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Abstract
Quasisymmetric maps are well-studied homeomorphisms between metric spaces preserving
annuli, and the Ahlfors regular conformal dimension dimARC(X , d) of a metric space (X , d)

is the infimum over the Hausdorff dimensions of the Ahlfors regular images of the space
by quasisymmetric transformations. For a given regular Dirichlet form with the heat kernel,
the spectral dimension ds is an exponent that indicates the short-time asymptotic behavior
of the on-diagonal part of the heat kernel. In this paper, we consider the Dirichlet form
induced by a resistance form on a set X and the associated resistance metric R. We prove
dimARC(X , R) ≤ ds < 2 for ds , a variation of ds defined through the on-diagonal asymptotics
of the heat kernel. We also give an example of a resistance form whose spectral dimension
ds satisfies the opposite inequality ds < dimARC(X , R) < 2.
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Quasisymmetry · Heat kernel
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1 Introduction andmain results

The subject of this paper is an evaluation of a dimension of metric spaces, defined through
the quasisymmetric transformations. We first recall the definition of quasisymmetry.

Definition 1.1 (Quasisymmetry) Let X be a set and d, ρ be metrics on X . We say d is
quasisymmetric to ρ, and write d ∼QS ρ, if there exists a homeomorphism θ : [0,∞) →
[0,∞) such that for any x, y, z ∈ X with x �= z,

ρ(x, y)/ρ(x, z) ≤ θ
(
d(x, y)/d(x, z)

)
.

Roughly speaking, this definition means that an annulus in (X , d) is comparable to one
in (X , ρ). A typical example of a metric quasisymmetric to a given metric d is dα for each
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α ∈ (0, 1). It is known that ∼QS is an equivalence relation among metrics on X , and that if
d ∼QS ρ then ρ induces the same topology as d.

Quasisymmetry between general metric spaces was defined by Tukia and Väisälä [31]
as the analogy with the case of R. Note that quasisymmetry on R was discovered as a
characterization of the boundary values of quasiconformal mappings from the upper half-
plane to itself, by Beurling and Ahlfors [5], and named by Kelingos [17]. Properties of
quasisymmetry were well-studied in analysis on metric spaces (see [12, 29], for example).
Quasisymmetry has been also used in various fields, such as heat kernel estimates (see [2, 4,
15, 20, 24], for example) and hyperbolic group theory (see [6, 7, 23, 25], for example).

The Ahlfors regular conformal dimension of a metric space (X , d) is defined as follows.
We set Bd(x, r) := {y ∈ X | d(x, y) < r} for x ∈ X and r > 0, and diam(X , d) :=
supx,y∈X d(x, y).

Definition 1.2 (Ahlfors regular conformal dimension) For α ∈ (0,∞), the metric d is
called α-Ahlfors regular if the α-dimensional Hausdorff measure Hα satisfies C−1rα ≤
Hα(Bd(x, r)) ≤ Crα for any 0 < r ≤ diam(X , d) and x ∈ X , for some C > 1. (Note that if
(X , d) is α-Ahlfors regular then dimH (X , d) = α,where dimH is the Hausdorff dimension.)
The Ahlfors regular conformal dimension dimARC(X , d) of (X , d) is defined by

dimARC(X , d) = inf

{
α ∈ (0,∞)

∣∣∣∣
there exists an α-Ahlfors regular metric ρ on X
with d ∼QS ρ

}
.

This exponent implicitly appeared in Bourdon and Pajot [7] and was named by Bonk and
Kleiner [6]. In the latter paper, the exponent was related to Cannon’s conjecture, which claims
that every Gromov hyperbolic group whose boundary is homeomorphic to the 2-sphere has
a discrete, cocompact , and isometric action on the hyperbolic 3-space H

3. dimARC(X , d)

was also characterized as a critical value related to the combinatorial p-modulus of a family
of curves � in a graph (V ,G) (approximating (X , d)), defined by

Modp(�) = inf
{∑

v∈V
f (v)p

∣∣∣ f : V → [0,∞),
∑

v∈γ

f (v) ≥ 1 for any γ ∈ �
}

(see [8, 21]). This characterization of dimARC(X , d) has been also used in recent studies on
the construction of p-energies on fractals ([22, 30]).

In [21],Kigami introduced the notion of a partition satisfying the basic framework and used
it to evaluate the Ahlfors regular conformal dimension of compact metric spaces. Roughly
speaking, a partition satisfying the basic framework is a successive division of a given compact
metric space with some good conditions. We explain this idea in the case of the Sierpiński
carpet. Let Q = {z | max{|Re(z)|, |Im(z)|} ≤ 1/2} ⊂ C and p j be the points on the boundary
of Q with arg(z) = jπ/4 for 1 ≤ j ≤ 8 (see Fig. 1). We also let ϕ j (z) = p j + (z − p j )/3.
The standard Sierpiński carpet SC is the unique nonempty compact subset of C satisfying
SC = ∪8

j=1ϕ j (SC) (see Fig. 2). An example of a partition K of (SC, | · |) satisfying the basic
framework is a map from {φ} ∪⋃n≥1{1, ..., 8}n to the power set P(SC), defined by

K (φ) = SC and K ({w j }nj=1) = ϕw1 ◦ · · · ◦ ϕwn (SC).

In [21], Kigami considered the graph structure on {1, ..., 8}n for each n such that there is
an edge between w, v ∈ {1, ..., 8}n if K (w) ∩ K (v) �= ∅ and w �= v, and defined some
potential theoretic exponents d

s
p(K ), dsp(K ) of this family of graphs, which he called the

upper and lower p-spectral dimensions, for p > 0. See Definitions 3.4 and 3.7 for the precise
definitions of a partition satisfying the basic framework and the p-spectral dimensions. For
these exponents, Kigami showed the following result.
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Fig. 1 Q and {p j }8j=1.

Theorem 1.3 ([21, Theorem 4.7.9] and [26, Theorem 3.9]) Let (X , d) be a metric space with
a partition K satisfying the basic framework. Then for p > 0,

1. if p > dimARC(X , d) then p > d
s
p(K ) ≥ dsp(K ) ≥ dimARC(X , d).

2. If p ≤ dimARC(X , d) then p ≤ dsp(K ) ≤ d
s
p(K ) ≤ dimARC(X , d).

Note that the assumption in Theorem 1.3 is slightly different from that in [21, Theorem
4.7.9], but it is justified by [21, Theorem 4.7.6]. We also note that the contribution of [26]
was an extension of the framework and the result to non-compact spaces. We emphasize that
the p-spectral dimensions depend only on the given metric space and the partition, and do
not have any stochastic characterization. However, it was pointed out in [21] that if (X , d) is
the Sierpiński gasket or a generalized Sierpiński carpet with the Euclidean metric and K is
the canonical partition as described above, then d

s
2(K ) and ds2(K ) coincide with the spectral

dimension, defined as follows, of the standard Dirichlet form.

Definition 1.4 (Spectral dimension) Let (X , d) be a locally compact separable metric space,
μ be a Radon measure on X with full support, and (E,F) be a regular Dirichlet form on

Fig. 2 (Standard) Sierpiński
carpet
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L2(X , μ). We assume that (E,F) has the associated heat kernel (or transition density),
namely, a (jointly) continuous function p(t, x, y) : (0,∞) × X × X → [0,∞) such that

Ttu(x) =
∫

X
p(t, x, y)u(y)dμ(y) for μ-a.e. x ∈ X

for any t ∈ (0,∞) and any u ∈ L2(X , μ), where {Tt }t∈(0,∞) denotes the Markovian semi-
group on L2(X , μ) associated with (E,F). The limit

ds(μ, E,F) = ds(X , μ, E,F) := −2 lim
t↓0

log p(t, x, x)

log t

is called the spectral dimension of the regular Dirichlet space (X , μ, E,F), if it exists and
the value is independent of a choice of x ∈ X .

In this paper, we prove an inequality similar to the case of p = 2 of Theorem 1.3 (1),
between the Ahlfors regular conformal dimension and a variation of the spectral dimen-
sion defined through the on-diagonal asymptotics of the heat kernel, for the case where the
Dirichlet form is induced by a resistance form, defined as follows.

Definition 1.5 (Resistance form) Let X be a set, F be a linear subspace of the space 
(X) of
R-valued functions on X , and E be a nonnegative quadratic form on F . The pair (E,F) is
called a resistance form on X if it satisfies the following conditions.

• 1X ∈ F, and E(u, u) = 0 if and only if u is constant. (1.1)

• Define an equivalence relation ∼ as u ∼ v if and only if u − v is

constant, then (F/∼, E) is a Hilbert space. (1.2)

• If x �= y then there exists u ∈ F with u(x) �= u(y). (1.3)

• R(x, y) := (inf{E(u, u) | u ∈ F, u(x) = 1, u(y) = 0})−1
< ∞ if x �= y. (1.4)

• If u ∈ F then û := max{0,min{1, u}} ∈ F and E(û, û) ≤ E(u, u). (1.5)

We define R(x, x) = 0 for x ∈ X .

One of the most basic properties of a resistance form is that the infimum in Inequality
1.4 is attained and defines a metric R on X , called the resistance metric associated with the
resistance form. The notion of resistance form was introduced in [18]. Typical examples of
the Dirichlet forms induced by resistance forms are the standard Dirichlet forms on “low-
dimensional” fractals, such as p.c.f. self-similar fractals. This framework includes Dirichlet
forms whose associated Hunt processes have jumps (see [20, Chapter 16], for example).
Moreover, there are also examples of resistance forms on some spatially inhomogeneous
fractals (see Fig. 3 and [11], for example) and more general sets (see [9], for example).

In the remainder of this section except for Subsection 1.1, we make the following assump-
tion, which is needed for our main theorem.

Assumption 1.6 (E,F) is a resistance form on a set X , and the resistancemetric R associated
with (E,F) is complete and satisfies dimARC(X , R) < ∞.

We note that the condition dimARC(Y , ρ) < ∞ for a metric space (Y , ρ) has simple
geometric characterizations which may be easily checked (see Theorem 3.5). In particular,
under Assumption 1.6, there exists a partition K of (X , R) satisfying the basic framework.
Let us recall the definition of the volume doubling property.
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Fig. 3 Inhomogeneous fractal,
having a canonical resistance
form

Definition 1.7 (Volume doubling property) A Borel measure μ on a metric space (Y , ρ) has
the volume doubling property with respect to ρ if

0 < μ(Bρ(x, 2r)) ≤ Cμ(Bρ(x, r)) < ∞
for any x ∈ Y and r > 0, for some C > 1. Then we say μ is (VD)ρ for short. We write
M(Y ,ρ) for the set of all Borel measures on (Y , ρ) that are (VD)ρ.

For any μ ∈ M(X ,R), we can check that the assumptions of [20, Theorems 9.4 and 10.4]
are satisfied (see Proposition 2.6) and obtain the following lemma.

Lemma 1.8 Let μ ∈ M(X ,R). For u, v ∈ F ∩ L2(X , μ), we define Eμ,1(u, v) by

Eμ,1(u, v) = E(u, v) +
∫

X
uvdμ,

then (F ∩ L2(X , μ), Eμ,1) is a Hilbert space. Let Dμ be the closure of F ∩ C0(X) with
respect to Eμ,1, and Eμ = E|Dμ×Dμ, where C0(X) is the set of all continuous functions on
(X , R)whose supports are compact. Then (Eμ,Dμ) is a regular Dirichlet form on L2(X , μ).

