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Abstract
We study a symmetric diffusion process on R

d , d ≥ 2, in divergence form in a station-
ary and ergodic random environment. The coefficients are assumed to be degenerate and
unbounded but satisfy a moment condition. We derive upper off-diagonal estimates on the
heat kernel of this process for general speed measure. Lower off-diagonal estimates are also
shown for a natural choice of speed measure, under an additional mixing assumption on the
environment. Using these estimates, a scaling limit for the Green function is proven.
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Intrinsic metric

Mathematics Subject Classification (2010) 60J60 · 60K37 · 60J35 · 31B05

1 Introduction

We study a diffusion process on Rd , formally associated with the following generator

Lωu(x) = 1

θω(x)
∇ · (aω(x)∇u(x)), x ∈ R

d , (1.1)

where the random field {aω(x)}x∈Rd is a symmetric d-dimensional matrix for each x ∈
R

d , and θω is a positive speed measure which may also depend on the random envi-
ronment ω. Firstly, we set out the precise assumptions on the random environment. Let

,G,P, {τx}x∈Rd be a probability space together with a measurable group of translations.
E will denote the expectation under this probability measure. To construct the random field
let a : → R

d×d be a G-measurable random variable and define aω(x) := a(τxω). The
speed measure is defined similarly, take a G-measurable random variable θ : → (0,∞)

and let θω(x) := θ(τxω). We refer to this function as the speed measure because the process
with general θω can be obtained from the process with θω ≡ 1 via a time-change. As made
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precise in the following, we assume throughout that the random environment is stationary,
ergodic and satisfies a non-uniform ellipticity condition.

Assumption 1.1 The probability space satisfies:

(i) P(τxA) = P(A) for all A ∈ G and any x ∈ R
d .

(ii) If τxA = A for all x ∈ R
d then P(A) ∈ {0, 1}.

(iii) The mapping (x, ω) → τx ω is B(Rd) ⊗ G measurable.

Furthermore for each x ∈ R
d , aω(x) is symmetric and there exist positive, G-measurable

λ, : → (0,∞) such that for P-a.e. ω ∈ and all ξ ∈ R
d , x ∈ R

d ,

λ(τxω)|ξ |2 ≤ ξ · (aω(x)ξ) ≤ (τxω)|ξ |2. (1.2)

Also, defining ω(x) := (τxω) and λω(x) := λ(τxω) for x ∈ R
d , assume that P-a.s.

ω, (λω)−1, θω, (θω)−1 ∈ L∞
loc(R

d). (1.3)

The final assumption of local boundedness will allow us to pass from estimates on the
semigroup of the diffusion process to pointwise bounds on the heat kernel. Rather than
assuming these functions are uniformly bounded, we work with moment conditions given
in terms of the following, for p, q, r ∈ (0,∞] define

M1(p, q, r) := E[θω(0)r ] + E[λω(0)−q ] + E[ ω(0)pθω(0)1−p],
M2(p, q) := E[λω(0)−q ] + E[ ω(0)p]. (1.4)

By the ergodic theorem, these conditions together with Assumption 1.1 allow us to control
average values of the functions on large balls. For instance, denoting B(x, r) the closed
Euclidean ball of radius r centred at x, ¯

p := E[ ω(0)p] and λ̄q := E[λω(0)q ], then
M2(p, q) < ∞ implies that for P-a.e. ω, there exists Nω

1 (x) > 0 such that for all r ≥
Nω
1 (x),

1

|B(x, r)| B(x,r)

ω(u)p du < 2 ¯
p,

1

|B(x, r)| B(x,r)

λω(u)q du < 2 λ̄q . (1.5)

