics Subject Classification (2010) 60H15 · 76S05

B Weina Wu
wuweinaforever@163.com

Michael Röckner
roeckner@math.uni-bielefeld.de

Yingchao Xie
ycxie@jsnu.edu.cn

1 Faculty of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany

2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

3 School of Economics, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023,
China

4 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

5 Research Institute of Mathematical Science, Jiangsu Normal University, Xuzhou 221116, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-024-10127-7&domain=pdf


M. Röckner et al.

1 Introduction

The purpose of this paper is to solvemulti-valued stochastic porousmedia equations (SPMEs)
on (E,B, μ) of the following type:{

dX(t)− L�(X(t))dt � B(t, X(t))dW (t), in [0, T ] × E,

X(0) = x on E (x ∈ F ∗
e ),

(1.1)

where (E,B) is a standard measurable space (see [31]) with a σ -finite measure μ and T ∈
(0,∞) is fixed. (L, D(L)) is the generator of a symmetric strongly continuous contraction
sub-Markovian semigroup on L2(μ), which additionally is assumed to be the generator
of transient Dirichlet form, F ∗

e is the dual space of the corresponding extended transient
Dirichlet space Fe (cf. Section 2.1 below). �(·) : R → 2R denotes a maximal monotone
graph with polynomial growth (cf. (H1) in Section 3 below, � is called diffusivity function,
see [41]). B is a Hilbert-Schmidt operator-valued map fulfilling certain Lipschitz and growth
conditions (cf. (H2) and (H3) in Section 3 below).W is a cylindricalWiener process in L2(μ)

(cf. [26, Proposition 2.5.2]) defined on a probability space (�,F ,P) with normal filtration
(Ft )t≥0. Explicit assumptions and more explanations will be given in Section 3.

At least since [12], there has been a lot of papers concerning stochastic porous media
equations, e.g., about strong solutions [4–6, 8, 9, 13, 24], stochastic variational inequalities
[17, 29] or finite time extinction of solutions [6, 8, 9, 16] to

dX(t)−��(X(t))dt = B(t, X(t))dW (t) on O, (1.2)

with maximal monotone (multi-valued) diffusivity �, where O is an open and bounded
subset of the Euclidean space Rd (see also [7, 26] and references therein). In the classical
deterministic case, i.e., B ≡ 0 and �(r) = |r |m−1r , r ∈ R, m ≥ 1 (see [1]), for x =
a probability density on O, its solution X(t), t ≥ 0, describes the time evolution for the
density of a substance in a porous medium. Heuristically (because � is in general not even
assumed to be (single-valued) continuous and ξ 	→ X(t)(ξ) is not C2) applying the chain
rule we have

��(X(t)) = � ′(X(t))�X(t)+� ′′(X(t))|∇X(t)|2. (1.3)

This shows that � ′(X(t)) is the (solution dependent) diffusion coefficient of the equation.
This explains the name “diffusivity (function)" for � and why � must be assumed to be
increasing. If� is strictly increasing, which corresponds to� ′ > 0 onR in Eq. 1.3, thiswould
mean that we have local strict ellipticity in Eq. 1.3, hence we would be in the nondegenerate
case. We stress, however, that in this paper we do not assume this, so the degenerate case is
covered. Equation 1.3 also reveals why it is important to include multivalued diffusivities,
because it implies that we can cover non-continuous � (See Example 6.1 below). This
means that its generalized derivative � ′ (in the sense of Schwartz distributions) would be a
weighted Dirac measure δr0 at a point of discontinuity r0 of �. So, if we consider the time
evolution t 	→ X(t)(ξ) of the density of the substance at a point ξ ∈ E and if it “hits" such a
discontinuity point r0 ∈ R of �, the diffusion coefficient � ′(X(t)(ξ)) would jump to +∞,
describing a “very large" diffusion of “the system" at that moment, which is an interesting
case of high relevance, e.g. in physics. This is also the reason why the solutions to Eq. 1.2 are
sometimes called singular diffusions. A prominent example is the so-called self-organized
criticality (SOC) model developed by Bak, Tang and Wiesenfeld [2], which can also be used
to model the dynamics of phase-transition (including melting and solidification processes) as
well as for the description of a large class of other diffusion problems. It remains to “justify"
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the type of noise in Eq. 1.2. For a general explanation of this we refer [26, Page:3, Section
1.2], which explains that the noise must have this term under some reasonable assumptions.

One interesting direction of research is to replace −� by a nonlocal pseudodifferential
operator (e.g., (−�)α , α ∈ (0, 1], cf. [39] or more generally f (−�), where f is a Bernstein
function, see [37]) in Eq. 1.2, or even more generally by a self-adjoint operator L satisfying
certain properties, as e.g., being the generator of a transient Dirichlet form. But there exist
many interesting operators onRd which are not self-adjoint on L2(Rd , dx) (where dx denotes
the Lebesgue measure), but on L2(Rd , μ) for some other measure μ replacing dx , as for
instance the Friedrichs extension of the operator L0 = �+ 2∇ρ

ρ
· ∇ on L2(Rd , ρ2dx) [36],

where ρ ∈ H1(Rd) and H1 is the usual Sobolev space. It is also interesting to change Rd

(the “state space") and replace it by a smooth or even not smooth Riemannian manifold as
e.g., a fractal, or allow infinite dimensional state spaces, e.g., theWiener space. Furthermore,
it is very desirable to do all this for multivalued diffusivity functions �, as explained above.
So, all this motivates the study of Eq. 1.1, in such a general form.

There are few results about Eq. 1.1 on general measure spaces. One paper known to the
authors about Eq. 1.1 with � being a multi-valued graph is [18, Example 7.3], in which
the existence and uniqueness of (limit) solutions and the ergodicity for Eq. 1.1 are proved.
However, in [18], (E,B, μ) is assumed to be a finite measure space and L to have compact
resolvent, and� is of linear growth, which simplifies the situation substantially. Furthermore,
in [18] the extended transient Dirichlet spaceFe is the same as theDirichlet space F1,2, which
results in aGelfand triple L2(μ) ⊂ F ∗

e (= F∗1,2) ⊂ (L2(μ))∗. The proof of thewell posedness
theorem in [18] heavily relies on this Gelfand triple. We work on general σ -finite measure
spaces with no further conditions on L , so it turns out that we must construct solutions
in the smaller state space F ∗

e . Also the idea of the proof in [18] is based on a viscosity
approximation, while our proof is based on the Yosida approximation. We would also like to
mention another paper, where Eq. 1.2 was studied with multivalued � and with Lévy noise
replacing the Wiener noise in Eq. 1.2, namely in Section 6 of [27]. However, this is done
only on (O,B(O), dx) and O is assumed to have finite Lebesgue measure.

The present workwas alsomotivated by papers [9, 34, 36]. In [9] existence and uniqueness
of solutions for Eq. 1.2 with linear multiplicative noise was proved for multivalued � with
E := O = R

d , d ≥ 3, and one of our aims here is to generalize this result to Eq. 1.1 on
general measure spaces and include more examples of L , where e.g. it is the generator of a
transient Dirichlet form not only onRd , but also on e.g. a manifold or a fractal (cf. Examples
6.3-6.5 in Section 6). In [34], by constructing a suitable Gelfand triple with F ∗

e as the pivôt
space and using the variational framework [26, 33], the first named author of the present
paper and his collaborators proved existence and uniqueness for the following stochastic
generalized porous media equation in the state space F ∗

e :

dX(t) = (L�(t, X(t))+
(t, X(t)))dt + B(t, X(t))dW (t), (1.4)

where L is as above and� is continuous, single-valued and maximal monotone, additionally
satisfying a number of other somewhat restrictive conditions (see [34, Page: 135, condition
(A1)], in particular, (�2) and (�3), where the appearing Young function N is assumed to be
�2-regular), which, in particular, imply that�(r) →∞ as r →∞. In the case where
 ≡ 0
and� is a Lipschitz increasing function which is independent of t and ω, the well-posedness
of strong solutions to Eq. 1.4 in F∗1,2 was proved in [36]. In contrast to that, in the present
paper,� is not assumed to be either Lipschitz or single-valued. In particular, we can cover the
SOC model which is not included in [34] or [36]. A second aim of our paper is to generalize
the results in [34, 36] to multi-valued diffusivities �, being just maximal monotone and of at
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most polynomial growth, with no further assumptions such as e.g. that limr→∞ �(r) = ∞,
which allows our framework to apply to the SOC model (cf. Example 6.1 in Section 6). Our
method is completely different from [34], but it is a generalization of that in [9]. Because
of our much more general situation, the methods and techniques available for investigating
SPMEs on R

d are insufficient for covering the case of general measure spaces and cannot
be extended to general measure spaces in a straightforward way. Let us now describe our
method. Though the overall strategy is borrowed from [9], some severe obstacles had to be
overcome in our case, one of which was to find a proper version of Itô’s formula for the
L p-norm of solutions for processes taking values in L p(E,B, μ)with no further assumption
on (E,B, μ), so that our results apply to general state spaces E , as those mentioned above.

As a first step, we consider Yosida approximating equations to Eq. 1.1 of the following
form with initial value Xλ(0) ∈ F ∗

e :

dXλ(t)− L(�λ(Xλ(t))+ λXλ(t))dt = B(t, Xλ(t))dW (t), t ∈ (0, T ). (1.5)

Here λ > 0 and

�λ(x) = 1

λ

(
x − (1+ λ�)−1(x)

) ∈ �
(
(1+ λ�)−1(x)

)
is the Yosida approximation of �, which is Lipschitz continuous. One of the main points in
this paper is first to prove the well posedness of Eq. 1.5 in F ∗

e . To this end, we consider the
following approximating equations to Eq. 1.5

dXν
λ(t)+(ν−L)(�λ(X

ν
λ(t))+λXν

λ(t))dt= B(t, Xν
λ(t))dW (t), t ∈ (0, T ), 0 < ν ≤ 1,(1.6)

with initial value Xν
λ(0) ∈ F∗1,2 (which contains F ∗

e , see Section 2.1 below). This approach
allows us to estimate ‖Xν

λ‖F∗1,2,ν0 , 0 < ν0 ≤ 1, where ‖ · ‖F∗1,2,ν0 is an equivalent norm on

F∗1,2 (cf. Section 2.1 below). The key point here is to relate ‖ · ‖F∗1,2,ν0 with ‖ · ‖F ∗
e
to prove

the convergence of Xν
λ to Xλ in F ∗

e as ν → 0 (see Proposition 2.1 and the last part of the
proof of Theorem 3.2).

To prove the convergence of solutions to Eq. 1.6 as ν → 0 to those of Eq. 1.5 and in turn
that solutions to Eq. 1.5 as λ → 0 converge to those of Eq. 1.1, since � has a growth of
at most order m ≥ 1 (see (H1) in Section 3), one has to control the ‖ · ‖L2m norm of the
solutions uniformly in the approximation parameters. To obatin such bounds (see Eqs. 4.24
and 3.9) we need to apply Itô’s formula to |Xν

λ(t)|2m2m . But this is not possible directly since
Xν

λ is not (right) continuous in L2m(μ). Therefore, we consider the following approximating
equation to Eq. 1.6:

dXν,ε
λ (t)+ Aν,ε

λ (Xν,ε
λ (t))dt = B(t, Xν,ε

λ (t))dW (t), in (0, T )× E, (1.7)

where ε> 0 and

Aν,ε
λ (x) = 1

ε

(
x − (I + εAν

λ)
−1(x)

)
,

is the Yosida approximation of the operator Aν
λ(x) := (ν−L)(�λ(x)+λI (x)) and I denotes

the identity map on the respective space (see more details in Section 4 below). In [9, Section
4] the authors can directly use the L p-Itô formula (p ≥ 2) proved in [25] for the case
E = R

d , which is not possible here. Also one cannot expect to prove such a formula on
arbitrary σ -finite measure spaces without further assumptions. The reason is that in [25],
approximations by convolution with smooth functions were crucial, which heavily depend
on the linear structure of Rd . To overcome this difficulty, we prove an L p(μ)-Itô formula
(p ≥ 2) in expectation (see Subsection A.2) to get the crucial a priori L2m(μ)-estimates first
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for the solution to Eq. 1.7 uniformly in the approximation parameters ε, ν, λ, subsequently,
by letting ε → 0 and then ν → 0 we get a solution to Eq. 1.5 satisfying Eq. 3.9 (-Eq.
3.12) (see Theorem 3.2 below), which then allows us finally to take λ → 0 to obtain well-
posedness of Eq. 1.1 (see Theorem 3.1). So, the L p-Itô formula in expectation (see Theorem
A.1 below), which we think is also of its own interest, is the main new tool that leads to the
desired generalization of [9]. Apart from other smaller obstacles that had to be overcome in
comparison to [9] (see e.g. Proposition A.1 in the Appendix), there is one other novel point
we would like to mention here. Since our aimwas to be able to treat non-local operators (such
as pseudo-differential operators) L in Eq. 1.1 in our approach, we had to include non-local
extended Dirichlet forms in our framework. We identified the crucial condition on the square
field operators of the non-local Dirichlet forms needed to implement our approach. This is
condition (H4)(ii)which is fulfilled for an abundance of (local and) non-local Dirichlet forms
(see the examples in Section 6), in particular for such with generator L = − f (−�), where
f : [0,∞) → R is a Bernstein function (in the sense of [37]). Such examples for the operator
L together with discontinuous diffusivities in Eq. 1.1 are completely new.

This paper is organized as follows. In Section 2, we introduce some notations and recall
some known results for preparation. In addition, we prove some necessary technical auxiliary
results, whichwill be used to construct the solutions to Eq. 1.1 inF ∗

e . In Section 3, we present
our assumptions and the twomain results for Eqs. 1.1 and 1.5.Adetailed proof of the existence
result for Eq. 1.5 will be given in Section 4, while the existence and uniqueness result for
Eq. 1.1 will be given in Section 5. A number of examples that are covered by our framework
will be presented in Section 6, including local (nonlocal) operators L on manifold or fractals.
In order to make the main structure of the proofs more transparent, we shift the proofs of
some estimates to Appendix A.1. In addition, we present a detailed proof of the mentioned
L p(μ)-Itô formula (p ≥ 2) in expectation in Appendix A.2.

2 Notations and Preliminaries

2.1 Dirichlet Spaces

Let (E,B, μ) be a σ -finite measure space, which we fix in the entire paper. We assume
that (E,B) is a standard measurable space (i.e., σ -isomorphic to a Polish space, see [31]).
This assumption is used in the proof of the L p(μ)-Itô formula (p ≥ 2) in expectation, but
also in the proof of Lemma 4.1 below, where we apply [35, Lemma 5.1], in which this
assumption on (E,B) was crucially used. Let (Pt )t≥0 be a strongly continuous, symmetric,
sub-Markovian contraction semigroup on L2(μ). Let (L, D(L)) be its infinitesimal generator
(see e.g. [15, 28]), which is a negative definite self-adjoint operator on L2(μ). We use 〈·, ·〉2
and | · |2 for the inner product and the norm in L2(μ) respectively. More generally, we set
〈 f , g〉2 := μ( f g) := ∫ f gdμ for any two measurable functions f , g such that f g ∈ L1(μ).
For the rest of this paper we fix (Pt )t≥0 with generator (L, D(L)) on L2(μ) with (E,B, μ)

as above.
Consider the �-transform Vr (r > 0) of (Pt )t≥0

Vru = �(
r

2
)−1
∫ ∞

0
s
r
2−1e−s Psuds, r > 0, u ∈ L2(μ).

From [14], we can define the Bessel-potential space (F1,2, ‖ · ‖F1,2) by
F1,2 := V1(L

2(μ)), with norm ‖u‖F1,2 = | f |2, for u = V1 f , f ∈ L2(μ).
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Consequently,

V1 = (1− L)−
1
2 , so that F1,2 = D

(
(1− L)

1
2
)
and ‖u‖F1,2 = |(1− L)

1
2 u|2.

The dual space of F1,2 is denoted by F∗1,2 and F∗1,2 = D((1− L)− 1
2 ), it is equipped with the

norms

‖η‖F∗1,2,ν := 〈η, (ν − L)−1η〉
1
2
2 , η ∈ F∗1,2, 0 < ν < ∞.

