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Volume Growth and On-diagonal Heat Kernel Bounds
on Riemannian Manifolds with an End

Alexander Grigor’yan1 ·Philipp Sürig1

© The Author(s) 2022

Abstract
We investigate heat kernel estimates of the form pt (x, x) ≥ cxt

−α, for large enough t ,
where α and cx are positive reals and cx may depend on x, on manifolds having at least one
end with a polynomial volume growth.
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1 Introduction

Let M be a complete connected non-compact Riemannian manifold and pt (x, y) be the
heat kernel on M , that is, the minimal positive fundamental solution of the heat equation
∂tu = �u, where � is the Laplace-Beltrami operator on M . In this paper, we investigate
the long time behaviour of pt (x, x) for t → +∞, x ∈ M . Especially, we are interested in
lower bounds for large enough t of the form

pt (x, x) ≥ cxt
−α, (1.1)

where α and cx are positive reals and cx may depend on x.
Let V (x, r) = μ(B(x, r)) be the volume function of M where B(x, r) denotes the

geodesic balls in M and μ the Riemannian measure on M . It was proved by A. Grigor’yan
and T. Coulhon in [7], that if for some x0 ∈ M and all large enough r ,

V (x0, r) ≤ CrN (1.2)
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where C and N are positive constants, then

pt (x, x) ≥ cx

(t log t)N/2
, (1.3)

which obviously implies (1.1).
It is rather surprising that such a weak hypothesis as (1.2) implies a pointwise lower

bound (1.3) of the heat kernel. In this paper we obtain heat kernel bounds assuming even
weaker hypotheses about M . We say that an open connected proper subset � of M is an
end of M if ∂� is compact but � is non-compact (see also Section 2). One of our aims here
is to obtain lower bounds for the heat kernel assuming only hypotheses about the intrinsic
geometry of �, although a priori it was not obvious at all that such results can exist.

One of the motivations was the following question asked by A. Boulanger in [1]
(although for a more restricted class of manifolds). Considering the volume function in �

given by
V�(x, r) = μ(B(x, r) ∩ �),

Boulanger asked if the heat kernel satisfies (1.1) provided it is known that

V�(x0, r) ≤ CrN, (1.4)

for some x0 ∈ � and all r large enough.
A first partial answer to this question was given by A. Grigor’yan, who showed in [10],

that if (1.4) holds and �, considered as a manifold with boundary, is non-parabolic, (and
hence, N > 2 in Eq. 1.4 by [5]) then Eq. 1.3 is satisfied. More precisely, denoting by
p�

t (x, y) the heat kernel in � with the Dirichlet boundary condition on ∂�, it was proved
in [10] that, for all x ∈ � and large enough t ,

p�
t (x, x) ≥ cx

(t log t)N/2
, (1.5)

which implies (1.3) by the comparison principle.
From a probabilistic point of view, the estimate (1.5) for non-parabolic � is very natural

if one compares it with (1.3), since the non-parabolicity of� implies that the probability that
Brownian motion started in � never hits the boundary ∂� is positive (see [[12], Corollary
4.6]). Hence, one expects that the heat kernel in � and the heat kernel in � with Dirichlet
boundary condition are comparable.

The main direction of research in this paper is the validity of the estimate (1.1) in the
case when � is parabolic and the volume function of � satisfies (1.4). We prove (1.1) for a
certain class of manifolds M when � is parabolic as well as construct a class of manifolds
M with parabolic ends where (1.1) does not hold.

In Section 2 we are concerned with positive results. One of our main results -Theorem
2.6, ensures the estimate (1.1) when � is a locally Harnack manifold (see Section 2.2 for
the definition). In order to handle difficulties that come from the parabolicity of the end, we
use the method of h-transform (see Section 2.1). For that we construct a positive harmonic
function h in � and define a new measure μ̃ by dμ̃ = h2dμ. Thus, we obtain a weighted
manifold

(

�, μ̃
)

. We prove that this manifold is non-parabolic, satisfies the polynomial
volume growth and, hence, the heat kernel p̃�

t of (�, μ̃) satisfies the lower bound (1.5).
Then a similar lower bound for p�

t and, hence, for pt , follows from the identity

p�
t (x, x) = h2(x)p̃�

t (x, x)

(see Lemma 2.3). Note that the techniques of h-transform for obtaining heat kernel estimates
was used in [17] and [16] although in different settings (see also [[15], Section 9.2.4] and
[22]).
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In Section 3 we present a technique for obtaining isoperimetric inequalities on warped
products of weighted manifolds. We say that a function J on [0, +∞) is a lower isoperi-
metric function for (M,μ) if, for any precompact open set U ⊂ M with smooth
boundary,

μ+(U) ≥ J (μ(U)), (1.6)

where μ+ denotes the perimeter with respect to the measure μ (see Section 3 for more
details).

The isoperimetric inequality on Riemannian products was proved in [19]. We develop
further the method of [19] to deal with warped products. The main result here is stated in
Theorem 3.3. Given two weighted manifolds (M1, μ1) and (M2, μ2) consider the weighted
manifold (M,μ) such that M = M1 × M2 as topological spaces, the Riemannian metric
ds2 on M is defined by

ds2 = dx2 + ψ2(x)dy2,

with ψ being a smooth positive function on M1 and dx2 and dy2 denoting the Riemannian
metrics on M1 and M2, respectively and measure μ on M is defined by μ = μ1 × μ2.
Assume that the function ψ is bounded and (M1, μ1) and (M2, μ2) admit continuous lower
isoperimetric functions J1 and J2, respectively. Then we prove in Theorem 3.3 that (M,μ)

admits a lower isoperimetric function

J (v) = c inf
ϕ,φ

(∫ ∞

0
J1(ϕ(t))dt +

∫ ∞

0
J2(φ(s))ds.

)

,

for some positive constant c > 0 and where ϕ and φ are generalized mutually inverse
functions such that

v =
∫ ∞

0
ϕ(t)dt =

∫ ∞

0
φ(s)ds.

In Theorem 3.6 we construct a weighted model manifold with boundary (M0, μ̃)

(see Section 3.2 for the definition of this term), where M0 topologically coincides with
[0, +∞) × S

n−1, n ≥ 2, while the Riemannian metric on M0 is given by

ds2 = dr2 + ψ2(r)dθ2, (1.7)

where dθ2 is a standard Riemannian metric on S
n−1 and

ψ(r) = e− 1
n−1 rα

, (1.8)

with 0 < α ≤ 1, and obtain as a consequence of Theorem 3.3, that (M0, μ̃) admits a lower
isoperimetric function J such that for large enough v,

J (v) = cv

(log v)
2−2α

α

, (1.9)

for some positive constant c > 0.
In Section 4 we construct examples of manifolds M having a parabolic end � with finite

volume (in particular, satisfying (1.4)) but such that the heat kernel pt (x, x) decays super-
polynomially as t → ∞. In fact, the end � is constructed by means of the aforementioned
model manifold M0, particularly, � topologically coincides with M0. Our fourth main result
-Theorem 4.3, says that for a certain manifold M with this end � the following heat kernel
estimate holds:

pt (x, x) ≤ Cx exp
(

−Ct
α

2−α

)

, (1.10)
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for all x ∈ M and large enough t . The estimate (1.10) follows from Theorem 4.2 where
we obtain the upper bound of the heat kernel p̃t of a weighted manifold (M, μ̃) after an
appropriate h-transform. In this theorem we prove that

p̃t (x, x) ≤ C exp
(

−C1t
α

2−α

)

. (1.11)

In fact, this decay is sharp, meaning that we have a matching lower bound

sup
x∈M

p̃t (x, x) ≥ c exp
(

−C2t
α

2−α

)

(see the remark after Theorem 4.2). The key ingredient in the proof of Theorem 4.2 is utiliz-
ing the lower isoperimetric function J on (�, μ̃) given by Eq. 1.9, which then yields the heat
kernel upper bound (1.11) by a well-known technique based on Faber-Krahn inequalities
(see [[13], Proposition 7.1] and Proposition 4.1).

Even though we managed to give both positive and negative results for manifolds with
parabolic end concerning the estimate (1.1), a gap still remains. Closing this gap seems to
be interesting for future work, for example, it might be desirable to construct a manifold
with parabolic end of infinite volume for which (1.1) does not hold.

Notation For any nonnegative functions f, g, we write f 	 g if there exists a constant
C > 1 such that

C−1f ≤ g ≤ Cf .

2 On-diagonal Heat Kernel Lower Bounds

Let M be a non-compact Riemannian manifold with boundary δM (which may be empty).
Given a smooth positive function ω on M , let μ be the measure defined by

dμ = ω2dvol,

where dvol denotes the Riemannian measure on M . Similarly. we define μ′ as the measure
with density ω2 with respect to the Riemannian measure of codimension 1 on any smooth
hypersurface. The pair (M, μ) is called weighted manifold.

The Riemannian metric induces the Riemannian distance d(x, y), x, y ∈ M . Let B(x, r)

denote the geodesic ball of radius r centered at x, that is

B(x, r) = {x ∈ M : d(x, y) < r}
and V (x, r) its volume on (M, μ) given by

V (x, r) = μ(B(x, r)).

We say that M is complete if the metric space (M, d) is complete. It is known that M is
complete, if and only if, all balls B(x, r) are precompact sets. In this case, V (x, r) is finite.

The Laplace operator �μ is the second order differential operator defined by

�μf = divμ(∇f ) = ω−2div(ω2∇f ).

If ω ≡ 1, then �μ coincides with the Laplace-Beltrami operator � = div ◦ ∇.
Consider the Dirichlet form

E(u, v) =
∫

M

(∇u,∇v)dμ,
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defined on the space C∞
0 (M) of smooth functions with compact support. The form E is

closable in L2(M,μ) and positive definite. Let us denote by �μ its infinitesimal generator.
By integration by parts, we obtain for all u, v ∈ C∞

0 (M),

E(u, v) =
∫

M

(∇u,∇v)dμ = −
∫

M

v�μudμ +
∫

δM

v
∂u

∂ν
dμ′, (2.1)

where ν denotes the outward unit normal vector field on δM . If u ∈ C2 ∩ dom(�μ) then
∂u
∂ν

= 0 on δM and �μu = �μu, so that �μ can be considered as an extension of �μ with
Neumann boundary condition on δM .