In the uniformly elliptic case, where ω(x) and λω(x) are bounded above and below
respectively, uniformly in ω, the model we are considering has been extensively studied.
A quenched invariance principle is established in [31] for differentiable, periodic coeffi-
cients. Further results for smooth, periodic, uniformly elliptic coefficients are given in [29].
The quenched invariance principle was extended to a random environment with a uniformly
elliptic symmetric part and differentiable skew-symmetric part satisfying a growth condition
in [26]. Outside the uniformly elliptic regime and more recently, [9] proved this homoge-
nization result for operators taking a specific, periodic form, with measurable and locally
integrable coefficients. Without assuming differentiability of the random field, some work
is required to construct the process associated with (1.1) in a general ergodic environment.
The diffusion is constructed using the theory of Dirichlet forms, with the corresponding
form being

Eω(u, v) :=
d

i,j=1 Rd

aω
ij (x)∂iu(x)∂j v(x) dx, (1.6)

for u, v in a proper class of functions F θ ⊂ L2(Rd , θω dx), defined precisely in Section 2.
The construction of a diffusion process (Xθ

t )t≥0 associated to (1.1) is a recent result of [19].
This is done under Assumption 1.1 together with the moment condition M2(p, q) < ∞
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for some p, q ∈ (1,∞] satisfying 1
p

+ 1
q

< 2
d
. The main result in [19, Theorem 1.1] is

the quenched invariance principle, that is for P-a.e. ω the law of the process 1
n
Xn2t t≥0

on C([0, ∞),Rd) converges weakly as n → ∞ to that of a Brownian motion. This is
first proven for θω ≡ 1 and then for general speed measure satisfying E[θω(0)] < ∞ and
E[θω(0)−1] < ∞, after showing that the general speed process can be obtained via a time
change.

Regarding the heat kernel of the operator Lω, it is also shown therein that the semi-
group Pt of the above diffusion process has a transition kernel pω

θ (t, x, y) with respect
to θω(x) dx, furthermore this is jointly continuous in x and y. Explicitly, for continuous,
bounded f : Rd → R,

Ptf (x) =
y∈Rd

f (y)pω
θ (t, x, y)θω(y) dy, ∀ x ∈ R

d , t > 0. (1.7)

A second, stronger result that has recently been established under Assumption 1.1 and
moment condition M1(p, q, r) < ∞ for some p, q, r ∈ (1,∞] satisfying 1

r
+ 1

q
+

1
p−1

r−1
r

< 2
d
is the quenched local central limit theorem [18, Theorem 1.1]. This states that

the rescaled transition kernel pω
θ (n2t, 0, nx) converges as n → ∞ to the heat kernel of a

Brownian motion kt (0, x) with some deterministic, positive definite covariance matrix
implicitly depending on the law P. Namely, for t > 0 and x, y ∈ R

d ,

kt (x, y) := 1

(2πt)d det
exp − (y − x) · −1(y − x)

2t
. (1.8)

The convergence is uniform on compact sets in t and x and the key step is to apply a
parabolic Harnack inequality to obtain Hölder regularity of the heat kernel; this is achieved
via Moser iteration which will also play an important role in our analysis. Many of the tech-
niques take inspiration from the random conductance model (RCM) setting, cf. [1, 3, 8, 14]
for recent RCM local limit theorems in a degenerate, ergodic setting. The diffusion stud-
ied in this paper is a continuum analogue of that model, where a random walk moves on a
lattice, usually Z

d equipped with nearest-neighbour edges. Importantly, the RCM literature
indicates that moment conditions are indeed necessary for a general ergodic environment,
for instance [3] proves a local limit theorem under a moment assumption equivalent to
M2(p, q) < ∞ for 1

p
+ 1

q
< 2

d
and shows that this condition is optimal for the canoni-

cal choice of speed measure (known as the constant speed random walk). Another recent
result under moment conditions is a Liouville theorem for the elliptic equation associated to
(1.1) in [12], cf. also [11] for a related result on the parabolic equation associated to a time-
dynamic, uniformly elliptic version of (1.1). Local boundedness and a Harnack inequality
for solutions to the elliptic equation were recently proven in [13] under moment conditions.

