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Abstract
In this note, we study the asymptotic behavior of eigenvalues and eigenfunctions of the
regional fractional Laplacian (− )s as s → 0+. Our analysis leads to a study of the
regional logarithmic Laplacian, which arises as a formal derivative of regional fractional
Laplacians at s = 0.
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1 Introduction andMain Results

In recent decades, the study of nonlocal operators has been an active area of research in dif-
ferent branches of mathematics. In particular, these operators are used to model problems
in which different length scales are involved. In this work, we study the regional fractional
Laplace operator of order s, which we will denote by (− )s , where, here and in the fol-
lowing, ⊂ R

N is a bounded open set with Lipschitz boundary. This operator is known
to be the infinitesimal generator of the so-called censored stable Lévy processes and has
received extensive attention in this context in recent years, see e.g. see [4, 5, 15–17] and the
references therein. The censored stable process is a jump process restricted to the underly-
ing open set , so it only involves jumps from points in to points in . From the point

Remi Yvant Temgoua
temgoua@math.uni-frankfurt.de; remi.y.temgoua@aims-senegal.org

Tobias Weth
weth@math.uni-frankfurt.de

1 Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 10,
D-60629 Frankfurt, Germany

2 African Institute for Mathematical Sciences in Senegal (AIMS Senegal),
KM 2, Route de Joal, B.P. 1418. Mbour, Sénégal
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of view of partial differential equations, equations involving the regional fractional Lapla-
cian arise as nonlocal, lower order variants of elliptic second order equations on with
homogeneous Neumann boundary conditions, see e.g. [1] and [11, Theorem 1.1].

If the underlying open set equals RN, then (− s coincides with the standard frac-
tional Laplacian (− s . Recently, Chen and the second author [6] have studied Dirichlet
problems for the logarithmic Laplacian operator L , which arises as formal derivative
∂s s=0 (− s . In particular, they provide a relationship between the first non-zero Dirichlet
eigenvalue of (− s on with that of L . More precisely, denoting by λs

1 resp. λL
1

the first non-zero Dirichlet eigenvalue of (− s with corresponding L2-normalized eigen-
function us and L with corresponding L2-normalized eigenfunction ξ1, respectively, they
have shown that λL

1 = d
ds

|s=0λ
s
1 and us → ξ1 in L2 as s → 0+. Related results

for higher eigenvalues and eigenfunctions, including refined uniform regularity results and
uniform convergence estimates, have been obtained more recently in [13]. The main aim of
this work is to establish analogous results in the case of the regional fractional Laplacian. As
a motivation, we mention order-dependent optimization problems arising e.g. in image pro-
cessing [2] and population dynamics [20, 21]. In many of these problems the optimal order
s is small. Hence the small order limit s → 0+ in s-dependent operator equations arises as
a natural object of interest and has even been studied even in the framework of nonlinear
problems recently [19].

To state our main results, we need to introduce some notation. Let s ∈ (0, 1). The
regional fractional Laplacian (− s u of a function u ∈ L1 is defined at a point x ∈
by

(− s u(x) = cN,sDs u(x) (1.1)

with

Ds u(x) = P.V.
u(x) − u(y)

|x − y|N+2s
dy = lim

ε→0+ \Bε(x)

u(x) − u(y)

|x − y|N+2s
dy, (1.2)

provided that the limit exists. Here the normalization constant cN,s coincides with the one
of the fractional Laplacian and is given by

cN,s := s4s N+2s
2 )

π
N
2 1 − s)

= s(1 − s)4s N+2s
2 )

π
N
2 2 − s)

. (1.3)

As a consequence, we have

(− s u(x) = (− su(x)− κ (x)u(x) with κ (x) = cN,s
RN \

|x − y|−N−2s dy

(1.4)
for u ∈ L1 and x ∈ whenever the limit in (1.2) exists. Here we identify u with its
trivial extension on R

N to compute (− su(x).
It is important to note here that the definition of the renormalized operator Ds in (1.2)

extends to the case s = 0. More importantly, we shall see in our first preliminary result
that the family of operators Ds , s ∈ [0, 1) can be expanded, in a suitable strong sense, as a
convergent power series in the fractional order s at s = 0.

Theorem 1.1 Let be a bounded open Lipschitz set in R
N, and α ∈ (0, 1). Then we have

Ds u = D0 u +
∞

k=1

skDku for u ∈ Cα( and s ∈ 0,
α

2
, (1.5)
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where, for k ∈ N, Dku ∈ C( is defined by

[Dku](x) = (−1)k2k u(x) − u(y)

|x − y|N logk(|x − y|) dy. (1.6)

Here the series on the RHS of (1.5) converges in L∞ , and the convergence is uniform if
s is taken from a compact subset of [0, α

2 ) and u is taken from a bounded subset of Cα( .

Since

cN,s := scN + o(s) as s → 0+, with cN := π− N
2

N

2
, (1.7)

the following is a direct corollary of Theorem 1.1.

Corollary 1.2 Let ⊂ R
N be an open bounded Lipschitz set and α ∈ (0, 1). For u ∈

Cα( , we then have

(− s u = sL u + o(s) in L∞ as s → 0+, (1.8)

where

L u (x) := cND0 u(x) = cN

u(x) − u(y)

|x − y|N dy, x ∈ . (1.9)

Moreover, the expansion in (1.8) is uniform in bounded subsets of Cα( .

In analogy to the work [6], we call L = cND0 the regional logarithmic Laplacian
on . So Corollary 1.2 states that the nonlocal operator L arises as formal derivative
∂s s=0 (− s of regional fractional Laplacians at s = 0. As we shall see now in our sec-
ond main result, this operator arises naturally when studying the asymptotic behavior of
eigenvalues and eigenfunctions of (− s for s close to 0.

Theorem 1.3 Let ⊂ R
N be a bounded open Lipschitz set, let n ∈ N, and let μn,s

resp. μn,0 denote the n-th eigenvalues of the operators (− s , L in increasing order,
respectively. Then we have

μn,s → 0 as s → 0+ and
d

ds s=0
μn,s = lim

s→0+
μn,s

s
= μn,0.

Moreover, if, for some sequence sk → 0+, {ξn,sk }k is a sequence of L2-normalized
eigenfunctions of (− sk corresponding to μn,sk

, then ξn,sk ∈ C( for every k ∈ N and

ξn,sk → ξn uniformly in ,

where ξn is an eigenfunction of L corresponding to μn,0.

We stress that, here and in the following, an open bounded set ⊂ R
N will be called a

Lipschitz set if every point p ∈ has an open neighborhood Np ⊂ R
N with the property

that ∩ Np can be written as the graph of a Lipschitz function after a suitable rotation. In
the literature, this is sometimes called a strongly Lipschitz set.