Moreover, the associated heat kernel pμ(t, x, y) exists.

The main theorem of this paper is the following.

Theorem 1.9 Let μ ∈ M(X ,R). Then the limit

ds(μ, Eμ,Dμ) := lim
t→∞ sup

x∈X ,s∈(0,diam(X ,R))

2
log
(
pμ(s/t, x, x)/pμ(s, x, x)

)

log t
(1.6)

exists and satisfies dimARC(X , R) ≤ ds(μ, Eμ,Dμ) < 2.

Note that if diam(X , R) < ∞ then diam(X , R) in the right-hand side of Eq. 1.6 can be
replaced by 1 because of Lemma 2.20 5. and 6.

The following theorem is needed to prove Theorem 1.9, and it characterizes d
s
2 if (E,F) is

local. Recall from [20, Definition 7.5] that (E,F) is said to be local if E(u, v) = 0 whenever
u, v ∈ F and infx,y∈X ,u(x)v(y)�=0 R(x, y) > 0 (see also Definition 2.15). We also recall that
(X , R) has a partition satisfying the basic framework by Theorem 3.5.

Theorem 1.10 Let K be a partition of (X , R) satisfying the basic framework. Then
d
s
2(K ) ≤ ds(μ, Eμ,Dμ) for any μ ∈ M(X ,R). Moreover, if (E,F) is local then

infμ∈M(X ,R)
ds(μ, Eμ,Dμ) = d

s
2(K ).
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If (E,F) andμ are the standard resistance form and the standardmeasure on the Sierpiński
gasket or a generalized Sierpiński carpet with dimARC(X , d) < 2 where d is the Euclidean
metric on X , then ds(μ, Eμ,Dμ) coincides with ds(μ, Eμ,Dμ). Therefore in these cases
Theorem 1.9 yields dimARC(X , d) ≤ ds(μ, Eμ,Dμ) < 2 because d ∼QS R, which recovers
the result obtained in [21] as an application of Theorem 1.3 1.

In general, ds(μ, Eμ,Dμ) does not coincide with ds(μ, Eμ,Dμ) even if the latter exists.
Moreover, the analog of the inequality in Theorem 1.9 is false in general for the latter, as the
following theorem states.

Theorem 1.11 There exist X , (E,F) (satisfying Assumption 1.6) andμ ∈ M(X ,R), such that
ds(μ, Eμ,Dμ) exists and

ds(μ, Eμ,Dμ) < dimARC(X , R) < 2.

We briefly describe the set X on which we will construct the example of Theorem 1.11.
Following aparticular rule,weuse either the cell subdivision rule ofSCor that of theVicsek set
(that is, the unique nonempty compact subset VS ofCwith VS = ∪ j=1,3,5,7ϕ j (VS)

⋃ 1
3VS)

for each scale, and obtain X as the resulting set (see Section 5 for details). X has the full
symmetry of the unit square, but is not exactly self-similar (see Fig. 4). In this example,
we also show that the resistance metric R associated with (E,F) is quasisymmetric to the
Euclidean metric on X (see Theorem 5.1).

The structure of this paper is as follows. Section 2 is devoted to proving inequalities of
resistances used in the later sections. In Section 3 we introduce the precise definition of a
partition satisfying the basic framework and show related inequalities. We prove Theorems
1.9 and 1.10 in Section 4, and Theorem 1.11 in Section 5. Appendix A is devoted to proving
the equivalence between different formulations of the local property of a resistance form.

1.1 Notation

Throughout this paper, we use the following notation.

• The letter # denotes the cardinality of sets, andP denotes the power set of sets.
• For a set X , we denote by 
(X) the set of all R-valued functions on X .

• a ∨ b = max{a, b} and a ∧ b = min{a, b} for a, b ∈ R (or R-valued functions).

Fig. 4 Example of Theorem 1.11
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Some inequalities between Ahlfors... 353

• By abuse of notation, we write x instead of {x} if no confusion can arise. For example,
we write f −1(x) instead of f −1({x}).

• For a set X and A ⊂ X , we write Ac instead of X \ A if the whole set X is obvious.
• Let (X , d) be a metric space. For A ⊂ X , we will denote by int(A) the interior of

A and by A the closure of A. Moreover, for any Borel measure μ on X , we write
Vd,μ(x, r) = μ(Bd(x, r)) (where Bd(x, r) = {y ∈ X | d(x, y) < r}). We will omit
subscripts of Vd,μ(x, r) and Bd(x, r) if the metric and/or measure is obvious.

• Let X be a set and f : X → X be a map, then we set f k :=
k

︷ ︸︸ ︷
f ◦ · · · ◦ f for k > 0 and

f 0 := idX . Moreover, f −k denotes ( f k)−1 for k > 0.
• Let f , g be functions on a set X and A ⊂ X . We say f (x) � g(x) (resp. f (x) � g(x))
for any x ∈ A if there exists C > 0 such that f (x) ≤ Cg(x) (resp. f (x) ≥ Cg(x)) for
any x ∈ A. We also write f (x) � g(x) (for any x) if f (x) � g(x) and f (x) � g(x).
Note that we will not use this notation when we want to stress the constant C .

• Let f be a function or variable defined by some type of maximum or minimum over a
set of functions. Then we say g is the optimal function for f if g attains the maximum
or minimum. For example, let R be the resistance metric associated with (E,F), then
the optimal function u for R(x, y) is such that u ∈ F, u(x) = 1, u(y) = 0 and
E(u, u) = R(x, y)−1.

2 Resistance Forms

In this section, we prove some properties of resistance forms and associated heat kernels,
which we will use in the proof of Theorem 1.9 and related statements. We first note the
difference between two types of resistances between subsets. Throughout the rest of this
paper, (E,F) denotes a resistance form on a set X and R denotes the associated resistance
metric.

Lemma 2.1 Let A, B ⊂ X be nonempty. Suppose

FA,B := {u ∈ F | u|A ≡ 1, u|B ≡ 0}.
Then minu∈FA,B E(u, u) exists and u ∈ FA,B attaining the minimum is unique.

Proof Fix any x ∈ B, then we have

|u(y) − v(y)| = |(u − v)(x) − (u − v)(y)| ≤ E(u − v, u − v)1/2R(x, y)1/2

for any y ∈ X and u, v ∈ F with u(x) = v(x) = 0. This shows that FA,B is a closed convex
subset of the Hilbert space ({u ∈ F | u(x) = 0}, E) and the claim follows. ��
Definition 2.2 (Resistance between sets)

Let R(A, B) denote the reciprocal of minu∈FA,BE(u, u) if FA,B �= ∅ and 0 if FA,B = ∅.

We also define R(A, B) = ∞ if A = ∅ or B = ∅ for ease of notation. We call R(A, B) the
resistance between sets A and B, associated with (E,F).

On the other hand, we use the notation R(A, B) for the resistance metric between sets,
that is, R(A, B) = infx∈A,y∈B R(x, y). Note that R(x, y) = R({x}, {y}) for any x, y ∈ X
andR(A, B) ≤ R(A, B) for any A, B ⊂ X but R(A, B) �= R(A, B) in general. Throughout
this paper, the italic R is used for denoting notions related to resistance metrics, whereas the
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354 Kôhei Sasaya

cursive R is used for denoting notions related to resistances between sets. For example, we
later use the notation Rn and Rn .

Our next aim is to prove Lemma 1.8. For this purpose, we first introduce some notions of
a metric space and a resistance form.

Definition 2.3 (Doubling, uniformly perfect) Let (Y , ρ) be a metric space.

1. (Y , ρ) is called doubling if there exists N ∈ N such that for any x ∈ Y and r > 0, there
exist {xi }Ni=1 ⊂ Y with B(x, 2r) ⊂⋃N

i=1 B(xi , r).
2. (Y , ρ) is called uniformly perfect if there exists γ > 1 such that B(x, γ r) \ B(x, r) �= ∅

whenever B(x, r) �= Y .

Remark It is easy to see that a doubling metric space is separable.

Definition 2.4 (Regular) (E,F) is called regular if F ∩C0(X , R) is dense in C0(X , R) with
respect to the supremum norm.

Definition 2.5 (Annulus comparable condition) We say that (E,F) satisfies the annulus
comparable condition, (ACC) for short, if there exists α > 1 such that R(x, B(x, r)c) �
R(x, B(x, r)c ∩ B(x, αr)) for any x ∈ X and r > 0.

Note that the inverse direction of the above inequality immediately follows from the
inclusion of sets. It is easy to see that if (ACC) holds then (X , R) is uniformly perfect.

Hereafter, we make Assumption 1.6 to the end of Section 4. Note that by Theorem 3.5,
both R and d are doubling and uniformly perfect.

Proposition 2.6 (E,F) is regular and satisfies (ACC).

For the proof of this proposition, we introduce some results.

Proposition 2.7 ([20, Theorem 8.4]) Let Y be a nonempty subset of X. Define F |Y = {u|Y |
u ∈ F} and

E|Y (u∗, u∗) = inf{E(u, u) | u ∈ F, u∗ = u|Y } (2.1)

for any u∗ ∈ F |Y , then the infimum of Eq. 2.1 is attained. Moreover, there exists a unique
extension of E|Y to F |Y × F |Y such that (E|Y ,F |Y ) is a resistance form. In particular, if
#(Y ) < ∞ then F |Y = 
(Y ).

Definition 2.8 (E|Y ,F |Y ) is called the trace of (E,F) on Y .

Remark In [20, Theorem 8.4], R is assumed to be separable and complete, and it is so in
our case. However, by the standard argument in Hilbert space theory, it is easy to show that
Proposition 2.7 is also true for resistance forms whose associated resistance metric is not
necessarily separable and complete (see [14, Theorem 2.29], for example).

Definition 2.9 We define the following terminologies for abbreviation.

1. We say {Vn}n≥0 is a spread sequence of ametric space (Y , ρ) if it is an increasing sequence
of nonempty finite subsets satisfying ∪n≥0Vn = Y .

2. Assume that V is a finite set and (E, 
(V )) is a resistance form on V . We call
μ = {μx,y}x,y∈V ⊂ R

V×V the resistance weights associated with (E, 
(V )) if μx,x =
−∑z:z �=x μx,z and μx,y = μy,x for any x, y ∈ V , and

E(u, v) = 1

2

∑

x,y∈V
(u(x) − u(y))(v(x) − v(y))μx,y for any u, v ∈ 
(V ).
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Moreover, we write RY (A, B) (resp. RY (A, B)) instead of RY (A ∩ Y , B ∩ Y ) (resp.
RY (A ∩ Y , B ∩ Y )) for abbreviation, where RY (resp. RY ) is the resistance between sets
(resp. resistance metric) associated with the trace of (E,F) on Y .

Remark By [19, Proposition 2.1.3], for any (E, 
(V )), the unique resistance weights associ-
ated with that exist. Moreover, μx,y ≥ 0 for any x, y ∈ V with x �= y and μx,x < 0 for any
x ∈ V by the same proposition and Condition 1.1.