A function u is called harmonic in M if u ∈ C2(M), �μu = 0 in M \ δM and ∂u
∂ν

= 0
on δM . We call a function u ∈ C2(M) superharmonic if �μu ≤ 0 in M \ δM and ∂u

∂ν
≥ 0

on δM . A subharmonic function u ∈ C2(M) satisfies the opposite inequalities.
The operator �μ generates the heat semi-group Pt := et�μ which possesses a positive

smooth, symmetric kernel pt (x, y).
Let � be an open subset of M and denote δ� := δM ∩ �. Then we can consider � as

a manifold with boundary δ�. Hence, using the same constructions as above for � instead
of M , we obtain the heat semigroup P �

t with the heat kernel p�
t (x, y), which satisfies the

Dirichlet boundary condition on ∂� and the Neumann boundary condition on δ�.

Definition Let M be a complete non-compact manifold. Then we call � an end of M , if �

is an open connected proper subset of M such that � is non-compact but ∂� is compact (in
particular, when ∂� is a smooth closed hypersurface).

If δ� is nonempty, we will assume that δ� ∩ ∂� = ∅.
In many cases, the end � can be considered as an exterior of a compact set of another

manifold M0, that means, � is M0 \ K0 for some compact set K0 ⊂ M0. If (M,μ) and
(M0, μ0) are weighted manifolds, with ω2 being the smooth density of measure μ and the
measure μ0 having smooth density ω2

0, then, in particular, we have ω0 = ω on �.

Definition We say that a weighted manifold (M,μ) is parabolic if any positive superhar-
monic function on M is constant, and non-parabolic otherwise.

Definition Let (M,μ) be a weighted manifold and � be a subset of M . Then we define the
volume function of �, for all x ∈ M and r > 0, by

V�(x, r) = μ(B�(x, r)),

where B�(x, r) = B(x, r) ∩ �.

Definition Let (M,μ) be a weighted manifold.We say that� ⊂ M satisfies the polynomial
volume growth condition, if there exist x0 ∈ � and r0 > 0 such that for all r ≥ r0,

V�(x0, r) ≤ CrN, (2.2)

where N and C are positive constants.

Theorem 2.1 ([10], Theorem 8.3) Let M be a complete non-compact manifold with end �.
Assume that

(

�,μ
)

is a weighted manifold such that

• (

�,μ
)

is non-parabolic as a manifold with boundary ∂� ∪ δ�.
• � satisfies the polynomial volume growth condition (2.2) with N > 2.
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Then for any x ∈ � there exist cx > 0 and tx > 0 such that for all t ≥ tx ,

p�
t (x, x) ≥ cx

(t log t)N/2
, (2.3)

where cx and tx depend on x.
Consequently, if (M,μ) is a complete non-compact weighted manifold with end � such

that the above conditions are satisfied, we have for any x ∈ M and all t ≥ tx ,

pt (x, x) ≥ cx

(t log t)N/2
. (2.4)

2.1 h-transform

Recall that any smooth positive function h induces a new weighted manifold (M, μ̃), where
the measure μ̃ is defined by

dμ̃ = h2dμ = h2ω2dvol (2.5)

and we denote, for all r > 0 and x ∈ M , by ˜V (x, r) the volume function of measure μ̃. The
Laplace operator �μ̃ on (M, μ̃) is then given by

�μ̃f = h−2divμ(h2∇f ) = (hω)−2div((hω)2∇f ).

Lemma 2.2 ([16], Lemma 4.1) Assume that � ⊂ M is open and �μh = 0 in �. Then for
any smooth function f in �, we have

�μ̃f = h−1�μ(hf ). (2.6)

Lemma 2.3 ([16], Proposition 4.2) Assume that h is a harmonic function in an open set
� ⊂ M . Then the Dirichlet heat kernels p�

t and p̃�
t in�, associated with the corresponding

Laplace operators �μ and �μ̃, are related by

p�
t (x, y) = h(x)h(y)p̃�

t (x, y), (2.7)

for all t > 0 and x, y ∈ �.

Remark In particular, if we assume that h is harmonic in M , we get that the heat kernels are
related by

p̃t (x, y) = pt (x, y)

h(x)h(y)
(2.8)

for all t > 0 and x, y ∈ M .

Definition Let � be an open set in M and K be a compact set in �. Then we call the pair
(K,�) a capacitor and define the capacity cap(K,�) by

cap(K,�) = inf
φ∈T (K,�)

∫

�

|∇φ|2dμ, (2.9)

where T (K,�) is the set of test functions defined by

T (K,�) = {φ ∈ C∞
0 (�) : φ|K = 1}.
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Let � be precompact. Then it is known that the Dirichlet integral in Eq. 2.9 is mini-
mized by a harmonic function ϕ, so that the infimum is attained by the weak solution to the
Dirichlet problem in � \ K:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�ϕ = 0
ϕ|∂K = 1
ϕ|∂� = 0.
∂ϕ
∂ν

|δ(�\K) = 0

The function ϕ is called the equilibrium potential of the capacitor (K,�).
We always have the following identity:

cap(K,�) =
∫

�

|∇ϕ|2dμ =
∫

�\K
|∇ϕ|2dμ = −flux(ϕ), (2.10)

where flux(ϕ) is defined by

flux(ϕ) :=
∫

∂W

∂ϕ

∂ν
dμ′,

where W is any open region in the domain of ϕ with smooth precompact boundary such that
K ⊂ W and ν is the outward normal unit vector field on ∂W . By the Green formula (2.1)
and the harmonicity of ϕ, flux(ϕ) does not depend on the choice of W .

Definition We say that a compact set K ⊂ M has locally positive capacity, if there exists a
precompact open set � such that K ⊂ � and cap(K,�) > 0.

It is a consequence of the local Poincaré inequality, that if cap(K,�) > 0 for some
precompact open �, then this is true for all precompact open � containing K .

Lemma 2.4 Let (M,μ) be a complete, non-compact weighted manifold and K be a com-
pact set in M with locally positive capacity and smooth boundary ∂K . Fix some x0 ∈ M

and set Br := B(x0, r) for all r > 0 and assume that K is contained in a ball Br0 for some
r0 > 0. Let us also set � = M \ K , so that

(

�, μ
)

becomes a weighted manifold with
boundary. Then there exists a positive smooth function h in � that is harmonic in � and
satisfies for all r ≥ r0,

min
∂Br

h ≤ C cap(K,Br)
−1, (2.11)

for some constant C > 0. Moreover, the weighted manifold
(

�, μ̃
)

is non-parabolic, where
measure μ̃ on � is defined by Eq. 2.5.

Proof For any R > r0, let ϕR be the equilibrium potential of the capacitor (K,BR). It
follows from Eq. 2.10, that

cap(K,BR) = −flux(ϕR). (2.12)

Note that ∂� = ∂K . By our assumption on K , we have for all R > r0,

cap(K,BR) > 0,

whence we can consider the sequence

vR = 1 − ϕR

cap(K,BR)
.

By Eq. 2.12 this sequence satisfies

flux(vR) = 1. (2.13)
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Let us extend all vR to K by setting vR ≡ 0 on K . We claim that for all R > r > r0,

min
∂Br

vR ≤ cap(K,Br)
−1. (2.14)

For R > r > r0, denote mr = min∂Br vR . It follows from the minimum principle and the
fact that vR ≡ 0 on K , that the set

Ur := {x ∈ BR : vR(x) < mr }
is inside Br and contains K . Then observe that the function 1 − vR

mr
is the equilibrium

potential for the capacitor (K,Ur), whence

cap(K,Br) ≤ cap(K,Ur) = flux

(

vR

mr

)

= 1

mr

,

which proves (2.14).
Since vR vanishes on ∂�, the maximum principle implies that, for all R > r > r0,

sup
Br\K

vR = max
∂Br

vR . (2.15)

Hence, we obtain from Eq. 2.15, the local elliptic Harnack inequality, and Eq. 2.14, that for
every R > r > r0,

sup
Br\K

vR ≤ C(r)min
∂Br

vR ≤ C(r)cap(K,Br)
−1, (2.16)

where the constant C(r) depends only on r . Let us choose an increasing sequence {Rk} such
that Rk > r0 and Rk → ∞. Then

{

vRk

}

is a sequence of non-negative harmonic functions
that by Eq. 2.16 is uniformly bounded in Br \ K for each fixed r . By the local properties of
harmonic functions, the sequence

{

vRk

}

is also equicontinuous in Br \ K and, hence, has
a subsequence that converges uniformly in Br \ K . Using a standard diagonal process with
r = rl → ∞, we obtain a subsequence of

{

vRk

}

that converges locally uniformly in � .
Denoting the limit by v, we see that v is non-negative and continuous in �, harmonic in �,
and v|∂� = 0. It follows that v is, in fact, smooth in �.

By renaming the sequence {Rk}, we can assume that vRk
→ v as k → ∞. By the

local properties of convergence of harmonic functions, we have ∇vRk
→ ∇v where the

convergence is also locally uniform in �. It follows that, for any r > r0,
∫

∂Br

∂v

∂ν
dμ′ = lim

k→∞

∫

∂Br

∂vRk

∂ν
dμ′,

which together with Eq. 2.13 implies

flux(v) = 1.

Let us define the function h = 1 + v so that h is smooth and positive in � and is harmonic
in �. It follows from Eq. 2.14, that for all r > r0,

min
∂Br

h ≤ 1 + cap(K,Br)
−1 ≤ (1 + cap(K,Br0))cap(K,Br)

−1,

which proves (2.11) with C = 1 + cap(K,Br0).
Let us now show that the weighted manifold (�, μ̃) is non-parabolic. For that purpose,

consider in � the positive smooth function w = 1
h
. Then we have by Lemma 2.2, that

function w satisfies in �,

�μ̃(w) = �μ̃

(

1

h

)

= 1

h
�μ1 = 0.
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so that the function w is �μ̃-harmonic in �. Observe that

∂w

∂ν
= −∂h

∂ν

1

h2
, (2.17)

where ν denotes the outward normal unit vector field on ∂�. Since v is non-negative in �

and v = 0 on ∂�, we have ∂h
∂ν

≤ 0 on ∂�, whence we get by Eq. 2.17,

∂w

∂ν
≥ 0 on ∂�.

