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Abstract
There are many interesting eigenvalue problems in a variety of settings; one of them is the
well-known Steklov eigenvalue problem. In this work, we are interested in studying some
Steklov eigenvalue problems for elliptic operators of second and fourth order using a well-
known Reilly formula. Some upper and lower bounds for the first eigenvalue are obtained,
and the rigidity case is carefully analyzed.
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1 Introduction

In 1902 Steklov introduced the following eigenvalue problem

{
�u = 0 in �,
∂u
∂ν

= σu on ∂�,

steady-state temperature on a domain, and the flux on the boundary is proportional to the
temperature; see, for instance, [18] for a nice description of the relationship between math-
ematics and physics in this problem. Afterward, this problem was studied by Payne in [14]
for bounded domains in the plane with non-negative curvature using a new approach.

In the meantime, Kuttler and Sigillito introduced in [11], among other problems, the
following problem: {

�2u = 0 in M,

u = �u − q ∂u
∂ν

= 0 on ∂M,

B Márcio Batista
mhbs@mat.ufal.br

José I. Santos
jissivan@gmail.com

1 CPMAT-IM, Universidade Federal de Alagoas, Maceió, AL 57072-970, Brazil

2 Instituto Federal de Alagoas, Palmeiras dos Índios, AL 57608-180, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-023-10091-8&domain=pdf
http://orcid.org/0000-0002-6495-3842


1370 M. Batista and J. I. Santos

since the eigenvalues of this problem are related to optimal constants in a priori inequalities
that have applications in bounding solutions of some elliptic equations. Thenceforth, many
authors have studied this subject, and they have provided a good understanding of this theme;
see, for instance, [3–7, 11, 13, 14, 16, 18–20] and references therein.

One attractive approach to understanding some geometrical properties of the ambient in
focus is to understand the behavior of solutions of PDEs such as those introduced above. In
many situations, the existence of such a solution implies some rigidity in the ambient studied.
Perelman in [15] considered the space of metrics and functions on a manifold as a way to
enlarge the space of variables for the Ricci flow, and so he was able to reinterpret the Ricci
flow as the L2-gradient of the Fischer information functional. Since the geometry of spaces
and PDEs are related and it is attractive for many mathematicians, we decided to work in
the setting of manifolds furnished with a Riemannian metric and a density function, aiming
to obtain estimates of the first eigenvalue of weighted Steklov’s problems and also make a
careful analysis of the rigidity case. Next, we shall introduce the necessary notions.

We recall that aweightedRiemannianmanifold is aRiemannianmanifold (M, g) endowed
with a real-valued smooth function f : M → R which is used as a density to measure
geometric objects on M , that is, denoting dv the Riemannian measure, we have the new
measure μ = e− f dv which is known as the weighted measure. Associated to this structure,
we have an important second-order differential operator defined by

� f u = e f div(e− f ∇u),

where u ∈ C∞. This operator is known as Drift Laplacian. We can iterate the Drift Laplacian
and get the biharmonic Drift Laplacian �2

f which is a fourth-order elliptic operator.

Also, following Lichnerowich [12] and Bakry and Émery [1], the natural generalizations
of Ricci curvatures are defined as

Ric f = Ric + Hess f

and

Rickf = Ric f − d f ⊗ d f

k − n − 1
,

where k > n + 1 or k = n + 1 and f a constant function.
Throughout this paper, we will consider Mn+1 a compact oriented Riemannian manifold

with boundary ∂M . Let i : ∂M ↪→ M be the standard inclusion and ν the outward unit
normal on ∂M . We will denote by A its second fundamental form associate to ν, 〈∇Xν, Y 〉 =
A(X , Y ), and by H the mean curvature of ∂M , that is, the trace of A over n.

We recall that the weighted mean curvature, introduced by Gromov in [9], of the inclusion
i is given by

H f = H − 1

n
〈ν,∇ f 〉.

Introduced the setting, we will focus on obtaining upper or lower bounds for the first
eigenvalue of the weighted Steklov problems listed below.We also characterize the geometry
of the Riemannian manifold for specific values of the first eigenvalues in some problems.