Proposition 2.10 ([19, Section 2.3]) Assume that {Vn}n≥0 is a spread sequence, then

F = {u | u ∈ C(X , R), lim
n→∞ E|Vn (u|Vn , u|Vn ) < ∞}.

Moreover, E(u, v) = limn→∞ E|Vn (u|Vn , v|Vn ) for any u, v ∈ F .

Remark {E|Vn (u|Vn , u|Vn )}n≥0 is an increasing sequence for any u ∈ F by definition.

Lemma 2.11 Let { fn}n≥0 ⊂ F with
∑

n≥0 E( fn, fn) < ∞.

1. If supn≥0 fn(x∗) < ∞ for some x∗ ∈ X , then f̄ := supn≥0 fn ∈ F and E( f̄ , f̄ ) ≤∑
n≥0 E( fn, fn).

2. If infn≥0 fn(x∗) > −∞ for some x∗ ∈ X , then f := infn≥0 fn ∈ F and E( f , f ) ≤∑
n≥0 E( fn, fn).

Remark Lemma 2.11 is essentially a special case of [14, Theorem 2.38 (1)] which is written
in Japanese. We give a proof of Lemma 2.11 for the reader’s convenience.

Proof Replacing fn by − fn, we only need to show 1. We first note that

| f̄ (x) − f̄ (y)| ≤ sup
n

| fn(x) − fn(y)| ≤ sup
n

(R(x, y)E( fn, fn))
1/2

≤ R(x, y)1/2(
∑

n≥0 E( fn, fn))1/2

for any x, y ∈ X , so f̄ (x) < ∞ and f̄ ∈ C(X , R). Let {Vm}m≥1 be a spread sequence of
(X , R) and μm be associated resistance weights with (E|Vm , 
(Vm)). Then

E( f̄ , f̄ ) = lim
m→∞ E|Vm ( f̄ |Vm , f̄ |Vm )

= lim
m→∞

1

2

∑

x,y∈Vm :x �=y

(
f̄ (x) − f̄ (y)

)2
(μm)x,y

≤ lim
m→∞

1

2

∑

n≥0

∑

x,y∈Vm :x �=y

(
fn(x) − fn(y)

)2
(μm)x,y

= lim
m→∞

∑

n≥0

E|Vm ( fn |Vm , fn |Vm ) =
∑

n≥0

E( fn, fn).

(Note that any termof the sums in the above inequalities is nonnegative.) ThiswithProposition
2.10 proves the lemma. ��
Proof of Theorem 2.6 By [20, Lemma 7.10], there exist N ≥ 0 and C > 0 with

C−12k ≤ R(x, B(x, 2k)c ∩ B(x, 2k+N )) ≤ C2k

for any x ∈ X and k ∈ Z unless B(x, 2k) = X . Fix any x ∈ X and set Ak = B(x, 2k)c ∩
B(x, 2k+N ). Let fk be the optimal functions for R(x, Ak) if B(x, 2k) �= X , and otherwise
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356 Kôhei Sasaya

fk ≡ 1. Then for any a ∈ Z,
∑

k≥a E( fk, fk) < C2−a+1 and so ga := infk≥a fk ∈ F by
Lemma 2.11 2. Since ga(x) = 1 and ga |B(x,2a)c ≡ 0, it follows that

R(x, B(x, 2a)c) > C−12a−1 for any a ∈ Z with B(x, 2a) �= X , (2.2)

which shows (ACC). Moreover, Eq. 2.2 also shows that for any nonempty Y ⊂ X with
x /∈ Y , there exists f ∈ F satisfying f (x) = 1 and f |Y ≡ 0. Applying [20, Theorem 6.3],
we conclude that (E,F) is regular.

Now Lemma 1.8 immediately follows from [20, Theorems 9.4 and 10.4] with Proposition
2.6. (Note that the condition (ACC) is used later.)

We next give some properties of resistance forms, which will be needed in Section 3.

Lemma 2.12 Let A1, A2 be nonempty subsets of X and {Vn}n≥0 be a spread sequence. Sup-
pose that Ai ⊂ ∪n≥0(Ai ∩ Vn) for i = 1, 2. ThenR(A1, A2) = limn→∞ Rn(A1, A2),where
Rn is the resistance between sets associated with (E|Vn ,F |Vn ).
Proof By definition of E|Yn , it suffices to show that

R(A1, A2) ≥ limn→∞ Rn(A1, A2).

We may assume limn→∞ Rn(A1, A2) > 0 and Ai ∩ V0 �= ∅ for i = 1, 2 without loss of
generality. Let { fn}n≥0 ⊂ F be functions satisfying

Rn(A1, A2)
−1

=min
{
min
{E( f , f )

∣∣ f ∈ F, f |Vn ≡ f∗
}∣∣∣ f∗ ∈ 
(Vn), f∗|A1∩Vn ≡ 1, f∗|A2∩Vn ≡ 0

}

=E( fn, fn),

fn |A1∩Vn ≡ 1 and fn |A2∩Vn ≡ 0. Then by the convexity argument, we obtain 0 ≤ E( fn −
fm, fn − fm) = E( fn, fn)−E( fm, fm) for any n,m ∈ Nwith n > m. Fix any x ∈ A1 ∩V1.
Since limn→∞ E( fn, fn) = limn→∞ Rn(A1, A2)

−1 < ∞, there exists f ∈ F such that
f (x) = 1 and limn→∞ E( f − fn, f − fn) = 0 by Eq. 1.2. Then for any y ∈ ∪n≥0(A1 ∩Vn),

| f (y) − 1| = |( f − fn)(y) − ( f − fn)(x)| ≤ R(x, y)E( f − fn, f − fn).

Hence f |A1 ≡ 1 because the right hand side of the last inequality tends to 0 and f ∈ C(X , R).

In the same way, we obtain f |A2 ≡ 0 and so

R(A1, A2)
−1 ≤ E( f , f ) = lim

n→∞ E( fn, fn) = lim
n→∞Rn(A1, A2)

−1,

which completes the proof. ��
Lemma 2.13 Let η ∈ (0, 1), then R(B(x, ηr), B(x, r)c) � r for any x ∈ X , r > 0 with
B(x, r) �= X .

Proof By Proposition 2.6 and [20, Theorem 7.12], there exists C > 0 such that C−1r ≤
R(x, B(x, r)c) ≤ Cr for any x ∈ X , r > 0 with B(x, r) �= X . Hence we only need to show
R(B(x, ηr), B(x, r)c) � r .
We first prove for the case η ≤ 1/2C . Let fx,r be the optimal function of R(x, B(x, r)c),
then by [20, Theorems 4.1 and 4.3 and Lemma 4.5],

fx,r (y) ≥R(x, B(x, r)c) + R(y, B(x, r)c) − R(x, y)

2R(x, B(x, r)c)

≥(C−1r − ηr)C−1/2r ≥ C−2/4
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for any y ∈ B(x, ηr). Hence let gx,r := (
(4C2 fx,r ∧ 1) ∨ 0

)
, then gx,r |B(x,ηr) ≡

1, gx,r |B(x,r)c ≡ 0 and E(gx,r , gx,r ) ≤ 16C4E( fx,r , fx,r ) ≤ 16C3/r . This proves the
statement for this case.
We now turn to the case 1/2C < η < 1. Since (X , R) is doubling, there exists
N = Nη ∈ N such that for any x ∈ X , there exists {xi }Ni=1 ⊂ X satisfying B(x, ηr) ⊂
∪N
i=1B(xi , (1−η)r/2C). Let g = max1≤i≤N (gxi ,(1−η)r ), where gxi ,(1−η)r is same as above,

then g ∈ F by Lemma 2.11 1. Moreover, g|B(x,ηr) ≡ 1 and g|B(x,r)c ≡ 0 because
R(xi , y) ≥ R(x, y) − R(x, xi ) ≥ (1 − η)r for any y ∈ B(x, r)c and 1 ≤ i ≤ N . Therefore

R(B(x, ηr), B(x, r)c)−1 ≤E(g, g) ≤
N∑

i=1

E(gxi ,(1−η)r , gxi ,(1−η)r )

≤16NηC
3/(1 − η)r ,

which proves the lemma.

Corollary 2.14 Let A1, A2 ⊂ X be nonempty subsets. If A1 is bounded and R(A1, A2) > 0,
then R(A1, A2) > 0.

Proof Since (X , R) is doubling, there exist N ∈ N and {xi }Ni=1 ⊂ A1 with A1 ⊂
∪N
i=1B(xi , R(A1, A2)/2). Thus the proof is straightforward by Lemmas 2.11 1. and 2.13. ��

Definition 2.15 (Local) (E,F) is called local if it satisfies E(u, v) = 0 whenever u, v ∈ F
and R({x | u(x) �= 0}, {x | v(x) �= 0}) > 0.

Under Assumption 1.6, for each μ ∈ M(X ,d), (E,F) is a local resistance form if and only if
(Eμ,Dμ) is a local Dirichlet form. See Appendix A for details.

Proposition 2.16 Let Ai (i = 1, 2) be nonempty subsets of (X , R) with R(A1, A2) > 0 and
diam(A1) < ∞, {Vn}n≥0 be a spread sequence and μn be the resistance weights associated
with (E|Vn , 
(Vn)). Assume (E,F) to be local, then

lim
n→∞

∑

(x,y)∈Dn

(μn)x,y = 0, where Dn = (A1 × A2 ∪ A2 × A1) ∩ Vn × Vn .

Proof Let

A∗
1 = {x | R(x, A1) ≥ R(A1, A2)/3} and A∗

2 = {x | R(x, A1) ≤ 2R(A1, A2)/3}.
By Corollary 2.14, we can take the optimal functions fi ∈ F for R(Ai , A∗

i ) and i = 1, 2.
Then,

E|Vn ( f1|Vn , f1|Vn ) + E|Vn ( f2|Vn , f2|Vn ) − E|Vn ( f1 + f2|Vn , f1 + f2|Vn )
=
∑

(x,y)∈Dn

(μn)x,y

+1

2

∑

(x,y)∈Vn×Vn\Dn:x �=y

(
( f1(x) − f1(y))

2 + ( f2(x) − f2(y))
2

− (( f1 + f2)(x) − ( f1 + f2)(y))
2)(μn)x,y .

Since 0 ≤ f1, f2 ≤ 1 and supp( f1) ∩ supp( f2) = ∅, we have

|( f1 + f2)(x) − ( f1 + f2)(y)| =|( f1 ∨ f2)(x) − ( f1 ∨ f2)(y)|
≤| f1(x) − f1(y)| ∨ | f2(x) − f2(y)|
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for any x, y ∈ X . Therefore

0 =E( f1, f1) + E( f2, f2) − E( f1 + f2, f1 + f2)

= lim
n→∞ E|Vn ( f1|Vn , f1|Vn ) + E|Vn ( f2|Vn , f2|Vn ) − E|Vn ( f1 + f2|Vn , f1 + f2|Vn )

≥ lim
n→∞

∑

(x,y)∈Dn

(μn)x,y ≥ 0

because (E,F) is local, which completes the proof. ��
Proposition 2.17 There exists α > 1 with RV ,B(x,αR(x,y))(x, y) ≤ 2R(x, y) for any
nonempty finite subset V ⊂ X and x, y ∈ V ,whereμa,b are the resistanceweights associated
with (E|V , 
(V )) and

RV ,A(x, y)−1 :=min{1
2

∑
a, b ∈ A( f (a) − f (b)2μa,b | f (x)=1, f (y)=0} for A⊂ X .