A local limit theorem quantifies the limiting behaviour of the heat kernel and is known
to provide near-diagonal estimates on the kernel prior to rescaling – see Proposition 3.1.
In this paper our aim is to derive full Gaussian estimates on the heat kernel pω

θ (t, x, y) for
all x and y, also known as off-diagonal estimates. For general speed measure, it is known
that these bounds should be governed by the intrinsic metric, cf. [17, 20, 34]. In the random
environment setting, this is a metric on R

d dependent on aω and θω, defined as

dω
θ (x, y) := sup φ(y) − φ(x) : φ ∈ C(Rd) ∩ F θ

loc, ess supz∈Rd

(∇φ · aω∇φ)(z)

θω(z)
≤ 1 .

In the above, F θ
loc is the local domain of the Dirichlet form Eω, defined precisely in

Section 2. Outside of the uniformly elliptic case it is clear that the above is not in general
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comparable to the Euclidean metric, which we denote d(· , ·). A natural follow-up question
to this work would be to find the minimal conditions on an ergodic environment for which
these two metrics are comparable. However here we require some regularity of the intrin-
sic metric in order to derive off-diagonal heat kernel estimates in terms of it. Specifically
we must show it is strictly local, meaning it generates the Euclidean topology on R

d . We
therefore make the following additional assumption.

Assumption 1.2 (Continuity of the Environment) For P-a.e. ω, the functions aω : Rd →
R

d×d and θω : Rd → (0,∞) are continuous.

Our first main result is an upper off-diagonal heat kernel estimate for the symmetric
diffusion process with general speed measure in an ergodic, degenerate environment, and is
proven in Section 2.

Theorem 1.3 Suppose Assumption 1.1 and Assumption 1.2 hold. Let d ≥ 2 and assume
M1(p, q, r) < ∞ for some p, q, r ∈ (1,∞] satisfying 1

r
+ 1

q
+ 1

p−1
r−1
r

< 2
d
. Then

for P-a.e. ω ∈ and every x ∈ R
d , there exist Nω

2 (x) > 0, c1(d, p, q, r) > 0 and
γ (d, p, q, r) > 0 such that the following holds for all y ∈ R

d and
√

t > Nω
2 (x),

pω
θ (t, x, y) ≤ c1 t−

d
2 1 + d(x, y)√

t

γ

exp − dω
θ (x, y)2

8t
. (1.9)

Remark 1.4 (i) In the ‘constant speed’ setting of θω ≡ ω (and more generally whenever
θω ≥ c ω), we obtain off-diagonal heat kernel estimates in terms of the Euclidean
metric d , without the need for Assumption 1.2. We get a full Gaussian upper estimate
here because the polynomial prefactor in (1.9) can be absorbed into the exponential
when the two metrics are comparable.

(ii) We restrict to d ≥ 2 because the technique for deriving the maximal inequality
in Section 2.1 breaks down in d = 1 due to issues with the Sobolev inequality
(Lemma 2.4). Similarly, the lower estimate (Theorem 1.6) relies on the parabolic
Harnack inequality in [18] which is also derived using Moser iteration for d ≥ 2 only.

To prove the above estimate we use Davies’ perturbation method, a technique for deriv-
ing upper off-diagonal estimates, well-established in the elliptic and parabolic equations
literature for uniformly elliptic operators cf. [17, 20, 21, 28, 34]. The idea also translates
to heat kernels on graphs [22, 23] and recently the RCM in a degenerate, ergodic environ-
ment [4, 5]. The first step of Davies’ method is to consider the Cauchy problem associated
to the perturbed operator Lω

ψ := eψLωe−ψ where ψ is an arbitrary test function, and use a
maximal inequality to bound the fundamental solution. In [36], off-diagonal estimates are
derived for solutions of a parabolic equation in a uniformly elliptic setting with degenerate,
locally integrable weight; this was useful inspiration for the Cauchy problem we consider in
Section 2.1. To derive the maximal inequality we use a Moser iteration scheme adapted to
the perturbed operator, similar to the method used to derive the parabolic Harnack inequal-
ity for the original operator Lω in [18]. Ergodic theory plays a key role here in controlling
constants which depend on the random environment. Moser iteration has previously been
applied to prove the corresponding RCM results – the quenched invariance principle in [2],
the Harnack inequality in [3] and off-diagonal estimates in [4, 5].