The problems we are interested are:

{
� f u = 0 in M,
∂u
∂ν

= pu on ∂M; (1.1)
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Manifolds with Density and the First Steklov Eigenvalue 1371

{
�2

f u = 0 in M,

u = � f u − q ∂u
∂ν

= 0 on ∂M; (1.2)

{
�2

f u = 0 in M,

u = ∂2u
∂ν2

− q ∂u
∂ν

= 0 on ∂M,
(1.3)

where ν denotes the outward unit normal on ∂M . The first non-zero eigenvalues of the above
problems will be denoted by p1 and q1, respectively. We will use the same letter for the first
non-zero eigenvalues of the last two problems becausewhenever theweightedmean curvature
of ∂M is constant, then the problems are equivalent. Lastly, for the sake of simplicity, we
will omit the weighted measure μ in the integrals throughout the text.

Before continuing, we recall that the first non-zero eigenvalues of the problems Eqs.
1.1-1.3 are characterized, respectively, by the following Rayleigh-Ritz quotients:

p1 = min

{∫
M |∇w|2∫
∂M w2

:
∫

∂M
w = 0

}
; (1.4)

q1 = min

{∫
M (� f w)2∫
∂M ( ∂w

∂ν
)2

: w = 0 on ∂M

}
; (1.5)

and

q1 = min

{∫
M (� f w)2 − n

∫
∂M H f (

∂w
∂ν

)2∫
∂M ( ∂w

∂ν
)2

: w = 0 on ∂M

}
,

where H f is the f -mean curvature of the boundary; see [11] for more details about the
Riemannian case ( f = 0). Finally, we recall that the first non-zero eigenvalue of the Drift
Laplacian on ∂M is given by

λ1 = min

{∫
∂M |∇w|2∫

∂M w2

}
.

Now, we are able to introduce our results. Our first result reads as follows:

Theorem 1.1 Let Mn+1 be a compact weighted Riemannian manifold with boundary ∂M.
Assume that Rickf ≥ 0 and H f ≥ (k−1)c

n , to some positive constant c, and that second
fundamental form A ≥ cI , in the quadratic form sense. Denote by λ1 the first non-zero
eigenvalue of the Drift Laplacian acting on functions on ∂M. Let p1 be the first eigenvalue
of the weighted Steklov eigenvalue problem Eq. 1.1. Then,

p1 ≤
√

λ1

(k − 1)c
(
√

λ1 +
√

λ1 − (k − 1)c2)

with equality occurs if and only if M is isometric to an n-dimensional euclidean ball of radius
1
c , f is constant and k = n + 1.

We also obtain an upper bound for the p1 under the weaker condition Ric f ≥ 0. The big
difference here is what happens in the equality case. The result is the following:
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1372 M. Batista and J. I. Santos

Theorem 1.2 Let Mn+1 be a compact weighted Riemannian manifold with boundary ∂M.
Assume that Ric f ≥ 0, H f > 0 and second fundamental form A strictly convex. Denote by
λ1 the first non-zero eigenvalue of the Drift Laplacian acting on functions on ∂M. Let p1 be
the first eigenvalue of the weighted Steklov eigenvalue problem Eq. 1.1. Then,

p1 ≤
√

λ1

n inf H f
(
√

λ1 + √
λ1 − n inf H f inf A)

with equality occurs if and only if ∂ f
∂ν

is constant, A = (inf A)I and there exists a smooth

function u such that Hess u = 0, ∂u
∂ν

= λ1
nH f

u, d f (∇u) = 0 and Ric(∇u,∇u) = 0.

The third result is the following:

Theorem 1.3 Let Mn+1 be a compact connected weighted Riemannian manifold with bound-
ary ∂M. Assume that Rickf ≥ 0 and H f ≥ k−1

k c, to some positive constant c. Let q1 be the
first eigenvalue of the weighted Steklov eigenvalue problem Eq. 1.2. Then

q1 ≥ nc.

Moreover, equality occurs if and only if M is isometric to a euclidean ball of radius 1
c in

R
n+1, f is constant and k = n + 1.

The next results are

Theorem 1.4 Let Mn+1 be a compact connected weighted Riemannian manifold with bound-
ary ∂M.Denote by A, V theweighted areaof ∂M and theweighted volumeof M, respectively.
Let q1 be the first eigenvalue of the weighted Steklov eigenvalue problem Eq. 1.2. Then,

q1 ≤ A

V
.

Moreover, if in addition that the Rickf of M is non-negative and that there is a point x0 ∈ ∂M

such that H f (x0) ≥ (k−1)A
k n V , and q1 = A

V , then M is isometric to an (n + 1)-dimensional
Euclidean ball, f is constant and k = n + 1.

and

Theorem 1.5 Let Mn+1 be a compact connected weighted Riemannian manifold with bound-
ary ∂M. Assume that Rickf ≥ 0 and H f ≥ (k−1)c

n , for some positive constant c. Let q1 be the
first eigenvalue of the problem Eq. 1.3. Then

q1 ≥ c.