Remark The idea and the proof of Proposition 2.17 essentially come from [3, Lemma 2.5].

Proof We first note that since Lemma 2.13 holds,

RV (x, B(x, r)c) ≥ RV (B(x, r/2), B(x, r)c) ≥ R(B(x, r/2), B(x, r))c � r

for any x ∈ X and r > 0, where RV is the resistance between sets associated with
(E|V , 
(V )). Thus we can find α > 1 such that

RV (x, B(x, (α/2)r)c) ∧ RV (B(x, (α/2)r), B(x, αr)c) ≥ 4r

for any x and r . To shorten notation, we write Bβ instead of B(x,B(x, βR(x, y))). Let f1
(resp. f2, f3) be the optimal function for RV ,Bα (x, y) (resp. RV (x, Bc

α/2), RV (Bα/2, Bc
α)).

We define f ∈ 
(V ) by

f (x) =
{
f1(x) ∧ f2(x) ∧ f3(x) (x ∈ Bα)

f2(x) ∧ f3(x) (otherwise)
.

Then, f (x) = 1, f (y) = 0, f |Bc
2/α

≡ 0 and

| f (a) − f (b)| ≤

⎧
⎪⎪⎨

⎪⎪⎩

∑3
i=1 | fi (a) − fi (b)| (if a, b ∈ Bα)

0 (if a, b /∈ Bα/2)

| f3(a) − f3(b)| = 1
(if a ∈ Bα/2 and b /∈ Bα,

or b ∈ Bα/2 and a /∈ Bα).

Therefore

(R(x, y))−1 ≤ E( f , f )

≤ (RV ,Bα (x, y))−1 + (RV (x, Bc
α/2))

−1 + (RV (Bα/2, B
c
α))−1

≤ (RV ,Bα (x, y))−1 + 1

2
(R(x, y))−1

and RV ,Bα (x, y) ≤ 2R(x, y) as claimed. ��
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The remainder of this section is devoted to the proof of Proposition 2.19 below, which
gives one of the key inequalities to prove Theorem 1.10. For the rest of this section, we
assume d to be a metric on X with d ∼QS R. Then by Assumption 1.6, it is easily shown
that M(X ,d) = M(X ,R) (see [20, Corollary 12.4], for example).

Definition 2.18 Set

Rd(x, r) := sup
y∈Bd (x,r)

R(x, y) and hd,μ(x, r) := Vd,μ(x, r)Rd(x, r).

We write hd(x, r) instead of hd,μ(x, r) when no confusion can arise.

Proposition 2.19 The limit ds(μ, Eμ,Dμ) exists for any μ ∈ M(X ,d). Moreover,

ds(μ, Eμ,Dμ) = 2 lim sup
s→∞

sup
x∈X ,r∈(0,diam(X ,d))

log
(
Vd,μ(x, r)/Vd,μ(x, r/s)

)

log
(
hd,μ(x, r)/hd,μ(x, r/s)

) . (2.3)

Remark We only use the case d = R for the proof of Theorem 1.10 (recall that R ∼QS R).
However, we prove general case for future works.

We introduce some basic facts for the proof of Proposition 2.19.

Lemma 2.20 Assume μ ∈ M(X ,d), then the following statements are true.

1. There exists γ1 > 1 such that Vd(x, r/γ1) ≤ Vd(x, r)/2 for any x ∈ X and r ∈
(0, diam(X , d)).

2. hd(x, 2r) � hd(x, r) for any x ∈ X and r > 0.
3. There exists γ2 > 1 such that hd(x, r/γ2) ≤ hd(x, r)/2 for any x ∈ X and r ∈

(0, diam(X , d)).

4. For any C > 0, there exists γC > 1 such that for any t ∈ (0,C) and x ∈ X , there exists
r ∈ (0, diam(X , d)) with t/γC ≤ hd(x, r) ≤ t

5. For any x ∈ X , pμ(·, x, x) : t �→ pμ(t, x, x) is a decreasing function of t .
6. Fix any C ′ > 0. Then pμ(t/2, x, x) � pμ(t, x, x) for any x ∈ X and t ∈ (0,C ′).

Proof 1. It is well-known and easily follows from the volume doubling and uniformly perfect
conditions (see [12, Excersise 13.1] for example).

2., 3. Since d ∼QS R and both d and R are uniformly perfect, it is easy to check that there
exists γ ′ > 1 such that Rd(x, 2r) � Rd(x, r) and Rd(x, r/γ ′) ≤ Rd(x, r)/2 for any x ∈ X
and r ∈ (0, diam(X , d)). This with 1 and the volume doubling condition shows 2 and 3.

4. Since C/ supr∈(0,diam(X ,d)) hd(x, r) ≤ 2C/diam(X , d)μ(X) for any x ∈ X , it follows
from 2 and 3.

5. By the proof of [20, Theorem10.4 andLemma10.7], limn→∞ pn(t, x, y) = pμ(t, x, y)
where pn(t, x, y) : (0,∞) × X × X → R is of the form

pn(t, x, y) =
∑

k≥1

exp(−λn,k t)ϕn,k(x)ϕn,k(y)

for some λn,k > 0 and ϕn,k : X → R. Hence 5 is clear.
6. Recall that by Proposition 2.6, (X , R) satisfies (ACC). Thus this follows from (3)-(5),

[20, Theorem 15.6] and the fact that pμ(t, x, x) ≥ μ(X)−1 for any t > 0, which follows
from the Chapman-Kolmogorov equation.

Remark The condition of Lemma 2.20 1. is called reverse volume doubling condition (e.g.
[10, 15]).
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For the existence of ds(μ, Eμ,Dμ), we use the following classical result for subadditive
functions. For a proof, see [13, Proof of Theorem 7.6.1] for instance.

Lemma 2.21 Let f : (0,∞) → R be subadditive, that is, f (t + s) ≤ f (t) + f (s)
for any t, s ∈ (0,∞). Assume that supt∈I f (t) < ∞ for any bounded interval I , then
limt→∞ f (t)/t = inf t>0 f (t)/t < ∞.

Proof of Theorem 2.19 Let

f (τ ) = log
(

sup
x∈X ,s∈(0,diam(X ,d))

pμ(s/eτ , x, x)/pμ(s, x, x)
)

for τ > 0, then f is subadditive by definition. By Lemma 2.20 (5) and (6), supτ∈I f (τ ) < ∞
for any bounded interval I and infτ>0 f (τ )/τ ≥ 0. Hence limτ→∞ f (τ )/τ and the limit
ds(μ, Eμ,Dμ) exist because τ → ∞ as t = eτ → ∞. Our next goal is to prove Eq. 2.3. To
this end, let

u(s) = sup
x∈X ,α∈[s,∞),
r∈(0,diam(X ,d))

log
(
pμ(hd(x, r/α), x, x)/pμ(hd(x, r), x, x)

)

log
(
hd(x, r)/hd(x, r/α)

) and

v(s) = sup
x∈X ,α∈[s,∞),
t∈(0,diam(X ,d))

log
(
pμ(t/α, x, x)/pμ(t, x, x)

)

logα
.

By [20, Theorem 15.6], Proposition 2.6 and Lemma 2.20(3), the right hand side of Eq.
2.3 equals lims→∞ u(s), hence it is sufficient to show lims→∞ u(s) = lims→∞ v(s). We
proceed to show the following claim.

Claim For any ε > 0, there exists s0(ε) such that for any s > s0(ε), there exists s∗(s, ε)
satisfying (1 + ε)(ε + u(s)) ≥ v(s∗(s, ε)).

This claim implies lims→∞ u(s) ≥ lims→∞ v(s) because both u and v are decreasing.

Proof For any ε > 0 and s > 1, we can take C1, ...,C4 > 1 satisfying the following
conditions by Lemma 2.20 (2), (4)-(6).

• If x ∈ X , r ∈ (0, diam(X , d)) and β > 0 satisfy hd(x, r)/hd(x, r/β) > C1, then
β > s.

• For any x ∈ X and t ∈ (0, diam(X , d)), there exists r ∈ (0, diam(X , d)) with t/C2 ≤
hd(x, r) ≤ t .

• Any x ∈ X and t1, t2 ∈ (0, diam(X , d))with t1 ≤ C2t2 satisfyC3 ≥ log(pμ(t2, x, x)/pμ

(t1, x, x)).
• C4 > C2, C3/ logC4 < ε and logC4/(logC4 − logC2) < 1 + ε.

Let x ∈ X , t ∈ (0, diam(X , d)) and α > C2(C1 ∨ C4) =: s∗ We take r1, r2 ∈
(0, diam(X , d)) such that t/C2 ≤ hd(x, r1) ≤ t and t/C2α ≤ hd(x, r2) ≤ t/α. Then
C2α > hd(x, r1)/hd(x, r2) > C1 ∨ C4 and so for

l1 := log

(
pμ(hd(x, r2), x, x)

pμ(hd(x, r1), x, x)

)
and l2 := log

(
hd(x, r1)

hd(x, r2)

)
,
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it follows that

log
(
pμ(t/α, x, x)/pμ(t, x, x)

)
/ logα

≤(l1 + log
(
pμ(hd(x, r1), x, x)/pμ(t, x, x)

))/(
l2 − logC2

)

≤((l1/l2) + (C3/l2))l2
/(

l2 − logC2
)

≤((l1/l2) + (C3/ logC4)) logC4
/(

logC4 − logC2
)
.

Therefore v(s∗) ≤ (1 + ε)(ε + u(s)) by r1/r2 > s, and the claim follows. ��
For lims→∞ u(s) ≤ lims→∞ v(s), we consider the case diam(X , d) < ∞ and fix any

ε > 0. Then by Lemma 2.20 5. and 6., there exists s > 1 with

sup
x∈X ,

r∈(0,diam(X ,d))

log

(
pμ(diam(X , d), x, x)

pμ(hd(x, r), x, x)

)
< ε log s

because
sup

x∈X ,r∈(0,diam(X ,d))

(
hd(x, r)/diam(X , d)

) ≤ μ(X) < ∞. (2.4)

By Inequality 2.4 and Lemma 2.20 3., we can take s′ > 1 such that if α > s′ then
(
hd(x, r)∧

diam(X , d)
)/

hd(x, r/α) > s for any x ∈ X and r ∈ (0, diam(X , d)). Thus we obtain

log

(
pμ(hd(x, r/α), x, x)

pμ(hd(x, r), x, x)

)/
log

(
hd(x, r)

hd(x, r/α)

)

≤
(
log

(
pμ(hd(x, r/α), x, x)

pμ(hd(x, r) ∧ diam(X , d), x, x)

) /
log

(
hd(x, r) ∧ diam(X , d)

hd(x, r/α)

))
+ ε

and u(s′) < v(s) + ε. This shows lims→∞ u(s) ≤ lims→∞ v(s) in the same way as the
inverse direction. The proof for the case diam(X , d) = ∞ is similar, and the proposition
follows.