Denote the duality between F∗1,2 and F1,2 by F∗1,2〈·, ·〉F1,2 .
Consider the Dirichlet form (E , D(E )) on L2(μ) associated with (L, D(L)), i.e.,

D(E ) := F1,2, and

E (u, v) := μ(
√−Lu

√−Lv), u, v ∈ F1,2.

Let D(E ) be equipped with the inner product E1 := E + 〈·, ·〉2.
If (E , D(E )) is a transient Dirichlet space, that is, there exists g ∈ L1(μ)∩L∞(μ), g > 0,

such thatFe ⊂ L1(g ·μ) continuously, let (E ,Fe) be the corresponding extended Dirichlet
space (see [15]), which is the completion of F1,2, with respect to the norm

‖ · ‖F e := E (·, ·) 1
2 .

Then F1,2 = Fe ∩ L2(μ). Let F ∗
e be its dual space with inner product 〈·, ·〉F ∗

e
and corre-

sponding norm ‖·‖F ∗
e
, which is induced by the Riesz mapFe � u 	→ E (·, u) ∈ F ∗

e . Denote
the duality betweenF ∗

e andFe by F ∗
e
〈·, ·〉F e . BothFe andF ∗

e are Hilbert spaces. For more
background knowledge on Dirichlet forms, we refer to [15, 28]. From now on we assume:

(L.1) The symmetric Dirichlet form (E , D(E )) associated with (L, D(L)) is transient.
Consider the inner product Eν := E + ν〈·, ·〉2, ν ∈ (0,∞), on F1,2, i.e.,

‖v‖2F1,2,ν := E (v, v)+ ν

∫
|v|2dμ = ‖v‖2F e

+ ν

∫
|v|2dμ, for v ∈ F1,2, (2.1)

and

‖l‖F∗1,2,ν :=F∗1,2 〈l, (ν − L)−1l〉
1
2
F1,2

:= sup
v∈F1,2‖v‖F1,2,ν≤1

l(v), l ∈ F∗1,2,

‖l‖F∗
e
:= sup

v∈F e‖v‖F e≤1
l(v), l ∈ F ∗

e .

Since F1,2 ⊂ Fe continuously and densely, we have

F ∗
e ⊂ F∗1,2 continuously and densely.

Proposition 2.1 Let l ∈ F ∗
e . Then ν 	→ ‖l‖F∗1,2,ν is decreasing,

lim
ν→0

‖l‖F∗1,2,ν = sup
ν>0

‖l‖F∗1,2,ν = ‖l‖F ∗
e
, (2.2)

‖l‖F∗1,2 ≤ ‖l‖F∗1,2,ν ≤
1√
ν
‖l‖F∗1,2 , ∀ 0 < ν ≤ 1. (2.3)
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Proof Firstly, note that for all l ∈ F∗1,2 and 0 < ν′ ≤ ν < ∞, we have

‖l‖F∗1,2,ν =: sup
v∈F1,2‖v‖F1,2,ν≤1

l(v) ≤ sup
v∈F1,2‖v‖F1,2,ν′ ≤1

l(v) = ‖l‖F∗
1,2,ν′ ,

i.e., ∀ l ∈ F∗1,2, ‖l‖F∗1,2,ν is decreasing in ν. In particular, the first equality in Eq. 2.2 and the
first inequality in Eq. 2.3 hold.

Let l ∈ F ∗
e . Since F

∗
e ⊂ F∗1,2 continuously and densely, we have l ∈ F∗1,2 and

‖l‖F∗1,2,ν = sup
v∈F1,2‖v‖F1,2,ν≤1

l(v) ≤ sup
v∈F e‖v‖F e≤1

l(v) = ‖l‖F ∗
e
.

Hence ∀l ∈ F ∗
e ,

lim
ν→0

‖l‖F∗1,2,ν = sup
ν>0

‖l‖F∗1,2,ν ≤ ‖l‖F ∗
e
. (2.4)

To prove the converse inequality of Eq. 2.4, fix l ∈ F ∗
e and let ε, δ ∈ (0, 1). Then there

exists vε ∈ F1,2 with ‖vε‖F e = 1 and

l(vε) ≥ ‖l‖F ∗
e
− ε.

Let ν0 := δ2

1+|vε |22
. From Eq. 2.1, we see that

‖vε‖F1,2,ν0 =
√
‖vε‖2F e

+ ν0|vε |22 ≤
√
1+ δ2 ≤ 1+ δ,

so for v̄ε := vε

1+δ
, we have

‖v̄ε‖F1,2,ν0 ≤ 1.

Consequently,

lim
ν→0

‖l‖F∗1,2,ν = sup
ν>0

‖l‖F∗1,2,ν

≥ ‖l‖F∗1,2,ν0 ≥ l(v̄ε) = 1

1+ δ
l(vε) ≥ 1

1+ δ
(‖l‖F ∗

e
− ε),

letting δ → 0, ε → 0, yields the desired converse inequality. Hence Eq. 2.2 is proved.
It remains to prove the second inequality in Eq. 2.3. Note that

‖v‖2F1,2,ν = E (v, v)+ ν〈v, v〉2 and ‖v‖2F1,2 = E (v, v)+ 〈v, v〉2,
hence for 0 < ν ≤ 1,

‖l‖F∗1,2 = sup
‖v‖F1,2≤1

l(v) = √
ν sup√

ν‖v‖F1,2≤1
l(v) ≥ √

ν sup
‖v‖F1,2,ν≤1

l(v) = √
ν‖l‖F∗1,2,ν .

2.2 Gelfand Triples

Let H be a separable Hilbert space with inner product 〈·, ·〉H and let H∗ be its dual space.
Let V be a reflexive Banach space, such that V ⊂ H continuously and densely. Then for its
dual space V ∗ it follows that H∗ ⊂ V ∗ continuously and densely. Identifying H and H∗ via
the Riesz isomorphism we have that

V ⊂ H ⊂ V ∗
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continuously and densely. Let V ∗ 〈·, ·〉V denote the dualization between V ∗ and V (i.e.
V ∗ 〈z, v〉V := z(v) for z ∈ V ∗, v ∈ V ). Then it follows that

V ∗ 〈z, v〉V = 〈z, v〉H , for all z ∈ H , v ∈ V . (2.5)

(V , H , V ∗) is called a Gelfand triple.
A Gelfand triple with V := L2(μ), H := F∗1,2 was constructed in [36], the Riesz map

which identifies F1,2 and F∗1,2 is (1 − L)−1 : F∗1,2 → F1,2. We need the following two
lemmas.

Lemma 2.1 ([36, Lemma 2.1.]) The map (1−L) : F1,2 → F∗1,2 is an isometric isomorphism.
In particular, 〈

(1− L)u, (1− L)v
〉
F∗1,2

= 〈u, v〉F1,2 for all u, v ∈ F1,2. (2.6)

Furthermore, (1 − L)−1 : F∗1,2 → F1,2 is the Riesz isomorphism for F∗1,2, i.e., for every
u ∈ F∗1,2,

〈u, ·〉F∗1,2 =F1,2〈(1− L)−1u, ·〉F∗1,2 . (2.7)

Lemma 2.2 ([34, Lemma 3.3(i)]) The map L̄ : Fe → F ∗
e defined by

L̄v := −E (v, ·), v ∈ Fe

(i.e. the Riesz isomorphism ofFe andF ∗
e multiplied by (-1)) is the unique continuous linear

extension of the map

D(L) � v 	→ μ(Lv·) ∈ F ∗
e .

If there is no danger of confusion, we write L instead of L̄ below. For a Hilbert space H,
throughout the paper, let L2([0, T ]×�;H) denote the space of allH-valued square-integrable
functions on [0, T ] × �, C([0, T ];H) the space of all continuous H-valued functions on
[0, T ], and L∞([0, T ];H) the space of allH-valued uniformly boundedmeasurable functions
on [0, T ]. For two Hilbert spaces H1 and H2, the space of Hilbert-Schmidt operators from
H1 to H2 is denoted by L2(H1, H2). For simplicity, the positive constantsC ,Ci , i = 1, ..., 5,
used in this paper may change from line to line. We would like to refer to [26, 33] for more
background information and results on SPDEs, [1, 41] on PMEs and [7] on SPMEs.

3 Assumptions andMain Results

Let K := L1(μ) ∩ L∞(μ) ∩ F ∗
e . In addition to condition (L.1) above, we study Eq. 1.1

under the following assumptions.
(H1) �(·) : R → 2R is a maximal monotone graph such that 0 ∈ �(0) and there exist
constants C ∈ (0,∞) and m ∈ [1,∞) such that

|�(r)| = inf{|η|; η ∈ �(r)} ≤ C(|r |m + 1{μ(E)<∞}), ∀r ∈ R. (3.1)

(H2) B : [0, T ] × K × � → L2(L2(μ), L2(μ)) is progressively measurable (i.e. for any
t ∈ [0, T ], thismapping restricted to [0, t]×K×� ismeasurablew.r.t.B([0, t])×B(K )×Ft ,
where B(·) is the Borel σ -field for a topological space). Furthermore, B(t, u) satisfies the
following conditions:
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(i) There exists a constant C1 ∈ [0,∞) such that for all ν ∈ (0, 1],
‖B(·, u)− B(·, v)‖L2(L2(μ),F∗1,2,ν ) ≤ C1‖u − v‖F∗1,2,ν , ∀u, v ∈ K on [0, T ] ×�.

(ii) There exists a constant C2 ∈ (0,∞) such that for all ν ∈ (0, 1],
‖B(·, u)‖L2(L2(μ),F∗1,2,ν ) ≤ C2‖u‖F∗1,2,ν , ∀u ∈ K on [0, T ] ×�.

(H3)(i) There exists a constant C3 ∈ (0,∞) satisfying

‖B(·, u)‖L2(L2(μ),L2(μ)) ≤ C3|u|2, ∀u ∈ K on [0, T ] ×�.

(ii) Let m be as in Eq. 3.1, there exist an orthonormal basis {ek}k≥1 of L2(μ) and a constant
C4 ∈ (0,∞) satisfying∫

E

( ∞∑
k=1

|B(·, u)ek |2
)m

dμ ≤ C4|u|2m2m, ∀u ∈ K on [0, T ] ×�.

(H4) There exists a symmetric, positive, bilinear mapping � : F1,2 × F1,2 → L1(μ)

satisfying:
(i)

E (u, u) =
∫

1

2
�(u, u)dμ, ∀u ∈ F1,2.

(ii) There exists a constant C5 ∈ (0,∞) such that

�(ϕ(u), ϕ(u)) ≤ C5�(u, ϕ(u)), ∀u ∈ F1,2,

for every non-decreasing Lipschitz function ϕ : R→ R with ϕ(0) = 0.

Remark 3.1 (i) Eq. 2.2 and (H2)(i) imply that for all u, v ∈ K,

‖B(·, u)− B(·, v)‖2L2(L2(μ),F ∗
e )
≤ C1‖u − v‖2F ∗

e
on [0, T ] ×�. (3.2)

(ii)We emphasize that (H4)(ii) is automatically fulfilled, if (E, D(E)) is a local Dirichlet
form.

(iii) By (L.1) there exists g ∈ L1(μ) ∩ L∞(μ), g > 0, μ-a.e., such that Fe ⊂ L1(g · μ)

continuously and it was proved in [34] (see the last part of the proof of Proposition 3.1 in
[34]) that the linear space

G := {h · g|h ∈ L∞(μ)}
is dense in F ∗

e . Furthermore, obviously G ⊂ L1(μ) ∩ L∞(μ). Hence it follows that K
(defined in (H2)) is dense in F ∗

e , and hence in F∗1,2,ν0 for every ν0 ∈ (0, 1]. Here F∗1,2,ν0
denotes the space F∗1,2 equipped with the norm ‖ · ‖F∗1,2,ν0 . Therefore, by (H2)(i) the map

K � u −→ B(t, u) ∈ L2(L
2(μ), F∗1,2,ν0)

can be extended uniquely to a Lipschitz continuous map on all of F∗1,2,ν0 . Furthermore,
(H2)(ii) trivially also holds for this extension, as well as Eq. 3.2. We shall use this extension
below without further notice.

(iv) From [34, Proposition 3.1], we also know that G is dense in L p(μ) (1 < p < ∞),
since G ⊂ L1(μ) ∩ L∞(μ), G ⊂ F∗

e , L
1(μ) ∩ L∞(μ) is dense in L p(μ), hence K is dense

in L p(μ), so (H3)(i) is also true for all u ∈ L2(μ) and (H3)(ii) is true for all u ∈ L2m(μ).
Note that if m = 1, then (H3)(i) and (H3)(ii) are the same.
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Definition 3.1 Let x ∈ F ∗
e . An F ∗

e -valued adapted process X = X(t) is called strong
solution to Eq. 1.1 if there exists q ∈ [2,∞) such that the following conditions hold:

X is F ∗
e − valued continuous on [0, T ], P− a.s.;

X ∈ Lq(�× (0, T )× E);
there is η ∈ L

q
m (�× (0, T )× E) such that

η ∈ �(X), dt ⊗ P⊗ dμ− a.e. on �× (0, T )× E;
and P-a.s., ∫ ·

0
η(s)ds ∈ C([0, T ];Fe), (3.3)

X(t) = x + L
∫ t

0
η(s)ds +

∫ t

0
B(s, X(s))dW (s) holds in F ∗

e , ∀t ∈ [0, T ].

Theorem 3.1 below is the main existence and uniqueness result for Eq. 1.1.

Theorem 3.1 Assume that (L.1), (H1)-(H4) are satisfied and let m be as in Eq. 3.1. Let
x ∈ L2(μ) ∩ L2m(μ) ∩F ∗

e . Then there is a unique strong solution X to Eq. 1.1 such that

X ∈ L2(�;C([0, T ];F ∗
e )
) ∩ L∞

([0, T ]; (L2 ∩ L2m)(�× E)
)
.

Remark 3.2 Uniqueness means that if X1 and X2 are two strong solutions to Eq. 1.1 in the
sense of Definition 3.1 with the same initial value x ∈ L2(μ)∩ L2m(μ)∩F ∗

e , then X1 = X2,
∀t ∈ [0, T ], P-a.s..

Theorem 3.1 will be proved in Section 5. The proof is based on an approximating equation
of Eq. 1.1. More precisely, in Section 4 we shall establish the existence of solutions for the
following Yosida approximating equation of Eq. 1.1{

dXλ − L(�λ(Xλ)+ λXλ)dt = B(t, Xλ)dW (t), t ∈ [0, T ],
Xλ(0) = x on E .

(3.4)

Here λ > 0 and

�λ(x) = 1

λ

(
x − (1+ λ�)−1(x)

) ∈ �
(
(1+ λ�)−1(x)

)
is the Yosida approximation of �. We recall that (see [3, page:38, Proposition 2.2]) �λ is
single-valued, monotone and for all r ∈ R

|�λ(r)| ≤ |�(r)|. (3.5)

We have the following result for Eq. 3.4.