The main difficulty in the proof of Theorem 1.3 is the lack of boundedness and regu-
larity estimates for the renormalized regional fractional Laplacian Ds which are uniform
in s ∈ (0, 1). In fact, even for fixed s ∈ (0, 1), the elliptic boundary regularity theory for
this operator has only been developed very recently with regularity estimates containing s-
dependent constants, see [3, 10, 11]. For the proof of Theorem 1.3, we need to consider
uniform L∞-estimates related to the operator family Ds , s ∈ [0, 1) first. In this context, we
note the following result of possible independent interest.
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Theorem 1.4 Let s ∈ [0, 1), let ⊂ R
N be a bounded open Lipschitz set, let V, f ∈

L∞( ), and let u be a weak solution of the problem

Ds u + V (x)u = f in . (1.10)

Then u ∈ L∞( ), and there exists a constant c0 = c0(N, , V L∞( ), f L∞( ),

u L2( )) > 0 independent of s with the property that u L∞( ) ≤ c0 in .

For the notion of weak solution, see Section 3. While the uniform boundedness of the
sequence (ξn,sk )k in Theorem 1.3 follows rather directly from Theorem 1.4, it is more diffi-
cult to see that this sequence is equicontinous on . We shall prove this fact in Theorem 1.5
below based on a series of relative oscillation estimates and a contradiction argument.

In view of Theorem 1.3, it is natural to ask for upper and lower bounds for the eigen-
values of L depending on . This remains an open problem. In the case of the standard
fractional Laplacian, upper and lower bounds have been obtained recently in [18] by means
of Fourier analysis and Faber-Krahn type estimates. We believe that different methods have
to be developed to tackle the problem for the regional logarithmic Laplacian.

The article is organized as follows. In Section 2, we introduce some notation and give
the proof of Theorem 1.1. In Section 3, we present the functional analytic framework for
Poisson problem for the operator family Ds and the associated eigenvalue problem. In
Section 4, we first derive a one-sided uniform estimate for subsolutions of equations of the
type Ds u + V (x)u = f in with potential V ∈ L∞( ) and source function f ∈ L∞( ).
As a corollary of this uniform estimate, we then derive Theorem 1.4. Finally, in Section 5,
we complete the proof of Theorem 1.3.

2 Preliminaries and Proof of Theorem 1.1

In this section, we first introduce some notation. After that, we will give the proof of
Theorem 1.1.

For an arbitrary subset A ⊂ R
N , we denote by |A| resp. χA the N -dimensional Lebesgue

measure and the characteristic function of A, respectively. Moreover, we let dA := sup{|x −
y| : x, y ∈ A} denote the diameter of A. For x ∈ R

N, r > 0, Br(x) denotes the open ball
centered at x with radius r , and Br := Br(0). Given a function u : A → R, A ⊂ R

N , we
denote by u+ := max{u, 0} resp. u− := − min{u, 0} the positive and negative part of u,
respectively.

Throughout the remainder of the paper, ⊂ R
N always denotes a bounded open

Lipschitz set. For a function u ∈ Cα( ), we put

[u]α,x := sup
y∈

|u(x) − u(y)|
|x − y|α for x ∈

and
[u]α := sup

x∈
[u]α,x, u Cα := u L∞( ) + [u]α .

We may now give the

Proof of Theorem 1.1 We first note that

r−2s = e−2s ln r =
∞

k=0

(−2 ln r)k

k! sk for r > 0. (2.1)
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We now fix u ∈ Cα( , x ∈ and s ∈ (0, α
2 ). Moreover we define, for s ∈ (0, 1),

f : \ {x} → R, f (y) := u(x) − u(y)

|x − y|N+2s
. (2.2)

By (2.1), we have f (y) =
∞

k=0
skfk(y) for y ∈ \ {x} with

fk : \ {x} → R, fk(y) := 2k

k! (u(x) − u(y))(− ln |x − y|)k|x − y|−N .

Next we choose R > 0 such that ⊂ BR(x) for every x ∈ , and we note that

|fk(y)| dy ≤ 2k

k! [u]α |x − y|α−N | logk |x − y| dy

≤ 2k

k! [u]α (−1)k

B1

|z|α−N logk |z| dz +
BR\B1

|z|α−N logk |z| dz

≤ 2k

k! [u]α|SN−1| (−1)k
1

0
rα−1 logk r dr + Rα logk R .

Since

(−1)k
1

0
rα−1 logk r dr =

∞

0
tke−αtdt = α−k−1

∞

0
tke−t dt = k!

αk+1
,

we thus find that

|fk(y)| dy ≤ [u]α ck with ck = |SN−1| 2k

αk+1
+ Rα(2 log R)k

k! . (2.3)

Since lim sup
k→∞

(ck)
1
k = 2

α
< 1

s
by assumption, we conclude that

∞

k=j

|fk(y)| dy sk ≤ [u]αdj (s) with dj (s) :=
∞

k=j

cks
k < ∞

for j ∈ N. Hence the function g :=
∞

k=0
sk|fk| is integrable on . Since

j

k=0

skfk ≤ g in \ {x} for every j ∈ N,

it thus follows from the dominated convergence theorem that

Ds u(x) =
∞

k=0

skfk(y) dy =
∞

k=0

sk fk(y) dy = D0 u(x) +
∞

k=1

sk[Dku](x),

where [Dku](x) is defined in (1.6). This holds for every x ∈ . Moreover,

Ds u(x) − D0 u(x) −
j−1

k=1

sk[Dku](x) ≤
∞

k=j

|fk(y)| dy sk ≤ [u]α dj (s)

for x ∈ , u ∈ Cα( , where dj (s) → 0 as j → ∞. Consequently, the series expansion
holds in L∞ and uniformly for u taken from a bounded subset of Cα( .
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3 Functional Setting for the Poisson Problem and the Eigenvalue
Problem

In this section, we discuss the variational framework for the study of weak solutions to the
Poisson problems

Ds u = f in (3.1)

related to the operator family Ds for s ∈ [0, 1) and f ∈ L2 . Here and throughout
this section, ⊂ R

N is a bounded open Lipschitz set. The variational framework for this
problem is well-known for s ∈ (0, 1), and some aspects have also been studied recently in
a setting related to the case s = 0, see e.g. [7]. Since we need additional properties which
are not addressed in the present literature, we give a unified account for general s ∈ [0, 1)

in the following.
Let us denote by , 2 the usual scalar product in L2 , i.e. u, v 2 = uv dx for

u, v ∈ L2 . We define the space L2
0 consisting of functions u ∈ L2 with zero

average over , i.e.

L2
0 := u ∈ L2 : u dx = 0 .

Moreover, we put

H
s := u ∈ L2 : (u(x) − u(y))2

|x − y|N+2s
dxdy < ∞ .