Moreover, equality occurs if and only if M is isometric to a ball of radius 1
c in R

n+1, f is
constant and k = n + 1.

The paper is organized in this way: In section 2, we provide some well-known results
and give a sharp proof of a lower bound for the first non-zero eigenvalue of theDrift Laplacian
on closed manifolds. In section 3, we provide the proofs of the results.
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Manifolds with Density and the First Steklov Eigenvalue 1373

2 Preliminaries

In this section, we recall somewell-known results necessary to prove the theorems announced
in the introduction.

The following result is a direct consequence of the Cauchy-Schwarz inequality.

Proposition 2.1 Assuming either k > n + 1 or k = n + 1 and f is a constant. Let u be a
smooth function on Mn+1, then we have

|Hess u|2 + Ric f (∇u,∇u) ≥ (� f u)2

k
+ Rickf (∇u,∇u).

Moreover, equality holds if and only if Hess u = �u
n+1 〈 , 〉 and 〈∇u,∇ f 〉 = − k−n−1

k � f u1.

In [13], the authors showed that for a smooth function u defined on an n-dimensional
compactweightedmanifoldM with boundary ∂M the following identity holds ifh = ∂u

∂ν
, z =

u|∂M and Ric f denotes the generalized Ricci curvature of M :∫
M

[(� f u)2 − |Hess u|2 − Ric f (∇u,∇u)] =
∫

∂M

[
nH f h

2 + 2h� f z + A(∇z,∇z)
]
,

where � and ∇ represent the Laplacian and the gradient on ∂M with respect to the induced
metric on ∂M , respectively.

Using the Proposition 2.1 we get∫
M

k − 1

k
[(� f u)2 − Rickf (∇u,∇u)] ≥

∫
∂M

[nH f h
2 + 2h� f z + A(∇z,∇z)] (2.1)

In the next result, we recall a sharp lower bound for the first non-zero eigenvalue of the
Drift Laplacian on closed submanifolds. This result is a slight modification of Theorem 1.6
in [10], and we include a short proof for the sake of completeness.

Proposition 2.2 Let Mn+1 be a compact weighted Riemannian manifold with nonempty
boundary ∂M and Rickf ≥ 0. If the second fundamental form of ∂M satisfies A ≥ cI ,

in the quadratic form sense, and H f ≥ k−1
n c, then

λ1 ≥ (k − 1)c2,

where λ1 is the first non-zero eigenvalue of the Drift Laplacian acting on functions on ∂M.
The equality holds if and only if M is isometric to an Euclidean ball of radius 1

c , f is constant
and k = n + 1.

Proof Let z be an eigenfunction corresponding to the first non-zero eigenvalue λ1 of the Drift
Laplacian of ∂M , that is, � f z + λ1z = 0. Let u ∈ C∞(M) be the solution of the Dirichlet
problem {

� f u = 0 in M,

u = z on ∂M .

Follows from Eq. 2.1 and the non-negativity of Rickf of M that

0 ≥
∫

∂M
[nH f h

2 + 2h� f z + A(∇z,∇z)].

1 This term only appear in the case of a non constant function.
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1374 M. Batista and J. I. Santos

By hypothesis on A and noticing that z is an eigenfunction we get

0 ≥
∫

∂M
[(k − 1)ch2 − 2λ1zh + cλ1z

2]

=
∫

∂M

[
(k − 1)c

(
h − λ1z

(k − 1)c

)2

+ λ1

(
c − λ1

(k − 1)c

)
z2

]

≥ λ1

(
c − λ1

(k − 1)c

) ∫
∂M

z2.

Thus,
λ1 ≥ (k − 1)c2,

which proof the first part of theorem. Assuming that the equality holds, from Proposition 2.1
and definition of u we get

Hess u = 0 inM and
∂u

∂ν
= cu on ∂M .

So |∇u| is constant. After a straightforward computation we obtain

|∇u|2μ(∂M) = kc2
∫

∂M
z2 and c

∫
∂M

z2 = |∇u|2μ(M).