Theorem 3.2 Assume that (L.1), (H1)-(H4) are satisfied and let m be as in Eq. 3.1. Let
λ ∈ (0, 1], and x ∈ L2(μ) ∩ L2m(μ) ∩F ∗

e . Then Eq. 3.4 has a strong solution

Xλ ∈ L2(�;C([0, T ];F ∗
e )) ∩ L∞

([0, T ]; (L2 ∩ L2m)(�× E)
)
, (3.6)

satisfying ∫ ·

0
�λ(Xλ(s))+ λXλ(s)ds ∈ C([0, T ];Fe), P-a.s., (3.7)
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and P-a.s.,

Xλ(t)= x+ L
∫ t

0
�λ(Xλ(s))+λXλ(s)ds+

∫ t

0
B(s, Xλ(s))dW (s) holds in F ∗

e , ∀t ∈ [0, T ].
(3.8)

Moreover, there exists C ∈ (0,∞) such that for all λ, λ′ ∈ (0, 1], t ∈ [0, T ],
E|Xλ(t)|2m2m ≤ C |x |2m2m, (3.9)

E

∫ T

0

∫
E
|�λ(Xλ(t))|2dμdt ≤ C(|x |2m2m + μ(E) · 1{μ(E)<∞}), (3.10)

E

[
sup

0≤t≤T
‖Xλ(t)‖2F ∗

e

]
≤ C

(‖x‖2F ∗
e
+ |x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}

)
, (3.11)

E

[
sup

0≤t≤T
‖Xλ(t)− Xλ′(t)‖2F ∗

e

]
≤ C(λ+ λ′)(|x |22 + |x |2m2m + μ(E) · 1{μ(E)<∞}).(3.12)

4 Proof of Theorem 3.2

Proof For each fixed constant λ∈ (0, 1], firstly we consider the following approximating
equation for Eq. 3.4{

dXν
λ(t)+ (ν − L)

(
�λ(X

ν
λ(t))+ λXν

λ(t)
)
dt = B(t, Xν

λ(t))dW (t), in (0, T )× E,

Xν
λ(0) = x ∈ L2(μ) ∩ L2m(μ),

(4.1)
where ν ∈ (0, 1]. Since �λ + λI is Lipschitz (where here and below I denotes the identity
map on the respective space), by the proof of Lemma 3.1, particularly Claim 3.1 in [36], we
know that Eq. 4.1 has a unique (Ft )t≥0-adapted solution in the sense that Xν

λ ∈ L2([0, T ] ×
�; L2(μ)) ∩ L2(�;C([0, T ]; F∗1,2)),

Xν
λ(t)+ (ν − L)

∫ T

0
�λ(X

ν
λ(s))+ λXν

λ(s)ds = x +
∫ T

0
B(s, Xν

λ(s))dW (s), holds in F∗1,2, P− a.s.,

and there exists a positive constant C ∈ (0,∞), such that for all λ, ν ∈ (0, 1],

E

[
sup

t∈[0,T ]
|Xν

λ(t)|22
]
≤ eCT |x |22. (4.2)

To prove that Eqs. 3.6-3.11 hold with Xν
λ replacing Xλ, with a constant C independent of

ν and λ, we consider the following approximating equation for Eq. 4.1.{
dXν,ε

λ (t)+ Aν,ε
λ (Xν,ε

λ (t))dt = B(t, Xν,ε
λ (t))dW (t), in (0, T )× E,

Xν,ε
λ (0) = x ∈ L2(μ) ∩ L2m(μ),

(4.3)

where Aν,ε
λ : F∗1,2 → F∗1,2, defined by

Aν,ε
λ (x) = 1

ε

(
x − (I + εAν

λ)
−1(x)

)
, x ∈ F∗1,2, ε> 0,

is the Yosida approximation of the operator Aν
λ(x) := (ν − L)(�λ(x) + λI (x)) on F∗1,2,

x ∈ D(Aν
λ) := F1,2. Clearly, I + εAν

λ : F1,2 → F∗1,2 is a bijection, since so is �λ + λI :
F1,2 → F1,2. Furthermore, since by Eq. 4.9 below, Aν

λ with domain F1,2 is monotone on
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F∗1,2,ν , it follows that Aν
λ is maximal monotone on F∗1,2,ν . Fix x ∈ F∗1,2 and set y := Jε(x) :=

(I + εAν
λ)
−1x ∈ F1,2, i.e., (I + εAν

λ)(y) = x , equivalently,

y + ε(ν − L)(�λ + λI )(y) = x . (4.4)

In particular, (�λ + λI )(y) ∈ D(L), if x ∈ L2(μ).
Before giving the well-posedness result for Eq. 4.3, we need some preparations.

Lemma 4.1 Set
Jε(x) := (I + εAν

λ)
−1x, ∀x ∈ F∗1,2.

For all ε ∈ (0, 1], we have
‖Jε(x)− Jε(̃x)‖F∗1,2,ν ≤ ‖x − x̃‖F∗1,2,ν ,∀x, x̃ ∈ F∗1,2. (4.5)

|Jε(x)− Jε(̃x)|2 ≤ 1√
νελ

|x − x̃ |2, ∀x, x̃ ∈ L2(μ). (4.6)

|Jε(x)|p ≤ |x |p, ∀x ∈ L p(μ) ∩ L2(μ), 2 ≤ p < ∞. (4.7)

Proof Firstly, let us prove Eq. 4.5. For x, x̃ ∈ F∗1,2, set y := Jε(x) and ỹ := Jε(̃x), we have

y − ỹ + εAν
λ(y)− εAν

λ(ỹ) = x − x̃ .

Taking the scalar product of y − ỹ with both sides in (F∗1,2, ‖ · ‖F∗1,2,ν ), we get
〈y − ỹ, y − ỹ〉F∗1,2,ν + ε〈Aν

λ(y)− Aν
λ(ỹ), y − ỹ〉F∗1,2,ν = 〈x − x̃, y − ỹ〉F∗1,2,ν . (4.8)

For the second term in the left hand-side of Eq. 4.8, by Eq. 2.7, we know

〈Aν
λ(y)− Aν

λ(ỹ), y − ỹ〉F∗1,2,ν
= 〈(ν − L)((�λ + λI )(y)− (�λ + λI )(ỹ)), y − ỹ

〉
F∗1,2,ν

= F1,2

〈
(�λ + λI )(y)− (�λ + λI )(ỹ), y − ỹ

〉
F∗1,2

= 〈(�λ + λI )(y)− (�λ + λI )(ỹ), y − ỹ
〉
2 ≥ 0, (4.9)

since y − ỹ ∈ F1,2 ⊂ L2(μ).
Equations 4.8 and 4.9 imply

‖y − ỹ‖2F∗1,2,ν ≤ ‖x − x̃‖F∗1,2,ν · ‖y − ỹ‖F∗1,2,ν ,

from which Eq. 4.5 follows.
Secondly, to prove the Lipschitz continuity of Jε in L2(μ), we take x, x̃ ∈ L2(μ) and

apply

F∗1,2
〈 ·, (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

to both sides of Eq. 4.8. Then

F∗1,2
〈
y − ỹ, (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

+F∗1,2
〈
εAν

λ(y)− εAν
λ(ỹ), (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

= F∗1,2
〈
x − x̃, (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

. (4.10)
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For the second term in the left hand-side of Eq. 4.10, by Eqs. 2.5-2.7 (under the Gelfand
triple F1,2 ⊂ L2(μ) ⊂ F∗1,2), we obtain

F∗1,2
〈
εAν

λ(y)− εAν
λ(ỹ), (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

= F∗1,2
〈
(1− L)(ε(�λ + λI )(y)− ε(�λ + λI )(ỹ)), (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

+F∗1,2
〈
ε(ν − 1)((�λ + λI )(y)− (�λ + λ)(ỹ)), (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

= ε‖(�λ + λI )(y)− (�λ + λI )(ỹ)‖2F1,2 + ε(ν − 1)|(�λ + λI )(y)− (�λ + λI )(ỹ)|22
≥ νε|(�λ + λI )(y)− (�λ + λI )(ỹ)|22. (4.11)

For the first term in the left hand-side of Eq. 4.10, since �λ is monotone, by Eq. 2.5 (under
the Gelfand triple F1,2 ⊂ L2(μ) ⊂ F∗1,2), we know

F∗1,2
〈
y − ỹ, (�λ + λI )(y)− (�λ + λI )(ỹ)

〉
F1,2

= 〈y − ỹ, (�λ + λI )(y)− (�λ + λI )(ỹ)
〉
2

≥ λ|y − ỹ|22. (4.12)

Similarly, since x, x̃ ∈ L2(μ), by Eq. 2.5, we have

F∗1,2〈x − x̃, (�λ + λI )(y)− (�λ + λI )(ỹ)〉F1,2
= 〈x − x̃, (�λ + λI )(y)− (�λ + λI )(ỹ)〉2. (4.13)

Taking Eqs. 4.11, 4.12, and 4.13 into Eq. 4.10, by Young’s inequality, we obtain

λ|y − ỹ|22 + νε
∣∣(�λ + λI )(y)− (�λ + λI )(ỹ)

∣∣2
2

≤ |x − x̃ |2 ·
∣∣(�λ + λI )(y)− (�λ + λI )(ỹ)

∣∣
2

≤ 1

νε
|x − x̃ |22 + νε

∣∣(�λ + λI )(y)− (�λ + λI )(ỹ)
∣∣2
2,

and therefore

|y − ỹ|22 ≤
1

νελ
|x − x̃ |22,

which yields Eq. 4.6 as claimed.
Now, let us prove Eq. 4.7. Let x ∈ L2(μ) ∩ L p(μ), p ≥ 2. Since the function h(r) :=

r |r |p−2(1+ k|r |p−2)−1 is Lipschitz, and h(0) = 0, we have h(y) ∈ F1,2, because y ∈ F1,2.
Hence applying F∗1,2

〈 ·, y|y|p−2(1 + k|y|p−2)−1〉F1,2 , k > 0, to both sides of Eq. 4.4, we
obtain

F∗1,2
〈
y,

y|y|p−2
1+ k|y|p−2

〉
F1,2

+F∗1,2
〈
ε(ν − L)(�λ(y)+ λy),

y|y|p−2
1+ k|y|p−2

〉
F1,2

= F∗1,2
〈
x,

y|y|p−2
1+ k|y|p−2

〉
F1,2

. (4.14)

Under the Gelfand triple F1,2 ⊂ L2(μ) ⊂ F∗1,2, by Eqs. 2.5, 4.14 yields

〈
y,

y|y|p−2
1+ k|y|p−2

〉
2 +F∗1,2

〈
ε(ν − L)(�λ(y)+ λy),

y|y|p−2
1+ k|y|p−2

〉
F1,2

= 〈x, y|y|p−2
1+ k|y|p−2

〉
2. (4.15)
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For the second term in the left hand-side of Eq. 4.15, since x ∈ L2(μ), y ∈ F1,2 ⊂ L2(μ),
from Eq. 4.4 we deduce that

(ν − L)(�λ(y)+ λy) ∈ L2(μ).

Then by Eq. 2.5, we know

F∗1,2
〈
ε(ν − L)(�λ(y)+ λy),

y|y|p−2
1+ k|y|p−2

〉
F1,2

= 〈ε(ν − L)(�λ(y)+ λy),
y|y|p−2

1+ k|y|p−2
〉
2.

To estimate the term above, notice that for all Lipschitz and increasing function g : R → R

with g(0) = 0, we have ∫
E
(ν − L)

(
�λ(y)+ λy

) · g(y)dμ ≥ 0,

because on one hand, �λ is Lipschitz and monotone with �λ(0) = 0, then obviously,∫
E

ν
(
�λ(y)+ λy

) · g(y)dμ ≥ 0.

On the other hand, we can prove the following term, i.e.,〈
(−L)(�λ(y)+ λy), g(y)

〉
= E

(
�λ(y)+ λy, g(y)

)
= lim

ε→0
E (ε)

(
�λ(y)+ λy, g(y)

)
, (4.16)

is non-negative. Indeed, by [35, Lemma 5.1], with κ being the kernel corresponding to
P := (I − εL)−1, we know, setting f := �λ + λI ,

E (ε)
(
f (y), g(y)

) : = 1

ε

〈
f (y),

(
I − (I − εL)−1

)
g(y)

〉
2

= 1

2ε

∫
E

∫
E

(
( f (y(̃ξ )))− f (y(ξ))

) · (g(y(ξ̃ ))− g(y(ξ))
)
κ(ξ, d ξ̃ )μ(dξ)

+1

ε

∫
E
(1− P1(ξ)) f (y(ξ))g(y(ξ))μ(dξ),

since f , g are monotone with f (0) = g(0) = 0 and P1 ≤ 1, we deduce that

E (ε)
(
f (y), g(y)

) ≥ 0,

which implies that Eq. 4.16 is non-negative. As a short remark, the assumption that (E,B)

is a standard measurable space is needed in [35, Lemma 5.1] to ensure the existence of the
kernel κ above.

Thus, ∫
E

|y|p
1+ k|y|p−2 dμ ≤

∫
E

xy|y|p−2
1+ k|y|p−2 dμ.

Letting k → 0 and by Hölder’s inequality, we obtain

|y|pp ≤
∫
E
xy|y|p−2dμ ≤ |x |p|y|p−1p .

Hence, since y = Jε(x),

|Jε(x)|p ≤ |x |p.
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As shown in Lemma 4.1, Jε is Lipschitz in both L2(μ) and F∗1,2. Since Aν,ε
λ = 1

ε
(I − Jε),

Aν,ε
λ is also Lipschitz in L2(μ) and F∗1,2. If x ∈ F∗1,2, Eq. 4.3 has a unique adapted solution

Xν,ε
λ ∈ L2(�;C([0, T ]; F∗1,2)) and by Itô’s formula (see e.g. [26, Theorem 4.2.5]) we have

E‖Xν,ε
λ (t)‖2F∗1,2,ν + 2E

∫ t

0

〈
Aν,ε

λ (Xν,ε
λ (s)), Xν,ε

λ (s)
〉
F∗1,2,ν

ds

= ‖x‖2F∗1,2,ν + E

∫ t

0
‖B(s, Xν,ε

λ (s))‖2L2(L2(μ),F∗1,2,ν )
ds, t ∈ [0, T ],

which, by virtue of (H2)(ii) and the fact that the second term on the left hand-side is non-
negative by Eq. 4.5, yields

E‖Xν,ε
λ (t)‖2F∗1,2,ν ≤ eC2T ‖x‖2F∗1,2,ν , ∀ε, λ, ν ∈ (0, 1], t ∈ [0, T ], x ∈ F∗1,2.

Similarly, if x ∈ L2(μ), we know that Xν,ε
λ ∈ L2(�;C([0, T ]; L2(μ))) and again by Itô’s

formula we obtain

E|Xν,ε
λ (t)|22 + 2E

∫ t

0

〈
Aν,ε

λ (Xν,ε
λ (s)), Xν,ε

λ (s)
〉
2ds

= |x |22 + E

∫ t

0
‖B(s, Xν,ε

λ (s))‖2L2(L2(μ),L2(μ))
ds,

which, by virtue of (H3)(i) and the fact that the second summand on the left hand-side is
nonnegative by Eq. 4.7 applied to p = 2, yields

E|Xν,ε
λ (t)|22 ≤ eC3T |x |22, ∀ε, λ, ν ∈ (0, 1], t ∈ [0, T ], x ∈ L2(μ). (4.17)

Lemma 4.2 For x ∈ L2(μ) ∩ L2m(μ), we have that

Xν,ε
λ ∈ L∞

([0, T ]; L2m(�; L2m(μ))
)
, ∀ε, λ, ν ∈ (0, 1].

Proof For α, R > 0, consider the set

KR =
{
X ∈ L2([0, T ];C([0, T ]; L2(μ))

)
, e−2mαt

E|X(t)|2m2m ≤ R2m, t ∈ [0, T ]}.
Since, by Eq. 4.3, Xν,ε

λ is a fixed point of the map

F : X 	→ e−
•
ε x + 1

ε

∫ •

0
e−

•−s
ε Jε(X(s))ds +

∫ •

0
e−

•−s
ε B(s, X(s))dW (s),

obtained by iteration in L2
(
�;C([0, T ]; L2(μ))

)
, it suffices to show that F leaves the set

KR invariant for α, R > 0 large enough. By Eq. 4.7 we have that for X ∈ KR , t ≥ 0

[
e−2mαt

E

∣∣∣e− t
ε x + 1

ε

∫ t

0
e−

t−s
ε Jε(X(s))ds

∣∣∣2m
2m

] 1
2m

≤ e−αt e−
t
ε |x |2m + e−αt

[
E

( ∫ t

0

1

ε
e−

t−s
ε |X(s)|2mds

)2m] 1
2m

≤ e−(α+ 1
ε
)t |x |2m + e−αt

∫ t

0

1

ε
e−

t−s
ε
(
E|X(s)|2m2m

) 1
2m ds

≤ e−(α+ 1
ε
)t |x |2m + R

1+ αε
. (4.18)
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Set

Y (t) =
∫ t

0
e−

t−s
ε B(s, X(s))dW (s), t ≥ 0.

Then Y is a solution to the following SDE on L2(μ):⎧⎨
⎩ dY (t)+ 1

ε
Y (t)dt = B(t, X(t))dW (t), t ≥ 0,

Y (0) = 0,

equivalently,
d
(
e

t
ε Y (t)

) = e
t
ε B(t, X(t))dW (t), t ≥ 0, Y (0) = 0.