Then

Es(u, v) := 1

2

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s
dxdy (3.2)

is well-defined for functions u, v ∈ H
s . We have the following.

Proposition 3.1 Let s ∈ [0, 1).
(i) Hs is a Hilbert space with inner product

u, v Hs u, v 2 + Es(u, v);
(ii) Moreover, Hs is compactly embedded into L2 .

Before given the proof of this Proposition, we first recall that, for s ∈ (0, 1), the space
H

s coincides, by definition, with the usual fractional Sobolev space Hs . For s ∈
(0, 1

2 ) this space can be identified, by trivial extension, with the spaceHs
0 of all functions

u ∈ Hs(RN) with u ≡ 0 on R
N \ , see e.g. [14, Chapter 1]. This is a consequence of

the fractional boundary Hardy inequality. For the case s = 0, we have the following related
property.

Lemma 3.2 Let H be the space of all measurable functions u : RN → R with u ≡ 0
on RN \ and

x,y∈RN

|x−y|≤1

(u(x) − u(y))2

|x − y|N dxdy < ∞,

endowed with the norm

u H = 1

2 x,y∈RN

|x−y|≤1

(u(x) − u(y))2

|x − y|N dxdy

1
2
,
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Then, by trivial extension, the spaceH0( ) is isomorphic toH( ), so there exists a constant
C > 0 with

1

C
u H( ) ≤ u H0( ) ≤ C u H( ) for u ∈ H

0( ),

where we identify a function u on with its trivial extension to R
N .

We note that the space H( ) has been introduced in [6] as the form domain for Dirichlet
problems for the logarithmic Laplacian.

Proof Let u ∈ H
0( ). In the following, C > 0 stands for a constant which may change its

value from line to line but does not depend on u. We first note that

E0(u, u) = 1

2

(u(x) − u(y))2

|x − y|N dxdy

≤ 1

2 x,y∈RN

|x−y|≤1

(u(x) − u(y))2

|x − y|N dxdy + 1

2 x,y∈
|x−y|>1

(u(x) − u(y))2

|x − y|N dxdy

≤ u 2
H( ) + κmax u 2

L2( )
with κmax := 2 max

x∈ \B1(x)

|x − y|−N dy.

Since u L2( ) ≤ C u H( ) for all u ∈ H( ) e.g. by [12, Lemma 2.7], we conclude that

u 2
H0( )

= E0(u, u) + u 2
L2( )

≤ C u 2
H( ).

The opposite inequality will be derived from the logarithmic boundary Hardy inequality
given in [6, Corollary 6.2.], which states that there exists a constant C( ) > 0 with the
property that

c (x)u2(x) dx ≤ C
1

2
(u(x)−u(y))2J (x−y) dxdy+ u 2

L2( )
for u ∈ H( )

(3.3)
with the kernel J given by J (z) := cNχB1(z)|z|−N for z ∈ R

N \ {0} and

c (x) =
B1(x)\

|x − y|−N dy.

It follows from (3.3) that

u 2
H( ) ≤ E0(u, u) + c (x)u2(x) dx

≤ E0(u, u) + C
1

2
(u(x) − u(y))2J (x − y) dxdy + u 2

L2( )

≤ C E0(u, u) + u 2
L2( )

≤ C u 2
H0( )

.

The proof is thus finished.

We may now complete the

Proof of Proposition 3.1 The proof is well-known for s > 0, so we restrict our attention to
the case s = 0 in the following.
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(i) Obviously, , H0 is a scalar product in H
0 . In the following, we prove that

H
0 is complete for the norm H0 := , H0 . Let {un}n be a Cauchy

sequence with respect to this norm, and set

vn(x, y) := 1√
2
(un(x) − un(y))|x − y|− N

2 .

Since L2 is complete, un → u in L2 . Passing to a subsequence, we may thus
assume that un converges a.e. to u on and therefore vn converges a.e. on × to
the function

v(x, y) = (u(x) − u(y))|x − y|− N
2 .

Now, by Fatou’s lemma, we have that

|u(x) − u(y)|2|x − y|−N dxdy

≤ lim inf
n→∞ |vn(x, y)|2 dxdy = lim inf

n→∞ un
2
H0 < ∞,

since the sequence (un)n is bounded in H
0 . Hence u ∈ H

0 . Applying again
Fatou’s lemma, we find that

E0(un − u, un − u) = |vn(x, y) − v(x, y)|2 dxdy

≤ lim inf
m→∞ |vn(x, y) − vm(x, y)|2 dxdy

= lim inf
m→∞ un − um

2
H0 → 0 as n → ∞.

Since we have already seen that un → u in L2 , it follows that un → u in H
0 .

Hence, we infer that H0 is complete and therefore is a Hilbert space.
(ii) This merely follows from the fact that, as noted in Lemma 3.2, the space H

0 is
isomorphic to H by trivial extension, and the space H is compactly embedded
into L2 by [7, Theorem 2.1.].

Remark 3.3 (i) The space C∞
c is dense in H

s for s ∈ (0, 1
2 ]. For s ∈ (0, 1

2 ], this
is proved e.g. in [9, Corollary 2.71.]. Moreover, for s = 0, it follows from Lemma 3.2
and [6, Theorem 3.1.].

(ii) We have C2( ⊂ H
s for s ∈ [0, 1) and

[Ds u]v dx = Es(u, v) for all u ∈ C2( ∈ H
s . (3.4)

Moreover, integrating the Poisson problem (3.1) over and using (3.4) with v ≡ 1 ∈
C1( , we see that f ∈ L2

0 is a necessary condition for the existence of a solution
of (3.1).

For s ∈ [0, 1), we consider the closed subspace

X
s := u ∈ H

s : u dx = 0 ⊂ H
s .
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By Proposition 3.1, the embedding X
s → L2 is compact. Furthermore, the

following uniform Poincaré-type inequality holds with a constant C > 0:

u 2
L2 ≤ C Es(u, u) for s ∈ [0, 1) and u ∈ X

s . (3.5)

Indeed, for u ∈ X
s we have u := 1

| | u dy = 0 and therefore, by Jensen’s
inequality,

u2 dx= |u(x) − u |2 dx = 1

| | (u(x) − u(y)) dy
2

dx

≤ 1

| | (u(x)−u(y))2 dydx = 1

| |
(u(x)−u(y))2

|x−y|N+2s
· |x−y|N+2s dydx

≤ C Es(u, u) with C := 2
max{dN, dN+2}

| | .

We note that, thanks to Proposition 3.1 and (3.5), Xs is a Hilbert space with scalar
product given by the bilinear form (u, v) → Es(u, v).

Definition 3.4 Let f ∈ L2 . We say that a function u ∈ H
s is a weak solution of

(3.1) if

Es(u, v) = f v dx, for all v ∈ H
s . (3.6)

Proposition 3.5 For s ∈ [0, 1) and f ∈ L2
0 , there exists a unique weak solution u ∈

X
s of (3.1).