Hence, we conclude that w is �μ̃-superharmonic in �, positive and non-constant, which
implies that (�, μ̃) is non-parabolic.

Remark Note that the function h constructed in Lemma 2.4 is �μ-subharmonic in �. If we
assume that the weighted manifold (�,μ) is parabolic, we obtain that h is unbounded since
a non-constant bounded subharmonic function can only exist on non-parabolic manifolds.

2.2 Locally Harnack Case

Definition The weighted manifold (M,μ) is said to be a locally Harnack manifold if there
is ρ > 0, called the Harnack radius, such that for any point x ∈ M the following is true:

(1) for any positive numbers r < R < ρ

V (x,R)

V (x, r)
≤ a

(

R

r

)n

(2.18)

(2) Poincaré inequality: for any Lipschitz function f in the ball B(x,R) of a radius R < ρ

we have
∫

B(x,R)

|∇f |2dμ ≥ b

R2

∫

B(x,R/2)
(f − f )2dμ, (2.19)

where we denote

f := −
∫

B(x,R/2)
f dμ := 1

V (x, R/2)

∫

B(x,R/2)
f dμ

and a, b and n are positive constants and V (x, r) denotes the volume function of (M,μ).

For example, the conditions (1) and (2) are true in the case when the manifold M has
Ricci curvature bounded below by a (negative) constant −κ (see [3]).

Definition For any open set � ⊂ M , define

λ1(�) = inf
u

∫

�
|∇u|2dμ

∫

�
u2dμ

, (2.20)

where the infimum is taken over all nonzero Lipschitz functions u compactly supported
in �.

Lemma 2.5 ([11], Theorem 2.1) Let (M,μ) be a locally Harnack manifold. Then we have,
for any precompact open set U ⊂ M ,

λ1(U) ≥ c

ρ2
min

(

(

V0

μ(U)

)2

,

(

V0

μ(U)

)2/n
)

, (2.21)
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where
V0 = inf

x∈M
{V (x, ρ) : B(x, ρ) ∩ U �= ∅}

and the constant c depends on a, b, n from Eqs. 2.18 and 2.19.

Definition We say that a manifold M satisfies the spherical Harnack inequality if there
exist x0 ∈ M and constants r0 > 0, CH > 0, NH > 0 and A > 1, so that for any positive
harmonic function u in M \ B(x0, A−1r) with r ≥ r0,

sup
∂B(x0,r)

u ≤ CH rNH inf
∂B(x0,r)

u. (2.22)

Assumption In this section, when considering an end � of a complete non-compact
weighted manifold (M,μ), we always assume that there exists a complete weighted mani-
fold (M0, μ0) and a compact set K0 ⊂ M0 that is the closure of a non-empty open set, such
that � is M0 \ K0 in the sense of weighted manifolds. For simplicity and since we only use
the intrinsic geometry of M0, we denote by B(x, r) the geodesic balls in M0 and by V (x, r)

the volume function of M0.

Theorem 2.6 Let � be an end of a complete non-compact weighted manifold (M,μ).
Assume that M0 is a locally Harnack manifold with Harnack radius ρ > 0, where M0 is
defined as above, and that there exists x0 ∈ M0 so that

• M0 satisfies the spherical Harnack inequality (2.22).
• M0 satisfies the polynomial volume growth condition (2.2).
• There are constants v0 > 0 and θ ≥ 0 so that for any x ∈ M0, if d(x, x0) ≤ R for some

R > ρ, it holds that
V (x, ρ) ≥ v0R

−θ . (2.23)

Then, for any x ∈ M , there exist α > 0, tx > 0 and cx > 0 such that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
, (2.24)

where α = α(N, θ, n,NH ) and n is as in Eq. 2.18.

Proof Let us set Br = B(x0, r) and V (r) = V (x0, r) and K0 be contained in a ball Bδ for
some δ > 0. It follows from [20, Theorem 2.25] that K0 has locally positive capacity. Then
by Lemma 2.4 there exists a positive smooth function h in � that is harmonic in � and such
that the weighted manifold

(

�, μ̃
)

is non-parabolic, where measure μ̃ is defined by Eq. 2.5.
Now, our aim is to apply the estimate (2.3) in Theorem 2.1 to the weighted manifold (�, μ̃).
For that purpose, it is sufficient to show that there are positive constants r̃0, ˜C and ˜N > 2
such that for all r ≥ r̃0,

˜V�(r) =
∫

Br∩�

h2dμ ≤ ˜Cr
˜N . (2.25)

Firstly, by Eq. 2.11, there is a constant Cδ > 0 such that for all r ≥ δ,

min
∂Br

h ≤ Cδcap(K0, Br)
−1. (2.26)

As h is harmonic in M0 \ Bδ , the hypothesis (2.22) implies that there exists a constant
CH > 0, so that for every r ≥ max(r0, Aδ),

max
∂Br

h ≤ CH rNH min
∂Br

h.
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Combining this with Eq. 2.26, we obtain for all r ≥ max(r0, Aδ) with C0 = CH Cδ ,

max
∂Br

h ≤ C0r
NH cap(K0, Br)

−1. (2.27)

For any r ≥ δ, let ϕr be the equilibrium potential of the capacitor (K0, Br). Since
∫

Br

|∇ϕr |2dμ0 = cap(K0, Br)

and
∫

Br

ϕ2
r dμ0 ≥ μ0(K0),

we obtain

λ1(Br) ≤
∫

Br
|∇ϕr |2dμ0

∫

Br
ϕ2

r dμ0
≤ cap(K0, Br)

μ(K0)
,

whence, together with Eq. 2.27, we deduce

max
∂Br

h ≤ C0μ(K0)
−1rNH λ1(Br)

−1. (2.28)

Since M0 is a locally Harnack manifold, we can apply Lemma 2.5 and obtain from Eq. 2.21,
that for all r ≥ δ,

λ1(Br) ≥ c

ρ2
min

(

(

V0

V (r)

)2

,

(

V0

V (r)

)2/n
)

, (2.29)

where
V0 = inf

x∈M0
{V (x, ρ) : B(x, ρ) ∩ Br �= ∅}.

Note that the condition B(x, ρ) ∩ Br �= ∅ implies that d(x0, x) ≤ r + ρ. Thus, we obtain
from the hypothesis (2.23), assuming r ≥ ρ,

V (x, ρ) ≥ v0(r + ρ)−θ ≥ v02
−θ r−θ .

Therefore, we have for all r ≥ ρ,
V0 ≥ Cθr

−θ ,

with Cθ = v02−θ . Hence, using the polynomial volume growth condition (2.2), we obtain
from Eq. 2.29, that for all r ≥ max(r0, ρ, Aδ),

λ1(Br) ≥ C1 min
(

r−2(N+θ), r−2(N+θ)/n
)

,

where

C1 = c

ρ2
min

(

(

Cθ

C

)2

,

(

Cθ

C

)2/n
)

,

so that by setting

β = 2max

(

N + θ,
N + θ

n

)

, (2.30)

we deduce for r ≥ max(r0, ρ,Aδ, 1),

λ1(Br) ≥ C1r
−β .

Combining this with Eq. 2.28, we obtain for every r ≥ max(r0, ρ,Aδ, 1),

max
∂Br

h ≤ C2r
β+NH , (2.31)

where
C2 = C0C

−1
1 μ0(K0)

−1.
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Hence, Eq. 2.31, the polynomial volume growth condition (2.2) and the maximum principle
imply that for all r ≥ max(r0, ρ, Aδ, 1),

˜V�(r) =
∫

Br∩�

h2dμ ≤ V (r)max
∂Br

h2 ≤ C2
2CrN+2(β+NH ),

which proves (2.25) with r̃0 = max(r0, ρ, Aδ, 1), ˜N = 2(β + NH ) + N and ˜C = C2
2C,

and implies that the weighted manifold (�, μ̃) has polynomial volume growth. Thus, the
hypotheses of Theorem 2.1 are fulfilled and we obtain by Eq. 2.3, that for any x ∈ �, there
exist˜tx > 0 and c̃x > 0, such that for all t ≥˜tx ,

p̃�
t (x, x) ≥ c̃x

(t log t)β+NH +N/2
,

where β is defined by Eq. 2.30. Since h is harmonic in �, we therefore conclude by Eq. 2.7
that for any x ∈ � and all t ≥˜tx ,

p�
t (x, x) = h2(x)p̃�

t (x, x) ≥ c̃xh
2(x)

(t log t)β+NH +N/2
,

which yields (2.24) for all x ∈ M by using p�
t ≤ pt and by means of a local parabolic

Harnack inequality (cf. [21])

Remark Note that it follows from the non-parabolicity of
(

� , μ̃
)

, that 4max (N + θ,
N+θ

n

) + 2NH + N > 2.

2.3 End with Relatively Connected Annuli

Definition We say that a manifold M with fixed point x0 ∈ M satisfies the relatively
connected annuli condition (RCA) if there exists A > 1 such that, for any r > A2 and all
x, y with d(x0, x) = d(x0, y) = r , there exists a continuous path γ : [0, 1] → M with
γ (0) = x and γ (1) = y, whose image is contained in B(x0, Ar) \ B(x0, A

−1r).

Remark Note that, even though the condition (RCA) is formulated for the specific point x0,
it is equivalent to the (RCA) condition with respect to any other point x1 with possibly a
different constant A.

Example Any Riemannian model with a pole (see Section 2.4) with dimension n ≥ 2 has
relatively connected annuli.

Corollary 2.7 Let � be an end of a complete non-compact weighted manifold (M,μ) and
assume that M0 is a locally Harnack manifold with Harnack radius ρ > 0, where M0 is
defined as above. Also assume that there exists x0 ∈ M0 so that

• M0 satisfies (RCA) with some constant A > 1.
• There exist constants L > 0 and C > 0 so that for all r ≥ L,

V (Ar) − V (A−1r) ≤ C log r, (2.32)

where we denote V (r) = V (x0, r).
• There exists a constant v0 > 0 such that for any y ∈ M0,

V (y, ρ/3) ≥ v0. (2.33)
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Then, for any x ∈ M , there exist α > 0, tx > 0 and cx > 0 such that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
,

where α = α(n, v0, ρ, C).