Since H f = k−1
n c > 0 and

μ(M) = k − 1

k

∫
∂M

1

nH f
dμ,

we conclude that M is isometric to a ball, f is constant and k = n + 1 by Theorem 1.1 in
[2] (or see Theorem 1.1 in [10]). The converse is immediate. �

In the following result, our hypothesis is just on the Bakry-Émery-Ricci curvature Ric f .

Proposition 2.3 Let Mn+1 be a compact weighted Riemannian manifold with nonempty
boundary ∂M and weighted Ricci curvature is greater or equal to −c and 2c ≤
n inf H f inf A. If the second fundamental form of ∂M is strictly convex and H f > 0, then

λ1 ≥ 1

2

(
n inf H f inf A − c +

√
(n inf H f inf A)2 − 2cn inf H f inf A

)
,

where λ1 is the first non-zero eigenvalue of the Drift Laplacian acting on functions on ∂M.
The equality holds if and only if ∂ f

∂ν
is constant, A = (inf A)I and there exists a smooth

function u such that Hess u = 0, ∂u
∂ν

= λ1+c/2
nH f

u, d f (∇u) = 0 and Ric(∇u,∇u) = 0.

Proof Let z be an eigenfunction corresponding to the first non-zero eigenvalue λ1 of the Drift
Laplacian of ∂M , that is, � f z + λ1z = 0. Let u ∈ C∞(M) be the solution of the Dirichlet
problem {

� f u = 0 in M,

u = z on ∂M .

Follows from Eq. 2.1 and the non-negativity of Ric f of M that

c
∫

∂M
hz = c

∫
M

|∇u|2 ≥
∫

∂M
[nH f h

2 + 2h� f z + A(∇z,∇z)].
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Manifolds with Density and the First Steklov Eigenvalue 1375

By our hypotheses and noticing that z is an eigenfunction we get

0 ≥
∫

∂M
[n inf H f h

2 − 2(λ1 + c/2)zh + inf Aλ1z
2]

=
∫

∂M

[
n inf H f

(
h − (λ1 + c/2)z

n inf H f

)2

+
(

λ1 inf A − (λ1 + c/2)2

n inf H f

)
z2

]

≥
(

λ1 inf A − (λ1 + c/2)2

n inf H f

) ∫
∂M

z2.

Thus, after a carefull analyzes, we obtain

λ1 ≥ 1

2

(
n inf H f inf A − c +

√
(n inf H f inf A)2 − 2cn inf H f inf A

)
,

which proves the first part of theorem. Assuming that the equality holds, we deduce that
A = (inf A)I , Hess u = 0, Ric f (∇u,∇u) = −c|∇u|2, H f = inf H f and h = λ1+c/2

nH f
z. A

direct computation show us that d f (∇u) = 0, Ric(∇u,∇u) = −c|∇u|2 and ∂ f
∂ν

= cte. The
reciprocal is a straightforward computation. �

Recall the following version of the Hopf boundary point lemma; see its proof in [8],
Lemma 3.4.

Proposition 2.4 (Hopf boundary point lemma) Let (Mn, g) be a complete Riemannian man-
ifold and let � ⊂ M be a closed domain. If u : � → R is a function with u ∈ C2(int(�))

satisfying
�u + 〈X ,∇u〉 ≥ 0,

where X is a bounded vector field, x0 ∈ ∂� is a point where

u(x) < u(x0) ∀x ∈ �,

u is continuous at x0, and � satisfies the interior sphere condition at x0, then

∂u

∂ν
(x0) > 0,

if this outward normal derivative exists.

3 Proof of the Results and Applications

In this section, we will provide the proofs of our results.

Proof of Theorem 1.1 Let u be the solution of the following problem{
� f u = 0 in M,

u = z on ∂M,

where z satisfies� f z+λ1z = 0 on ∂M . Set h = ∂u
∂ν

∣∣
∂M , thenwe have from theRayleigh-Ritz

quotient Eq. 1.4 that

p1 ≤
∫
M |∇u|2∫
∂M z2

, (3.1)
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1376 M. Batista and J. I. Santos

and from the previous one we obtain

p1 ≤
∫
∂M h2∫

M |∇u|2 . (3.2)

Indeed, Eq. 3.1 follows from the variational principle, because
∫
∂M u = 0. Furthermore, Eq.