3 Partition Satisfying Basic Framework

In the former part of this section, we introduce the notion and related results of the partition
satisfying the basic framework, which is defined in [21] for the bounded case and extended
to unbounded cases in [26]. In the latter part of this section, we show some related resistance
estimates. Note that we continue to make Assumptions 1.6.

Definition 3.1 (Tree with a reference point) Let T be a countable set and π : T → T be a
map such that the following conditions hold.

• Let Fπ = {w | πn(w) = w for some n ≥ 1}, then #Fπ ≤ 1.

• For any w, v ∈ T , there exist n,m ≥ 0 such that πn(w) = πm(v). (3.1)

Let φ ∈ Fπ if Fπ �= ∅, otherwise we fix any φ ∈ T . We call the triplet (T , π, φ) a tree
with a reference point.

The above definition is justified as follows.

Lemma 3.2 ([28, Lemma 3.2])
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1. Let b(w, v) = min{n ≥ 0|πn(w) = πm(v) for some m ≥ 0} for w, v ∈ T , then
πb(w,v)(w) = πb(v,w)(v).

2. Let A = {(w, v) | π(w) = v or π(v) = w} \ {(φ, φ)}, then (T ,A) is a tree.

From now on we assume (T , π, φ) to be a tree with a reference point. We define [w] =
b(w, φ) − b(φ,w), Tn = {w ∈ T | [w] = n} for any w ∈ T and n ∈ Z. By abuse of
notation, we write π́−k(w) instead of π−k(w)∩ T[w]+k . Note that π́−k(w) �= π−k(w) if and
only if Fπ �= ∅, w = φ and k ≥ 1. We also define Tw = ∪k≥0π́

−k(w).

Definition 3.3 (Partition) Let (Y , ρ) be a (σ -compact) metric space without isolated points.
We say K : T → P(Y ) is a partition of (Y , ρ) parametrized by (T , π, φ) if the following
conditions hold.

• For any w ∈ T , K (w) is a compact set, neither a single point nor empty.

• ⋃w∈T0 K (w) = Y and for any w ∈ T ,
⋃

v∈π́−1(w) K (v) = K (w).

• If (wk)k≥0 ⊂ T satisfies wk ∈ Tk andπ(wk+1) = wk for any k ≥ 0, then k≥0K (wk) is
a single point.

Hereafter, we write Kw instead of K (w) for simplicity.

Remark The condition that Kw has no isolated points, assumed in [21, Definition 2.2.1],
follows from Definition 3.3 (see [28, Lemma 3.6]).

Definition 3.4 (Basic framework) Let (T , π, φ) be a tree with a reference point satisfying
supw∈T #(π́−1(w)) < ∞, and K be a partition of a metric space (Y , ρ) parametrized by
(T , π, φ). Let

En = {(w, v) ∈ Tn × Tn | Kw ∩ Kv �= ∅, w �= v}
and let ln denote the graph distance of (Tn, En) allowing ln(w, v) = ∞. We say K satisfies
the basic framework if the following conditions hold.

• int(Kw) ∩ int(Kv) = ∅ for any w, v ∈ T with [w] = [v] and w �= v. (3.2)

• There exists ζ ∈ (0, 1) such that diamρ(Kw) � ζ [w] for any w ∈ T . (3.3)

• There exists ξ > 0 such that for each w ∈ T , Bρ(xw, ξζ [w]) ⊂ Kw

for some xw ∈ Kw. (3.4)

• Let �m(x, y)=sup{n | x ∈ Kw, y ∈ Kv and ln(w, v) ≤ m for some w, v ∈ Tn}
then ρ(x, y) � ζ�M∗ (x,y) for any x, y ∈ Y , for some M∗ ∈ N. (3.5)

• L∗ := supw∈T #({v | (w, v) ∈ E[w]}) < ∞. (3.6)

Remark (1) The formulation in Definition 3.4 differs from the original one in [21, Section
4.3], for the reader’s convenience. However it follows from Inequality 3.3 and [21,
Proposition 3.2.1] that the above definition is equivalent to the original one.

(2) By Inequality 3.3,diam(Y , ρ) < ∞ if π(φ) = φ and otherwise diam(Y , ρ) = ∞.

For the existence of a partition of the given metric space satisfying the basic framework,
there is the following result.
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Theorem 3.5 ([28, Theorem 3.12]) Let (Y , ρ) be a complete metric space. Then the following
conditions are equivalent.

1. dimARC(Y , ρ) < ∞.

2. (Y , ρ) is doubling and uniformly perfect.
3. There exist a tree with a reference point (T , π, φ) and a partition K of (Y , ρ) such that

K satisfies the basic framework with respect to ρ.

Remark 1. In [26–28], the definition of theAhlfors regular conformal dimensionwas slightly
different in order to consider that of a discrete metric space. This difference required the
additional assumption that ((Y , ρ) is) “without isolated points” in the original statement
of [28, Theorem 3.12].

2. The equivalence between 1 and 2 was well-known (see [12, Theorem 13.3 and Corollary
14.15], for example).

We also note that we can choose {xw}w∈Tn as an increasing sequence of sets.

Lemma 3.6 Let K be a partition of (Y , ρ), parametrized by (T , π, φ) satisfying the basic
framework. Then there exist {xw}w∈T satisfying Condition 3.4 and for any n ≤ m,

∪w∈Tn {xw} ⊂ ∪w∈Tm {xw}.

Remark It is obvious that {xw | w ∈ Tn ∩ T πn(φ)}n≥0 is a spread sequence.

Proof Let {xw}w∈T Condition 3.4. By Inequality 3.3, there exists k ≥ 1 such that
diamρ(Kw) ≤ ξζ n/2 for any w ∈ Tn+k . We can define f : ∪nTkn → ∪nTkn such
that f (w) ∈ T[w]+k and xw ∈ K f (w). For w ∈ ∪nTkn, let yw be the unique point with
yw ∈ ∩n≥0K f n(w). Then ∪w∈Tkn {yw} ⊂ ∪w∈Tkm {yw} for n ≤ m and

Bρ(yw,
ξ

2
ζ [w]) ⊂ Bρ(xw, ξζ [w]) ⊂ Kw

for w ∈ ∪nTkn . For w ∈ ∪nTkn−m (k > m > 0), we define yw by induction on m. Let
yw = yv for some v ∈ π́−1(w) such that v = πm−1 ◦ f ◦ πk−m(w) whenever w =
πm ◦ f ◦ πk−m(w). Then we obtain

∪w∈Tkn−(m−1){yw} ⊃ ∪w∈Tkn−m {yw} ⊃ ∪w∈Tk(n−1){yw}
and

Bρ(yw,
ξζ k

2
ζ [w]) ⊂ Bρ(yv,

ξ

2
ζ [v]) ⊂ Kv ⊂ Kw

for some v ∈ π́−m(w). This shows {yw}w∈T is the desired set of points. ��
We are now able to introduce the precise definitions of d

s
p and d

s
p. For the rest of this section,

we assume that K denotes a partition of a metric space (Y , ρ) parametrized by (T , π, φ)

satisfying the basic framework, with points {xw}w∈T satisfying Condition 3.4 such that for
any n ≤ m, ∪w∈Tn {xw} ⊂ ∪w∈Tm {xw}.
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Definition 3.7 (p-spectral dimensions) Let

N∗ = lim sup
k→∞

(
sup
w∈T

#(π́−k(w))
)1/k

,

E p
n ( f ) = 1

2

∑

(x,y)∈En

| f (x) − f (y)|p,

Cw,k = {v ∈ T[w]+k | l[w](w, πk(v)) > M∗} and
Ep,k,w = inf{E p

[w]+k( f ) | f ∈ 
(T[w]+k), f |π́−k (w) ≡ 1, f |Cw,k ≡ 0}
for any n, f ∈ 
(Tn), w ∈ T and p > 0. (In particular for p = 2, E2,k,w =

(�[w]+k(π́
−k(w), Cw,k))

−1 where �n is the standard graph resistance on (Tn, En) i.e.
μu,v = 1 whenever (u, v) ∈ En and otherwise μu,v = 0.) We define the upper p-spectral
dimensions of the partition K for p > 0 by

d
s
p(K ) = p

(
1 − lim supk→∞ 1

k

(
supw∈T log Ep,k,w

)

log N∗

)−1

(3.7)

and the lower p-spectral dimensions dsp(K ) for p > 0 by Eq. 3.7 but replacing lim sup by
lim inf .

Remark In the same way as in the proof of Proposition 2.19, we have

N∗ = lim
k→∞

(
sup
w∈T

#(π́−k(w))
) = inf

k≥0

(
sup
w∈T

#(π́−k(w))
)

(3.8)

because
(
supw∈T #(π́− j (w))

)(
supw∈T #(π́−k(w))

) ≥ (supw∈T #(π́−( j+k)(w))
)
for any

j, k ≥ 0.

The following is the main result of [21], which leads to Theorem 1.3.

Theorem 3.8 ([21, Theorems 4.6.9] and [26, Theorem 3.9])

dimARC(Y , ρ) = inf{p | lim inf
k→∞ (sup

w∈T
Ep,k,w) = 0}

= inf{p | lim sup
k→∞

(sup
w∈T

Ep,k,w) = 0}.

In the reminder of this section, we assume (Y , ρ) = (X , R) and prove some inequalities
of indices of the partition, which are necessary for the proof of Theorem 1.10.

Lemma 3.9 R(Kw, Aw) � ζ [w] for any w ∈ T with Aw �= ∅.

Proof Since Inequality 3.3 and Condition 3.4 hold,R(Kw, Aw) � ζ [w] follows fromLemma
2.13. On the other hand, there exists ι ∈ (0, 1) satisfying R(Kw, Aw) > ιζ [w] for any w ∈ T
because Inequality 3.5 holds. Since (X , R) is doubling each Kw is covered by N balls of
radius ιζ [w]/2, for some N ≥ 0. ThereforeR(Kw, Aw) � ζ [w] by Lemmas 2.11 1. and 2.13,
similarly to the latter part of the proof of Lemma 2.13. ��
Proposition 3.10 1. E2,k,w � ζ k for any w ∈ T and k ≥ 0.
2. If (E,F) is local then E2,k,w � ζ k for any w ∈ T and k ≥ 0.

For proving Proposition 3.10 1., we use the argument of flow.
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Some inequalities between Ahlfors... 365

Definition 3.11 (Unit flow) Let (E,F) be a resistance form on a finite set V . For A, B ⊂ V
with A ∩ B = ∅, f : V × V → R is called a unit flow from A to B if it satisfies

• f (x, y) = − f (y, x) for any x, y ∈ V .

• ∑y∈V f (x, y) = 0 for any x /∈ A ∪ B,

• ∑x∈A
∑

y∈V f (x, y) = 1 and
∑

x∈B
∑

y∈V f (x, y) = −1.

Let {μx,y},R be the associated resistance weight and resistance between subsets, then it is
known that

R(A, B) = min{1
2

∑

x,y∈V

f (x, y)2

μx,y
| f is a unit flow from A to B}. (3.9)

We say f is the optimal flow forR(A, B), or optimal flow from A to B if f is the optimal
function for the right hand side of Eq. 3.9.

Proof of Theorem 3.10 Let Vn = {xw | w ∈ Tn ∩ T πn(φ)} and Aw = ∪{Kv | v ∈ Cw,0}.
We will denote by Rn (resp. Rn, μx,y,n) the resistance between sets (resp. metric, weights)
associated with (E|Vn , 
(Vn)).