Proof Let f ∈ L2
0 . Since X

s is a Hilbert space with scalar product Es , the Riesz
representation theorem implies that there exists u ∈ X

s with

Es(u, v) = f v dx, for all v ∈ X
s .

Moreover, since f ∈ L2
0 , it follows that (3.6) also holds for constant functions v ∈

H
s . Hence (3.6) holds for every v ∈ H

s , and thus u is a weak solution of (3.1).

Our next aim is to study, for s ∈ [0, 1), the eigenvalue problem related to Ds , that is the
problem

Ds u = λu in . (3.7)

We consider corresponding eigenfunctions in weak sense i.e., a weak solution of (3.1) with
f = λu.

Proposition 3.6 For every s ∈ [0, 1), the problem (3.7) admits a sequence of eigenvalues

0 = λ0,s < λ1,s ≤ λ2,s ≤ · · · ≤ λk,s ≤ · · · → ∞ (3.8)

counted with multiplicity and a corresponding sequence of eigenfunctions which forms an
orthonormal basis of L2 . Moreover, we have:

(i) The eigenspace corresponding to λ0,s = 0 is one-dimensional and consists of
constant functions.
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(ii) The first non-zero eigenvalue of Ds in is characterized by

λ1,s := inf
Es(u, u)

u 2
L2

: u∈X
s \{0} = inf Es(u, u) : u ∈ X

s u L2 = 1 .

(3.9)

For s ∈ (0, 1), the proof of the characterization (3.9) can be found in [8, Theorem 3.1.].
For the reader’s convenience, we briefly sketch a proof which covers the case s = 0.

Proof We first note that it follows in a standard way from Proposition 3.1 and the
nonnegativity and symmetry of the quadratic form Es that (3.7) admits a sequence of
eigenvalues

0 ≤ λ0,s ≤ λ1,s ≤ λ2,s ≤ · · · ≤ λk,s ≤ · · · → ∞.

Moreover, by definition, a function u ∈ H
s is an eigenfunction of (3.7) corresponding

to the eigenvalue λ = 0 if and only if Es(u, v) = 0 for every v ∈ H
s , and this is true

if and only if u is constant. Hence we have λ0,s = 0 with a one-dimensional eigenspace

consisting of constant functions, and thus λ1,s > 0. To prove (3.9), we first note that

λ1,s ≥ inf Es(u, u) : u ∈ X
s u L2 = 1 , (3.10)

since every eigenfunction u corresponding to λ1,s > 0 is L2-orthogonal to constant

functions and therefore contained in X
s , whereas Es(u, u) = λ1,s if u L2 = 1.

Moreover, it follows from the compactness of the embedding H
s → L2 and the

weak lower semicontinity of the functional u → Es(u, u) on H
s that the infimum on

the RHS of (3.10) is attained by a function u ∈ X
s with u L2 = 1. By Lagrange

multiplier rule, we can thus find λ ∈ R such that

Es(u, v) = λ uv dx for all v ∈ X
s .

As in the proof of Proposition 3.5, it then follows that u weakly solves Ds u = λu, which
implies that λ = λ u 2

L2 = Es(u, u) ≤ λ1,s by (3.10). Moreover, λ > 0 since u is non-

constant. Since λ1,s is the smallest positive eigenvalue by definition, it thus follows that

λ = λ1,s , and hence we have equality in (3.10).

Remark 3.7 In a standard way, it can also be shown that, for s ∈ [0, 1) the higher
eigenvalues λn,s , n ∈ N are variationally characterized as

λn,s = inf
V ∈V s

n

sup
u∈SV

Es(u, u). (3.11)

Here V s
n denotes the family of n-dimensional subspaces of Xs and SV := {u ∈ V :

u L2 = 1} for V ∈ V s
n .

4 Uniform Bounds for Weak Subsolutions

In this section we establish uniform boundedness of weak solutions of problem (3.1) in the
case when f ∈ L∞ . Since we are also interested in uniform bounds on L2-normalized
eigenfunctions of Ds independent of s ∈ [0, 1), it is in fact necessary to consider a gen-
eralization of (3.1) involving L∞-potentials V . This is the content of Theorem 1.4, which
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we shall derive in this section as an immediate consequence of the following more general
result on subsolutions.

Theorem 4.1 Let s ∈ [0, 1), let ⊂ R
N be a bounded open Lipschitz set, let V, f ∈

L∞ , and let u ∈ H
s be a weak subsolution of the problem

Ds u + V (x)u = f in (4.1)

i.e., we have

Es(u, ϕ) + V (x)uϕ dx ≤ f ϕ dx for all ϕ ∈ H
s , ϕ ≥ 0. (4.2)

Then there exists a constant c0 = c0 V L∞ , f L∞ , u+
L2 ) > 0

independent of s with the property that u ≤ c0 in .

As noted above, Theorem 1.4 immediately follows by applying Theorem 4.1 to u and
−u, noting that −u is a weak subsolution of the (4.1) with f replaced by −f . For the proof
of Theorem 4.1, we need the following preliminary estimate.

Lemma 4.2 Let ⊂ R
N be a bounded open Lipschitz set. Then there exist constants

C0 = C0 0 and δ0 = δ0 ∈ (0, 1) with the property that

\Bδ(x)

|x − y|−N−2s dy ≥ C0 log
δ0

δ
for all δ ∈ (0, δ0), x ∈ ∈ [0, 1). (4.3)

Proof Since the boundary is Lipschitz, then has the uniform cone property (see for
instance [14, Theorem 1.2.2.2]). Therefore, there exist a cone segment

Cα,δ0 := {z ∈ R
N : 0 < |z| ≤ δ0,

z

|z| · eN < α}

for some δ0 ∈ (0, 1), α ∈ (0, π
2 ] with the property that for every x ∈ there exists a

rotation Rx ∈ O(N) with
x + Rx(Cα,δ0) ⊂ .

Setting Sα := {z ∈ SN−1 : z · eN < α}, we thus have

\Bδ(x)

|x−y|−N−2sdy ≥
(x+Rx (Cα,δ0 ))\Bδ(x)

|x−y|−N−2sdy =
Cα,δ0 \Bδ(0)

|z|−N−2sdz

≥
Cα,δ0 \Bδ(0)

|z|−N dz ≥ HN−1(Sα)
δ0

δ

ρ−1dρ = HN−1(Sα) log
δ0

δ
,

where HN−1(Sα) is the surface measure of the set Sα ⊂ SN−1. Hence (4.3) holds with
C0 := HN−1(Sα).