By Hypothesis (H3)(ii), we may apply Itô’s formula in expectation from Theorem A.1 in
the Appendix with u(t) replaced by e

t
ε Y (t). Then by Hölder’s and Young’s inequality and

(H3)(ii), we obtain for t ∈ [0, T ]
E
∣∣e t

ε Y (t)
∣∣2m
2m

= m(2m − 1)E
∫ t

0

∫
E

∣∣e s
ε Y (s)

∣∣2m−2 ·
∞∑
k=1

∣∣e s
ε B(s, X(s))ek

∣∣2dμds

≤ m(2m − 1)E
∫ t

0

( ∫
E
|e s

ε Y (s)|2m−2· m
m−1 dμ

) m−1
m ·

(∫
E

( ∞∑
k=1

|e s
ε B(s, X(s))ek |2

)m
dμ

) 1
m

ds

= m(2m − 1)E
∫ t

0
|e s

ε Y (s)|2m−2
2m ·

(∫
E

( ∞∑
k=1

|e s
ε B(s, X(s))ek |2

)m
dμ

) 1
m

ds

≤ m(2m − 1)E
∫ t

0

(
|e s

ε Y (s)|2m−2
2m

) m
m−1

m
m−1

+
( ∫

E

(∑∞
k=1 |e

s
ε B(s, X(s))ek |2

)m
dμ
) 1

m ·m

m
ds

= (m − 1)(2m − 1)E
∫ t

0
|e s

ε Y (s)
∣∣2m
2mds + (2m − 1)E

∫ t

0

∫
E

( ∞∑
k=1

|e s
ε B(s, X(s))ek |2

)m
ds

≤ (m − 1)(2m − 1)E
∫ t

0
|e s

ε Y (s)
∣∣2m
2mds + C4(2m − 1)E

∫ t

0
|e s

ε X(s)|2m2mds,

and therefore, by Gronwall’s lemma, we obtain

E
∣∣e t

ε Y (t)
∣∣2m
2m ≤ C4(2m − 1)e(m−1)(2m−1)T

∫ t

0
E|e s

ε X(s)|2m2mds

≤ C4(2m − 1)e(m−1)(2m−1)T
∫ t

0
R2me( 2m

ε
+2mα)sds

≤ εR2mCT ,m

2m(1+ εα)
e
2mt(1+εα)

ε ,

which yields

e−2mαt
E|Y (t)|2m2m ≤ εR2mCT ,m

(1+ εα)
, ∀t ∈ [0, T ]. (4.19)

Then, by formulas Eqs. 4.18, 4.19, we infer that for α large enough and R ≥ 2|x |2m , the map
F leaves KR invariant as claimed.
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Lemma 4.3 For x ∈ L2(μ) ∩ L2m(μ), there exists C ∈ (0,∞) such that

sup
t∈[0,T ]

E|Xν,ε
λ (t)|2m2m ≤ C |x |2m2m, ∀ε, λ, ν ∈ (0, 1]. (4.20)

Proof Applying the Itô formula in expectation to E|Xν,ε
λ (t)|2m2m from Theorem A.1 in the

Appendix, we obtain

E|Xν,ε
λ (t)|2m2m = |x |2m2m − 2mE

∫ t

0

∫
E
Aν,ε

λ (Xν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|2m−2dμds

+m(2m−1)E
∫ t

0

∫
E
|Xν,ε

λ (s)|2m−2 ·
∞∑
k=1

|B(s, Xν,ε
λ (s))ek |2dμds.(4.21)

Recall that Aν,ε
λ (Xν,ε

λ (s)) = 1
ε
(Xν,ε

λ (s)− Jε(X
ν,ε
λ (s))), so we have∫

E
Aν,ε

λ (Xν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|2m−2dμ

= 1

ε

∫
E
|Xν,ε

λ (s)|2mdμ− 1

ε

∫
E
Jε(X

ν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|2m−2dμ. (4.22)

By Hölder’s inequality and Eq. 4.7, we conclude

1

ε

∫
E
|Xν,ε

λ (s)|2mdμ− 1

ε

∫
E
Jε(X

ν,ε
λ (s))Xν,ε

λ (s)|Xν,ε
λ (s)|2m−2dμ

≥ 1

ε

∫
E
|Xν,ε

λ (s)|2mdμ− 1

ε

[
|Jε(Xν,ε

λ (s))|2m · |Xν,ε
λ (s)|2m−12m

]

≥ 1

ε

∫
E
|Xν,ε

λ (s)|2mdμ− 1

ε
|Xν,ε

λ (s)|2m · |Xν,ε
λ (s)|2m−12m

= 0. (4.23)

By Eqs. 4.21-4.23 and using a similar argument as in Eq. 4.19, we get

E|Xν,ε
λ (t)|2m2m ≤ |x |2m2m + (2m − 1)E

∫ t

0
(m − 1)|Xν,ε

λ (s)|2m2m + C4|Xν,ε
λ (s)|2m2mds

= |x |2m2m + (2m − 1)(m − 1+ C4)E

∫ t

0
|Xν,ε

λ (s)|2m2mds.

As a result, by Gronwall’s lemma, there exists C ∈ (0,∞) such that

esssupt∈[0,T ]E|Xν,ε
λ (t)|2m2m ≤ C |x |2m2m, ∀ε, λ, ν ∈ (0, 1].

Since t 	→ |Xν,ε
λ (t)|2m is lower semi-continuous and hence so is t 	→ E|Xν,ε

λ (t)|2m2m , Eq. 4.20
follows.

Lemma 4.4 For x ∈ L2(μ) ∩ L2m(μ) and Xν,ε
λ as above. Then as ε −→ 0, we have

Xν,ε
λ −→ Xν

λ strongly in L2(�;C([0, T ]; F∗1,2)),
where Xν

λ is the solution to Eq. 4.1. Furthermore, there exists C ∈ (0,∞) such that

sup
t∈[0,T ]

E|Xν
λ(t)|2m2m ≤ C |x |2m2m, ∀λ, ν ∈ (0, 1]. (4.24)

Proof We prove the lemma in two steps, which are given as two claims.
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Claim 4.1 For each x ∈ L2(μ), the sequence {Xν,ε
λ }, ε ∈ (0, 1], is Cauchy in

L2(�;C([0, T ]; F∗1,2)).

Proof Let ε, η > 0. Applying the Itô formula ([26, Theorem 4.2.5] with V := L2(μ),
H := F∗1,2,ν , α = 2, X0 = x) to ‖Xν,ε

λ − Xν,η
λ ‖2F∗1,2,ν , we have

d‖Xν,ε
λ (t)− Xν,η

λ (t)‖2F∗1,2,ν
+2〈(ν − L)

(
(�λ + λI )(Jε(X

ν,ε
λ (t)))− (�λ + λ)(Jη(X

ν,η
λ (t)))

)
, Xν,ε

λ (t)− Xν,η
λ (t)

〉
F∗1,2,ν

dt

= 2
〈
Xν,ε

λ (t)− Xν,η
λ (t),

(
B(t, Xν,ε

λ (t))− B(t, Xν,η
λ (t))

)
dW (t)

〉
F∗1,2,ν

+∥∥B(t, Xν,ε
λ (t))− B(t, Xν,η

λ (t))
∥∥2
L2(L2(μ),F∗1,2,ν )

dt . (4.25)

The second term in the left hand-side of the above equality, by Eqs. 4.4, 2.7, and 2.5, is
equal to

2
〈
(�λ + λI )(Jε(X

ν,ε
λ (t)))− (�λ + λI )(Jη(X

ν,η
λ (t))), Jε(X

ν,ε
λ (t))− Jη(X

ν,η
λ (t))

〉
2dt

+ 2
〈
(ν − L)

(
(�λ + λI )(Jε(X

ν,ε
λ (s)))

)− (ν − L)
(
(�λ + λI )(Jη(X

ν,η
λ (s)))

)
,

ε(ν − L)
(
(�λ + λI )(Jε(X

ν,ε
λ (s)))

)− η(ν − L)
(
(�λ + λI )(Jη(X

ν,η
λ (s)))

)〉
F∗1,2,ν

dt . (4.26)

Taking Eq. 4.26 into Eq. 4.25, then taking expectation of both sides, we obtain for all
t ∈ [0, T ]

E sup
r∈[0,t]

‖Xν,ε
λ (r)− Xν,η

λ (r)‖2F∗1,2,ν

−2E
[

sup
r∈[0,t]

∣∣∣ ∫ r

0

〈
Xν,ε

λ (s)− Xν,η
λ (s), (B(s, Xν,ε

λ (s))− B(s, Xν,η
λ (s)))dW (s)

〉
F∗1,2,ν

∣∣∣]

+2E
∫ t

0

〈
(�λ + λI )

(
Jε(X

ν,ε
λ (s))

)
−(�λ + λI )

(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(X

ν,η
λ (s))

〉
2ds

≤ 2E
∫ T

0

∣∣〈(ν − L)
(
(�λ + λI )(Jε(X

ν,ε
λ (s)))

)− (ν − L)
(
(�λ + λI )(Jη(X

ν,η
λ (s)))

)
,

ε(ν − L)
(
(�λ + λI )(Jε(X

ν,ε
λ (s)))

)− η(ν − L)
(
(�λ + λI )(Jη(X

ν,η
λ (s)))

)〉
F∗1,2,ν

∣∣ds
+E

∫ t

0

∥∥B(s, Xν,ε
λ (s))− B(s, Xν,η

λ (s))
∥∥2
L2(L2(μ),F∗1,2,ν )

ds

≤ 3(ε + η)E

∫ T

0
‖(ν − L)(�λ + λI )(Jε(X

ν,ε
λ (s)))‖2F∗1,2,ν

+‖(ν − L)(�λ + λI )(Jη(X
ν,η
λ (s)))‖2F∗1,2,νds

+E
∫ t

0

∥∥B(s, Xν,ε
λ (s))− B(s, Xν,η

λ (s))
∥∥2
L2(L2(μ),F∗1,2,ν )

ds

≤ 3(ε + η)(
1

λ
+ λ+ C5)e

C3T |x |22 + E

∫ t

0
C1‖Xν,ε

λ (s)− Xν,η
λ (s)‖2F∗1,2,νds, (4.27)

where we used Proposition A.1 (see Appendix) and (H2)(i) in the last inequality. For the
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second term in the left hand-side of Eq. 4.27, by using the Burkholder-Davis-Gundy (BDG)
inequality for p = 1, we obtain for all t ∈ [0, T ],

E

[
sup

r∈[0,t]

∣∣∣ ∫ r

0

〈
Xν,ε

λ (s)− Xν,η
λ (s), (B(s, Xν,ε

λ (s))− B(s, Xν,η
λ (s)))dW (s)

〉
F∗1,2,ν

∣∣∣]

≤ E

[ ∫ t

0
‖Xν,ε

λ (s)− Xν,η
λ (s)‖2F∗1,2,ν · C1‖Xν,ε

λ (s)− Xν,η
λ (s)‖2F∗1,2,νds

] 1
2

≤ E

[
sup

r∈[0,t]
‖Xν,ε

λ (r)− Xν,η
λ (r)‖2F∗1,2,ν · C1

∫ t

0
‖Xν,ε

λ (s)− Xν,η
λ (s)‖2F∗1,2,νds

] 1
2

≤ 1

4
E sup

r∈[0,t]
‖Xν,ε

λ (r)− Xν,η
λ (r)‖2F∗1,2,ν + C1E

∫ t

0
‖Xν,ε

λ (s)− Xν,η
λ (s)‖2F∗1,2,νds. (4.28)

Substituting Eq. 4.28 into Eq. 4.27, we obtain
1

2
E sup

r∈[0,t]
‖Xν,ε

λ (r)− Xν,η
λ (r)‖2F∗1,2,ν

+2E
∫ t

0

〈
(�λ + λI )

(
Jε(X

ν,ε
λ (s))

)− (�λ + λI )
(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(X

ν,η
λ (s))

〉
2ds

≤ 3(ε + η)(
1

λ
+ λ+ C5)e

C3T |x |22 + 3C1E

∫ t

0
sup

r∈[0,s]
‖Xν,ε

λ (r)− Xν,η
λ (r)‖2F∗1,2,ν ds.

By Gronwall’s lemma, we obtain

E sup
t∈[0,T ]

‖Xν,ε
λ (t)− Xν,η

λ (t)‖2F∗1,2,ν

+4E
∫ t

0

〈
(�λ + λI )

(
Jε(X

ν,ε
λ (s))

)− (�λ + λI )
(
Jη(X

ν,η
λ (s))

)
, Jε(X

ν,ε
λ (s))− Jη(X

ν,η
λ (s))

〉
2ds

≤ 6(ε + η)(
1

λ
+ λ+ C)e(6C1+C3)T |x |22. (4.29)

Since by the monotonicity of�λ the second term on the left hand-side of inequality Eq. 4.29
is nonnegative, letting ε, η → 0, we see that {Xν,ε

λ } is Cauchy in L2(�;C([0, T ]; F∗1,2)).
From Claim 4.1, we know there exists X̃ ∈ L2(�;C([0, T ]; F∗1,2)) such that

lim
ε→0

Xν,ε
λ = X̃ in L2(�;C([0, T ]; F∗1,2)), (4.30)

Claim 4.2 X̃ = Xν
λ.

Proof We have

lim
ε→0

∫ ·

0
B(s, Xν,ε

λ (s))dW (s) =
∫ ·

0
B(s, X̃(s))dW (s) in L2(�;C([0, T ]; F∗1,2)),(4.31)

since by the BDG inequality for p = 1 and (H2)(i), we have

E sup
r∈[0,T ]

∥∥∥ ∫ r

0
(B(s, Xν,ε

λ (s))− B(s, X̃(s)))dW (s)
∥∥∥2
F∗1,2,ν

≤ CE

∫ T

0
‖B(s, Xν,ε

λ (s))− B(s, X̃(s))‖2L2(L2(μ),F∗1,2,ν )
ds

≤ CTE sup
s∈[0,T ]

‖Xν,ε
λ (s)− X̃(s)‖2F∗1,2,ν .
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Next we show that (�λ + λ)(X̃) ∈ L2((0, T ); L2(�; F1,2)) and that Eq. 4.1 is satisfied.
From Eq. 4.17 we know that {Xν,ε

λ } is bounded in L2((0, T )×�× E) and therefore along
a subsequence, again denoted by {ε}, we have

lim
ε→0

Xν,ε
λ = X̃ weakly in L2((0, T )×�× E). (4.32)

From Eqs. 4.4 and A.4, we know

E

∫ T

0
‖Xν,ε

λ (s)− Jε(X
ν,ε
λ (s))‖2F∗1,2,νds

= ε2E

∫ T

0
‖(ν − L)(�λ(Jε(X

ν,ε
λ (s)))+ λJε(X

ν,ε
λ (s)))‖2F∗1,2,νds

≤ ε

2
(
1

λ
+ λ+ C5)e

C3T |x |22, (4.33)

which yields,

lim
ε→0

Jε(X
ν,ε
λ ) = X̃ in L2((0, T ); L2(�; F∗1,2)).

Recall from Eq. 4.7 that

|Jε(Xν,ε
λ (t))|2 ≤ |Xν,ε

λ (t)|2, ∀t ∈ [0, T ].
Therefore, we infer by Eqs. 4.32 and 4.33 that

lim
ε→0

Jε(X
ν,ε
λ ) = X̃ , weakly in L2((0, T )×�× E). (4.34)

By the monotonicity of �λ, it follows from Eq. 4.29 that Jε(X
ν,ε
λ ), ε ∈ (0, 1], is Cauchy

in L2((0, T )×�× E), so the convergence in Eq. 4.34 is strong and thus

lim
ε→0

(�λ + λI )(Jε(X
ν,ε
λ )) = (�λ + λI )(X̃) in L2((0, T )×�× E),

since �λ + λI is Lipschitz.
From Eq. A.4, we know that (ν − L)(�λ + λI )(Jε(X

ν,ε
λ )), ε ∈ (0, 1], is bounded in

L2([0, T ]×�; F∗1,2), so (�λ+λI )(Jε(X
ν,ε
λ )) is bounded in L2([0, T ]; L2(�, F1,2)). Hence

there exists a subsequence, again denoted by {ε} such that
lim
ε→0

(�λ + λI )(Jε(X
ν,ε
λ )) = (�λ + λI )(X̃) weakly in L2([0, T ] ×�; F1,2). (4.35)

It is then easy to see that also

lim
ε→0

∫ ·

0
(�λ + λI )(Jε(X

ν,ε
λ (s)))ds =

∫ ·

0
(�λ + λI )(X̃(s))ds

weakly in L2([0, T ] ×�; F1,2), and thus

lim
ε→0

(ν − L)

∫ ·

0
(�λ + λI )Jε(X

ν,ε
λ (s))ds = (ν − L)

∫ ·

0
(�λ + λI )(X̃(s))ds

weakly in L2([0, T ] ×�; F∗1,2).
Consequently, taking into account Eqs. 4.30, 4.31, as ε → 0, we can pass to the weak

limit in L2([0, T ] ×�; F∗1,2) in the equation

Xν,ε
λ (t) = x + (ν − L)

∫ t

0
(�λ + λI )(Jε(X

ν,ε
λ (s)))ds +

∫ t

0
B(s, Xν,ε

λ (s))dW (s),
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and since each term is aP-a.s. continuous path in F∗1,2, we conclude that X̃ is a strong solution
to Eq. 4.1 in the sense of the definition in Lemma 3.1 of [36]. Furthermore, by the uniqueness
part of [36, Lemma 3.1], it follows that Xν

λ = X̃ a.e. in [0, T ] ×�× E .