1. Fix any w ∈ T and k ≥ 0. Since #{v | l[w](w, v) ≤ M + 1} < ∞ and Condi-
tion 3.1 hold, there exists n ≥ [w] + k such that {v | l[w](w, v) ≤ M + 1} ⊂ T πn(φ).

Then E−1
2,k,w = �n

[w]+k(π́
−k(w), Cw,k ∩ T πn(φ)), where �n

[w]+k is the standard graph resis-

tance on (T[w]+k ∩ T πn(φ), En |(T[w]+k∩T πn (φ))×(T[w]+k∩T πn (φ))). Let τ be the optimal flow

for �n
[w]+k(π́

−k(w), Cw,k), α > 1 be the constant appeared in Proposition 2.17 and fu,v

be the optimal flow for RVn ,B(xu ,αR(xu ,xv))(xu, xv) for u, v ∈ T[w]+k ∩ T πn(φ). We define
f : Vn × Vn → R by

f (p, q) = 1

2

∑
(u,v)∈E[w]+k : u,v∈T πn (φ) τ (u, v) fu,v(p, q),

then f is a unit flow from Kw ∩ Vn to Aw ∩ Vn on (E|Vn , 
(Vn)). Note that fu,v(p, q) = 0 if

R(xu, p) ≥ αR(xu, xv) ≥ αξζ [w]+k .

Since R is doubling, there exists N > 0 such that

sup
x∈X , r>0

{#(Y ) | Y ⊂ B(x, αr), R(y, z) ≥ r for any y, z ∈ Y with y �= z} ≤ N

Therefore

Rn(Kw, Aw) ≤1

2

∑

p,q∈Vn

f (p, q)2

μp,q

≤N

8

∑
(u,v)∈E[w]+k :
u,v∈T πn (φ)

τ (u, v)2
∑

p,q∈Vn
fu,v(p, q)2

μp,q

≤N

8

(
sup (u,v)∈E[w]+k :

u,v∈T πn (φ)

2R(xu, xv)

)∑
(u,v)∈E[w]+k :
u,v∈T πn (φ)

τ (u, v)2

≤N

2
ξζ [w]+k(E2,k,w)−1.
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Since ζ [w] � R(Kw, Aw) ≤ R[k]+w(Kw, Aw) for any w ∈ T , the claim holds.
(2)Wefirst note that there existsβ > 0 such that�M∗(x, y) ≥ nwhenever R(x, y) ≤ βζ n

by Inequality 3.5. Fix any w ∈ T and k ≥ 0. Since T[w]+k \ Cw,k is a finite set, there exists
n ≥ [w] + k such that

∑

v∈T[w]+k\Cw,k

∑

x∈Kv,

y /∈B(x,βζ [w]+k )

μx,y,n <
1

3
R(Kw, Aw)−1

and Rn(Kw, Aw) ≤ 2R(Kw, Aw), by Lemma 2.12 and Proposition 2.16.

Let f be the optimal function for �[w]+k(π́
−k(w), Cw,k) and τv be the optimal functions

for Rn(Kv, Av) and v ∈ T[w]+k . (If Kv ∩ Vn = ∅ or Av ∩ Vn = ∅ then τv be constant.) We
also let

f (v) = 2max
{| f (v) − f (u)| ∣∣ l[w]+k(u, v) ≤ 2M∗

}
.

Ournext goal is to construct a suitable function τ onVn with τ |Kw∩Vn ≡ 1 and τ |Aw∩Vn ≡ 0
with the above functions. Set

P(x) = {{xi }mi=0 ⊂ Vn
∣∣ m ∈ {0} ∪ N, x0 ∈ Aw, xm = x,

R(xi , xi−1) ≤ βζ [w]+k for any i
}

for x ∈ Vn . We define τ : Vn → R as

τ(x) = 1 ∧ inf

{ m∑

i=1

sup
v∈T[w]+k

f (v)|τv(xi ) − τv(xi−1)|
∣∣∣∣ {xi }mi=0 ∈ P(x)

}

where
∑0

i=1 ∞ := 0, inf ∅ := ∞. It clearly holds 0 ≤ τ ≤ 1 and τ |Aw∩Vn ≡ 0.

Claim τ |Kw∩Vn ≡ 1.

Proof Fix any x ∈ Kw ∩Vn and {xi }mi=0 ∈ P(x).We inductively choose i0 = 0, v j ∈ T[w]+k

such that xi j ∈ Kv j , and i j+1 = min{i > i j | x j ∈ Av j }.Note that since�M∗(xi j , x(i j )−1) ≥
[w] + k, l[w]+k(v j , v j−1) ≤ 2M∗. Let ι ≥ 0 and v∗ ∈ π́−k(w) be such that x /∈ Avι and
l[w]+k(v∗, vι) ≤ M∗, then

m∑

i=1

sup
v∈T[w]+k

f (v)|τv(xi ) − τv(xi−1)|

≥
ι−1∑

j=0

f (v j )

i( j+1)−1∑

i=i j

|τv j (xi+1) − τv j (xi )|

≥
ι−1∑

j=0

f (v j ) ≥ | f (v∗) − f (vι)| +
ι−1∑

j=0

| f (vi+1) − f (vi )| ≥ 1.

This shows the claim. ��
Next we evaluate E|Vn (τ, τ ) :

1

2
(R(Kw, Aw))−1 ≤E|Vn (τ, τ )
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=1

2

∑

x,y∈Vn :
R(x,y)≤βζ [w]+k

(x,y)/∈Aw×Aw

(τ (x) − τ(y))2μx,y,n

≤1

3
(R(Kw, Aw))−1 + 1

2

∑

x,y∈Vn :
R(x,y)≤βζ [w]+k

(τ (x) − τ(y))2μx,y,n .

If R(x, y) ≤ βζ [w]+k, then |τ(x) − τ(y)| ≤ supv∈T[w]+k
f (v)|τv(x) − τv(y)|. Moreover,

since Condition 3.4 holds and R is doubling, there exists J > 0 such that

sup
m∈Z,x,y∈X :R(x,y)≤βζm

#{v ∈ Tm | {x, y} �⊂ Av} ≤ J < ∞.

Therefore by τv|Av ≡ 0,

1

6
(R(Kw, Aw))−1 ≤ J

2

∑

v∈T[w]+k

f (v)2
∑

x,y∈Vn
(τv(x) − τv(y))

2μx,y,n

≤ J

ξ
ζ−[w]−k

∑

v∈T[w]+k

f (v)2.

Since f (v) ≤ ∑2M∗
i=1 | f (vi ) − f (vi−1)| for some {vi }2M∗

i=0 satisfying v0 = v and
(vi , vi−1) ∈ E[w]+k ,

∑

v∈T[w]+k

f (v)2 ≤ 4L2M∗−1∗
∑

u,v∈E[w]+k

( f (u) − f (v))2 = 8L2M∗−1∗ E2,k,w.

Thus we have

E2,k,w ≥ ξ

48J L2M∗−1∗
ζ [w]+k(R(Kw, Aw))−1.

This with Lemma 3.9 shows the proposition. ��
Proposition 3.12

1. sup
x∈X ,r∈(0,diam(X ,R))

Vμ(x, r)

Vμ(x, ζ kr)
� Nk∗ for any μ ∈ M(X ,R) and k ≥ 0.

2. For any ε > 0, there exists μ ∈ M(X ,R) with

sup
x∈X ,r∈(0,diam(X ,R))

Vμ(x, r)

Vμ(x, ζ kr)
� (N∗ + ε)k for any k ≥ 0.

Proof 1. We have

μ(Kw) ≥
∑

v∈π́−k (w)

Vμ(xv, ξζ k) ≥ min
v∈π́−k (w)

Vμ(xv, ξζ k)#(π́−k(w)),

which leads to

sup
w∈T ,

v∈π́−k (w)

Vμ(xv, 2diam(Kw))

Vμ(xv, ξζ [v])
≥ sup

w∈T
#(π́−k(w)) ≥ Nk∗

for any k ≥ 0. Since μ is (VD)R, diam(Kw) � ζ [w] for any w ∈ T and Eq. 3.8, the claim
follows.

123



368 Kôhei Sasaya

2. Fix any ε > 0. By Eq. 3.8 and [21, Proposition 4.3.5], we can choose k ≥ 1 such
that supw∈T #(π́−k(w)) ≤ (N∗ + ε)k and for any w ∈ T , #(π́−k(w)) ≥ 2 and there exists
v(w) ∈ π́−k(w) with Kv(w) ⊂ int(Kw).

Let T̃ = ∪n∈ZTkn, then it is easily seen that K |T̃ is a partition of (X , R) parametrized by
(T̃ , πk, φ), satisfying the basic framework. We define ϕ,ψ : T̃ → R as

ϕ(w) =
⎧
⎨

⎩

(
1 − #(π́−k (πk (w)))−1

(N∗+ε)k

)
(if w = v(πk(w)))

1
(N∗+ε)k

(otherwise)

and ψ(w) = (∏b̃(w,φ)
i=0 ϕ(π ik(w))

)
/
(∏b̃(φ,w)

i=0 ϕ(π ik(φ))
)
, where

b̃(w, u) = bπk (w, u) := min{i ≥ 0 | π ik(w) = π jk(w) for some j ≥ 0}
for w, u ∈ T̃ . Note that

1

(N∗ + ε)k
≤ ϕ(w) ≤

(
1 − 1

(N∗ + ε)k

)
and

∑

v∈π́−k (w)

ϕ(w) = 1 for any w ∈ T̃

We next claim that

((N∗ + ε)k − 1)ψ(w) ≥ max{ψ(u) | (w, u) ∈ E[w]} for any w ∈ T̃ . (3.10)

Recall that b̃(w, u) = b̃(u, w) by [w] = [u]. If i < b̃(w, u) − 1 then we have π ik(w) �=
v(π(i+1)k(w)) because

∅ �= Kπ ik (w) ∩ Kπ ik (u) ⊂ Kπ(i+1)k (w) ∩ Kπ(i+1)k (u) �⊂ int(Kπ(i+1)k (w)).

This shows

ψ(u)

ψ(w)
=
∏b̃(w,u)

i=0 ϕ(π ik(w))

∏b̃(u,w)
i=0 ϕ(π ik(u))

= π(b̃(w,u)−1)k(w)

π(b̃(u,w)−1)k(u)
≤ ((N∗ + ε)k − 1).

We now prove the proposition for the case of diam(X , R) < ∞.

Let μn = ∑w∈Tnk ψ(w)δxw , where δxw is the Dirac measure on xw. Then by Prokhorov’s
theorem, there exists aBorel probabilitymeasureμ∗ such thatμnm → μ∗ weakly asm → ∞,

for some subsequence {μnm }m≥0. We have

μ∗(Kw) ≥ lim sup
m→∞

μnm (Kw) = ψ(w)

for any w ∈ T . Moreover, since Kw ⊂ Uw := int(∪u:(w,u)∈E[w]Ku),

μ∗(Kw) ≤ μ∗(Uw) ≤ lim inf
m→∞ μnm (Uw) ≤ (L∗((N∗ + ε)k − 1) + 1)ψ(w).