Proof As before, we denote Br = B(x0, r). Obviously, the hypothesis (2.33) implies the
condition (2.23) with θ = 0. Hence, to apply Theorem 2.6, it remains to show that M0 has
polynomial volume growth as in Eq. 2.2 and M0 satisfies the spherical Harnack inequality
(2.22). The polynomial volume growth condition (2.2) follows from Eq. 2.32.

Let us now prove that the spherical Harnack inequality (2.22) holds in M0. Assume
that r ≥ L and cover the set BAr \ BA−1r , with balls B(xi, ρ/3) where xi ∈ M0 and
A > 1 is as in (RCA). By applying a standard covering argument, there exists a number
τ(r) and a subsequence of disjoint balls {B(xik , ρ/3)}τ(r)

k=1 such that the union of the balls

{B(xik , ρ)}τ(r)
k=1 cover the set BAr \ BA−1r . Hence, it follows from Eq. 2.32, that

τ(r)
∑

i=1

V (xi, ρ/3) ≤ V (Ar) − V (A−1r) ≤ C log r . (2.34)

Then the hypothesis (2.33), combined with Eq. 2.34, implies that

τ(r) ≤ C log r

v0
. (2.35)

For all r > A2, let y1, y2 be two points on ∂Br and γ be a continuous path connecting them
in BAr \ BA−1r as it is ensured by (RCA). Now select out of the sequence {B(xik , ρ)}τ(r)

k=1
those balls that intersect γ . In this way, we obtain a chain of at most τ(r) balls, which
connect y1 and y2. Now let u be a positive harmonic function in M0 \B

A−1
0 r

, where A0 ≥ A

is such that any ball of this chain lies in M0 \ B
A−1
0 r

for all 1 ≤ i ≤ τ(r) and r > A2
0.

Applying the local elliptic Harnack inequality to u repeatedly in the balls of this chain and
letting y1, y2 such that min∂Br u = u(y1) and max∂Br u = u(y2), we obtain

max
∂Br

u = u(y2) ≤ (Cρ)τ u(y1) = (Cρ)τ min
∂Br

u,

where Cρ is the Harnack constant in all B(xik , ρ). Together with Eq. 2.35, this yields

max
∂Br

u ≤ r
c
v0

logCρ min
∂Br

u,

which proves the spherical Harnack inequality (2.22) with NH = C
v0

logCρ . Thus the
hypotheses of Theorem 2.6 are fulfilled and we obtain from Eq. 2.24, that for any x ∈ M ,
there exist tx > 0, cx > 0 and α > 0 such that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
,

where α = α(n,NH ), which finishes the proof.

Definition As usual, for any piecewise C1 path γ : I → M , where I is an interval in R,
denote by l(γ ) the length of γ defined by

l(γ ) =
∫

I

|γ̇ (t)|dt,

where γ̇ is the velocity of γ , given by γ̇ (t)(f ) = d
dt

f (γ (t)) for any f ∈ C∞(M).
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Corollary 2.8 Let � be an end of a complete non-compact weighted manifold (M,μ) and
assume that for some κ ≥ 0, we have

Ric(M0) ≥ −κ, (2.36)

where M0 is defined as above. Suppose that there exists x0 ∈ M0 so that

• M0 satisfies (RCA) with A > 1 and piecewise C1 path γ so that there is some constant
c > 0 such that for all r > A2,

l(γ ) ≤ c log r . (2.37)
• There are constants v0 > 0 and θ ≥ 0 so that for any y ∈ M0, if d(y, x0) ≤ R for some

R > 1, it holds that
V (y, ρ) ≥ v0R

−θ .

Then, for any x ∈ M , there exist α > 0, tx > 0 and cx > 0 such that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
,

where α = α(c, θ, κ).

Proof The assumption (2.36) implies that M0 is a locally Harnack manifold. Hence we
are left to show that M0 has polynomial volume growth as in Eq. 2.2 and satisfies the
spherical Harnack inequality (2.22) to apply Theorem 2.6. Again we denote Br = B(x0, r)

and V (r) = V (x0, r). By the Bishop-Gromov theorem, the hypothesis (2.36) implies that
there exists a constant Cκ > 1, so that for any y ∈ M0 and R > 1,

V (y,R) ≤ eCκR .

Together with the assumption (2.37), this yields that the polynomial volume growth
condition (2.2) holds in M0.

Let us now show that M0 satisfies the spherical Harnack inequality (2.22). Let A > 1 be
as above and assume that r > A2. Fix two points y1, y2 on ∂Br and let γ be a continuous
path connecting them in BAr \ BA−1r as is it ensured by (RCA). Then cover the path γ with
balls {B(xi, ρ)}τ(r)

i=1 , where xi ∈ M0 and ρ > 0. Now let u be a positive harmonic function
in M0 \ B

A−1
0 r

, where A0 ≥ A is such that B(xi, ρ) ⊂ M0 \ B
A−1
0 r

for all 1 ≤ i ≤ τ(r) and

r > A2
0. In this way, we obtain a chain of at most τ(r) balls B(xi, ρ), which connect y1 and

y2. By Eq. 2.37, we deduce that

τ(r) ≤ c

ρ
log(r). (2.38)

Applyig the local elliptic Harnack inequality to u repeatedly in the balls of this chain and
letting y1, y2 such that min∂Br u = u(y1) and max∂Br u = u(y2), we obtain

max
∂Br

u = u(y2) ≤ (Cρ)τ u(y1) = (Cρ)τ min
∂Br

u,

where Cρ is the Harnack constant in all B(xi, ρ). Together with Eq. 2.38, this yields

max
∂Br

u ≤ r
c
ρ
logCρ min

∂Br

u,

which proves (2.22) with NH = c
ρ
logCρ . Thus the hypotheses of Theorem 2.6 are fulfilled

and we obtain by Eq. 2.24, that for any x ∈ M , there exist tx > 0, cx > 0 and α > 0 such
that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
,

which finishes the proof.
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2.4 An Example in Dimension Two

Consider the topological space M = (0, +∞) × S
1, that is, any point x ∈ M can be

represented in the polar coordinates x = (r, θ) with r > 0 and θ ∈ S
1. Equip M with the

Riemannian metric ds2 given by

ds2 = dr2 + ψ2(r)dθ2,

whereψ(r) is a smooth positive function on (0,+∞) and dθ2 is the normalized Riemannian
metric on S

1. In this case, M is called a two-dimensional Riemannian model with a pole.

Remark A sufficient and necessary condition, for the existence of this manifold is that ψ

satisfies the conditions ψ(0) = 0 and ψ ′(0) = 1. This ensures that the metric ds2 can be
smoothly extended to the origin r = 0 (see [9]).

We define the area function S on (0, +∞) by

S(r) = ψ(r).

Proposition 2.9 Let M be a two-dimensional Riemannian model with a pole. Suppose that
for any A > 1, there exists a constant c > 0, so that for all large enough r ,

sup
t∈(A−1r,Ar)

S′′+(t)

S(t)
≤ c

S′′+(r)

S(r)
. (2.39)

Also assume that there exists a constant N > 0 such that, for every large enough r ,

S(r)

r
+

√

S′′+(r)S(r) ≤ N log(r). (2.40)

Then the spherical Harnack inequality (2.22) holds in M .

Proof Fix some x0 ∈ M and denoteBr = B(x0, r). Since any model manifold of dimension
n ≥ 2 satisfies the (RCA) condition, there exists A0 > 1 such that for all r > A2

0 and
any x1, x2 ∈ ∂Br , there exists T > 0 and a continuous path γ : [0, T ] → M such that
γ (0) = x1 and γ (T ) = x2, whose image is contained in BA0r \ B

A−1
0 r

. Let us choose

A > A0 so that there exists a constant ε > 0, such that B(x,R) ⊂ BAr \ BA−1r , for any
x ∈ γ ([0, T ]), where R = εr . Let u be a positive harmonic function in M \ BA−1r and
x1, x2 ∈ ∂Br such that max∂Br u = u(x1) and min∂Br u = u(x2). Thus, we have to show
that there are constants NH > 0 and CH > 0, so that if r is large enough, then

u(x1) ≤ CH rNH u(x2). (2.41)

Let x ∈ γ ([0, T ]). Recall from [15, Exercise 3.31], that the Ricci curvature Ric on M is
given by

Ric = −S′′

S
. (2.42)

Hence, we obtain from Eq. 2.42,

Ric(x) ≥ inf
t∈(A−1r,Ar)

(

−S′′(t)
S(t)

)

≥ − sup
t∈(A−1r,Ar)

(

S′′+(t)

S(t)

)

.

By Eq. 2.39, we get, assuming that r is large enough,

Ric(x) ≥ −c
S′′+(r)

S(r)
=: −κ(r). (2.43)
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Clearly, we can assume that |γ ′(t)| = 1. We have
∫ T

0

|∇u(γ (t))|
u(γ (t))

dt ≤ sup
0≤t≤T

|∇u(γ (t))|
u(γ (t))

∫ T

0
dt ≤ sup

0≤t≤T

|∇u(γ (t))|
u(γ (t))

d(x1, x2).

Again, since M has dimension n = 2, and as x1, x2 ∈ ∂Br , we see that

d(x1, x2) ≤ S(r),

whence
∫ T

0

|∇u(γ (t))|
u(γ (t))

dt ≤ sup
0≤t≤T

|∇u(γ (t))|
u(γ (t))

S(r).

Applying the well-known gradient estimate (cf. [6]) to the harmonic function u in all balls
B(x, R), we obtain,

sup
0≤t≤T

|∇u(γ (t))|
u(γ (t))

≤ Cn

(

1 + R
√

κ(r)

R

)

,

where κ(r) is given by Eq. 2.43 and Cn > 0 is a constant depending only on n. Therefore,
we deduce

log u(x1) − log u(x2) =
∣

∣

∣

∣

∫ T

0

d log u(γ (t))

dt

∣

∣

∣

∣

≤
∫ T

0

|du(γ (t))|
u(γ (t))

=
∫ T

0

|〈∇u, γ ′(t)〉|
u(γ (t))

dt

≤
∫ T

0

|∇u(γ (t))|
u(γ (t))

dt

≤ Cn

(

1

εr
+ √

κ(r)

)

S(r),

which is equivalent to

u(x1) ≤ exp

(

Cn

(

S(r)

εr
+ S(r)

√

κ(r)

))

u(x2).