It remains to prove Eq. 4.24. By Eqs. 4.17 and 4.20, we know that for fixed ν and λ, there
exists a subsequence denoted as {Xν,εn

λ }, εn ∈ (0, 1] and an element Y ν
λ ∈ L∞([0, T ]; (L2 ∩

L2m)(�× E)) such that as εn → 0,

Xν,εn
λ −→ Y ν

λ weakly in L∞([0, T ]; (L2 ∩ L2m)(�× E)),

hence also in L2([0, T ] ×�; L2(μ)) and in L2([0, T ] ×�; F∗1,2), but {Xν,εn
λ } is Cauchy in

L2(�;C([0, T ]; F∗1,2)) by Claim 4.1, therefore we have Y ν
λ = Xν

λ a.e. in [0, T ] × � × E .

Note that the above weak convergence also holds in L∞([0, T ]; L2m(�× E)), hence by the
(sequentially) weakly lower-semicontinuity of norms, letting ε → 0 in Eq. 4.20, we can get
Eq. 4.24. This completes the proof of Lemma 4.4.

Remark 4.1 By Lemma 4.4 we know that

Xν
λ(t) = x + (ν − L)

∫ t

0

(
�λ(X

ν
λ(s))+ λXν

λ(s)
)
ds +

∫ t

0
B(s, Xν

λ(s))dW (s), t ∈ [0, T ].

But, since Xν
λ = X̃ , by Eq. 4.35 we may interchange (ν − L) with the integral w.r.t. ds.

Let us now continue to prove Theorem 3.2. Choose 0 < ν ≤ ν0 ≤ 1, rewrite Eq. 4.1 as

dXν
λ(t)+ (ν0 − L)(�λ(X

ν
λ(t))+ λXν

λ(t))dt

= (ν0 − ν)(�λ(X
ν
λ(t))+ λXν

λ(t))dt + B(t, Xν
λ(t))dW (t).

Now by Remark 4.1 we may apply Itô’s formula ([26, Theorem 4.2.5] with V := L2(μ),
H := F∗1,2,ν0 ) to ‖Xν

λ − Xν′
λ ‖2F∗1,2,ν0 , ν, ν′ ∈ (0, ν0], to obtain for all t ∈ [0, T ], λ ∈ (0, 1],

‖Xν
λ(t)− Xν′

λ (t)‖2F∗1,2,ν0
+2
∫ t

0

∫
E

(
�λ(X

ν
λ(s))+ λXν

λ(s)−�λ(X
ν′
λ (s))− λXν′

λ (s)
) · (Xν

λ(s)− Xν′
λ (s))dμds

= 2
∫ t

0

〈
ν0
(
�λ(X

ν
λ(s))−�λ(X

ν′
λ (s))+ λXν

λ(s)− λXν′
λ (s)

)
, Xν

λ(s)− Xν′
λ (s)

〉
F∗1,2,ν0

ds

+2ν′
∫ t

0

〈
�λ(X

ν′
λ (s))+ λXν′

λ (s), Xν
λ(s)− Xν′

λ (s)
〉
F∗1,2,ν0

ds

−2ν
∫ t

0

〈
�λ(X

ν
λ(s))+ λXν

λ(s), Xν
λ(s)− Xν′

λ (s)
〉
F∗1,2,ν0

ds

+
∫ t

0
‖B(s, Xν

λ(s))− B(s, Xν′
λ (s))‖2L2(L2(μ),F∗1,2,ν0 )

ds

+2
∫ t

0

〈
Xν

λ(s)− Xν′
λ (s),

(
B(s, Xν

λ(s))− B(s, Xν′
λ (s))

)
dW (s)

〉
F∗1,2,ν0

. (4.36)

Since�λ is 1
λ
-Lipschitz,wehave�λ(r)−�λ(r ′)(r−r ′) ≥ λ|�λ(r)−�λ(r ′)|2,∀r , r ′ ∈ R,

then

2
∫ t

0

∫
E

(
�λ(X

ν
λ(s))+ λXν

λ(s)−�λ(X
ν′
λ (s))− λXν′

λ (s)
) · (Xν

λ(s)− Xν′
λ (s))ds

≥ 2λ
∫ t

0
|Xν

λ(s)− Xν′
λ (s)|22ds + 2λ

∫ t

0
|�λ(X

ν
λ(s))−�λ(X

ν′
λ (s))|22ds. (4.37)
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Since L2(μ) ⊂ F∗1,2 continuously, by Eq. 2.3 we have ‖u‖F∗1,2,ν0 ≤
1√
ν0
|u|2, ∀u ∈ L2(μ),

by Minkowski’s inequality and Young’s inequality, we get for all t ∈ [0, T ]

2
∫ t

0

〈
ν0
(
�λ(X

ν
λ(s))−�λ(X

ν′
λ (s))+ λXν

λ(s)− λXν′
λ (s)

)
, Xν

λ(s)− Xν′
λ (s)

〉
F∗1,2,ν0

ds

≤ 2ν0

∫ t

0
‖�λ(X

ν
λ(s))−�λ(X

ν′
λ (s))‖F∗1,2,ν0 · ‖X

ν
λ(s)− Xν′

λ (s)‖F∗1,2,ν0 ds

+2ν0λ
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds

≤ 2λ
∫ t

0
|�λ(X

ν
λ(s))−�λ(X

ν′
λ (s))|22ds +

ν0

2λ

∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds

+2ν0λ
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds. (4.38)

Using similar arguments as above and the fact that, by (H1) and Eq. 3.5, |�λ(r)| ≤
C(|r |m + 1{μ(E)<∞}), ∀r ∈ R with C independent of λ, we have for all t ∈ [0, T ]

2ν′
∫ t

0

〈
�λ(X

ν′
λ (s))+ λXν′

λ (s), Xν
λ(s)− Xν′

λ (s)
〉
F∗1,2,ν0

ds

−2ν
∫ t

0

〈
�λ(X

ν
λ(s))+ λXν

λ(s), Xν
λ(s)− Xν′

λ (s)
〉
F∗1,2,ν0

ds

≤ 2ν′

ν0

∫ t

0
|�λ(X

ν′
λ (s))|22 + λ|Xν′

λ (s)|22ds +
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds

+2ν

ν0

∫ t

0
|�λ(X

ν
λ(s))|22 + λ|Xν

λ(s)|22ds +
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds

≤ 2ν′

ν0

∫ t

0
C
(|Xν′

λ (s)|2m2m + μ(E) · 1{μ(E)<∞}
)+ λ|Xν′

λ (s)|22ds

+2ν

ν0

∫ t

0
C
(|Xν

λ(s)|2m2m + μ(E) · 1{μ(E)<∞}
)+ λ|Xν

λ(s)|22ds

+2
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds

≤ 2(ν + ν′)(C + λ)

ν0

∫ t

0
|Xν′

λ (s)|2m2m + |Xν
λ(s)|2m2m + |Xν′

λ (s)|22 + |Xν
λ(s)|22 + μ(E) · 1{μ(E)<∞}ds

+2
∫ t

0
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0 ds. (4.39)

Taking expectation to both sides of Eq. 4.36, by the BDG inequality for p = 1, taking
(H2)(i), Eqs. 4.37-4.39, 4.24 into account, we obtain for all t ∈ [0, T ]

1

2
E

[
sup

s∈[0,t]
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0

]
+ 2λE

∫ t

0
|Xν

λ(s)− Xν′
λ (s)|22ds

≤ (C + λ)(ν + ν′)CT

ν0

(|x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}
)

+
( ν0

2λ
+ 2ν0λ+ C

)
E

∫ t

0
sup

r∈[0,s]
‖Xν

λ(r)− Xν′
λ (r)‖2F∗1,2,ν0 ds.
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Hence by Gronwall’s lemma, we have for some CT ,λ ∈ (0,∞)

E

[
sup

s∈[0,T ]
‖Xν

λ(s)− Xν′
λ (s)‖2F∗1,2,ν0

]
+ 2λE

∫ T

0
|Xν

λ(s)− Xν′
λ (s)|22ds

≤ CT ,λ(ν + ν′)
ν0

(|x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}
)
, ∀ν, ν′ ∈ (0, ν0]. (4.40)

Hence there exists an (Ft )t≥0-adapted process

Xλ ∈ L2(�;C([0, T ]; F∗1,2)) ∩ L2((0, T )×�× E), (4.41)

such that

lim
ν→0

{
E

[
sup

s∈[0,T ]
‖Xν

λ(s)− Xλ(s)‖2F∗1,2,ν0
]
+ 2λE

∫ T

0
|Xν

λ(s)− Xλ(s)|22ds
}
= 0. (4.42)

Consequently, by (H2)(i) we can pass to the limit with ν → 0 in Eq. 4.1 to obtain

Xλ(t) = x − lim
ν→0

(ν − L)

∫ t

0
�λ(X

ν
λ(s))+ λXν

λ(s)ds

+
∫ t

0
B(s, Xλ(s))dW (s), t ∈ [0, T ], (4.43)

where the limit exists in L2(�;C([0, T ]; F∗1,2)). Furthermore, it follows by Eq. 4.42, since
�λ is Lipschitz, that

lim
ν→0

∫ ·

0
�λ(X

ν
λ(s))+ λXν

λ(s)ds =
∫ ·

0
�λ(Xλ(s))+ λXλ(s)ds, (4.44)

in L2(�;C([0, T ]; L2(μ))), hence in L2(�;C([0, T ]; F∗1,2)). Writing ν − L = (1 −
L) + (ν − 1)I , Eqs. 4.43 and 4.44 imply that the convergence in Eq. 4.44 holds even in
L2(�;C([0, T ]; F1,2)) and that the second term on the right hand-side of Eq. 4.43 is equal
to

L
∫ t

0
�λ(Xλ(s))+ λXλ(s)ds,

which together with Eq. 4.41 show that Xλ is a solution of Eq. 3.8 in the sense of Definition
3.1 in [36] with state space F∗1,2.

Now let us prove that, since x ∈ F ∗
e (⊂ F∗1,2), which so far we have not used, that Xλ is

indeed a solution of Eq. 3.8 on the smaller state spaceF ∗
e and that Eqs. 3.9-3.12 hold. Note

that Eq. 3.7 trivially holds, since the convergence in Eq. 4.44 is in L2(�;C([0, T ]; F1,2))
and since F1,2 ⊂ Fe continuously.

To prove Eq. 3.9, we observe that by Eq. 4.42 it follows that as ν → 0, Xν
λ → Xλ in

dt⊗P⊗dμ-measure.Hencewehave byFatou’s lemmaandEq. 4.24 for allϕ ∈ L1([0, T ];R)∫ T

0
|ϕ(t)|E|Xλ(t)|2m2mdt ≤ lim

ν→0
inf
∫ T

0
|ϕ(t)|E|Xν

λ(t)|2m2mdt
≤ |ϕ|L1([0,T ];R)C |x |2m2m,

which implies Eq. 3.9. Now Eq. 3.10 follows by (H1).
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To prove Eq. 3.11, applying Itô’s formula ([26, Theorem 4.2.5] with V := L2(μ), H :=
F∗1,2,ν0 ) to ‖Xν

λ(t)‖2F∗1,2,ν0 , for all t ∈ [0, T ], we have

‖Xν
λ(t)‖2F∗1,2,ν0 + 2

∫ t

0

∫
E

(
�λ(X

ν
λ(s))+ λXν

λ(s)
) · Xν

λ(s)dμds

= ‖x‖2F∗1,2,ν0 + 2
∫ t

0

〈
(ν0 − ν)

(
�λ(X

ν
λ(s))+ λXν

λ(s)
)
, Xν

λ(s)
〉
F∗1,2,ν0

ds

+2
∫ t

0

〈
Xν

λ(s), B(s, Xν
λ(s))dW (s)

〉
F∗1,2,ν0

+
∫ t

0
‖B(s, Xν

λ(s))‖L2(L2(μ),F∗1,2,ν0 ).(4.45)

Since �λ is monotone,

2
∫ t

0

∫
E

(
�λ(X

ν
λ(s))+ λXν

λ(s)
) · Xν

λ(s)dμds ≥ 2λ
∫ t

0
|Xν

λ(s)|22ds. (4.46)

Since ‖u‖F∗1,2,ν0 ≤
1√
ν0
|u|2, ∀u ∈ L2(μ), by Minkowski’s inequality, Young’s inequality

and |�λ(r)| ≤ C(|r |m + 1{μ(E)<∞}), ∀r ∈ R with C independent of λ, we get for all
t ∈ [0, T ], λ ∈ (0, 1], ν ∈ (0, ν0] with ν0 ∈ (0, 1] that

2
∫ t

0

〈
(ν0 − ν)

(
�λ(X

ν
λ(s))+ λXν

λ(s)
)
, Xν

λ(s)
〉
F∗1,2,ν0

ds

≤ 2
∫ t

0

ν0 − ν√
ν0

|�λ(X
ν
λ(s))+ λXν

λ(s)|2 · ‖Xν
λ(s)‖F∗1,2,ν0 ds

≤ 2
∫ t

0

√
ν0
(|�λ(X

ν
λ(s))|2 + λ|Xν

λ(s)|2
) · ‖Xν

λ(s)‖F∗1,2,ν0 ds

≤ 2
∫ t

0
|�λ(X

ν
λ(s))|22 + |Xν

λ(s)|22ds +
∫ t

0
‖Xν

λ(s)‖2F∗1,2,ν0 ds

≤ C
∫ t

0
|Xν

λ(s)|2m2m + |Xν
λ(s)|22 + μ(E) · 1{μ(E)<∞}ds +

∫ t

0
‖Xν

λ(s)‖2F∗1,2,ν0 ds.(4.47)

Taking expectation to both sides of Eq. 4.45, and taking Eqs. 4.46 and 4.47 into Eq. 4.45,
by exactly the same arguments as in the proof of Eq. 4.40, except for using (H2)(ii) instead
of (H2)(i), we obtain

E

[
sup

s∈[0,T ]
‖Xν

λ(s)‖2F∗1,2,ν0
]
+ λE

∫ T

0
|Xν

λ(s)|22ds

≤ CT
(‖x‖2F∗1,2,ν0 + |x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}

)
, ∀λ ∈ (0, 1], ν ∈ (0, ν0].

Hence we get by Fatou’s lemma

E

[
sup

t∈[0,T ]
‖Xλ(t)‖2F∗1,2,ν0

]
+ λE

∫ T

0
|Xλ(s)|22ds

≤ CT
(‖x‖2F∗1,2,ν0 + |x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}

)
, ∀λ ∈ (0, 1]. (4.48)

Letting ν0 → 0 and taking Eq. 2.2 into account, we get

E

[
sup

t∈[0,T ]
‖Xλ(t)‖2F ∗

e

]
+ λE

∫ T

0
|Xλ(s)|22ds

≤ CT
(‖x‖2F ∗

e
+ |x |2m2m + |x |22 + μ(E) · 1{μ(E)<∞}

)
, ∀λ ∈ (0, 1],
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hence Eq. 3.11 follows.
Now let us prove that Xλ is a solution to Eq. 3.4 with state space F ∗

e . By Eq. 3.7 and
Lemma 2.2, we have

L
∫ ·

0
�λ(Xλ(s))+ λXλ(s)ds ∈ L2(�;C([0, T ];F ∗

e )).