By Inequalities 3.3 and 3.5, there exists m ≥ 0 such that for any x ∈ X , r ∈ (0, diam(X , R))

and n ≥ 0, we can choose some w ∈ T̃ with

Kw ⊂ B(x, ζ nkr) and B(x, r) ⊂ X \ Aπ(m+n)k (w).

Since

μ∗(X \ Aπ(m+n)k (w))

μ∗(Kw)
�
∑u∈T[w]−(m+n)k

:l[u](u,π(m+n)k )≤M∗
ψ(u)

ψ(w)

�ψ(π(m+n)k(w))

ψ(w)
≤ (N∗ + ε)(m+n)k
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for any n ≥ 0 and w ∈ T̃ by Eq. 3.10, the claim holds for the bounded case.
We now turn to the case of diam(X , R) = ∞. We can choose μu for each u ∈ T0 such

that μu(X \ Ku) = 0 and ψ(w) ≤ μu(Kw) ≤ L∗(N∗ + ε)kψ(w) for any w ∈ T̃ u, by the
former case. Let μ∗ =∑u∈T0 μu, then it is clear that ψ(w) ≤ μ∗(Kw) and

μ∗(Kw) ≤
{∑

u:(u,w)∈E[w]
∑

q∈T u∩T0 μq(Ku) (if [w] < 0)
∑

u:(u,w)∈E[w] μπ [w](u)(Ku) (otherwise )

≤
∑

u:(u,w)∈E[w]
L∗(N∗ + ε)kψ(u) ≤ L2∗(N∗ + ε)2kψ(w)

for any w ∈ T̃ . Therefore the same proof as the bounded case works for the present case. ��
Remark 1. The idea of this proof comes from [21, Theorems 4.2.2 and 4.5.1].
2. We can show that − log N∗/ log ζ coincides with the Assouad dimension dimA(X , R),

where

dimA(X , R) = inf{t > 0 | B(x, r) is covered by�C(r/s)t� bolls
of radius s for any 0 < s < r and x ∈ X , for some C > 0}.

Thus we can also deduce Proposition 3.12 2. from [12, Theorem 13.5].

4 Proof Of Main Results

In this section we prove Theorems 1.9 and 1.10.

Proof of Theorem 1.10 By Proposition 2.19,

ds(μ, Eμ,Dμ)

2

= lim sup
s→∞

sup
x∈X ,r∈(0,diam(X ,R))

(
1 + log s

log
(
Vμ(x, r)/Vμ(x, r/s)

)
)−1

= lim sup
k→∞

sup
x∈X ,r∈(0,diam(X ,R))

(
1 + log ζ−k

log
(
Vμ(x, r)/Vμ(x, ζ kr)

)
)−1

=
(
1 + log ζ−1

lim supk→∞ supx∈X ,r∈(0,diam(X ,R))
1
k log
(
Vμ(x, r)/Vμ(x, ζ kr)

)
)−1

(4.1)

because R is uniformly perfect and μ is (VD)R .

Since lim supk→∞(supw E2,k,w)1/k ≤ ζ < 1 by Proposition 3.10 (1),

d
s
2(K )

2
≤
(
1 + log ζ−1

log N∗

)−1

, (4.2)

so d
s
2(K ) ≤ ds(μ, Eμ,Dμ) holds by Proposition 3.12 1. Moreover, if (E,F) is local, the

equality in Inequality 4.2 holds by Proposition 3.10. Since Proposition 3.12 2. holds, for any
ε > 0 there exists μ ∈ M(X ,R) such that

ds(μ, Eμ,Dμ)

2
≤
(
1 + log ζ−1

log(N∗ + ε)

)−1

,
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which shows infμ∈M(X ,R)
ds(μ, Eμ,Dμ) ≤ d

s
2(K ) for the local case.

Proof of Theorem 1.9 We have a partition of (X , R) satisfying the basic framework by The-
orem 3.5, and obtain d

s
2(K ) ≤ ds(μ, Eμ,Dμ) < 2 by Eq. 4.1 and Theorem 1.10. This and

Theorem 1.3 1. with p = 2 prove the theorem.

5 Example with ds(�,E�,D�) < dimARC(X,R) < 2

In this section,we proveTheorem1.11. In otherwords,we give an examplewith the inequality
ds(μ, Eμ,Dμ) < dimARC(X , R) < 2. The results in this section are the continuous version
of [27, Section 3], and many of the resistance estimates used in this section come from that
preprint. We also note that the techniques used for showing these resistance inequalities
was originated in [1]. The main difficulty in the continuous case is to construct the desired
resistance form. We overcome this difficulty by using the results of [16, 19] in the proof of
Corollary 5.4.

Recall that Q = {z | |Re(z)| ∨ |Im(z)| ≤ 1/2}. Let

pi =

⎧
⎪⎪⎨

⎪⎪⎩

0 (i = 0)
1√
2

( 1+√−1√
2

)i
(i = 1, 3, 5, 7)

1
2

(√−1
)i/2

(i = 2, 4, 6, 8)

, ϕi (z) = 1

3
(z − pi ) + z,

F(n) =
{
1 (if k2(k − 1) < n ≤ k3 for some k ∈ N)

0 (otherwise)
,

�n(S) =
{⋃8

i=1 ϕi (S) (if F(n) = 1)
⋃

i=0,1,3,5,7 ϕi (S) (if F(n) = 0)
for S ∈ P(C)

and X =⋂n≥1 �1 ◦ �2 ◦ · · · ◦ �n(Q). It is easy to see that (X , d) is a complete, doubling,
uniformly perfect metric space, where d is the Euclidean metric on X given by d(z, w) =
|z − w|. We also let

Tn =
⎧
⎨

⎩

{φ} (n = 0)
{(wi )

n
i=1 | wi ∈{0, 1, 3, 5, 7} if F(i) = 0,

wi ∈ {1, ..., 8} if F(i) = 1} (otherwise)

and T =⊔n≥0 Tn . For any w ∈ T , we define

ϕw =
{
idC (if w = φ)

ϕw1 ◦ · · · ◦ ϕwn (otherwise)
, Kw = ϕw(Q) ∩ X

and π(w) =
{

φ (if w ∈ T0 � T1)

(wi )
n−1
i=1 (if w = (wi )

n
i=1 for some n > 1).

Then it is easily seen that K is a partition of (X , d) parametrized by (T , π, φ), satisfy-
ing the basic framework. Moreover, in the same way as [27, Proposition 3.11], we have
dimARC(X , d) = dimARC(SC, d), where SC is the standard Sierpiński carpet (recall Fig. 2).
It is also routine work to show that there exists a Borel measure μ such that

μ(Kw) = 3−n(5/3)−#{k≤n|F(k)=1} for every n ∈ N and w ∈ Tn,
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and so μ is (VD)d .

By the fact 2 log 5/(log 3+ log 5) < 1.5 < 1+ (log 2/ log 3) ≤ dimARC(SC, d) < 2 (see
[32, 33] for the proof of the last two inequalities) and the above argument, for the proof of
Theorem 1.11 it suffices to prove the following theorem.

Theorem 5.1 There exists a resistance form (E,F) on X such that the associated resistance
metric R is quasisymmetric to the Euclidean metric d, the limit ds(μ, Eμ,Dμ) exists and is
independent of x, and ds(μ, Eμ,Dμ) = 2 log 5/(log 3 + log 5).

Remark 1. dimARC(X , d) = dimARC(X , R) because R ∼QS d.

2. 2 log 5/(log 3 + log 5) equals the spectral dimension of the standard Dirichlet form on
the Vicsek set (recall that it is the unique nonempty compact subset VS of C with VS =
∪ j=0,1,3,5,7ϕ j (VS)).

Let

V0 = {p1, p3, p5, p7}, G0 = {(x, y) ∈ V0 × V0 | |x − y| = 1},

Vn,m =
{

�m+1 ◦ · · · ◦ �n(V0) (if m < n)

V0 (if m = n)

Gn,m = {(x, y) ∈ Vn,m × Vn,m | for some w ∈ Tn, there exists (x ′, y′) ∈ G0

such that ϕw(x ′) = ϕπn−m (w)(x), ϕw(y′) = ϕπn−m (w)(y)}
for any n ≥ 0 and 0 ≤ m ≤ n. We also define En,m : 
(Vn,m) × 
(Vn,m) → R by

En,m(u, v) = 1

2

∑

(x,y)∈Gn,m

(u(x) − u(y))(v(x) − v(y)),

then it is clear that (En,m, 
(Vn,m)) are resistance forms. Here Rn,m denotes the associated
resistance metric and Rn,m denotes the resistance between sets. For simplicity of notation,
we write

(TB)n,m = Rn,m({z ∈ Vn,m | Im(z) = 1

2
}, {z ∈ Vn,m | Im(z) = −1

2
})

and (Pt)n,m = Rn,m(p1, p5).

Moreover, we write n instead of n, 0 if no confusion may occur. For example, we write
Vn instead of Vn,0. In the same way as [1, Section 4] and [27, Theorem 3.2], we have the
following inequalities.

Lemma 5.2 There exists C > 0, satisfying the following conditions for any n ≥ m ≥
0, x, y ∈ Vm and w ∈ Tn .

1. Rn(x, y) ≤ CRm(x, y)(Pt)n,m and CRn(x, y) ≥ Rm(x, y)(TB)n,m .

2. C(TB)n,m ≥ (Pt)n,m ≥ (TB)n,m .

3. Let A = {z ∈ C | |Re(z)| ∨ |Im(z)| ≥ 3/2}, then
CRn(ϕw(Q) ∩ Vn, ϕw(A) ∩ Vn) ≥ Rm(ϕw(Q) ∩ Vm, ϕw(A) ∩ Vm)(TB)n,m

In particular,
(Pt)n ≤ C(Pt)m(Pt)n,m ≤ C2(Pt)m(TB)n,m ≤ C3(Pt)n (5.1)

for any n ≥ m ≥ 0, which follows from 1. and 2.
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Remark C only depends on the structure of the standard 3-adic squares and resistance esti-
mates for the (graphical) standard Sierpiński carpet, so does not depend on m and n.

For the construction of the desired resistance form,we use the following propositionwhich
implicitly appeared and is proved in [16, Proof of Theorem 5.1].

Proposition 5.3 Let V be a finite set and (En, 
(V )) be a resistance form on V with the
associated resistance metric Rn for every n ≥ 0. If R(x, y) := limn→∞ Rn(x, y) > 0 exists
for any x, y ∈ V with x �= y, then there exists a resistance form (E, 
(V )) such that the
associated resistance metric coincides with R.

Corollary 5.4 Let {Vn} be a sequence of increasing nonempty finite sets and (En, 
(Vn))
be a resistance form on Vn with the associated resistance metric Rn for every n ≥ 0. If
R(x, y) := limn→∞ Rn(x, y) > 0 exists for any x, y ∈ ∪n≥0Vn with x �= y, there exists a
resistance form on V∗ such that the associated resistance metric coincides with R∗, where
(V∗, R∗) is the completion of (∪n≥0Vn, R).