3.2 is obtained using integration by part and Cauchy-Schwartz inequality as follows:

p1 ≤
∫
M |∇u|2∫
∂M z2

= (
∫
∂M u〈∇u, ν〉)2∫

∂M z2
∫
M |∇u|2 ≤

∫
∂M z2∫
∂M z2

·
∫
∂M 〈∇u, ν〉2∫

M |∇u|2 =
∫
∂M h2∫

M |∇u|2 .

Plugging u into the equation Eq. 2.1 and using our hypotheses we get

0 ≥
∫

∂M
[nH f h

2 + 2h� f z + A(∇z,∇z)] ≥
∫

∂M
[(k − 1)ch2 − 2λ1hz + c|∇z|2].

Noticing that z is an eigenfuction

0 ≥ (k − 1)c
∫

∂M
h2 − 2λ1

∫
∂M

hz + cλ1

∫
∂M

z2

≥ (k − 1)c
∫

∂M
h2 − 2λ1

(∫
∂M

h2
) 1

2
(∫

∂M
z2

) 1
2 + cλ1

∫
∂M

z2

= (k − 1)c2 − λ1

c

∫
∂M

h2 +
[√

λ1

c

(∫
∂M

h2
) 1

2 − √
cλ1

(∫
∂M

z2
) 1

2
]2

,

and so √
λ1 − (k − 1)c2√

c

(∫
∂M

h2
) 1

2 ≥
√

λ1

c

(∫
∂M

h2
) 1

2 − √
cλ1

(∫
∂M

z2
) 1

2

.

Thus, √
λ1 − √

λ1 − (k − 1)c2√
c

(∫
∂M

h2
) 1

2 ≤ √
cλ1

(∫
∂M

z2
) 1

2

,

that is, (∫
∂M

h2
) 1

2 ≤ c
√

λ1√
λ1 − √

λ1 − (k − 1)c2

(∫
∂M

z2
) 1

2

=
√

λ1

(k − 1)c
(
√

λ1 +
√

λ1 − (k − 1)c2)

(∫
∂M

z2
) 1

2

and from Eqs. 3.1 and 3.2 we get the upper bound. Let’s assume the equality holds. So

(∫
∂M

h2
) 1

2 =
√

λ1

(k − 1)c

(√
λ1 +

√
λ1 − (k − 1)c2

) (∫
∂M

z2
) 1

2

and all inequalities become equalities. Thus h = αz and

α =
(
α2

∫
∂M z2

) 1
2(∫

∂M z2
) 1
2

=
√

λ1

(k − 1)c

(√
λ1 +

√
λ1 − (k − 1)c2

)
,
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Manifolds with Density and the First Steklov Eigenvalue 1377

that is,

h =
√

λ1

(k − 1)c
(
√

λ1 +
√

λ1 − (k − 1)c2)z.

Furthermorewe infer, by Proposition 2.1, thatHess u = 0.On the other hand, on the boundary
∂M we can write

∇u = (∇u)� + hν,

where (∇u)� is tangent to ∂M . Taking a local orthonormal frame {ei }ni=1 tangent to ∂M we
do the following computations:

0 =
n∑

i=1

Hess u(ei , ei ) =
n∑

i=1

(Hess z + hA)(ei , ei )

= �z + nHh

= � f z − ∂ f

∂ν
h + nHh

= � f z + nH f h

= −λ1z + c(k − 1)

√
λ1

(k − 1)c
(
√

λ1 +
√

λ1 − (k − 1)c2)z,

and so
λ1 = (k − 1)c2.

Therefore, it follows from Proposition 2.2 that M is isometric to an (n + 1)-dimensional
Euclidean ball of radius 1

c , f is constant, and so k = n + 1. The converse is direct. �

Proof of Theorem 1.2. Mimic the computations in the previous proof and use Proposition 2.3
with c = 0 to obtain the desired result. �

Example 1 Consider M = B(0, R) in R
n+1 with the standard metric and the measure

e−|x |2/2dx. In such space, Ric f = 〈 , 〉 and whether R < 1 we obtain:

λ1(S
n
R) ≥ 1 − R2

R2 ,

and

p1 ≤ R

1 − R2 λ1

⎛
⎝√

λ1 +
√

λ1 − 1 − R2

R2

⎞
⎠ .

We notice that such a constant can be improved using a constant c �= 0 in Proposition 2.3
and Theorem 1.2.

Proof of Theorem 1.3. Let w be an eigenfunction corresponding to the first eigenvalue q1 of
problem Eq. 1.2, that is, {

�2
f w = 0 in M,

w = � f w − q1
∂w
∂ν

= 0 on ∂M .