Furthermore, letting ν → 0 in (H2)(ii), we conclude from Eq. 4.48 that the stochastic
integral in Eq. 3.8 is in L2(�;C([0, T ];F ∗

e )) as well. Since x ∈ F ∗
e , Eq. 3.8 (which holds

in F∗1,2) implies that Xλ ∈ L2(�;C([0, T ];F ∗
e )). So, altogether this implies that Xλ is a

strong solution of Eq. 3.4 with state space F ∗
e in the sense of Eqs. 3.6-3.8.

Now finally we prove Eq. 3.12. Firstly, we have

d(Xν
λ(t)− Xν

λ′(t))+ (ν0 − L)
(
�λ(X

ν
λ(t))−�λ′(X

ν
λ′(t))+ λXν

λ(t)− λ′Xν
λ′(t))

)
dt

+(ν − ν0)
(
�λ(X

ν
λ(t))−�λ′(X

ν
λ′(t))+ λXν

λ(t)− λ′Xν
λ′(t))

)
dt

= (B(t, Xν
λ(t))− B(t, Xν

λ′(t))
)
dW (t).

By Remark 4.1 we may apply Itô’s formula ([26, Theorem 4.2.5] with V := L2(μ),
H := F∗1,2,ν0 ) to

1
2‖Xν

λ − Xν
λ′ ‖2F∗1,2,ν0 , to obtain for ν ∈ (0, ν0], t ∈ [0, T ],

1

2
‖Xν

λ(t)− Xν
λ′(t)‖2F∗1,2,ν0

+
∫ t

0

∫
E

(
�λ(X

ν
λ(s))+ λXν

λ(s)−�λ′(X
ν
λ′(s))− λ′Xν

λ′(s)
) · (Xν

λ(s)− Xν
λ′(s))dμds

+(ν−ν0)

∫ t

0

〈
�λ(X

ν
λ(s))+λXν

λ(s)−�λ′(X
ν
λ′(s))−λ′Xν

λ′(s), X
ν
λ(s)−Xν

λ′(s)
〉
F∗1,2,ν0

ds

= 1

2

∫ t

0

∥∥B(s, Xν
λ(s))− B(s, Xν

λ′(s))
∥∥2
L2(L2(μ),F∗1,2,ν0 )

ds

+
∫ t

0

〈
Xν

λ(s)− Xν
λ′(s), (B(s, Xν

λ(s))− B(s, Xν
λ′(s)))dW (s)

〉
F∗1,2,ν0

. (4.49)

Since r = λ�λ(r)+ (I + λ�)−1(r), for all r ∈ R, we have for all r ′ ∈ R

(�λ(r)−�λ′(r
′))(r − r ′) = [�λ(r)−�λ′(r

′)
] · [(I + λ�)−1(r)− (I + λ′�)−1(r ′)

]
+[�λ(r)−�λ′(r

′)
] · [λ�λ(r)− λ′�λ′(r

′)
]
. (4.50)

Note that the first summand in the right hand-side is nonnegative since � is maximal
monotone and since �λ(r) ∈ �((I + λ�)−1(r))(see [3, page:61]). Plugging Eq. 4.50 into
Eq. 4.49, and using that ‖·‖F∗1,2,ν0 ≤

1√
ν0
|·|2 and (H2)(i), we obtain for ν ∈ (0, ν0], t ∈ [0, T ]

1

2
‖Xν

λ(t)− Xν
λ′ (t)‖2F∗1,2,ν0

+
∫ t

0

∫
E

(
�λ(X

ν
λ(s))−�λ′ (X

ν
λ′ (s))

) · (λ�λ(X
ν
λ(s))− λ′�λ′ (X

ν
λ′ (s))

)
dμds

+
∫ t

0

∫
E

(
λXν

λ(s)− λ′Xν
λ′ (s)

) · (Xν
λ(s)− Xν

λ′ (s)
)
dμds

≤ (ν0 − ν)√
ν0

∫ t

0

∣∣�λ(X
ν
λ(s))+ λXν

λ(s)−�λ′ (X
ν
λ′ (s))− λ′Xν

λ′ (s)
∣∣
2 ·
∥∥Xν

λ(s)− Xν
λ′ (s)

∥∥
F∗1,2,ν0

ds
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+C1

2

∫ t

0
‖Xν

λ(s)− Xν
λ′ (s)‖2F∗1,2,ν0 ds

+
∫ t

0

〈
Xν

λ(s)− Xν
λ′ (s), (B(s, Xν

λ(s))− B(s, Xν
λ′ (s)))dW (s)

〉
F∗1,2,ν0

.

By the BDG inequality for p = 1 we get for all λ, λ′∈ (0, 1], t ∈ [0, T ]
1

4
E

[
sup

s∈[0,t]
‖Xν

λ(s)− Xν
λ′(s)‖2F∗1,2,ν0

]

≤ C(λ+ λ′ + ν0)E

∫ t

0

(|�λ(X
ν
λ(s))|22 + |�λ′(X

ν
λ′(s))|22 + |Xν

λ(s)|22 + |Xν
λ′(s)|22

)
ds

+CE

∫ t

0
sup

r∈[0,s]
‖Xν

λ(r)− Xν
λ′(r)‖2F∗1,2,ν0 ds.

Hence by (H1), Eq. 4.24 and Gronwall’s lemma, there exists CT ∈ (0,∞) independent
of ν0, such that for all ν ∈ (0, ν0], λ, λ′ ∈ (0, 1],

E

[
sup

t∈[0,T ]
‖Xν

λ(t)− Xν
λ′(t)‖2F∗1,2,ν0

]
≤ CT (λ+ λ′ + ν0)(|x |22 + |x |2m2m + μ(E) · 1{μ(E)<∞}).

Then letting ν → 0, we obtain

E

[
sup

t∈[0,T ]
‖Xλ(t)− Xλ′(t)‖2F∗1,2,ν0

]
≤ CT (λ+ λ′ + ν0)(|x |22 + |x |2m2m + μ(E) · 1{μ(E)<∞}), (4.51)

so by letting ν0 → 0 in Eq. 4.51 and taking into account Eq. 2.2 we obtain Eq. 3.12.
Consequently, Theorem 3.2 is proved.

5 Proof of Theorem 3.1

After all our preparations, to deduce that the solution Xλ, λ ∈ (0, 1], of Eq. 3.4 as λ → 0
converges to the unique solution of Eq. 1.1 is now in principle quite standard (at least for
experts on stochastic porous media equations), maybe except for proving Eq. 3.3. Since,
however, there is no proof in the literature that covers our general case, we give a complete
presentation of the arguments in this section.

Proof Let Xλ be as in Theorem 3.2. Then it follows by Theorem 3.2 that there exists a process
X ∈ L2(�;C([0, T ];F ∗

e )) such that, as λ → 0,

Xλ → X strongly in L2(�;C([0, T ];F ∗
e )),

Xλ → X weak-star in L∞([0, T ]; (L2 ∩ L2m)(�× E)) ⊂ L∞([0, T ]; Lm+1(�× E)),

λXλ → 0 strongly in L2([0, T ] ×�× E), (5.1)

�λ(Xλ) → η weakly in L
2
m ([0, T ] ×�× E) ∩ L2([0, T ] ×�× E) ⊂ L

m+1
m ([0, T ] ×�× E).
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Note that�λ(Xλ) → η weakly in L2([0, T ]×�×E) since Eq. 3.10, also in L
2
m ([0, T ]×

�× E) since by Eqs. 3.5, 3.1, 4.17 and the weakly lower-semicontinuity of norms one has

E

∫ T

0

∫
E
|�λ(Xλ(t))| 2m dμdt

≤ E

∫ T

0

∫
E
|�(Xλ(t))| 2m dμdt

≤ E

∫ T

0

∫
E
C

2
m (|Xλ(t)|m + 1{μ(E)<∞})

2
m dμdt

≤ E

∫ T

0

∫
E
C

2
m · 2(|Xλ(t)|2 + 1{μ(E)<∞})dμdt

≤ Cm,T ,C3(|x |22 + 1{μ(E)<∞}),

where Cm,T ,C3 is dependent on m, T and C3 in Eq. 4.17, but independent of λ. Therefore,

�λ(Xλ) → η weakly in L
m+1
m ([0, T ] ×�× E) by interpolation.

By Eq. 5.1 and (H2)(i) we may take the limit λ → 0 in Eq. 3.8 in L2(�;C([0, T ];F ∗
e ))

to obtain that

X = x + lim
λ→0

L
∫ ·

0
�λ(Xλ(s))+ λXλ(s)ds +

∫ ·

0
B(s, X(s))dW (s), (5.2)

where we have used that by Eq. 2.2 we may take the limit ν0 → 0 in (H2)(i). By Lemma 2.2
we conclude that

lim
λ→0

∫ ·

0
�λ(Xλ(s))+ λXλ(s)ds (5.3)

exists in L2(�;C([0, T ];Fe)), hence by (L.1) in L2(�;C([0, T ]; L1(g ·μ))) for some g ∈
L1(μ)∩L∞(μ), g > 0. Hence the limit in Eq. 5.3 coincides with the limit in dt ⊗ dP ⊗ dμ-
measure. Therefore,

∫ ·
0 η(s)ds ∈ L2(�;C([0, T ];Fe)) and Eq. 5.2 implies

X(t) = x + L
∫ t

0
η(s)ds +

∫ t

0
B(s, X(s))dW (s), t ∈ [0, T ]. (5.4)

Hence X(t), t ∈ [0, T ], is a solution to Eq. 1.1 in the sense of Definition 3.1 if we can
show that

η ∈ �(X), dt ⊗ P⊗ μ− a.e..

For this it suffices to show that

lim
λ→0

supE
∫ T

0

∫
E

�λ(Xλ)Xλdμdt ≤ E

∫ T

0

∫
E

ηXdμdt . (5.5)

Indeed, since �λ = ∂ jλ, i.e. �λ is the subdifferential of jλ (cf. [3, page:7]), where jλ is
as in Eq. 5.9, we have for all λ ∈ (0, 1]

E

∫ T

0

∫
E

�λ(Xλ)(Xλ − Z)dμdt ≥ E

∫ T

0

∫
E
jλ(Xλ)− jλ(Z)dμdt, (5.6)

for all Z ∈ Lm+1((0, T )×�×E), since Xλ ∈ (L2∩L2m)((0, T )×�×E) ⊂ Lm+1((0, T )×
�× E),�λ(Xλ) ∈ (L

2
m ∩ L2)((0, T )×�× E) ⊂ L

m+1
m ((0, T )×�× E).
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Let �0 : R→ R be defined by (see [3, page: 54]),

�0(r) = {y ∈ �(r); |y| = inf{|z|; z ∈ �(r)}}, ∀r ∈ R,

�0 is monotonically increasing. Define the integral (see [3, page:54])

j(r) :=
∫ r

0
�0(s)ds, ∀r ∈ R,

the function j is continuous on (0, r) and convex on R satisfying � = ∂ j

0 ≤ j(r) ≤ r�0(r), ∀r ∈ R, (5.7)

and from [3, page:41, Proposition 2.3]

lim
λ→0

�λ(r) = �0(r), ∀r ∈ R. (5.8)

Recall from [3, page:48, Theorem 2.9] that �λ = ∂ jλ with

jλ(r) := inf
{ |r − r |2

2λ
+ j(r); r ∈ R

}
, ∀r ∈ R. (5.9)

Moreover,

jλ ≥ 0,

lim
λ→0

jλ(r) = j(r),∀r ∈ R, (5.10)

jλ(r) ≤ j(r),∀r ∈ R. (5.11)

Consequently, for all Z ∈ Lm+1((0, T )×�× E)

lim
λ→0

supE
∫ T

0

∫
E
jλ(Xλ)− jλ(Z)dμdt ≥ E

∫ T

0

∫
E
j(X)− j(Z)dμdt . (5.12)

Indeed, by Eqs. 5.7, 5.11 and (H1)

| jλ(z)| ≤ C(|z|m+1 + |z| · 1{μ(E)<∞}),

hence by Lebesgue’s dominated convergence theorem and Eq. 5.10

lim
λ→0

E

∫ T

0

∫
E
jλ(Z)dμdt = E

∫ T

0

∫
E
j(Z)dμdt .

Furthermore, by Eqs. 3.5, 5.8, (H1) and because X ∈ L2m((0, T ) × � × E) we have as
λ → 0, �λ(X) → �0(X) in L2((0, T )×�× E), hence

lim
λ→0

supE
∫ T

0

∫
E
jλ(Xλ)− j(X)dμdt

= lim
λ→0

supE
∫ T

0

∫
E
jλ(Xλ)− jλ(X)dμdt

≥ lim
λ→0

supE
∫ T

0

∫
E

�λ(X)(Xλ − X)dμdt

= 0.

Hence by Eqs. 5.5, 5.6, and 5.12, we have ∀Z ∈ Lm+1((0, T )×�× E),

E

∫ T

0

∫
E

η(X − Z)dμdt ≥ E

∫ T

0

∫
E

(
j(X)− j(Z)

)
dμdt .
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This yields

E

∫ T

0

∫
E

η(X − Z)dμdt ≥ E

∫ T

0

∫
E

ζ(X − Z)dμdt, (5.13)

for all Z ∈ Lm+1((0, T )×�× E) and ζ ∈ L
m+1
m ((0, T )×�× E) such that ζ ∈ �(Z) a.e.

on (0, T )×�× E .
By virtue of assumption (H1), � is maximal monotone in Lm+1((0, T ) × � × E) ×

L
m+1
m ((0, T )×�× E), so by [3, page:34, Theorem 2.2] one knows that the equation

J (Z)+�(Z) � J (X)+ η, (5.14)

where J (Z) = |Z |m−1Z , has a unique solution Z ∈ Lm+1((0, T )×�× E).
Now if in Eq. 5.13, we take Z to be the solution of Eq. 5.14 and ζ := J (X)− J (Z)+ η,

we obtain

E

∫ T

0

∫
E
(J (X)− J (Z))(X − Z)dμdt ≤ 0,

i.e.,

E

∫ T

0

∫
E
(|X |m−1X − |Z |m−1Z)(X − Z)dμdt ≤ 0.

Since J : r → |r |m−1r is strictly increasing, it follows that

E

∫ T

0

∫
E
((|X |m−1X − |Z |m−1Z)(X − Z)dμdt = 0.

Hence X = Z a.e. on (0, T )×�×E , and thus by Eq. 5.14, we have η ∈ �(X),P⊗dt⊗μ,
a.e..

It remains to prove Eq. 5.5. In order to apply the Itô formula from [26, Theorem 4.2.5] to
the equations Eqs. 3.4 and 5.4, we need to use an appropriate Gelfand triple. Recall a special
case of [34, Proposition 3.1] that

Fe ∩ L
m+1
m (μ) is dense both in Fe and L

m+1
m (μ). (5.15)

Define

V := {u ∈ Lm+1(μ)|∃ C ∈ (0,∞) such that |μ(uv)| ≤ C‖v‖F e , ∀ v ∈ Fe ∩ L
m+1
m (μ)}.

By Eq. 5.15, V is a subspace ofF ∗
e and can be symbolically written as V = Lm+1(μ)∩F ∗

e .
We note that V is reflexive, since Lm+1(μ) andF ∗

e are reflexive, hence so is Lm+1(μ)×F ∗
e .

But

V � u 	→ (u, μ(u ·)) ∈ Lm+1 ×F ∗
e

is a homeomorphic isomorphism, mapping V onto a closed subspace of Lm+1 ×F ∗
e , which

is reflexive.
Recall special cases of [34, Proposition 3.1] and [34, Lemma 3.3(ii)] that

V is dense both in F ∗
e and Lm+1(μ), (5.16)

and for themap L := L : Fe → F ∗
e defined inLemma2.2we have for all v ∈ Fe∩L m+1

m (μ),
u ∈ V ,

〈Lv, u〉F ∗
e
= −μ(vu).
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Now we set H := F ∗
e and consider the Gelfand triple

V ⊂ H ⊂ V ∗.