Proof of Theorem 4.1 In the following, we let C0 and δ0 > 0 be given by Lemma 4.2. For
δ ∈ (0, δ0) and s ∈ [0, 1), we consider the kernel function

z → jδ,s(z) = χBδ(0)(z)|z|−N−2s

and the corresponding quadratic form defined by

Eδ
s (v, ϕ) = 1

2
(v(x)−v(y))(ϕ(x)−ϕ(y))jδ,s(x−y) dydx for v, ϕ ∈ H

s . (4.4)
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Since u ∈ H
s satisfies (4.2), we have

f ϕ dx ≥ Es(u, ϕ) + V (x)u(x)ϕ(x) dx (4.5)

= Eδ
s (u, ϕ) + V (x)u(x)ϕ dx + 1

2 x,y∈
|x−y|≥δ

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy

= Eδ
s (u, ϕ) + (γs,δ(x) + V (x))u(x)ϕ(x) dx − κs,δ,u(x)ϕ(x) dx (4.6)

≥ Eδ
s (u, ϕ) + (γs,δ(x) + V (x))u(x)ϕ(x) dx − κs,δ,u+(x)ϕ(x) dx

for ϕ ∈ H
s , ϕ ≥ 0 with

γs,δ(x) =
\Bδ(x)

|x − y|−N−2s dy, κs,δ,u(x) :=
\Bδ(x)

u(y)|x − y|−N−2s dy

and

κs,δ,u+(x) :=
\Bδ(x)

u+(y)|x − y|−N−2s dy.

We note that

inf
x∈ γs,δ(x) ≥ C0 log

δ0

δ
for δ ∈ (0, δ0), s ∈ [0, 1) (4.7)

by Lemma 4.2. Next we fix c > 0 and apply (4.5) to ϕc := (u − c)+, which is easily seen
to be a function in H

s . Since uϕc ≥ cϕc in , (4.5) and (4.7) give

f ϕc dx ≥ Eδ
s (u, ϕc) + C0 log

δ0

δ
V L∞ c κs,δ,u+ L∞ ϕc dx (4.8)

where

Eδ
s (u, ϕc) = Eδ

s (u−c, (u−c)+) = Eδ
s (ϕc, ϕc)−Eδ

s ((u−c)−, (u−c)+) ≥ Eδ
s (ϕc, ϕc) ≥ 0.

Consequently, (4.8) implies that

f L∞ κs,δ,u+ L∞ − C0 log
δ0

δ
V L∞ c ϕc dx ≥ 0. (4.9)

Next, we fix δ ∈ (0, δ0) with the property that C0 log δ0
δ

V L∞ ≥ 1, so that (4.9)
reduces to

f L∞ κs,δ,u+ L∞ − c ϕc dx ≥ 0. (4.10)

If c > f L∞ κs,δ,u+ L∞ , (4.10) implies that ϕc dx = 0 and therefore u ≤ c

in . We thus conclude that u ≤ c0 with

c0 f L∞ κs,δ,u+ L∞ .

Since

0 ≤ κs,δ,u+(x) =
\Bδ(x)

u+(y)|x − y|−N−2s dy

≤ δ−N−2s u+(y) dy ≤ δ−N−2 | u+
L2

for x ∈ , it follows that c0 only depends on V L∞ , f L∞ and u+
L2 ,

as claimed.
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5 Uniform Estimates for Convergence of Eigenvalues
and Eigenfunctions ofDs

In this section we first prove global bounds on eigenvalues and eigenfunctions of the oper-
ator family Ds . Then we shall prove convergence of eigenvalues and eigenfunctions in the
limit s → 0+.

The first result of this section is the following.

Proposition 5.1 Let ⊂ R
N be a bounded open Lipschitz set. For every n ∈ N, s0 ∈ (0, 1)

we have

n,s0
:= sup

s∈[0,s0]
λn,s < ∞.

Proof Fix n ∈ N, s0 ∈ (0, 1). To estimate λn,s for s ∈ [0, s0], we use the variational
characterization (3.11) and let V be a fixed n-dimensional subspace of C1∗( = u ∈
C1( : u dx = 0 . For all u ∈ V , we then have

Es(u, u)= 1

2

(u(x) − u(y))2

|x − y|N+2s
dxdy ≤ u 2

L∞

2
|x−y|2−N−2s dxdy

≤
u 2

C1(

2 Bd (x)

|x−y|2−N−2s dydx ≤
u 2

C1(

4(1−s)
| |HN−1(SN−1)d

2(1−s).

(5.1)

Moreover, since the norms C2 and L2 are equivalent on V , there exists CV = C(V ) >

0 such that
u C1( ≤ CV u L2 for every u ∈ V . (5.2)

Combining (5.1) and (5.2), we deduce that

Es(u, u) ≤ CV

4(1 − s0)
| |HN−1(SN−1) max{1, d2 } for u ∈ V with u L2 = 1.

It thus follows from (3.11) that sup
s∈[0,s0]

λn,s < ∞, as claimed.

Combining Theorem 4.1 and Proposition 5.1, we obtain the following uniform bound on
eigenfunctions.

Theorem 5.2 Let ⊂ R
N be a bounded open Lipschitz set, let n ∈ N, and let s0 ∈ (0, 1).

Then there exists a constant C = 0) > 0 with the property that for every s ∈
[0, s0] and every eigenfunction ξ ∈ X

s of the eigenvalue problem (3.7) corresponding
to the eigenvalue λn,s we have

ξ ∈ L∞ and ξ L∞ ≤ C ξ L2 .

Proof By homogeneity, it suffices to consider eigenfunctions ξ ∈ X
s with ξ L2 =

1. The result then follows by applying Theorem 1.4 to V ≡ −λn,s and f ≡ 0, noting that
V L∞ = λn,s is uniformly bounded independently of s ∈ [0, s0] by Proposition 5.1.

In the remainder of this section, we study the transition from the fractional case s >

0 to the logarithmic case s = 0 with regard to the eigenvalues λn,s and corresponding
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eigenfunctions. For simplicity, we first consider the case n = 1, that is the first positive
eigenvalue λ1,s .

Theorem 5.3 Let ⊂ R
N be a bounded open Lipschitz set. Then

λ1,s → λ1,0 as s → 0+. (5.3)

Moreover, if, for some sequence sk → 0+, {ξ1,sk }k is a sequence of L2-normalized
eigenfunctions ofDsk corresponding to λ1,sk

, we have that, after passing to a subsequence,

ξ1,sk → ξ1 in L2 as k → ∞, (5.4)

where ξ1 is an eigenfunction of D0 corresponding to λ1,0.

Proof It is convenient to introduce the subspace C2∗( := {u ∈ C2( : u dx = 0}.
Let u ∈ C2∗( such that u L2 = 1. Then Theorem 1.1 together with (3.4) yields

lim sup
s→0+

λ1,s ≤ lim sup
s→0+

Es(u, u) = lim
s→0+ Ds u, u 2 D0 u, u 2 = E0(u, u).