Proof Applying Proposition 5.3 to {(Em |Vn , 
(Vn))}m≥n, we obtain the resistance form
(Ln, 
(Vn)) such that the associated resistance metric coincides with R|Vn×Vn . By [19, The-
orem 2.1.12] and [20, Theorem 3.13], the claim follows. ��

Since Inequality 5.1 and Lemma 5.2 1. and 2. hold, we have

C−2 Rm(x, y)

(Pt)m
≤ Rn(x, y)

(Pt)n
≤ C3 Rm(x, y)

(Pt)m
(5.2)

for any 0 ≤ m ≤ n and x, y ∈ Vm, so by Corollary 5.4 with the diagonal sequence argument,
we obtain a resistance form (E,F) on V∗, such that for some {n j } j∈N the associated resistance
metric R∗ satisfies

R∗(x, y) = lim
j→∞

Rn j (x, y)

(Pt)n j

for any x, y ∈ ∪n≥0Vn .
In order to show V∗ = X and R ∼QS d, and to calculate ds(μ, Eμ,Dμ), we need more

detailed evaluation as in [27].

Lemma 5.5 1. There exist M ≥ 0 such that (Pt)n+M ≥ 2(Pt)n � (Pt)n+1 for any n ≥ 0.
2. For each x, y ∈ ∪n≥0Vn, let

�(x, y) = min{n | x ∈ ϕw(Q) and y ∈ ϕw(A) for some w ∈ Tn},
then R∗(x, y) � ((Pt)�(x,y))

−1 for any x, y ∈ ∪n≥0Vn .

Proof 1. Let k1(n,m) denote #{ j | m < j ≤ n, F( j) = 1} and k2(n,m) denote #{ j | m <

j < n, F( j) = 1, F( j + 1) = 0}. Then in the same way as [27, Theorem 3.2 (1)] but
induction of (n− k) for any fixed n, it follows that there exist Ca,Cb > 0 and ρ > 1 such
that

ρk1(n,m)3n−m−k1(n,m)Ck2(n,m)
a � (Pt)n,m � ρk1(n,m)3n−m−k1(n,m)Ck2(n,m)

b (5.3)

for any 0 ≤ m ≤ n, because constants do not depend on n and m. Therefore the lemma
follows from Inequalities 5.1 and 5.3.
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2. We first note that

Rn(x, y) � 1 for any n ∈ N and x, y ∈ Vn with (x, y) ∈ Gn, (5.4)

Rn(ϕw(Q), ϕw(A)) � 1 for any n ∈ N and w ∈ Tn . (5.5)

By definition of �(x, y), for any n with x, y ∈ Vn, we have {xi }ni=�(x,y)−2 and
{yi }ni=�(x,y)−2 such that x�(x,y)−2 = y�(x,y)−2, xn = x, yn = y and for any
�(x, y) − 1 ≤ i ≤ n, {xi−1, xi } ⊂ ϕwi (V0) and {yi−1, yi } ⊂ ϕui (V0) for some
wi , ui ∈ Ti . Then by 1. and Eq. 5.2 and Eq. 5.4,

Rn(x, y)

(Pt)n
≤ 1

(Pt)n

n∑

i=�(x,y)−1

(Rn(xi−1, xi ) + Rn(yi−1, yi ))

�
n∑

i=�(x,y)−1

1

(Pt)i

�
∞∑

i=0

∑M
j=1(Pt)�(x,y)−1+iM+ j,�(x,y)−1+iM

(Pt)�(x,y)−1+iM

� ((Pt)�(x,y)−1)
−1 � ((Pt)�(x,y))

−1

for any n ∈ N and x, y ∈ Vn .
On the other hand, let w ∈ T�(x,y) be a vertex appeared in the definition of �(x, y), then
by Eq. 5.5 and Lemma 5.2 3.,

Rn(x, y)

(Pt)n
≥ Rn(ϕw(Q), ϕw(A))

(Ptn)

� (Pt)n,�(x,y)

(Pt)n
� ((Pt)�(x,y))

−1,

which completes the proof. ��
Proof of Theorem 5.1 We first prove d|∪n≥0Vn ∼QS R∗|∪n≥0Vn . By Lemma 5.5 1. and 2., there
exist α, τ > 1 such that

1. if �(x, y) − �(x, z) ≥ Ma for a ≥ 0 then R∗(x,y)
R∗(x,z) ≤ α2−a .

2. If �(x, z) − �(x, y) ≤ a for a ≥ 0 then R∗(x,y)
R∗(x,z) ≤ ατ a .

Since �(x, z) − �(x, y) ≤ log(6
√
2d(x, y)/d(x, z))/ log 3 and the above inequalities

hold, there exist t1, t2 with 0 < t1 < t2 such that

1. if d(x, y)/d(x, z) ≤ t1 then R∗(x, y)/R∗(x, z) ≤ θ1(d(x, y)/d(x, z)),

2. R∗(x, y)/R∗(x, z) ≤ θ2
(
(d(x, y)/d(x, z)) ∨ t2

)

for x, y, z with x �= z, where

θ1(t) = α2(log 6
√
2t/M log 3)+1, θ2(t) = ατ (log 6

√
2t/ log 3)+1.

It is obvious that there exists a homeomorphism θ : [0,∞) → [0,∞) satisfying θ1(t) ≤ θ(t)
for t ≤ t1 and θ2(t ∨ t2) ≤ θ(t) for t > t1, which proves the desired quasisymmetry. This
also shows a sequence in ∪n≥0Vn is d-Cauchy if and only if R∗-Cauchy, therefore V∗ = X
and d ∼QS R∗. In other words, (E,F) is the desired resistance form.
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It remains to calculate ds(μ, Eμ,Dμ). By Proposition 2.6 we can apply [20, Theorem
15.6] for d and obtain

lim sup
t→∞

− log pμ(1/t, x, x)

log t

= lim sup
n→∞

log Vd(x, 3−n)

log hd(x, 3−n)

≤ lim sup
n→∞

k1(n)
n log 8 + (1 − k1(n)

n ) log 5
k1(n)
n (log 8 + log ρ) + (1 − k1(n)

n )(log 5 + log 3) + k2(n)
n logCa

= log 5

log 5 + log 3

for any x ∈ X . (Note that the first equation follows from Lemma 2.20.) Similarly we have

lim inf
t→∞

− log pμ(1/t, x, x)

log t
≥ log 5

log 5 + log 3
,

and the proof is complete.

A Equivalence of local properties

Let us recall that X is a set, (E,F) is a resistance form on X and R is the resistance metric
associated with (E,F). In this appendix we discuss the relation between the local property of
(E,F) and that of the Dirichlet form induced by (E,F).We also recall that the local property
of a Dirichlet form is defined as follows.

Definition A.1 (Local) Let (Y , ρ) be a locally compact separable metric space and ν be a
Radon measure on Y with full support. A Dirichlet form (E, D) on L2(Y , ν) is called local if
E(u, v) = 0 whenever u, v ∈ D have disjoint compact supports, where the support supp(u)

of u ∈ L2(Y , ν) is defined as the support of the measure udν on (Y , ρ).

By [20, Theorem 9.4], if (E,F) is a regular resistance form satisfying (ACC), then for each
Radon measure μ on X with full support, (Eμ,Dμ), defined in the same way as Lemma 1.8,
is a regular Dirichlet form on L2(X , μ).Here we remark that supp(u) = {x ∈ X | u(x) �= 0}
because F ⊂ C(X , R). Therefore by the definition ofDμ, (Eμ,Dμ) is a local Dirichlet form
(over (X , R)) if (E,F) is a local resistance form. In this appendix, we prove that, under
Assumption 1.6, the converse direction is also true. Indeed, the following holds.

Proposition A.2 Assume that R is complete and doubling. Then for any u ∈ F, there exists
{un}n≥0 ⊂ F∩C0(X , R) such that supp(un) ⊂ supp(u) for any n and limn→∞ E(u−un, u−
un) = 0.

Corollary A.3 We make the Assumption 1.6 and let μ be a Radon measure on X with full
support. Then the following conditions are equivalent.

1. E(u, v) = 0 if u, v ∈ F and supp(u) ∩ supp(v) = ∅.

2. (E,F) is a local resistance form.
3. (Eμ,Dμ) is a local Dirichlet form.

Proof 1 ⇒ 2 ⇒ 3 is obvious. 3 ⇒ 1 follows from Theorem 3.5 and Proposition A.2. ��
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In the remainder of this appendix, we assume that R is complete and doubling, and prove
Proposition A.2. In the same way as the proof of Lemma 2.13, the following inequality holds
without the uniform perfectness condition.

Lemma A.4 R(B(x, r), B(x, 2r)c) � r for any x ∈ X and r > 0.

The following Proposition A.5, Corollary A.6 and Lemma A.7 were proved in [14] for a
general resistance form whose associated resistance metric is not necessarily doubling. Here
we give proofs for the same reason as we did for Lemma 2.11.

Proposition A.5 (cf. [14, Theorem 2.38 (2)]) Let u ∈ F and {un}n≥0 ⊂ F . Then
limn→∞ E(u − un, u − un) = 0 if and only if lim supn→∞ E(un, un) ≤ E(u, u) and
limn→∞(u − un)(x) exists in R and is constant on X .

Proof The necessity is clear by the triangle inequality of E1/2 and Eq. 1.4. For the sufficiency,
let {Vm}m≥0 be a spread sequence of (X , R) then

E(u, u) = lim
m→∞ E|Vm (u|Vm , u|Vm )

= lim
m→∞ lim

n→∞ E|Vm (un |Vm , un |Vm ) ≤ lim inf
n→∞ E(un, un),

which proves limn→∞ E(un, un) = E(u, u). Let u∗
n := (u + un)/2, then by the trian-

gle inequality of E1/2, {u∗
n}n≥0 also satisfies the same condition as {un}n≥0. Therefore

limn→∞ E(u∗
n, u

∗
n) = E(u, u) and

lim
n→∞ E(u − un, u − un) = 2E(u, u) + lim

n→∞(2E(un, un) − E(2u∗
n, 2u

∗
n)) = 0.

Corollary A.6 (cf. [14, Corollary 2.39 (4)]) limn→∞ E(u − ûn, u − ûn) = 0 for any u ∈ F,

where ûn = (u ∧ n) ∨ (−n).

Proof It immediately follows from Proposition A.5 and Eq. 1.5. ��
Lemma A.7 (cf. [14, Corollary 2.39 (3)]) Let u, v ∈ F be bounded. Then uv ∈ F and
E(uv, uv)1/2 ≤ ‖u‖∞E(v, v)1/2 + ‖v‖∞E(u, u)1/2, where ‖u‖∞ = supx∈X |u(x)|.
Proof This follows from Proposition 2.10 with easy calculation. ��
Proof of Propositions A.2 Since Corollary A.6 holds, we only need to show the case that
u ∈ F is bounded and diam(X , R) = ∞. Fix some x ∈ X and let fn be the optimal function
for R(B(x, 2n), B(x, 2n+1)c) for each n ≥ 0. Let un = fnu, then un ∈ C0(X , R) and
supp(un) ⊂ supp(u). Moreover, un ∈ F and

lim sup
n→∞

E(un, un) ≤ (E(u, u)1/2 + ‖u‖∞ lim
n→∞ E( fn, fn)

1/2)2 = E(u, u)

because of Lemmas A.4 and A.7. Therefore limn→∞ E(u − un, u − un) = 0 by Proposition
A.5, which completes the proof. ��
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