The second part of the argument is to optimise over the test function ψ . In the uniformly
elliptic case this is straightforward as one can work with the Euclidean metric, however
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in our general setting of degenerate coefficient matrix and speed measure the off-diagonal
estimate is governed by the intrinsic metric defined above. Utilising a test function related to
this metric requires certain regularity properties, for instance that it generates the Euclidean
topology on R

d . In Section 2.3 we first relate the intrinsic metric to a Riemannian metric,
then apply a recent result from geometric analysis [16] to prove the necessary regularity
properties under Assumption 1.2.

As a counterpart to the preceding upper estimate, we also present a lower off-diagonal
estimate for the heat kernel, in the ‘constant speed’ case of θω ≡ ω. Whilst Assump-
tion 1.2 for regularity of the intrinsic metric is no longer required, we need stronger control
on the environment than given in Assumption 1.1. In particular, a decorrelation assumption
is necessary for the proof and we assume finite-range dependence of the environment.

Assumption 1.5 Suppose there exists a positive constant R > 0 such that for all x ∈ R
d

and P-a.e. ω, τxω is independent of {τyω : y ∈ B(x,R)c}.

To prove the lower estimate we adapt the established chaining argument to the diffusion
in a degenerate random environment, the method originated in [25] using the ideas of Nash.
It was adapted to the weighted graph setting in [23], to random walks on percolation clus-
ters in [10], and it was recently applied to the RCM [6]. The strategy is to repeatedly apply
lower near-diagonal estimates, derived from the parabolic Harnack inequality established in
[19], along a sequence of balls. The form of the constant in the Harnack inequality means
that averages of the functions λω(·), ω(·) on balls with varying centre-points must be con-
trolled simultaneously to derive the lower off-diagonal estimate. Something stronger than
the classical ergodic theorem is required to do this, so given Assumption 1.5 we establish
a specific form of concentration inequality (Proposition 3.3) for this purpose. By an argu-
ment similar to [6] this inequality is then used to control the environment-dependent terms
arising from the Harnack inequality, see Proposition 3.4. The statement is given below and
proven in Section 3.

Theorem 1.6 Suppose d ≥ 2 and Assumptions 1.1 and 1.5 hold. There exist p0, q0 ∈
(1,∞) such that if M2(p0, q0) < ∞ then for P-a.e. ω and every x ∈ R

d , there exist
ci(d) > 0 and a random constant Nω

3 (x) > 0 satisfying

P(Nω
3 (x) > n) ≤ c2 n−α ∀ n > 0, (1.10)

for some α > d(d − 1) − 1, such that the following holds. For all y ∈ R
d and t ≥

Nω
3 (x) 1 ∨ d(x, y) ,

pω(t, x, y) ≥ c3 t−d/2 exp − c4
d(x, y)2

t
. (1.11)

For the moment condition, it suffices to take p0 > 2dκp and q0 > 2dκq, where

κ(d, p, q) := (2 + d)pq − (p + 2q)d

2pq − (p + q)d
,

is the constant in Proposition 3.1.

Remark 1.7 (i) In [6], three other assumptions such as an FKG inequality or a spectral
gap inequality are offered as alternatives to finite-range dependence. Some of these are
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specific to the discrete setting and Assumption 1.5 is the most natural for our context,
but it may be possible to replace it with other similar conditions.

(ii) We state the above only for θω ≡ ω because for general speed measure the intrinsic
metric is not necessarily comparable to the Euclidean metric which is used for the
chaining argument. It may be possible to adapt the argument to general speed however
and it is unclear whether this would require further assumptions in order to compare
the two metrics.

Our final result is a scaling limit for the Green function of the diffusion process, defined
as

gω(x, y) :=
∞

0
pω

θ (t, x, y) dt .