Using the fact that, by Remark 3.3, C2∗( is dense in X
0 we get

lim sup
s→0+

λ1,s ≤ inf
u∈X0

u
L2 =1

E0(u, u) = λ1,0. (5.5)

Next we consider

λ∗ := lim inf
s→0+ λ1,s ∈ [0, λ1,0],

and we let {sk}k∈N ⊂ (0, 1) be a sequence with sk → 0+ as k → ∞ and such that
lim

k→∞ λ1,sk
= λ∗. Moreover, we let ξ1,sk be an eigenfunction associated to λ1,sk

with

ξ1,sk L2 = 1. We claim that

lim sup
k→∞

E0(ξ1,sk , ξ1,sk ) ≤ λ1,0. (5.6)

Indeed, from (5.5) we have, with

A := {(x, y) ∈ × : |x − y| ≤ 1} and B := {(x, y) ∈ × : |x − y| > 1},
the estimate

λ1,0 + o(1) ≥ λ1,sk
= Esk (ξ1,sk , ξ1,sk ) = 1

2

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N+2sk
dxdy

= 1

2 A

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N+2sk
dxdy +

B

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N+2sk
dxdy

≥ 1

2 A

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N dxdy + d
−2sk

B

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N dxdy

= E0(ξ1,sk , ξ1,sk ) + d
−2sk − 1

2 B

(ξ1,sk (x) − ξ1,sk (y))2

|x − y|N dxdy

≥ E0(ξ1,sk , ξ1,sk ) + d−N d
−2sk − 1

2 B

(ξ1,sk (x) − ξ1,sk (y))2 dxdy.
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If d ≤ 1, we infer that E0(ξ1,sk , ξ1,sk ) ≤ λ1,0 + o(1) and therefore (5.6) already follows. If
d > 1, we estimate

B

(ξ1,sk (x) − ξ1,sk (y))2 dxdy ≤ 2
×

(ξ2
1,sk

(x) + ξ2
1,sk

(y))dxdy

≤ 4| ξ1,sk
2
L2 = 4| |,

which yields

λ1,0 + o(1) ≥ E0(ξ1,sk , ξ1,sk ) + 2| |d−N(d
−2sk − 1) = E0(ξ1,sk , ξ1,sk ) + o(1).

Hence (5.6) also follows in this case.
As a consequence of (5.6), the sequence ξ1,sk is uniformly bounded in H

0 . So, after
passing to a subsequence, there exists ξ1 ∈ H

0 such that ξ1,sk 1 in H
0 , which

by Proposition 3.1 implies that ξ1,sk → ξ1 in L2 . Consequently, ξ1 L2 = 1 and
ξ1 dx = 0, so in particular ξ1 ∈ X

0 .
Next, from Theorem 1.1 and Remark 3.3, we have that for all ϕ ∈ C2∗( ,

lim
k→∞ λ1,sk

ξ1,sk , ϕ 2 = lim
k→∞ Esk (ξ1,sk , ϕ) = lim

k→∞ ξ1,sk ,D
sk ϕ 2

ξ1,D0 ϕ 2 = E0(ξ1, ϕ). (5.7)

Since also ξ1,sk , ϕ 2 ξ1, ϕ 2 for all ϕ ∈ C2∗( as k → ∞, it follows from (5.7) that

E0(ξ1, ϕ) = λ∗ ξ1, ϕ 2 for all ϕ ∈ C2∗( .

By density, we get
E0(ξ1, ϕ) = λ∗ ξ1, ϕ 2 for all ϕ ∈ X

0 .
Since ξ1 ∈ X

0 \ {0}, we then deduce that λ∗ ∈ (0, λ1,0] is an eigenvalue of D0 with

corresponding eigenfunction ξ1. Since λ1,0 is the smallest positive eigenvalue of D0 by

definition, we conclude that λ∗ = λ1,0. Combining this equality with (5.5), we conclude that

λ1,s → λ1,0 as s → 0+, as claimed in (5.3). Moreover, we have already proved above that if,

for some sequence sk → 0+, {ξ1,sk }k is a sequence of L2-normalized eigenfunctions of Dsk

corresponding to λ1,sk
, we have that ξ1,sk → ξ1 in L2 after passing to a subsequence,

where ξ1 is an eigenfunction of D0 corresponding to λ1,0. The proof is thus finished.

Next, we now consider the case of higher eigenvalues. We have the following.

Theorem 5.4 Let ⊂ R
N be a bounded open Lipschitz set. Then

λn,s → λn,0 as s → 0+. (5.8)

Moreover, if, for some sequence sk → 0+, {ξn,sk }k is a sequence of L2-normalized
eigenfunctions ofDsk corresponding to λn,sk

, we have that, after passing to a subsequence,

ξn,sk → ξn in L2 as k → ∞, (5.9)

where ξn is an eigenfunction of D0 corresponding to λn,0.

The proof of this theorem is similar to the one of Theorem 5.3 but somewhat more
involved technically.

Proof of Theorem 5.4 Similarly as in the proof of Theorem 5.3, we first show that

lim sup
s→0+

λn,s ≤ λn,0. (5.10)
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For this we consider again the subspace C2∗( ⊂ X
s , and we fix an n-dimensional

subspace V ⊂ C2∗( . Then SV := {u ∈ V u L2 = 1} is bounded in C2∗( since
the L2-norm and the C2-norm are equivalent on V . Thus Theorem 1.1 gives, together with
(3.4) and (3.11), the estimate

lim sup
s→0+

λn,s ≤ lim sup
s→0+

sup
u∈SV

Es(u, u) = lim
s→0+ sup

u∈SV

Ds u, u 2 = supu∈SV
D0 u, u 2

= supu∈SV
E0(u, u).

Using again the fact that, by Remark 3.3, C2∗( is dense in X
0 and that

λn,0 = inf
V ∈V 0

n

sup
u∈SV

E0(u, u),

by (3.11), where V 0
n denotes the family of n-dimensional subspaces of X0 , we deduce

(5.10).
Next we show the corresponding liminf inequality. For this, we fix n ∈ N and set

λ∗
j := lim inf

s→0+ λj,s for j = 1, . . . , n,

noting that
λ∗

j ≤ λ∗
n for j = 1, . . . , n, (5.11)

since the sequence of numbers λj,s is increasing in j for every s ∈ (0, 1). Moreover, we

choose a sequence of numbers sk ∈ (0, 1), k ∈ N with sk → 0+ and λn,sk
→ λ∗

n as
k → ∞. We then choose, for every k ∈ N, a system of L2-orthonormal eigenfunctions
ξ1,sk , . . . , ξn,sk associated to the eigenvalues λ1,sk

, . . . , λn,sk
.