Hence, we get by Eq. 2.43,

u(x1) ≤ exp

(

Cn

(

S(r)

εr
+

√

cS′′+(r)S(r)

))

u(x2).

Finally, by Eq. 2.40, we deduce for large enough r ,

u(x1) ≤ r
Cn max

{√
c, 1

ε

}

N
u(x2),

which proves (2.41) with CH = 1 and NH = Cn max
{√

c, 1
ε

}

N and finishes the proof.

Example Let (M,μ) be a two-dimensional weighted manifold with end � and, following
the notation in Theorem 2.6, suppose that M0 is a Riemannian model with a pole such that

S0(r) =
{

r log r, r ≥ 2
r, r ≤ 1.
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Let us show that M0 satisfies the hypotheses of Theorem 2.6 so that for any x ∈ M , there
exist tx > 0, cx > 0 and α > 0 such that for all t ≥ tx ,

pt (x, x) ≥ cx

tα
. (2.44)

Since S′′
0 (r) = 1

r
for r ≥ 2, the inequality (2.39) is satisfied and also

S0(r)

r
+

√

max{(S′′
0 )(r), 0}S0(r) = log r + √

log r ≤ 2 log r,

whence (2.40) holds and we get thatM0 satisfies the spherical Harnack inequality (2.22). On

the other hand, we have for r ≥ 2, − S′′
0 (r)

S0(r)
= − 1

r2 log r
so that it follows from Eq. 2.42 that

M0 has non-positive bounded below sectional curvature. Hence, M0 is a locally Harnack
manifold and, as it is simply connected, is a Cartan-Hadamard manifold which yields that
the balls in M0 of have at least euclidean volume. Therefore, condition (2.23) holds as well
and we conclude from Theorem 2.6 that (M,μ) admits the estimate (2.44).

3 Isoperimetric Inequalities for Warped Products

Definition For any Borel set A ⊂ M , define its perimeter μ+(A) by

μ+(A) = lim inf
r→0+

μ(Ar) − μ(A)

r
,

where Ar is the r-neighborhood of A with respect to the Riemannian metric of M .

Definition We say that (M,μ) admits the lower isoperimetric function J if, for any
precompact open set U ⊂ M with smooth boundary,

μ+(U) ≥ J (μ(U)). (3.1)

For example, the euclidean space Rn with the Lebesgue measure satisfies the inequality

in Eq. 3.1 with the function J (v) = cnv
n−1
n .

3.1 Setting andMain Theorem

Let (M1, μ1) and (M2, μ2) be weighted manifolds and let M = M1 × M2 be the direct
product of M1 and M2 as topological spaces. This means that any point z ∈ M can be
written as z = (x, y) with x ∈ M1 and y ∈ M2. Then we define the Riemannian metric ds2

on M by
ds2 = dx2 + ψ2(x)dy2, (3.2)

where ψ is a smooth positive function on M1 and dx2 and dy2 denote the Riemannian
metrics on M1 and M2, respectively. Let us define the measure μ on M by

μ = μ1 × μ2 (3.3)

and note that then (M,μ) becomes a weighted manifold with respect to the metric in Eq. 3.2
(see Section 3.2 for an example).

Denote by ∇ the gradient on M and with ∇x and ∇y the gradients on M1 and M2,
respectively. It follows from Eq. 3.2, that we have the identity

|∇u|2 = |∇xu|2 + 1

ψ2(x)
|∇yu|2, (3.4)
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for any smooth function u on M .

Definition Let ϕ : (0, +∞) → (0, +∞) be a monotone decreasing function. Then we
define the generalized inverse function φ of ϕ on (0, +∞) by

φ(s) = sup{t > 0 : ϕ(t) > s}. (3.5)

We will use the convention that the supremum of the empty set is zero.
One can easily prove the following

Lemma 3.1 The generalized inverse φ of ϕ has the following properties:

(1) φ is monotone decreasing, right continuous and lims→∞ φ(s) = 0;
(2) ϕ is right continuous if and only if ϕ itself is the generalized function of φ, that is

ϕ(t) = sup{s > 0 : φ(s) > t}; (3.6)

(3) we have the identity
∫ ∞

0
ϕ(t)dt =

∫ ∞

0
φ(s)ds. (3.7)

The following lemma is well-known.

Lemma 3.2 LetU be a precompact open subset of a weighted manifold (M,μ)with smooth
boundary. Then

μ+(U) = inf{un} lim sup
n→∞

∫

M

|∇un|dμ = sup
{un}

lim inf
n→∞

∫

M

|∇un|dμ,

where {un}n∈M is a monotone increasing sequence of smooth non-negative functions with
compact support, converging pointwise to the characteristic function of the set U .

The proof of the following theorem follows the ideas of Theorem 1 in [19], where
an isoperimetric inequality is obtained for Riemannian products M = M1 × M2 of two
Riemannian manifolds M1 and M2.

Theorem 3.3 Let (M1, μ1) and (M2, μ2) be weighted manifolds and let the weighted man-
ifold (M,μ) be defined as above, that is, the Riemannian metric on M is defined by Eq. 3.2
and measure μ is defined by Eq. 3.3. Assume that there exists a constant C0 > 0, such that
for all x ∈ M1,

ψ(x) ≤ C0. (3.8)
Suppose that (M1, μ1) and (M2, μ2) have the lower isoperimetric functions J1 and J2,
which are continuous on the intervals (0, μ1(M1)) and (0, μ2(M2)), respectively. Then
(M,μ) admits the lower isoperimetric function J , defined by

J (v) = c inf
ϕ,φ

(∫ ∞

0
J1(ϕ(t))dt +

∫ ∞

0
J2(φ(s))ds.

)

,

where c = 1
2 min

{

1, 1
C0

}

and ϕ and φ are generalized mutually inverse functions such that

ϕ ≤ μ1(M1), φ ≤ μ2(M2), (3.9)

and

v =
∫ ∞

0
ϕ(t)dt =

∫ ∞

0
φ(s)ds. (3.10)
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Proof Let U be an open precompact set in M with smooth boundary such that μ(U) = v.
Let us define the function

I (v) = inf
ϕ,φ

(∫ ∞

0
J1(ϕ(t))dt +

∫ ∞

0
J2(φ(s))ds.

)

, (3.11)

where ϕ and φ are generalized mutually inverse functions satisfying (3.9) and (3.10). We
need to prove that

μ+(U) ≥ cI (v),

where I is defined by Eq. 3.11 and c is defined as above. Let {fn}n∈N be a monotone
increasing sequence of smooth non-negative functions on M with compact support such that
fn → 1U as n → ∞. Note that by Lemma 3.2, it suffices to show that

lim inf
n→∞

∫

M

|∇fn|dμ ≥ cI (v). (3.12)

By the identity (3.4) and using (3.8), we have

|∇fn|2 = |∇xfn|2 + 1

ψ(x)2
|∇yfn|2 ≥ 1

2
min

{

1,
1

C0

}2
(|∇xfn| + |∇yfn|

)2 .

Together with Eq. 3.12, it therefore suffices to prove that

lim inf
n→∞

∫

M

|∇xfn|dμ + lim inf
n→∞

∫

M

|∇yfn|dμ ≥ I (v). (3.13)

Let us first estimate the second summand on the left-hand side of Eq. 3.13. For that purpose,
consider for every x ∈ M1, the section

Ux = {y ∈ M2 : (x, y) ∈ U}.
By Sard’s theorem, the set Ux has smooth boundary for allmost all x. Considering the
function fn(x, y) as a function on M2 with fixed x ∈ M1, we obtain by Lemma 3.2 for
allmost all x,

lim inf
n→∞

∫

M2

|∇yfn(x, y)|dμ2(y) ≥ μ+
2 (Ux).

Integrating this over M1 and using Fatou’s lemma, we deduce

lim inf
n→∞

∫

M

|∇yfn|dμ ≥
∫

M1

μ+
2 (Ux)dμ1(x). (3.14)

The first summand on the left-hand side of Eq. 3.13 could be estimated analogously, but
instead, we will estimate it using the assumption that (M1, μ1) and (M2, μ2) admit lower
isoperimetric functions J1 and J2, respectively. First, by Fubini’s formula, we have

∫

M

|∇xfn|dμ =
∫

M1

∫

M2

|∇xfn|dμ2dμ1 ≥
∫

M1

∣

∣

∣

∣

∇x

∫

M2

fn(x, y)dμ2(y)

∣

∣

∣

∣

dμ1(x).

(3.15)
Now let us consider on M1 the function

Fn(x) =
∫

M2

fn(x, y)dμ2(y).

Note that Fn(x) is a monotone increasing sequence of non-negative smooth functions on
M1, such that

F(x) := lim
n→∞ Fn(x) = μ2(Ux). (3.16)
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Since Fn is smooth for all n, we deduce that the sets {Fn > t} have smooth boundary, so
that we can apply the isoperimetric inequality on M1, that is,

μ+
1 {Fn > t} ≥ J1(μ1{Fn > t}).

Hence, we obtain, using (3.15) and the co-area formula,
∫

M

|∇xfn|dμ ≥
∫

M1

|∇xFn|dμ1 =
∫ ∞

0
μ′
1{Fn = t}dt

=
∫ ∞

0
μ+
1 {Fn > t}dt

≥
∫ ∞

0
J1(μ1{Fn > t})dt .

Passing to the limit as n → ∞, we get by Fatou’s lemma, using the continuiuty of J1,

lim sup
n→∞

∫

M

|∇xfn|dμ ≥
∫ ∞

0
J1(μ1{F > t})dt . (3.17)

By the isoperimetric inequality on M2 with function J2 and by Eq. 3.16,

μ+
2 (Ux) ≥ J2(μ2(Ux)) = J2(F (x)),

whence combining this with Eqs. 3.14 and 3.17, we get

lim sup
n→∞

∫

M

|∇xfn|dμ+lim sup
n→∞

∫

M

|∇yfn|dμ ≥
∫ ∞

0
J1(μ1{F > t})dt+

∫

M1

J2(F (x))dμ1(x).