Consider the operator

L : Fe ∩ L
m+1
m (μ) → F ∗

e ⊂ V ∗,

as V ∗-valued, i.e., Lv = −μ(v ·) ∈ V ∗. Then by Eq. 5.16, L is continuous w.r.t. the norm

| · |m+1
m

on Fe ∩ L
m+1
m (μ), hence by Eq. 5.15 has a unique continuous linear extension

L̃ : L m+1
m (μ) → V ∗,

such that

V ∗ 〈L̃v, u〉V = μ(vu), ∀v ∈ L
m+1
m (μ), u ∈ V . (5.17)

Now we consider Eq. 5.4 in the large space V ∗. Then, since η ∈ L
m+1
m ([0, T ] ×�× E),

L
∫ t

0
η(s)ds = L̃

∫ t

0
η(s)ds =

∫ t

0
L̃η(s)ds ∈ V ∗,

so

X(t) = x +
∫ t

0
L̃η(s)ds +

∫ t

0
B(s, X(s))dW (s), t ∈ [0, T ],

hence by the Itô formula from [26, Theorem 4.2.5] with the Gelfand triple V = Lm+1(μ) ∩
F ∗

e ⊂ F ∗
e ⊂ V ∗, we have

1

2
E‖X(t)‖2F ∗

e
+ E

∫ t

0

∫
E

η · X(s)dμds

= 1

2
‖x‖2F ∗

e
+ 1

2
E

∫ t

0
‖B(s, X(s))‖2L2(L2(μ),F ∗

e )
ds. (5.18)

By similar arguments (a special case with m = 1) we get for Eq. 3.4

Xλ(t) = x +
∫ t

0
L̃(�λ(Xλ(s))+ λXλ(s))ds +

∫ t

0
B(s, Xλ(s))dW (s), t ∈ [0, T ],

hence

1

2
E‖Xλ(t)‖2F ∗

e
− E

∫ t

0
V ∗
〈
L̃
(
�λ(Xλ(s))+ λXλ(s)

)
, Xλ(s)

〉
V ds

= 1

2
‖x‖2F ∗

e
+ 1

2
E

∫ t

0
‖B(s, Xλ(s))‖2L2(L2(μ),F ∗

e )
ds. (5.19)

By Eq. 5.17, we know that

− V ∗
〈
L̃
(
�λ(Xλ(s))+ λXλ(s)

)
, Xλ(s)

〉
V =

∫
E

(
�λ(Xλ(s))+ λXλ(s)

) · Xλ(s)dμ.(5.20)

Letting λ → 0 in Eq. 5.19 after plugging in Eq. 5.20, using Eq. 5.2 and comparing with
Eq. 5.18, we obtain Eq. 5.5 (even with “=” replacing “≤”).
(Uniqueness) Suppose X1, X2 are two strong solutions to Eq. 1.1. We have with L̃ that{

d(X1 − X2)− L̃(η1 − η2)dt = (B(t, X1)− B(t, X2))dW (t), in [0, T ] × E,

X1 − X2 = 0 on E,
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where ηi ∈ �(Xi ), i = 1, 2, a.e. on �× (0, T )× E .
As above we may apply Itô’s formula from [26, Theorem 4.2.5] with the same Gelfand

triple as used in Eq. 5.18 to get

1

2
d‖X1 − X2‖2F ∗

e
− V ∗

〈
L̃(η1 − η2), X1 − X2

〉
V dt

= 1

2

∥∥B(t, X1)− B(t, X2)
∥∥2
L2(L2(μ),F ∗

e )
dt

+〈X1 − X2, (B(s, X1)− B(s, X2))dWt
〉
F ∗

e
. (5.21)

Since � is monotone, by Eq. 5.17 we have

E

∫ T

0
V ∗
〈− L̃(η1 − η2), X1 − X2

〉
V dt

= E

∫ T

0

∫
E
(η1 − η2) · (X1 − X2)dμdt ≥ 0. (5.22)

Therefore, integrating Eq. 5.21 from 0 to t and taking expectation, by Eq. 5.22 and Remark
3.1 (i), we obtain

E‖X1 − X2‖2F ∗
e
≤ C1

∫ t

0
E‖X1 − X2‖2F ∗

e
ds, ∀t ∈ [0, T ],

and by Gronwall’s inequality we get X1 = X2, P−a.s.. Thus Theorem 3.1 is proved.

6 Applications

Example 6.1 (Example for �) Recall a known fact from [3, page:54]: if �̃ : R → R is an
increasing function and if {ri |i ∈ N} ⊂ R is the set of all r ∈ R for which �̃ is discontinuous
in r , then one gets a maximal monotone multivalued function � : R → 2R by filling the
gaps, i.e., define

�(r) :=
{

�̃(r), for r /∈ {ri |i ∈ N},
[�̃(r j − 0), �̃(r j + 0)], else.

A concrete example of maximal monotone multivalued � satisfying (H1) could be con-
structed as following: for m ∈ [1,∞), define

�(r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|r + 2|m−1(r + 2)− 2, if r ∈ (−∞,−2],
−2, if r ∈ (−2,−1),
[−2,−1], if r = −1,
|r |m−1r , if r ∈ (−1, 1),
[1, 2], if r = 1,
2, if r ∈ (1, 2),
|r − 2|m−1(r − 2)+ 2, if r ∈ [2,∞).

Hence our result covers non-continuous nonlinearities �, as is indicated in the title of the
paper.

Another typical example for � satisfying (H1) is

�(r) := |r |γ sign(r), ∀r ∈ R, γ ∈ [0, 1],
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where sign : R→ 2R is defined as

sign(r) :=
⎧⎨
⎩

1, if r > 0,
[−1, 1], if r = 0,
−1, if r < 0,

if L = � on an open bounded domain of Rd (d ≥ 3), then Eq. 1.1 corresponds to the fast
diffusion equation (FDE) perturbed by multiplicative noise and the special case γ = 0 is
related to the SOC model (see [2]) mentioned in the introduction. Applications of the FDE
have been proposed in different areas. The equation appears in plasma physics. One behavior
of the solution to FDE is it decays to zero in finite time. The equation in dimensions d ≥ 3
with exponent γ = d−2

d+2 has an important application in geometry (the Yamabe flow) (see

[40, Section 7.5]), while the Okuda-Dawson law corresponds to γ = 1
2 (see [30]), for more

mathematical studies of the (stochastic) FDE we refer to [17, 20, 34] and references therein.

Example 6.2 (Example for B) For the convenience of the reader, here we recall that there is a
standard large class of example for B already described in [35, page: 3914, Remark 2.9(iii)],
which satisfy (H2) and (H3). Let N ∈ N ∪ {+∞} and ek ∈ L2(μ) ∩ L∞(μ), 1 ≤ k < N ,
be an orthonormal system in L2(μ) such that for every 1 ≤ k < N there exists ξk ∈ (0,∞)

such that for all ν ∈ (0,∞)

|F∗1,2〈x, eku〉F1,2 | ≤ ξk‖x‖F∗1,2,ν‖u‖F1,2,ν , ∀ u ∈ F1,2, x ∈ F∗1,2.

The above assumption means that each ek is a multiplier in (F∗1,2, ‖ · ‖F∗1,2,ν ) with norm
independent of ν > 0. Choose μk ∈ (0,∞) such that

∞∑
k=1

μ2
k(ξ

2
k + |ek |2∞) < ∞, (6.1)

and define for x ∈ F∗1,2, B(x) ∈ L2(L2(μ), F∗1,2) by

B(x)h :=
∞∑
k=1

μk〈ek, h〉x · ek, h ∈ L2(μ). (6.2)

By extending {ek |k ∈ N} to an orthonormal basis of L2(μ), we can get (H2)(ii) as in [35,
page:3915], (H2)(i) follows from the linearity of B(x). From Eqs. 6.1 and 6.2, (H3)(i) and
(H3)(ii) are obvious.

Example 6.3 (Example for local E ) Suppose (E , F1,2) is a local transient Dirichlet form
with generator L such that it admits a carré du champ � ([11, Definition 4.1.2]), which is a
unique positive symmetric and continuous bilinear map from F1,2 × F1,2 into L1(μ) such
that

E (uw, v)+ E (vw, u)− E (w, uv) =
∫

w�(u, v)dμ, ∀u, v, w ∈ F1,2.

From [11, Propostion 6.1.1], we know that then

E (u, v) = 1

2

∫
�(u, v)dμ, u, v ∈ F1,2, (6.3)

which implies (H4)(i).
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By [11, Corollary 7.1.2], we know that for every Lipschitz function ϕ : R → R which
satisfies ϕ(0) = 0,

�(ϕ(u), v) = ϕ′(u)�(u, v), ∀ u, v ∈ F1,2,

where ϕ′ is any version of the derivatives (defined Lebesgue-a.e.) of ϕ. Furthermore, if ϕ is
nondecreasing, then

�(u, ϕ(u)) = ϕ′(u)�(u, u) ≥ 0, ∀ u ∈ F1,2,

and

�(ϕ(u), ϕ(u)) = ϕ′(u)�(u, ϕ(u)) ≤ esssupr∈R ϕ′(r)�(u, ϕ(u)), ∀ u ∈ F1,2,

which implies (H4)(ii).
There is an abundance of examples of such Dirichlet forms on very general state spaces E ,

as e.g. finite or infinite dimensional manifolds. A typical example is the Ornstein- Uhlenbeck
operator on theWiener space ([11, page:83, Proposition 2.3.2]), formore details and examples
we refer e.g. to [11, 15, 28] and also [21]. In the following, we briefly cite an example of
manifold-valued transient Dirichlet form from [32].

Let M̃ be a C∞ manifold and let μ be a measure with positive C∞ density with respect
to the Lebesgue measure on each local chart. If (�i ; 1 ≤ i ≤ q) are C∞ vector fields, we
can consider the operator

�(u, v) =
q∑

i=1
(�i u)(�iv)

and the form Ẽ associated by Eq. 6.3.We can close this form and obtain a Dirichlet space D̃. If
nowM is an open subset of M̃ , one can let (E ,D) be the part of (Ẽ , D̃) onM ; this is the subset
of functions, a quasicontinuous modification of which is zero on M̃\M . If Ẽ is irreducible
and M̃\M has positive capacity, then E is transient. For more details and explanations, we
refer to [32, page:57, Example 1] (see also [32, page:57, Example 2] for the example on
Riemannian manifold).

Example 6.4 (Example for nonlocal E ) As is well-known, under quite general assumptions
according to the Beurling-Deny representation formula a Dirichlet can be written as the sum
of a local Dirichlet form E (1) (i.e. if it has a square field operator, it satisfies Eq. 6.4) and
a non-local part E (2) (see [15, Section 3.2] or [22] for details). A typical form of E (2) is as
follows

E (2)(u, v) =
∫
E

∫
E
(u(x)− u(y))(v(x)− v(y))J (x, dy)μ(dx), u, v ∈ D(E(2)),

where J is a kernel on (E,B) and μ is a σ -finite measure on (E,B). Therefore,

E (2)(u, v) = 1

2

∫
E

�(u, v)dμ, u, v ∈ D(E (2)),

where for x ∈ E

�(u, v)(x) = 2
∫
E
(u(x)− u(y))(v(x)− v(y))J (x, dy).
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Clearly, � does not satisfy Eq. 6.4, but it satisfies our condition (H4)(ii). Indeed, for every
non-decreasing Lipschitz function ϕ : R→ R with ϕ(0) = 0 and u ∈ D(E (2)) we have

�(ϕ(u), ϕ(u))(x) = 2
∫
E

(
ϕ(u(x))− ϕ(u(y))

)2
J (x, dy)

≤ 2Lipϕ
( ∫

E
1{u(x)≥u(y)}(u(x)− u(y))

(
ϕ(u(x))− ϕ(u(y))

)
J (x, dy)

+
∫
E
1{u(x)<u(y)}(u(y)− u(x))

(
ϕ(u(y))− ϕ(u(x))

)
J (x, dy)

)
= 2Lipϕ�(u, ϕ(u)).

There are plenty of examples of such Dirichlet forms, not only when the corresponding
state space E := R

d , but also when E is a general state space, as e.g. a fractal. Concrete
Dirichlet forms on R

d will be given in Example 6.5, while in this section, we recall an
example from [19] with E being a Sierpiński graph.

Let c : E × E → [0,∞) be conductance satisfying

c(x, y) = c(y, x),

π(x) =
∑
y∈E

c(x, y) ∈ (0,+∞),

c(x, y) > 0 ⇔ x ∼ y,

for all x, y ∈ E . Let μ : E → (0,∞) be a positive function given by

μ(x) = ( c
3λ

)|x |
, x ∈ E,

where c ∈ (0, λ) ⊆ (0, 1). Then μ can be regarded as a finite measure on E . Set a symmetric
form on L2(E;μ) by⎧⎨

⎩
E (u, v) = 1

2

∑
x,y∈E c(x, y)(u(x)− u(y))(v(x)− v(y)),

D(E ) = the (E )1 − closure of C0(E),

where C0(E) is the set of all functions with finite support. Then, (E , D(E )) is a regular
Dirichlet form on L2(E;μ) and it is transient. For the detailed proofs and more information
about Sierpiński gasket, we refer to [19] and references therein.

Example 6.5 (Nonlocal E on R
d ) Based on [15, page: 31, Example 1.4.1], [15, page:48,

Example 1.5.2] and Example 6.4, one can give a large class of examples of transient nonlocal
Dirichlet forms on R

d satisfying assumptions (H4). Here we only briefly present the main
framework. Let {νt , t > 0} on R

d be a continuous symmetric convolution semigroup of
probability measures, i.e.,

νt ∗ νs = νt+s, t, s > 0,

νt (A) = νt (−A), A ∈ B(Rd),

lim
t↓0 νt = δ weakly,
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where νt ∗ νs(A) denotes the convolution
∫
Rd νt (A − y)νs(dy) and δ is the Dirac measure

concentrated at the origin. The celebrated Lévy-Khinchin formula [23] reads as follows⎧⎨
⎩

ν̂t (x)
( = ∫

Rd ei(x,y)νt (dy)
) = e−tψ(x),

ψ(x) = 1
2 (Sx, x)+

∫
Rd (1− cos(x, y))J (dy),

(6.4)

where

S is a non-negative definite d × d symmetric matrix, (6.5)

J is a symmetric measure on R
d \ {0} such that

∫
Rd\{0}

|x |2
1+ |x |2 J (dx) < ∞. (6.6)

Thus a continuous symmetric convolution semigroup {νt , t > 0} is characterized by a pair
(S, J ) satisfying Eqs. 6.5 and 6.6 through the formula Eq. 6.4.

When S vanishes, the Dirichlet form E on L2(Rd) determined by {νt , t > 0} is

E (u, v)= 1

2

∫
Rd×(Rd\{0})

(
u(x + y)−u(x)

)(
v(x + y)−v(x)

)
J (dy)dx (6.7)

D(E )={u∈L2(Rd) :
∫
Rd×(Rd\{0})

(
u(x+y)−u(x)

)(
v(x+y)−v(x)

)
J (dy)dx<∞}.(6.8)

Note that J can be extended to a symmetric measure on R
d by setting J ({0}) = 0. From

[15, page:48, Example 1.5.2] we know that, if 1
ψ(x) is locally integrable on R

d , then E is
transient.

A typical example (see [15, page:49]) isψ(x) = |x |α with 0 < α ≤ 2, which corresponds
to

S = 0 and J (dy) = α2α−1�(α+d
2 )

πd/2�( 2−α
2 )

|y|−d−αdy,

then the Dirichlet form E is transient if and only if α < d . This example can be also described
in the following way. Let “ˆ” resp. “ˇ” denote Fourier transform, i.e.,

φ̂(x) = (2π)−
d
2

∫
exp[i〈x, y〉Rd ]φ(y)dy,

resp. its inverse. Define for α > 0

(−�)
α
2 u := (|x |α û)ˇ (∈ L2(Rd ; dx)), u ∈ C∞

0 (Rd). (6.9)

Then (−�)
α
2 is a symmetric linear operator on L2(Rd ; dx) with dense domain C∞

0 (Rd).
Then (E , D(E )) in Eqs. 6.7 and 6.8 is the closure of the form

D
( α
2 )(u, v) := 1

2

∫
ûv̂|x |αdx, u, v ∈ C∞

0 (Rd).

For more details we refer to [28, page:43].
Finally, we would like to mention that if in Eq. 6.4 we choose ψ(x) := f (|x |2), where f

is a Bernstein function (cf. [37]) such that 1
f (|x |2) is locally integrable, then in Eq. 6.9 we get

f (−�) instead of (−�)
α
2 , i.e., L = − f (−�) in Eq. 1.1.
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Appendix

A.1 Auxiliary Results

In this part we aim to prove Eq. A.4, which has been used in the proof of Claims 4.1 and 4.2.