Proceeding precisely as in the proof of Theorem 5.3, we find that ξj,sk is uniformly
bounded in H

0 for j = 1, . . . , n. Therefore, after passing to a subsequence, there exists
ξj ∈ H

0 such that ξj,sk j in H
0 for j = 1, . . . , n, which by Proposition 3.1

implies that ξj,sk → ξj in L2 for j = 1, . . . , n.
The L2-convergence implies that the functions ξ1, . . . , ξn are also L2-orthonormal.

Moreover, for j = 1, · · · , n, we have, by Theorem 1.1 and Remark 3.3,

λ∗
j ξj , ϕ 2 = lim

k→∞ λj,sk
ξj,sk , ϕ 2 = lim

k→∞ Esk (ξj,sk , ϕ)

= lim
k→∞ ξj,sk ,D

sk ϕ 2 ξj ,D0 ϕ 2 = E0(ξj , ϕ) for ϕ ∈ C2∗( . (5.12)

By density of C2∗( in X
0 , we thus have

E0(ξj , ϕ) = λ∗
j ξj , ϕ 2 for all ϕ ∈ X

0 = 1, . . . , n.

Therefore, λ∗
j is an eigenvalue of D0 with corresponding eigenfunction ξj for j = 1, . . . , n.

Now, by considering in particular the n-dimensional subspace V = span{ξ1, ξ2, . . . , ξn} of
X

0 in (3.11), it follows that

λn,0 ≤ sup
u∈SV

E0(u, u). (5.13)

Moreover, every u ∈ SV writes as u =
n

j=1
cj ξj with cj ∈ R satisfying

n

j=1
c2
j = 1, so we

have

E0(u, u) = E0

⎛

⎝

n

j=1

cj ξj ,

n

j=1

cj ξj

⎞

⎠ =
n

i,j=1

cicjλ
∗
i ξi , ξj 2 =

n

i=1

c2
i λ

∗
i ≤ λ∗

n

n

i=1

c2
i = λ∗

n
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by (5.11). Hence (5.13) yields that

λn,0 ≤ λ∗
n = lim inf

s→0+ λn,s . (5.14)

Combining (5.10) and (5.14) now shows that λn,s → λn,0 as s → 0+, as claimed in (5.8).
The rest of the proof follows exactly as in the case of Theorem 5.3.

Next, we wish to study the uniform convergence of sequences of eigenfunctions of Dsk

associated with a sequence sk → 0+. We first state a uniform equicontinuity result in a
somewhat more general setting.

Theorem 5.5 Let ⊂ R
N be a bounded Lipschitz set. Moreover, let (sk)k be a sequence

in (0, 1) with sk → 0+, and let ϕk ∈ C( , k ∈ N be functions with

ϕk L∞ ≤ C and
ϕk(x) − ϕk(y)

|x − y|N+2sk
dy ≤ C for all x ∈ , k ∈ N (5.15)

with a constant C > 0. Then the sequence (ϕk)k is equicontinuous.

Proof Since sk → 0+, we may assume, without loss of generality, that sk ∈ (0, 1
4 ) for every

k ∈ N. Moreover, relabeling the functions ϕk if necessary, we may assume that the sequence
sk is monotone decreasing. Arguing by contradiction, we assume that there exists a point
x0 ∈ such that the sequence (ϕk)k is not equicontinuous at x0, which means that

lim
t→0+ sup

k∈N
osc

Bt (x0)∩
ϕk = ε > 0. (5.16)

This limit exists since the function

(0, ∞) → [0, ∞), t → sup
k∈N

osc
Bt (x0)∩

ϕk

is bounded by assumption and nondecreasing. Without loss of generality, to simplify the
notation, we may assume that x0 = 0 ∈ . We first choose δ > 0 sufficiently small so that

ε − δ

2N+2
− 2 · 3Nδ > 0. (5.17)

We then choose t0 ∈ (0, 1) sufficiently small so that

ε ≤ sup
k∈N

osc
Bt∩

ϕk ≤ ε + δ for 0 < t ≤ 2t0. (5.18)

From (5.15) and the assumption that the sequence (ϕk)k is uniformly bounded in , it
follows that there exists a constant C1 = C1(t0) > 0 with

Bt0 (x)∩
ϕk(x) − ϕk(y)

|x − y|N+2sk
dy ≤ C1 for all x ∈ , k ∈ N. (5.19)

Next, we choose a sequence of numbers tk ∈ (0,
t0
5 ) with tk → 0+ and

C2 := inf
k∈N t

sk
k > 0. (5.20)

We then define a strictly increasing sequence of numbers σk , k ∈ N inductively with the
property that

osc
Btk

∩
ϕσk

≥ ε − δ for all k ∈ N. (5.21)
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For this, we first note that (5.18) implies that there exists some σ1 ∈ N with

osc
Bt1 ∩

ϕσ1 ≥ ε − δ.

Next, suppose that σ1 < · · · < σk are already defined for some k ∈ N. Since the finite set of
functions {ϕσ1 , . . . , ϕσk

} is equicontinuous on by assumption, there exists t ∈ (0, tk+1)

with the property that

osc
Bt ∩

ϕ < ε − δ for = σ1, . . . , σk .

Hence, by (5.18), there exists some σk+1 ∈ N, σk+1 > σk with

ε − δ ≤ osc
Bt ∩

ϕσk+1 ≤ osc
Btk+1 ∩

ϕσk+1 .

With this inductive choice, (5.21) holds for all k ∈ N. Moreover, since σk ≥ k and therefore
sσk

≤ sk , we have t
sσk

k ≥ t
sk
k ≥ C2 for every k ∈ N by (5.20) and since tk ∈ (0, 1). Hence

we may pass of a subsequence, replacing sk by sσk
and ϕk by ϕσk

in the following, with the
property that (5.20) still holds and

ε − δ ≤ osc
Btk

∩
ϕk ≤ ε + δ for all k ∈ N. (5.22)

By (5.22), we may write

ϕk(Btk ∩ = [dk − rk, dk + rk] for k ∈ N with some dk ∈ R, rk ≥ ε − δ

2
. (5.23)

Together with (5.18) and the fact that Btk ∩ ⊂ B2t0 ∩ , we deduce that

ϕk(B2t0 ∩ ⊂ [dk − ε + 3δ

2
, dk + ε + 3δ

2
]. (5.24)

Moreover, we let

ck :=
∩(Bt0 \B3tk

)

|y|−N−2sk dy for k ∈ N,

and we note that
ck → ∞ as k → ∞ (5.25)

by Lemma 4.2. We now set

Ak+ := {y ∈ ∩(Bt0\B3tk ) : ϕk(y) ≥ dk} and Ak− := {y ∈ ∩(Bt0\B3tk ) : ϕk(y) ≤ dk}.
Since

ck ≤
Ak+

|y|−N−2sk dy +
Ak−

|y|−N−2sk dy for all k ∈ N,

we may again pass to a subsequence such that

Ak+
|y|−N−2sk dy ≥ ck

2
for all k ∈ N or

Ak−
|y|−N−2sk dy ≥ ck

2
for all k ∈ N.