(3.18)
Let us set

ϕ(t) = μ1{F > t}
and note that ϕ is monotone decreasing and right-continuous. Let φ be the generalized
inverse function to ϕ defined by Eq. 3.5. Then we obtain by Eq. 3.6,

sup{s > 0 : φ(s) > t} = μ1{F > t}, (3.19)

which means that φ and F are equimeasurable. Clearly, ϕ ≤ μ1(M1). Since F ≤ μ2(M2),
which implies ϕ(t) = 0 for all t > μ2(M2), we also obtain φ ≤ μ2(M2) by Eq. 3.5. By
Eq. 3.7, the definition of ϕ and Fubini’s formula,

∫ ∞

0
φ(t)dt =

∫ ∞

0
ϕ(t)dt =

∫

M1

Fdμ1 = μ(U) = v.

Hence, the pair ϕ, φ satisfies the condition in Eq. 3.10. Note that by Eq. 3.19,
∫

M1

J2(F (x))dμ1(x) =
∫ ∞

0
J2(φ(t))dt,

whence we obtain for the right-hand side of Eq. 3.18,
∫

M1

J2(F (x))dμ1(x)+
∫ ∞

0
J1(μ1{F > t})dt =

∫ ∞

0
J2(φ(t))dt+

∫ ∞

0
J1(ϕ(t))dt ≥ I (v),

which proves (3.13) and thus, finishes the proof (Fig. 1).

Let P > 0. Given two non-negative functions f on (0, +∞) and g on (0, P ) define the
function h on (0,+∞) by

h(v) = inf
ϕ,φ

(∫ ∞

0
f (ϕ(t))dt +

∫ ∞

0
g(φ(s))ds.

)

,
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Fig. 1 Function ϕ(t)

where ϕ and φ are generalized mutually inverse functions on (0, +∞) such that
∫ ∞

0
ϕ(t)dt =

∫ ∞

0
φ(s)ds = v. (3.20)

and with the condition that φ < P . For fixed ϕ, φ, where ϕ, φ are as above, let us denote

S =
∫ ∞

0
f (ϕ(t))dt +

∫ ∞

0
g(φ(s))ds. (3.21)

Lemma 3.4 Let f and g be continuous functions on the intervals (0, +∞) and (0, P ),
respectively and suppose that g is symmetric with respect to 1

2P . Also, assume that the

functions f (x)
x

and g(y)
y

are monotone decreasing while the functions f and g are monotone

increasing on the intervals (0, +∞) and
(

0, P
2

)

, respectively. Then, for any v > 0,

h(v) ≥ min

(

1

6
h0(v),

1

8
f

( v

P

)

P

)

,

where the function h0 is defined for all v > 0, by

h0(v) = inf
xy=v

x>0, 0<y≤ 1
2P

(f (x)y + g(y)x). (3.22)

Remark A similar functional inequality was stated in [19, Theorem 2a] without proof.

In the following we denote by |A| the Lebesgue measure of a domain A ⊂ R
2.

Proof Let ϕ be decreasing and right-continuous and φ be its generalized inverse function
satisfying (3.20) and let S be defined as in Eq. 3.21. We need to prove that

S ≥ min

(

1

6
h0(v),

1

8
f

( v

P

)

P

)

. (3.23)

Let us first suppose that ϕ is strictly monotone decreasing and continuous on an interval
(0, T ) ⊂ (0, P ) such that limt→T ϕ(t) = 0 and ϕ((0, T )) = (0, +∞). Denote by φ the
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inverse function of ϕ on (0, +∞) and note that φ is then also strictly monotone decreasing
and continuous and satisfies φ < T . Let us show that

S ≥ min

(

1

6
hT (v),

1

8
f

( v

T

)

T

)

, (3.24)

where
hT (v) = inf

xy=v

x>0, 0<y≤ 1
2 T

(f (x)y + g(y)x),

which will then imply (3.23) by an approximation argument.
For any p ∈ (0, T ), consider the domain

�p = {(t, s) ∈ R
2 : p ≤ t < T , 0 ≤ s ≤ ϕ(t)}

and for any q > 0 the domain

�q = {(t, s) ∈ R
2 : s ≥ q, 0 ≤ t ≤ φ(s)}.

Since φ is strictly monotone decreasing and continuous, there exists q > 0 such that |�q | =
1
3v. Let us set p = φ(q) and note that

v =
∫ ∞

0
φ(s)ds = |�p| + |�q | + pq. (3.25)

The proof will be split into two main cases.
Case 1. Let us assume that

|�p| ≥ 1

3
v.

Then we obtain by Eq. 3.25 that p ≤ 1
3q v. By the monotonicity of g(y)

y
, we therefore get

∫ ∞

0
g(φ(s))ds ≥ 1

3
xg(y),

where x = 3q and y = 1
3q v and similarly,

∫ ∞

0
f (ϕ(t))dt ≥ 1

3
f (x)y.

Hence, we obtain that

S ≥ 1

3
h0(v).

Case 2. Let us now assume that

|�p| <
1

3
v.

Then we can decrease p to p′ such that |�p′ | = 1
3v. Set q

′ = ϕ(p′) and note that this q ′ is
larger than the q from Case 1, whence

|�q ′ | ≤ 1

3
v,

so that (3.25) implies
1

3
v ≤ p′q ′ ≤ 2

3
v.

Case 2a. Assume further that p′ ≥ 1
4T . It follows that

∫ ∞

0
f (ϕ(t))dt ≥ 1

3

f (q ′)
q ′ v
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and since f is monotone increasing, we conclude

S ≥ T

8
f

( v

T

)

,

which proves (3.24).

Case 2b. Assume now that p′ < 1
4T and set q0 = ϕ

(

1
2T

)

.

Case 2b(i). Let us first consider the case when q0 ≤ 1
2q

′. Using that g(y) is monotone
increasing on

(

0, T
2

)

, we obtain,
∫ ∞

0
g(φ(s))ds ≥ 1

2
g(p′)q ′.

Together with
∫ ∞

0
f (ϕ(t))dt ≥ f (q ′)p′,

we deduce

S ≥ 1

2
g(p′)q ′ + f (q ′)p′,

so that setting x = v
p′ and y = p′, yields

S ≥ 1

6
(f (x)y + g(y)x) ≥ 1

6
hT (v).

Case 2b(ii). Finally, let us consider the case when q0 > 1
2q

′. Note that the condition that
f (x)

x
is monotone decreasing, implies that for any λ ∈ (0, 1),

f (λx) ≥ λf (x).

Together with the monotonicity of f , we therefore obtain
∫ T/2

0
f (ϕ(t))dt ≥ f (q ′)T

4
,

which yields

S ≥ f
( v

T

) T

4
,

and thus, proves (3.24) also in this case.
Now let us consider the general case, when ϕ is monotone decreasing and right-

continuous and φ being its generalized inverse function satisfying (3.20). Then consider
an increasing sequence {ϕn}n of functions which are positive, continuous, strictly decreas-
ing functions on an interval (0, Tn) ⊂ (0, P ) such that Tn → P , ϕn(t) → ϕ(t) and
vn := ∫ ∞

0 ϕn(t)dt → v for n → +∞. Letting φn be the inverse function of ϕn on (0, Tn)

for all n, we get by [8, Lemma 1.1.1], that for every continuity point s ∈ (0, +∞) of φ,

φn(s) → φ(s) as n → +∞.

By the former case, we have the inequality (3.24) for all ϕn, that is,
∫ ∞

0
f (ϕn(t))dt +

∫ ∞

0
g(φn(s))ds ≥ min

(

1

6
hTn(vn),

1

8
f

(

vn

Tn

)

Tn

)

. (3.26)

Now let q1 = ϕ
(

P
2

)

and note that φn(s) ≤ P
2 for all n and s ≥ q1, whence using that g is

monotone increasing on
(

0, P
2

)

, we obtain for all s ≥ q1,

g(φn(s)) ≤ g(φn+1(s)).
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Hence, we obtain by the dominated convergence theorem, the monotone convergence
theorem and the continuity of g,

lim
n→∞

∫ ∞

0
g(φn(s))ds = lim

n→∞

(∫ q1

0
g(φn(s))ds +

∫ ∞

q1

g(φn(s))ds

)

=
∫ ∞

0
g(φ(s))ds.

Using the monotonicity and the continuity of f , we get by the monotone convergence
theorem,

lim
n→∞

∫ ∞

0
f (ϕn(t))dt =

∫ ∞

0
f (ϕ(t))dt .

Hence, passing to the limit as n → +∞ in Eq. 3.26, we conclude by the continuity of the
right-hand side of Eq. 3.26, that inequality (3.23) holds, which finishes the proof.

Corollary 3.5 In the situation of Theorem 3.3 suppose that

μ1(M1) = ∞ and μ2(M2) < ∞
and assume that J1(x)

x
and J2(y)

y
are monotone decreasing while the functions J1 and J2 are

monotone increasing on the intervals (0, +∞) and
(

0, 1
2μ2(M2)

)

, respectively. Then the

manifold (M,μ) admits the lower isoperimetric function

J (v) = cmin

(

1

6
J0(v),

1

8
J1

(

v

μ2(M2)

)

μ2(M2)

)

, (3.27)

where function J0 is defined for all v > 0, by

J0(v) = inf
xy=v

x>0, 0<y≤ 1
2μ2(M2)

(J1(x)y + J2(y)x), (3.28)

and the constant c is defined as in Theorem 3.3.