As already noted, the diffusion with general speed measure may be obtained from the pro-
cess with speed measure θω ≡ 1 via a time change [18, Theorem 2.4]. Therefore the Green
function, which exists in dimension d ≥ 3 due to the upper off-diagonal heat kernel esti-
mate above, is independent of the speed measure θω. Applying Theorem 1.3 together with a
long-range bound obtained in Section 4, we obtain sufficient bounds to apply the local limit
theorem [18, Theorem 1.1] and show that an appropriately rescaled version of the Green
function converges to that of a Brownian motion,

gBM(x, y) :=
∞

0
kt (x, y) dt . (1.12)

For the purposes of the Green function scaling limit result, we make the additional assump-
tion that the intrinsic metric, which we denote dω(· , ·) when θω ≡ 1, is bounded below by
the Euclidean metric. This allows us to get an upper off-diagonal estimate in terms of the
Euclidean metric. This choice of speed measure, θω ≡ 1, is sufficient for proving the long-
range bound, Proposition 4.2. Other choices may require uniform boundedness of the speed
measure for the proof of that proposition, which would be quite a restrictive assumption.

Assumption 1.8 There exists c5 > 0 such that, for P-a.e. ω,

dω(x, y) ≥ c5 d(x, y), ∀ x, y ∈ R
d . (1.13)

Theorem 1.9 Let d ≥ 3, suppose Assumptions 1.1, 1.2 and 1.8 hold. Also, assume there
exist p, q ∈ (1,∞] satisfying 1

p−1 + 1
q

< 2
d
such that M2(p, q) < ∞. Then for x0 ∈ R

d ,

0 < r1 < r2 and the annulus A := {x ∈ R
d : 0 < r1 ≤ d(x0, x) ≤ r2},

lim
n→∞ sup

x∈A

|nd−2gω(x0, nx) − gBM(x0, x)| = 0 for P-a.e. ω. (1.14)

Remark 1.10 (i) Analogous results have been proven for the RCM in [3, Theorem 1.14]
and [27, Theorem 5.3]. See also [6, Theorem 1.6] for further estimates on the Green
function which can be derived from off-diagonal heat kernel estimates.

(ii) Assumption 1.8 holds, for instance, in the setting of lower uniform ellipticity, λω(x) ≥
c− > 0 for all x ∈ R

d and P-a.e. ω. It is possible that the intrinsic metric can be
bounded by the Euclidean metric outside of the uniformly elliptic regime; for recent
results in this direction in the discrete setting see [7].

A key ingredient to prove the above is a local limit theorem. For the RCM, this was
recently proven under a less restrictive inequality on p and q in [13], for the variable speed
random walk, which is analogous to θω ≡ 1 in our setting. As such, it is possible that
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by leveraging on the improved Moser iteration in [13], the moment condition for the local
limit theorem in [18, Theorem 1.1] could be relaxed. As a consequence, the inequality
1

p−1 + 1
q

< 2
d
in Theorem 1.9 could then be improved.

Notation and Structure of the Paper. For x ∈ R
d , |x| denotes the standard Euclidean

norm. For vectors u, v ∈ R
d , the canonical scalar product is given by u · v and gradient

∇u. We write c to denote a positive, finite constant which may change on each appear-
ance. Constants denoted by ci will remain the same. For α, β ∈ R, we write α β to
mean there exist constants c, c̃ > 0 such that c α ≤ β ≤ c̃ α. For a countable set A,
its cardinality is denoted |A|. Otherwise if A ⊂ R

d , |A| is the Lebesgue measure. For
any p ∈ (1,∞), the Hölder conjugate is written p∗ := p

p−1 . We will work with inner

products as follows, for functions f, g : Rd → R and positive weight ν : Rd → R,

(f, g) :=
Rd

f (x)g(x) dx, (f, g)ν :=
Rd

f (x)g(x)ν(x) dx.

Furthermore, for p ∈ (0,∞) and bounded B ⊂ R
d , define norms

f
p

:=
Rd

|f (x)|p dx
1/p

, f
p,ν

:=
Rd

|f (x)|pν(x) dx
1/p

,

f
p,B

:= 1

|B| B

|f (x)|p dx
1/p

, f
p,B,ν

:= 1

|B| B

|f (x)|pν(x) dx
1/p

.