Lemma A.1 Let ν, ε, λ ∈ (0, 1]. For all x ∈ F∗1,2, we have

〈
(ν − L)((�λ + λI )(Jε(x))), x

〉
F∗1,2,ν

= 〈(�λ + λI )(Jε(x)), Jε(x)
〉
2 + ε‖(ν − L)((�λ + λI )(Jε(x)))‖2F∗1,2,ν . (A.1)

For all x ∈ L2(μ),〈
(ν − L)(�λ + λI )(Jε(x)), x

〉
2

= 〈(ν − L)(�λ + λI )(Jε(x)), Jε(x)
〉
2 + ε

∣∣(ν − L)(�λ + λI )(Jε(x))
∣∣2
2. (A.2)

Proof Recall from Eq. 4.4 that

Jε(x)+ ε(ν − L)
(
(�λ + λI )(Jε(x))

) = x, ∀x ∈ F1,2.

For x ∈ F∗1,2, to prove Eq. A.1, we rewrite〈
(ν − L)((�λ + λI )(Jε(x))), x

〉
F∗1,2,ν

= 〈(ν − L)((�λ + λI )(Jε(x))), Jε(x)
〉
F∗1,2,ν

+〈(ν − L)((�λ + λI )(Jε(x))), ε(ν − L)
(
(�λ + λI )(Jε(x))

)〉
F∗1,2,ν

= 〈(�λ + λI )(Jε(x)), Jε(x
〉
2 + ε‖(ν − L)((�λ + λI )(Jε(x)))‖2F∗1,2,ν .

The proof of Eq. A.2 is analogous due to the fact that Jε is 1√
νελ

-Lipschitz in L2(μ), so

Aν,ε
λ ∈ L2(μ) if x ∈ L2(μ).

Lemma A.2 Let x ∈ L2(μ). Then for ν, ε, λ ∈ (0, 1], t ∈ [0, T ], we have

E|Xν,ε
λ (t)|22+ 2E

∫ t

0

〈
(ν − L)(�λ + λI )(Jε(X

ν,ε
λ (s))), Jε(X

ν,ε
λ (s))

〉
2ds ≤ eC3T |x |22.(A.3)

Proof Applying Itô’s formula to |Xν,ε
λ |22, we obtain

d|Xν,ε
λ (t)|22 + 2

〈
(ν − L)((�λ + λI )(Jε(X

ν,ε
λ (t)))), (Xν,ε

λ (t)
〉
2dt

= ‖B(t, Xν,ε
λ (t))‖2L2(L2(μ),L2(μ))

dt + 2
〈
Xν,ε

λ , B(t, Xν,ε
λ (t))dW (t)

〉
2

which by Eq. A.2 yields,

d|Xν,ε
λ (t)|22 + 2

〈
(ν − L)((�λ + λI )(Jε(X

ν,ε
λ (t)))), Jε(X

ν,ε
λ (t))

〉
2dt

+2ε∣∣(ν − L)((�λ + λI )(Jε(X
ν,ε
λ (t))))

∣∣2
2dt

= ‖B(t, Xν,ε
λ (t))‖2L2(L2(μ),L2(μ))

dt + 2
〈
Xν,ε

λ , B(t, Xν,ε
λ (t))dW (t)

〉
2.
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Taking expectation of both sides, by (H3)(i) we get

E|Xν,ε
λ (t)|22 + 2E

∫ t

0

〈
(ν − L)((�λ + λI )(Jε(X

ν,ε
λ (s)))), Jε(X

ν,ε
λ (s))

〉
2ds

+2εE
∫ t

0

∣∣(ν − L)((�λ + λI )(Jε(X
ν,ε
λ (s))))

∣∣2
2ds

≤ |x |22 + C3E

∫ t

0
|Xν,ε

λ (s)|22ds.

Then by Eq. 4.16 and Gronwall’s lemma we get Eq. A.3 as claimed.

Proposition A.1 Let x ∈ L2(μ). Then for ν, ε, λ ∈ (0, 1], t ∈ [0, T ], we have

E

∫ t

0

∥∥(ν − L)
(
(�λ + λI )(Jε(X

ν,ε
λ (s)))

)∥∥2
F∗1,2,ν

ds ≤ 1

2
(
1

λ
+ λ+ C5)e

C3T |x |22. (A.4)

Proof Let x ∈ L2(μ). Then∥∥(ν − L)
(
(�λ + λI )(Jε(x))

)∥∥2
F∗1,2,ν

= ‖(�λ + λI )(Jε(x))‖2F1,2,ν
=
∫

1

2
�
(
(�λ + λI )(Jε(x)), (�λ + λI )(Jε(x))

)
dμ

+ν
〈
(�λ + λI )(Jε(x)), (�λ + λI )(Jε(x))

〉
2

≤ C5

∫
1

2
�
(
Jε(x), (�λ + λI )(Jε(x))

)
dμ+ ν(

1

λ
+ λ)〈(�λ + λI )(Jε(x)), Jε(x)〉2

≤ (
1

λ
+ λ+ C5)〈Jε(x), (�λ + λI )(Jε(x))〉F1,2,ν

= (
1

λ
+ λ+ C5)〈(ν − L)(�λ + λI )(Jε(x)), Jε(x)〉2,

where in the first inequality we used (H4), the fact that r(�λ(r)+ λr) ≥ 0 for all r ∈ R and
�λ is 1

λ
-Lipschitz ([3, Page:41, Proposition 2.3 (ii)]), the last equality comes from the fact

that (�λ + λI )(Jε(x)) ∈ D(L). Now from Eq. A.3, we get the assertion.

A.2 The Lp-Itô Formula in Expectation

The purpose in this section is to prove Theorem A.1 below, which has been used in Lemmas
4.2 and 4.3.

Let �2 be the space of all square-summable sequences in R and p ∈ [2,∞). In addi-
tion, to the real-valued L p-space, L p(μ) := L p(E, μ) we consider the �2-valued L p-space
L p(μ; �2) := L p(E, μ; �2). We set

|g|pp := |g|pL p(μ;�2) =
∫
E
‖g(x)‖p�2μ(dx) =

∫
E

( ∞∑
k=1

|gk(x)|2
) p

2
μ(dx).

LetP denote the predictable σ -algebra on [0, T ]×� corresponding to (�,F , (Ft )t≥0,P).
For p ∈ [2,∞) we set

L
p(T ) := L p([0, T ] ×�,P; L p(μ))
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and

L
p(T ; �2) := L p([0, T ] ×�,P; L p(μ; �2)),

equipped with their standard L p-norms. Since (E,B) is a standard measurable space, by
definition there exists a complete metric d on E , such that (E, d) is separable, i.e., a Polish
space, whose Borel σ -algebra coincides with B. Below we fix this metric d and denote the
corresponding set of all bounded continuous functions by Cb(E).

Let E be all g = (gk)k∈N ∈ L∞([0, T ] × �; L∞(μ; �2) ∩ L1(μ; �2)) such that there
exists j ∈ N and bounded stopping times τ0 ≤ τ1 ≤ · · · ≤ τ j ≤ T such that

gk =
{∑ j

i=1 g
i
k1(τi−1,τi ], if k ≤ j;

0, if k > j,

where gik ∈ Cb(E) ∩ L1(μ), 1 ≤ i ≤ j .

Claim A.1 E is dense in L
p(T ; �2) for all p ∈ [2,∞).

Proof Let f = ( fk)k∈N ∈ Lq(T ; �2), with q := p
p−1 , be such that

Lq (T ;�2)〈 f , g〉Lp(T ;�2) = E

∫ T

0

∫
E

∞∑
k=1

fkgkdμds = 0 ∀g ∈ E .

Now let σ ≤ τ be two stopping times and k ∈ N. Define g ∈ L
p(T ; �2) by g = (gkδik)i∈N,

where
gk := gkk I(σ,τ ]

and gkk ∈ Cb(E) ∩ L1(μ). Then g ∈ E , hence

0 = Lq (T ;�2)〈 f , g〉Lp(T ;�2)

= E

∫ T

0

∫
E
fkg

k
k dμ I(σ,τ ](t)dt,

which implies that ∫
E
fkg

k
k dμ = 0 dt ⊗ P− a.s.,

since all sets of the type (σ, τ ] generate the σ -algebra P and since fk is P-measurable.
Therefore, since Cb(E) ∩ L1(μ) is dense in L p(μ),

fk = 0 in Lq(μ) dt ⊗ P− a.s., for all k ∈ N.

Now the assertion follows by the Hahn-Banach theorem ([38, page: 61, Corollary 4.23]).

Remark A.1 Let S be the set of all functions f ∈ L∞([0, T ] ⊗ �; L∞(μ) ∩ L1(μ)) such
that there exist l ∈ N and bounded stopping times τ ′0 ≤ τ ′1 ≤ · · · ≤ τ ′l ≤ T such that

f =∑l
i=1 f i1(τ ′i−1,τ ′i ], where f i ∈ Cb(E) ∩ L1(μ), 1 ≤ i ≤ l. Similarly to Claim A.1, one

can prove that S is dense in L
p(T ) for all p ∈ [2,∞).
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DefineM : E 	−→⋂
p≥1 L p(�;C([0, T ]; L p(μ))) as follows:

M(g)(t) =
∫ t

0
gdW (s) :=

∞∑
k=1

∫ t

0
gkdWk(s)

=
j∑

i,k=1
gik
(
Wk(t ∧ τi )−Wk(t ∧ τi−1)

)
, t ∈[0, T ], g∈E .(A.5)

Let us note that the right hand-side of Eq. A.5 is P-a.s. for every t ∈ [0, T ] a continuous
μ-version of M(g)(t) ∈ L p(E, μ), which for every x ∈ E is a continuous real-valued
martingale and is equal to

∞∑
k=1

∫ t

0
gk(s, x)dWk(s), x ∈ E, t ∈ [0, T ]. (A.6)

Claim A.2 Let p ∈ [2,∞). Then M extends to a linear continuous map M from L
p(T ; �2)

to L p(�;C([0, T ]; L p(μ))), such that M(g) is a continuous martingale in L p(μ) for all
g ∈ L

p(T ; �2).
Proof We have

E

[
sup

t∈[0,T ]

∫
E

∣∣ ∫ t

0
gdW (s)

∣∣pdμ
]

= E

[
sup

t∈[0,T ]

∫
E

∣∣∣ ∞∑
k=1

∫ t

0
gk(s, x)dWk(s)

∣∣∣pdμ
]

≤
∫
E

[
E sup

t∈[0,T ]

∣∣∣ ∞∑
k=1

∫ t

0
gk(s, x)dWk(s)

∣∣∣p]dμ

≤ cp

∫
E

[
E

〈 ∞∑
k=1

∫ ·

0
gk(s, x)dWk(s)

〉 p
2

T

]
dμ

= cp

∫
E
E

( ∞∑
k=1

∫ T

0
g2k (s, x)ds

) p
2
dμ

= cpE

[ ∫
E

( ∫ T

0
|g(s, x)|2�2ds

) p
2
dμ

] 2
p · p2

≤ cpE

[ ∫ T

0

( ∫
E
|g(s, x)|p�2dμ

) 2
p
ds

] p
2

≤ cpT
p
2−1E

∫ T

0

∣∣g(s, ·)∣∣pL p(μ;�2)ds,

where we have used the BDG inequality applied to the real-valued martingale in Eq. A.6 in
the third step, the assumption that p ≥ 2 and Minkowski’s inequality in the sixth step and
Hölder’s inequality in the last step. Hence the first part of the assertion follows.

To prove the second let g ∈ L
p(T ; �2). It suffices to prove that for all f ∈ Lq(μ) with

q := p
p−1 , ∫

E
f M(g)(t)dμ, t ∈ [0, T ],
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is a real-valued martingale (see e.g. [26, Remark 2.2.5]). But since for some gn ∈ E , n ∈ N,
we have ∀ t ∈ [0, T ] that

M(gn)(t)
−−−−→n →∞ M(g)(t) in L p(�; L p(μ)),

it follows that ∫
E
f M(gn)(t)dμ

−−−−→n →∞
∫
E
f M(g)(t)dμ in L1(�).

So, we may assume that g ∈ E . But in this case by Eq. A.5 it follows immediately that∫
E f M(g)(t)dμ, t ∈ [0, T ], is a real-valued martingale.

Below we define for g ∈ L
p(T ; �2), p ∈ [2,∞),∫ t

0
g(s)dW (s) :=M(g)(t), t ∈ [0, T ],

where M is as in Claim A.2.
Now we fix p ∈ [2,∞) and consider the following process

u : �× [0, T ] → L p(μ),

defined by

u(t) := u(0)+
∫ t

0
f (s)ds +

∫ t

0
g(s)dW (s), (A.7)

where u(0) ∈ L p(�,F0; L p(μ)), f ∈ L
p(T ) and g ∈ L

p(T ; �2).
Theorem A.1 “Itô-formula in expectation" Let p ∈ [2,∞), f ∈ L

p(T ), g ∈ L
p(T ; �2).

Let u be as in Eq. A.7. Then for all t ∈ [0, T ],

E|u(t, x)|pp = E|u(0)|p + E

∫ t

0

∫
E
p|u(s, x)|p−2u(s, x) f (s, x)μ(dx)ds

+1

2
p(p − 1)E

∫ t

0

∫
E
|u(s, x)|p−2|g(s, x)|2�2μ(dx)ds. (A.8)

Remark A.2 In the case E = R
d , μ =Lebesgue measure, N. Krylov proved Itô’s formula for

the L p-norm of a large class of W 1,p-valued stochastic processes in his fundamental paper
[25]. In particular, Lemma 5.1 in that paper gives a pathwise Itô formula for processes u
as in Eq. A.7, which immediately implies Eq. A.8. The proof, however, uses a smoothing
technique by convoluting the process u in x with Dirac-sequence of smooth functions, which
is not available in our more general case, where (E,B) is just a standard measurable space
with a σ -finite measure μ, without further structural assumptions that we wanted to avoid to
cover applications e.g. to underlying spaces E which are fractals. Fortunately, the above Itô
formula in expectation is enough to prove all main results in this paper without any further
assumptions. After the preparations above, its proof is quite simple.

We recall the following well-known result (see e.g. Theorem 21.7 in [10]):

Lemma A.3 Let p ∈ [1,∞), vn, v ∈ L p(μ) such that vn → v in μ-measure as n →∞ and

lim
n→∞ |vn |p = |v|p.

Then
lim
n→∞ vn = v in L p(μ).
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Proof of Theorem A.1 By Claim A.1 and Remark A.1, we can find fn ∈ S, n ∈ N, and
gn ∈ L

p(T ; �2), n ∈ N, such that as n →∞
fn → f in L

p(T ), (A.9)

and

gn → g in L
p(T ; �2). (A.10)

For n ∈ N, define

un(t) := u(0)+
∫ t

0
fn(s)ds +

∫ t

0
gn(s)dW (s).

By Eqs. A.7, A.9, A.10 and Claim A.2, it follows that as n →∞,∫ ·

0
fn(s)ds →

∫ ·

0
f (s)ds,∫ ·

0
gn(s)dW (s) →

∫ ·

0
g(s)dW (s), (A.11)

un → u,

in L p(�;C([0, T ]; L p(μ))).
Applying the Itô formula to the real-valued semi-martingale |un(t, x)|pp for each x ∈ E ,

and integrating w.r.t. x ∈ E and ω ∈ �, we obtain

E

∫
E
|un(t, x)|pμ(dx) = E|u(0)|p + E

∫
E

∫ t

0
p|un(s, x)|p−2un(s, x) · fn(s, x)dsμ(dx)

+1

2
p(p − 1)E

∫
E

∫ t

0
|un(s, x)|p−2 · |gn(s, x)|2�2dsμ(dx).(A.12)

Note that by Lemma A.3 and Eq. A.11

|un(s)|p−2un(s) → |u(s)|p−2u(s) in L
p

p−1 (μ),

|un(s)|p−2 → |u(s)|p−2 in L
p

p−2 (μ),

as n → ∞. Hence by Eqs. A.9 and A.10 we may pass to the limit n → ∞ in Eq. A.12 to
get Eq. A.8. � 
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