Proof From Theorem 3.3, we know that (M,μ) has the lower isoperimetric function cI ,
where I is defined by

I (v) = inf
ϕ,φ

(∫ ∞

0
J1(ϕ(t))dt +

∫ ∞

0
J2(φ(s))ds.

)

,

where ϕ and φ are generalized mutually inverse functions satisfying φ ≤ μ2(M2) and the
condition in Eq. 3.20. Since μ2(M2) is finite, we can assume that the isoperimetric function
J2 is symmetric with respect to 1

2μ2(M2), because the topological boundaries of an open
set and its complement coincide. Applying Lemma 3.4 to I with f = J1, g = J2 and
P = μ2(M2), we obtain

I (v) ≥ min

(

1

6
J0(v),

1

8
J1

(

v

μ2(M2)

)

μ2(M2)

)

,

where function J0 is defined by Eq. 3.28, which implies that function J given by Eq. 3.27
is a lower isoperimetric function for (M,μ).

3.2 WeightedModels with Boundary

Let us also consider the topological space M = R+ × S
n−1, n ≥ 2, where R+ = [0, +∞),

so that any point x ∈ M can be written in the polar form x = (r, θ) with r ∈ R+ and
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θ ∈ S
n−1. We equip M with the Riemannian metric ds2 that is defined in polar coordinates

(r, θ) by
ds2 = dr2 + ψ2(r)dθ2

with ψ(r) being a smooth positive function on R+ and dθ2 being the Riemannian metric
on Sn−1. Note that M with this metric becomes a manifold with boundary

δM = {(r, θ) ∈ M : r = 0}
and we call M in this case a Riemannian model with boundary. The Riemannian measure μ

on M with respect to this metric is given by

dμ = ψn−1(r)drdσ(θ),

where dr denotes the Lebesgue measure on R+ and dσ denotes the Riemannian measure
on S

n−1. Let us normalize the metric dθ2 on S
n−1 so that σ(Sn−1) = 1 and define the area

function S on R+ by
S(r) = ψn−1(r).

Given a smooth positive function h on M , that only depends on the polar radius r , and a
measure μ̃ on M defined by dμ̃ = h2dμ, we obtain that the weighted manifold (M, μ̃) has
the area function

˜S(r) = h2(r)S(r).

Then the weighted manifold (M, μ̃) is called a weighted model and we get that

dμ̃ = ˜S(r)drdσ(θ). (3.29)

Theorem 3.6 Let (M0, μ0) be a model manifold with boundary. Assume that there exists a
constant C0 > 0 such that for all r ≥ 0,

ψ0(r) ≤ C0. (3.30)

Assume also, that

˜S0(r) 	
{

rδerα
, r ≥ 1,

1, r < 1,
(3.31)

where δ ∈ R and α ∈ (0, 1]. Then the weighted model (M0, μ̃0) with area function ˜S0
admits the lower isoperimetric function J defined by

J (w) = c̃

{ w

(logw)
1−α
α

, w ≥ 2,

c′w n−1
n , w < 2,

(3.32)

where c̃ is a small enough constant and c′ is a positive constant chosen such that J is
continuous.

Proof Let ν be the measure on R+ defined by dν(r) = ˜S0(r)dr . Then (3.29) implies that
measure μ̃0 has the representation μ̃0 = ν × σ , where σ is the normalized Riemannian
measure on the sphere Sn−1. Obviously, we have by Eq. 3.31, that

ν(R+) =
∫ ∞

0

˜S0(r)dr = +∞.

Since ˜S0 is a positive, continuous and non-decreasing function on R+, we obtain from [2,
Proposition 3.1], that (R+, ν) has a lower isoperimetric function Jν(v) given by

Jν(v) = ˜S0(r),
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where v = ν([0, r)). Clearly, for small R, we have Jν(v) 	 1. For large enough R, we
obtain

v =
∫ R

0

˜S0(r)dr 	 Rδ+1−αeRα

.

This implies that for large v,

log v 	 Rα + (δ + 1 − α) logR 	 Rα,

and thus,

Jν(v) = ˜S0(R) 	 RδeRα = Rα−1Rδ+1−αeRα 	 v

(log v)
1−α
α

,

which proves that

Jν(v) = c0

{

v

(log v)
1−α
α

, v ≥ 2,

c1, v < 2,

is a lower isoperimetric function of (R+, ν) if c0 > 0 is a small enough constant and
continuous for an appropriate choice of constant c1 > 0. Note Jν is monotone increasing on
R+ and, since α ∈ (0, 1], the function Jν(v)

v
is monotone decreasing. Let Jσ be the function

defined by

Jσ (v) = cn

{

v
n−2
n−1 , if 0 ≤ v ≤ 1

2 ,

(1 − v)
n−2
n−1 , if 1

2 < v ≤ 1.

It is a well-known fact that Jσ is a lower isoperimetric function for (Sn−1, σ ) assuming that
the constant cn > 0 is sufficiently small. Since we assume that ψ0 satisfies the condition in
Eq. 3.30, we can apply Corollary 3.5 and deduce that a lower isoperimetric function J of
(M0, μ̃0) is given by

J (w) = cmin

(

1

6
J0(w),

1

8
Jν (w)

)

, (3.33)

where J0 is defined by

J0(w) = inf
uv=w

u>0, 0<v≤ 1
2

(Jν(u)v + Jσ (v)u)

and the constant c > 0 is defined as in Theorem 3.3.
In order to estimate J in this case, let us consider the function K , defined for all w > 0,

by

K(w) = J (w)

w
= cmin

(

1

6
K0(w),

1

8
Kν (w)

)

, (3.34)

where K0 is given by

K0(w) = inf
uv=w

u>0, 0<v≤ 1
2

(Kν(u) + Kσ (v)), (3.35)

where Kν(u) = Jν(u)
u

and Kσ (v) = Jσ (v)
v

. Observe that, since Kσ is monotone decreasing,

K0(w) ≥ inf
0<v≤ 1

2

Kσ (v) ≥ Kσ

(

1

2

)

.

Note that if w ≥ 2 and v ≤ 1
2 , then u = w

v
≥ 4. Hence, we obtain that for w ≥ 2,

K0(w) 	 const.
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Substituting this into Eq. 3.34, we get, using that Kν is monotone decreasing, K(w) 	
Kν(w) for w ≥ 2, and whence

J (w) 	 Jν(w) 	 w

(logw)
1−α
α

, w ≥ 2. (3.36)

Note that if w ≤ 2, the infimum is attained when u ≤ 2 and the summands in Eq. 3.35 are
comparable. Observe that this holds true when

v 	 w

1
2− n−2

n−1 ,

so that substituting this into Eq. 3.35, we deduce for w ≤ 2,

K0(w) 	 w− 1
n .

Hence, we obtain that for all w ≤ 2,

J0(w) 	 w
n−1
n ,

and therefore by Eq. 3.33,

J (w) 	 w
n−1
n , w ≤ 2.

Combining this with Eq. 3.36, we conclude that the function J (w) defined by Eq. 3.32 is a
lower isoperimetric function for the weighted model (M0, μ̃0).

4 On-diagonal Heat Kernel Upper Bounds

Recall from Eq. 2.20, that for any open set � ⊂ M , we define

λ1(�) = inf
u

∫

�
|∇u|2dμ

∫

�
u2dμ

,

where the infimum is taken over all nonzero Lipschitz functions u compactly supported
in �.

Definition We say that (M,μ) satisfies a Faber-Krahn inequality with a function � :
(0, +∞) → (0, +∞) if, for any non-empty precompact open set � ⊂ M ,

λ1(�) ≥ �(μ(�)). (4.1)

It is well-known that a Faber-Krahn inequality (4.1) implies certain heat kernel upper
bounds of the heat kernel (see [4] and [14]).

Proposition 4.1 ([14], Theorem 5.1) Suppose that a weighted manifold (M,μ) satisfies a
Faber-Krahn inequality (4.1) with � being a continuous and decreasing function such that

∫ 1

0

dv

v�(v)
< ∞. (4.2)

Then for all t > 0,

sup
x∈M

pt (x, x) ≤ 4

γ (t/2)
, (4.3)

where the function γ is defined by

t =
∫ γ (t)

0

dv

v�(v)
. (4.4)
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Definition Let {Mi}ki=0 be a finite family of non-compact Riemannian manifolds. We say
that a manifold M is a connected sum of the manifolds Mi and write

M =
k

⊔

i=0

Mi (4.5)

if, for some non-empty compact set K ⊂ M the exterior M \ K is a disjoint union of open
sets E0, . . . , Ek such that each Ei is isometric to Mi \ Ki for some compact set Ki ⊂ Mi .

Conversely, we have the following definition.

Definition Let M be a non-compact manifold and K ⊂ M be a compact set with smooth
boundary such that M \ K is a disjoint union of finitely many ends E0, . . . , Ek . Then M is
called a manifold with ends.

Remark LetM be a manifold with endsE0, . . . , Ek . Considering each endEi as an exterior
of another manifold Mi , then M can be written as in Eq. 4.5.

Let (M = ⊔k
i=0 Mi, μ) be a connected sum of complete non-compact weighted man-

ifolds (Mi, μi) and h be a positive smooth function on M . As before, let us consider the
weighted manifold (M, μ̃), where μ̃ is defined by dμ̃ = h2dμ. By restricting h to the end
Ei = Mi \Ki and then extending this restriction smoothly to a function hi on Mi , we obtain
weighted manifolds (Mi, μ̃i), where μ̃i is given by dμ̃i = h2i dμ.

From now on, we always have dim(M) = n.

Theorem 4.2 Let (M, μ̃) =
(

⊔k
i=0 Mi, μ̃

)

be a weighted manifold with ends where M0 is

a model manifold with boundary so that for all r ≥ 0,

ψ0(r) ≤ C0

and

˜S0(r) 	
{

rδerα
, r ≥ 1,

1, r < 1,

where 0 < α ≤ 1, δ ∈ R and ˜S0 denotes the area function of a weighted model (M0, μ̃0).
Assume also that all (Mi, μ̃i), i = 1, . . . k, have Faber-Krahn functions ˜�i such that

˜�i(v) ≥ ci

{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2,

for constants ci > 0. Then there exist constants C > 0 and C1 > 0 depending on α and n

so that the heat kernel p̃t of (M, μ̃) satisfies

sup
x∈M

p̃t (x, x) ≤ C

{

exp
(

−C1t
α

2−α

)

, t ≥ 1,

t− n
2 , 0 < t < 1.