123



1378 M. Batista and J. I. Santos

Set h = ∂w
∂ν

|∂M and using integration by parts twice we get∫
M

(� f w)2 = −
∫
M

〈∇(� f w),∇w〉 +
∫

∂M
� f w 〈∇w, ν〉

=
∫
M

w � f (� f w) −
∫

∂M
w 〈∇(� f w), ν〉 +

∫
∂M

� f w 〈∇w, ν〉

= q1

∫
∂M

h2.

Plugging w into Eq. 2.1 and using our hypotheses

k − 1

k

∫
M

(� f w)2 ≥
∫
M
Rickf (∇w,∇w) +

∫
∂M

nH f h
2

≥ (k − 1)nc

k

∫
∂M

h2,

and so q1 ≥ nc as we desired.

Assuming q1 = nc all inequalities become equalities and consequently H f = k−1
k c.

Furthermore, by Proposition 2.1, we infer Hessw = �w
n+1 〈 , 〉 and � f w = k

n+1�w.
Taking an orthonormal frame {e1, . . . , en} on ∂M , since w|∂M = 0 we get

ei (h) = 〈∇ei ∇w, ν〉 + 〈∇w,∇ei ν〉 = Hessw(ei , ν) + A((∇w)�, ei ) = 0,

that is, h is constant on the boundary, and so (� f w)|∂M = nch is also constant. Using the
fact that � f w is f -harmonic function on M , we conclude by maximum principle that � f w

is constant on M . Since � f w = k
n+1�w, then w satisfies{

Hessw = � f w

k 〈 , 〉 in M,

w = 0 on ∂M .

Thus, from Lema 3 in [17] we conclude that M is isometric to a ball in R
n+1 of radius

c−1. Hence, using that hessian of w is a multiple of the metric we deduce that w = λ
2 r

2 +C,

where λ = � f w

k and r is the distance function from one minimal point q0, see [17] where
we borrowed this idea.

Finally we prove that f is constant and k = n + 1. Indeed, if k > n + 1 and f is not
constant we know that 〈∇ f ,∇w〉 is constant and integrating along the geodesics starting
from q0 we get f = −(k − n − 1) ln r + C , however it is a contradiction because f is a
smooth function. �

Example 2 Set M = R
n+1 endowed with the standard metric and the density f (x) = 1

2
|x |2,

after a straightforward computation we deduce that for any k > n + 1, the balls centered

at 0 with radius R ≤ min{√k − n − 1,
√

n
k } satisfies the hypothesis of Theorem 1.3 and so

q1 > nR−1.

Proof of Theorem 1.4. Let w be the solution of the following Drift Laplace equation{
� f w = 1 in M,

w = 0 on ∂M .
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Manifolds with Density and the First Steklov Eigenvalue 1379

Follows from Rayleigh-Ritz characterization of q1, see Eq. 1.5, that

q1 ≤
∫
M (� f w)2∫

∂M h2
= V∫

∂M h2
,

where h = ∂w
∂ν

. Integrating � f w = 1 on M and using integration by parts we get

V =
∫

∂M
h.

Hence, we infer from Cauchy-Schwarz inequality that

V 2 ≤ A
∫

∂M
h2. (3.3)

Consequently,

q1 ≤ V∫
∂M h2

≤ V

V 2/A
= A

V
.

Assuming Rickf ≥ 0, H f (x0) ≥ (k−1)A
k n V for some x0 ∈ ∂M and q1 = A

V we conclude that

Eq. 3.3 become an equality and so h = V
A is constant. Consider the function φ on M given

by

φ = 1

2
|∇w|2 − w

k
.

From Proposition 2.1, the Bochner formula and our hypotheses we get

1

2
� f φ = |Hessw|2 + 〈∇w,∇(� f w)〉 + Ric f (∇w,∇w) − 1

k
(3.4)

≥ 1

k
(� f w)2 − 1

k
= 0.