Without loss of generality, we may assume that the second case holds (otherwise we may
replace ϕk by −ϕk and dk by −dk). We then define the Lipschitz function ψk ∈ Cc(R

N) by

ψk(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2δ, |x| ≤ tk

0, |x| ≥ 2tk

2δ

tk
(2tk − |x|), tk ≤ |x| ≤ 2tk .
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We also define, for k ∈ N,

τk : → R, τk(x) = ϕk(x) + ψk(x).

By (5.24), we have

τk = ϕk ≤ dk + ε + 3δ

2
≤ dk + rk + 2δ in ∩ (B2t0 \ B2tk ).

Moreover, since dk + rk ∈ ϕk(Btk ∩ by (5.23), we have

dk + rk + 2δ ∈ τk(Btk ∩ ⊂ τk(B2tk ∩ .

Consequently, max
B2t0 ∩

τk is attained at a point xk ∈ B2tk ∩ with

τk(xk) ≥ dk + rk + 2δ,

which implies that

ϕk(xk) ≥ dk + rk ≥ dk + ε − δ

2
. (5.26)

By (5.19) and since B3tk ∩ ⊂ Bt0(xk) ∩ for k ∈ N by construction, we have that

C1 ≥
Bt0 (xk)∩

ϕk(xk) − ϕk(y)

|xk − y|N+2sk
dy

=
B3tk

∩
ϕk(xk) − ϕk(y)

|xk − y|N+2sk
dy +

∩(Bt0 (xk)\B3tk
)

ϕk(xk) − ϕk(y)

|xk − y|N+2sk
dy. (5.27)

To estimate the first integral, we note that, by definition of the function ψk ,

|ψk(x) − ψk(y)| ≤ 2δ

tk
|x − y| for all x, z ∈ R

N .

Moreover, by the choice of xk we have τk(xk) ≥ τk(y) for all y ∈ B3tk ∩ . Consequently,

B3tk
∩

ϕk(xk) − ϕk(y)

|xk − y|N+2sk
dy =

B3tk
∩

τk(xk) − τk(y)

|xk − y|N+2sk
dy −

B3tk
∩

ψk(xk) − ψk(y)

|xk − y|N+2sk
dy

≥ −
B3tk

∩
ψ(xk)−ψ(y)

|xk − y|N+2sk
dy ≥−2δ

tk B3tk

|xk−y|1−N−2sk dy ≥−2δ

tk B3tk

|y|1−N−2sk dy

= −31−2skωN−12δt
−2sk
k

1 − 2sk
≥ −12ωN−1δt

−2sk
k ≥ −C3 (5.28)

with a constant C3 > 0 independent of k. Here we used (5.20) and the standard estimate

Bt

|x−z|ρ−N dz ≤
Bt

|z|ρ−N dz = ωN−1t
ρ

ρ
for every t > 0, ρ ∈ (0, N) and x ∈ R

N .

To estimate the second integral in (5.27) we first note, since xk ∈ B2tk , we have that

2|y| ≥ |y − xk| ≥ |y|
3

for every k ∈ N and y ∈ R
N \ B3tk .

Moreover, by (5.18), (5.24), and (5.26) we have

ε + δ ≥ ϕk(xk) − ϕk(y) ≥ dk + ε − δ

2
− ϕk(y) ≥ −2δ
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for y ∈ Bt0(xk) ∩ ⊂ B2t0 ∩ . Consequently, combining (5.27) and (5.28), using again
(5.26) and the fact that xk ∈ B2tk , we may estimate as follows:

C1 + C3 ≥
(Bt0 (xk)\B3tk

)∩
ϕk(xk) − ϕk(y)

|y − xk|N+2sk
dy

≥
(Bt0 (xk)\B3tk

)∩
[ϕk(xk) − ϕk]+(y)

|y − xk|N+2sk
dy − 2δ

(Bt0 (xk)\B3tk
)∩

|y − xk|−N−2sk dy

≥ 1

2N+2sk
(Bt0 (xk)\B3tk

)∩
[ϕk(xk)−ϕk]+(y)

|xk − y|N+2sk
dy−2·3N+2sk δ

(Bt0 (xk)\B3tk
)∩

|y|−N−2sk dy

≥ 1

2N+2sk
(Bt0 \B3tk

)∩
[ϕk(xk) − ϕk]+(y)

|y|N+2sk
dy −

(Bt0 \Bt0 (xk))∩
[ϕk(xk) − ϕk]+(y)

|y|N+2sk
dy

−2 · 3N+2sk δ
(Bt0 \B3tk

)∩
|y|−N−2sk dy +

(Bt0 (xk)\Bt0 )

|y|−N−2sk dy

≥ 1

2N+2sk
rk

A−
k

|y|−N−2sk dy − (ε + δ)
Bt0 \Bt0 (xk)

|y|−N−2sk dy

−2 · 3N+2sk δ ck +
Bt0 (xk)\Bt0

|y|−N−2sk dy

≥ rk

2 · 2N+2sk
− 2 · 3N+2sk δ ck

− (ε + δ)

2N+2sk
Bt0 \Bt0−2tk

|y|−N−2sk dy − 2 · 3N+2sk δ
Bt0+2tk

\Bt0

|y|−N−2sk dy

≥ ε − δ

2N+2+2sk
− 2 · 3N+2sk δ ck − o(1) = ε − δ

2N+2
− 2 · 3Nδ + o(1) ck − o(1)

as k → ∞, where we used (5.23). By our choice of δ > 0 satisfying (5.17), we arrive at a
contradiction to (5.25). The proof is thus finished.

Finally, we complete the

Proof of Theorem 1.3 Since cN,s := scN + o(s) as s → 0+ with cN = π− N
2 N

2 ) and
L = cND0 , then the first part of Theorem 1.3 is just a reformulation of Theorems 5.3 and
5.4.

To see the second part, we first note that ξn,sk ∈ C( for every k ∈ N by [3, Theorem
1.3, see also Theorem 4.7]. We may then apply Theorem 1.5 to the sequence (ξn,sk )k in place
of (ϕk)k , noting that assumption (5.15) is satisfied by Theorems 5.1 and 5.2. Consequently,
the sequence (ξn,sk )k is both bounded in C( and equicontinuous on , so it is relatively
compact in C( by the Arzelà-Ascoli Theorem. Combining this fact with the convergence
property ξn,sk → ξn in L2 stated in Theorem 5.4, it follows that ξn,sk → ξn in C( .
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