(4.6)

Proof It follows from Theorem 3.6, that (M0, μ̃0) has the lower isoperimetric function J

given by Eq. 3.32, that is

J (v) = c̃

{ v

(log v)
1−α
α

, v ≥ 2,

c′v n−1
n , v < 2,
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where c̃ > 0 is a small enough constant and c′ is a positive constant chosen such that J is
continuous. Since J is continuous and the function J (v)

v
is non-increasing, we obtain from

[13, Proposition 7.1], that (M0, μ̃0) admits a Faber-Krahn function ˜�0 given by

˜�0(v) = 1

4

(

J (v)

v

)2

	
{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2.

We obtain from [18, Theorem 3.4] that there exist constants c > 0 and Q > 1 such that
(M, μ̃) admits the Faber-Krahn function

˜�(v) = c min
0≤i≤k

˜�i(Qv).

Hence (M, μ̃) has a Faber-Krahn function ˜�, satisfying

˜�(v) 	
{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2.

(4.7)

Observe that the Faber-Krahn function ˜� satisfies condition (4.2). Thus, we can apply
Proposition 4.1, which yields the heat kernel upper bound in Eq. 4.3. Hence, it remains to
estimate the function γ from the right hand side of Eq. 4.3 by using (4.4). In the case when
t > 0 is small enough, we get by Eqs. 4.4 and 4.7,

t =
∫ γ (t)

0

dv

v˜�(v)
= C′

∫ γ (t)

0

dv

v1− 2
n

= C′γ (t)
2
n ,

which implies for some constant C′′ > 0,

γ (t) = C′′t
n
2 .

For large enough t on the other hand, we deduce

t =
∫ γ (t)

0

dv

v˜�(v)
	

∫ log(γ (t))

2
u

2−2α
α du 	 log(γ (t))

2−α
α .

Therefore,

γ (t) 	 exp
(

const t
α

2−α

)

,

where const is a positive constant depending on α and n. Substituting these estimates for
γ (t) into (4.3), we obtain the upper bound (4.6) for the heat kernel p̃t of (M, μ̃) for small
and large values of t . For the intermediate values of t , we deduce the upper bound (4.6)
from the fact that the function t �→ supx∈M p̃t (x, x) is continuous.

Example In Theorem 4.2 one can take (Mi, μ̃i) = (Hn, μi), i = 1, . . . k, where μi is the
Riemannian measure on the hyperbolic space Hn since for all 0 < α ≤ 1, we have

�Hn(v) 	
{

1, v ≥ 2,

v− 2
n , v < 2

≥ c

{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2.

Remark Let (M, μ̃) be the weighted manifold with ends, defined as in Theorem 4.2, so that
˜S0(r) 	 erα

rδ for r > 1 and hence, for R > 1,

˜V0(R) =
∫ R

0

˜S0(r)dr	
∫ R

0
erα

rδdr 	 eRα

Rδ+1−α .
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Then, we obtain from [7, Proposition 3.4] for large enough R,

˜λ1(�R) ≤ 4

(

˜S0(R)

˜V0(R)

)2

≤ C

R2−2α
,

where �R = {(r, θ) ∈ M0 : 0 < r < R}. Hence, setting R = R(t) = t
1

2−α , [7, Proposition
2.3] yields the following lower bound for the heat kernel p̃t in (M, μ̃) for large enough t :

sup
x

p̃t (x, x) ≥ 1

μ̃(�R)
exp

(−˜λ1(�R)t
)≥ C1

eRα(t)Rδ+1−α(t)
exp

(

− Ct

R2−2α(t)

)

≥ C1

eC2t
α

2−α

,

which shows that the exponential decay in the upper bound given in Eq. 4.6 is sharp.

4.1 WeightedModels with Two Ends

Let M be the topological space M = R × S
n−1, n ≥ 2, that is, any point x ∈ M can be

written in the polar form x = (r, θ) with r ∈ R and θ ∈ S
n−1. For a fixed smooth positive

function ψ on R consider on M the Riemannian metric ds2 given by

ds2 = dr2 + ψ2(r)dθ2,

where dθ2 is the standard Riemannian metric on S
n−1. The Riemannian measure μ on M

with respect to this metric is given by

dμ = ψn−1(r)drdσ(θ),

where dr denotes the Lebesgue measure on R and dσ the Riemannian measure on S
n−1.

As before, we normalize the metric dθ2 on S
n−1 so that σ(Sn−1) = 1. Then we define the

area function S on R by
S(r) = ψn−1(r).

Given a smooth positive function h on M , that only depends on the polar radius r ∈ R, and
considering the measure μ̃ on M defined by dμ̃ = h2dμ, we get that the weighted model
(M, μ̃), has the area function

˜S(r) = h2(r)S(r).
The Laplace-Beltrami operator �μ on M can be represented in the polar coordinates

(r, θ) as follows:

�μ = ∂2

∂r2
+ S′(r)

S(r)

∂

∂r
+ 1

ψ2(r)
�θ , (4.8)

where �θ is the Laplace-Beltrami operator on Sn−1. If we assume that u is a radial function,
that is, u depends only on the polar radius r , we obtain from Eq. 4.8, that u is harmonic in
M if and only if

u(r) = c1 + c2

∫ r

r1

dt

S(t)
, (4.9)

where r1 ∈ [−∞, +∞] so that the integral converges and c1, c2 are arbitrary reals.

Theorem 4.3 Let (M,μ) = (M0 � M1, μ) be a Riemannian model with two ends, where
M0 = {(r, θ) ∈ M : r ≥ 0} is a model manifold with boundary such that for all r ≥ 0,

ψ0(r) = e− 1
n−1 rα

.

Also assume that (M1, μ1) is a Riemannian model with
∫ ∞

1

dt

S1(t)
< ∞, (4.10)

74



Volume Growth and On-diagonal Heat Kernel Bounds on Riemannian...

and Faber-Krahn function �1, so that

�1(v) ≥ c1

{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2,

(4.11)

for some constant c1 > 0. Then there exist positive constants Cx = Cx(x, α, n) and C1 =
C1(α, n) such that the heat kernel of (M,μ) satisfies, for all x ∈ M , the inequality

pt (x, x) ≤ Cx

{

exp
(

−C1t
α

2−α

)

, t ≥ 1,

t− n
2 , 0 < t < 1.

(4.12)

Proof Observe that the assumption (4.10) yields that we can choose positive constants κ1
and κ2 so that the smooth function h on M defined by

h(r) = κ1 + κ2

∫ r

1

dt

S(t)
,

is positive in M and satisfies h 	 1 in {r ≤ 0}. Consider the weighted model with two
ends (M, μ̃), where μ̃ is defined by dμ̃ = h2dμ. It follows from Eq. 4.11 that the weighted
model (M1, μ̃1) has the Faber-Krahn function ˜�1 satisfying

˜�1(v) ≥ c̃1

{ 1

(log v)
2−2α

α

, v ≥ 2,

v− 2
n , v < 2,

for some constant c̃1 > 0. Further, note that

h|M0(r) 	
{

r1−αerα
, r ≥ 1,

1, 0 ≤ r < 1,

whence the area function ˜S0 of the weighted model with boundary (M0, μ̃0) admits the
estimate

˜S0(r) 	
{

r2−2αerα
, r ≥ 1,

1, 0 ≤ r < 1.

Since also ψ0 ≤ 1, we can apply Theorem 4.2 and obtain that there exist constants C > 0
and C1 > 0 depending on α and n so that the heat kernel p̃t of (M, μ̃) satisfies

sup
x∈M

p̃t (x, x) ≤ C

{

exp
(

−C1t
α

2−α

)

, t ≥ 1,

t− n
2 , 0 < t < 1.

(4.13)

Using that h is harmonic in M , we have by Eq. 2.8, for all t > 0 and x ∈ M , the identity

p̃t (x, x) = pt (x, x)

h2(x)
,

which together with Eq. 4.13 implies the upper bound (4.12) and thus, finishes the proof.

Remark Consider the end � := {r > 0} of the Riemannian model (M,μ) from Theorem
4.3 and note that

(

� = {r ≥ 0}, μ|{r≥0}
)

is parabolic by [12, Proposition 3.1], whence the
estimate (4.12) implies that we cannot get a polynomial decay of the heat kernel in M as
it follows from Eq. 2.4 in Theorem 2.1, just by assuming the polynmial volume growth
condition (2.2).
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Remark Consider again the end � := {r > 0} of the Riemannian model (M,μ) from
Theorem 4.3 and assume for simplicity that n = 2. Let M0 be defined as in Theorem 2.6,
that is, there exists a compact set K0 ⊂ M0 that is the closure of a non-empty open set,
such that � is isometric to M0 \ K0. Let us check which conditions from Theorem 2.6 are
not satisfied in M0. A simple computation shows that the area function S0 of the manifold

M0 satisfies S′′
0 (r) ∼ α2e−rα

r2α−2 as r → +∞, so that − S′′
0 (r)

S0(r)
→ 0 as r → +∞.

Together with the fact that on a compact set, the Gaussian curvature is non-negative, it then
follows from Eq. 2.42 that the curvature on M0 is bounded below, which implies that M0
is a locally Harnack manifold. Obviously, S0 also satisfies the conditions (2.39) and (2.40)
from Proposition 2.9, whence we obtain that on M0 the spherical Harnack inequality (2.22)
holds. On the other hand, condition (2.23) in M0 fails, since for fixed ρ > 0, the volume
V (x, ρ) decreaeses exponentially when r → +∞ where x = (r, θ) ∈ �. Hence, we have
that in general, we can not drop the condition (2.23) in Theorem 2.6 to get the polynomial
decay (2.24) of the heat kernel in M .

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability This article has no associated data.

Declarations

Conflict of Interests The authors confirm that they do not have actual or potential conflict of interest in
relation to this publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boulanger, A.: Counting problems of geometrically infinite Kleinian groups. arXiv:1902.06580v3
(2020)

2. Brock, F., Chiacchio, F., Mercaldo, A.: Weighted isoperimetric inequalities in cones and applications.
Nonlinear Analysis: Theory Methods & Applications 75(15), 5737–5755 (2012)

3. Buser, P.: A note on the isoperimetric constant. Annales scientifiques de l’Ecole normale superieure
15(2), 213–230 (1982)
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