Thus φ is f -subharmonic. We claim that φ = 1
2

( V
A

)2
on the boundary. Indeed, asw vanishes

on the boundary we can write ∇w = hν on ∂M . On the other hand,

1 = � f w = q1h = A

V
h which implies h = V

A

and we get the claim. From the f -subharmonicity of φ and its constancy on the boundary
we conclude from Proposition 2.4 that

either φ = 1

2

(
V

A

)2

in M

or

∂φ

∂ν
> 0, on ∂M . (3.5)

As w vanishes on ∂M we obtain

1 = (� f w)|∂M = nHh + Hessw(ν, ν) − V

A

∂ f

∂ν

= nV

A

(
H f + 1

n

∂ f

∂ν

)
+ Hessw(ν, ν) − V

A

∂ f

∂ν

= nV

A
H f + Hessw(ν, ν).
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Hence

∂φ

∂ν
= V

A
Hessw(ν, ν) − V

k A

= V

A

(
1 − nV

A
H f

)
− V

k A

= n
V

A

(
k − 1

k n
− H f

V

A

)
,

which shows that Eq. 3.5 is not true since H f (x0) ≥ (k−1)A
k n V and therefore φ is constant on

M . Since the Drift Laplacian of φ vanishes, we infer that equality must hold in Eq. 3.4 and
that this gives us equality in the Proposition 2.1, and consequently 1 = � f w = k

n+1�w

and Hessw = �w
n+1 〈 , 〉. Hereafter, we follow the last two paragraphs in the proof of Theorem

1.3. �

Example 3 Set M = R
n+1 endowed with the standard metric and the density f (x) = 1

2
|x |2,

after a straightforward computation we deduce that for any k > n + 1, the balls centered at

0 with radius R ≤ min{√k − n − 1,
√

n
k } satisfies the hypothesis of Theorem 1.3 and using

Theorem 1.4 we obtain
n

R
< q1 <

e−R2/2Rn∫ R
0 rne−r2/2dr

.

Proof of Theorem 1.5. Let w be an eigenfunction corresponding to the first eigenvalue q1 of
the problem Eq. 1.3: {

�2
f u = 0 in M,

u = ∂2u
∂ν2

− q ∂u
∂ν

= 0 on ∂M .

Observe that w is not constant. Otherwise, we would get from w|∂M = 0 that w ≡ 0. Set

h = ∂w
∂ν

|∂M we claim that h �= 0. Indeed, assuming h = 0 we get w, ∇w and ∂2w
∂ν2

vanish
on ∂M . Using an adapted frame on the boundary we conclude that (� f w)|∂M = 0 and so
� f w = 0 on M by the maximum principle, which in turn implies that w = 0 where such is
not possible.

Using integration by part we have∫
M

〈∇w,∇(� f w)〉 = −
∫
M

w�2
f w = 0,

and ∫
∂M

h � f w =
∫
M

〈∇(� f w),∇w〉 +
∫
M

(� f w)2 =
∫
M

(� f w)2. (3.6)

Using an adapted orthonormal frame on ∂M we can write ∇w = hν and

(� f w)|∂M = ∂2w

∂ν2
+ nH

∂w

∂ν
− 〈∇ f ,∇w〉 (3.7)

= q1h + nH f h + ∂ f

∂ν
h − ∂ f

∂ν
h

= q1h + nH f h.
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From Eqs. 3.6 and 3.7 we obtain

q1 =
∫
M (� f w)2 − n

∫
∂M H f h2∫

∂M h2
.

On the other hand, substituting w into Eq. 2.1 we get

k − 1

k

∫
M

(� f w)2 =
∫
M
Rickf (∇w,∇w) +

∫
∂M

nH f h
2 ≥

∫
∂M

nH f h
2,

that is, ∫
M

(� f w)2 −
∫

∂M
nH f h

2 ≥ n

k − 1

∫
∂M

H f h
2 ≥ c

∫
∂M

h2, (3.8)

and thus we conclude the desired estimate q1 ≥ c.
Assuming q1 = c all inequalities in Eq. 3.8 become equalities. Thus, from Proposition

2.1 we have

Hessw = �w

n + 1
〈 , 〉 and � f w = − k

k − n − 1
〈∇ f ,∇w〉. (3.9)

Picking up an adapted orthonormal frame {e1, . . . , en = ν} on ∂M and using thatw vanishes
on ∂M we get for i = 1, . . . , n − 1,

0 = Hessw(ei , en) = ei en(w) − ∇ei en(w) = ei (h) − 〈∇ei en, en〉h = ei (h),

and so h is constant. From Eq. 3.8 H f = k−1
n c and as h is constant, we conclude from Eq.

3.7 that (� f w)|∂M is constant, and hence � f w is constant on M by the maximum principle,
which implies from Eq. 3.9 that �w is constant on M . Henceforth, we simply follow the
same arguments in the last two paragraphs in the proof of Theorem 1.3. �
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