For q ∈ (0,∞), I ⊂ R, B ⊂ R
d , Q = I × B and u : R × R

d → R, let

u
p,q,Q

:= 1

|I | I

ut
q

p,B
dt

1/q
, u

p,q,Q,ν
:= 1

|I | I

ut
q

p,B,ν
dt

1/q
,

u
p,∞,Q

:= ess supt∈I ut p,B
, u

p,∞,Q,ν
:= ess supt∈I ut p,B,ν

,

u ∞,∞,Q
:= ess sup(t,x)∈Q u(t, x).

Finally for f : Rd → R
m, let

f ∞ := ess supx∈Rd |f (x)|.
All of the results herein will be quenched, in that they hold for P-a.e. instance of the environ-
ment ω unless stated otherwise. Regarding the structure of the paper, Section 2 is devoted to
the proof of the upper off-diagonal heat kernel estimate Theorem 1.3. The lower estimate,
Theorem 1.6, is then proven in Section 3. Finally, Section 4 concerns the proof of the Green
function scaling limit.

2 Davies’ Method

Throughout this section assume d ≥ 2, Assumption 1.1 holds and let p, q, r ∈ (1,∞]
satisfy 1

r
+ 1

q
+ 1

p−1
r−1
r

< 2
d
. One important space we will work with isF θ

G which, for open

G ⊆ R
d , is the closure of C∞

0 (G) in L2(G, θωdx) with respect to Eω +(· , ·)θ . We writeF θ

in the case G = R
d and if θω ≡ 1 also we simply writeF . DefineF θ

loc by u ∈ F θ
loc if for all

balls B ⊂ R
d there exists uB ∈ F θ

B such that u = uB P-a.s. In the case θω ≡ 1 this space is
denoted Floc. We write W 1,∞(Rd) for the Sobolev space of L∞(Rd) functions with a weak
derivative in L∞(Rd), also we denote W

1,∞
loc (Rd) the corresponding local Sobolev space.
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Following [18], we define the weak parabolic equation satisfied by the heat kernel.

Definition 2.1 (Caloric function) Let I ⊆ R and G ⊆ R
d be open sets. A function u : I →

F θ
G is caloric if the map t → (u(t, ·), φ)θ is differentiable for any φ ∈ L2(G, θωdx) and

d

dt
(ut , φ)θ + Eω(ut , φ) = 0, (2.1)

for all φ ∈ F θ
G and for all t ∈ I .

2.1 Maximal Inequality for the Perturbed Cauchy Equation

The first step in applying Davies’ method is to establish a bound on solutions to the
following Cauchy problem.

Lemma 2.2 (Cauchy Problem) Let u be caloric on R × R
d and u(0, ·) = f (·) for some

f ∈ L2(Rd , θωdx). Let ψ ∈ W
1,∞
loc (Rd) satisfy ψ ∞ < ∞ and

hω(ψ)2 := ess supx∈Rd

(∇ψ · aω∇ψ)(x)

θω(x)
< ∞.

Then writing v(t, x) := eψ(x)u(t, x), we have for all t > 0,

vt
2
2,θ ≤ e2h

ω(ψ)2t eψf
2
2,θ .

Proof Formally, vt = v(t, ·) solves the caloric equation
d

dt
(vt , φ)θ + Jω(vt , φ) = 0, (2.2)

where we have defined an operator

Jω(v, φ) :=
Rd

(aω∇v) · ∇φ + φ(aω∇v) · ∇ψ − v(aω∇ψ) · ∇φ − vφ(aω∇ψ) · ∇ψ dx.

The caloric equation for vt can be formulated properly, using a suitable space of test func-
tions, akin to F θ , but for our purposes it suffices to study one specific instance of this
equation, which we derive directly from (2.1) for brevity.

More precisely, for t > 0, ut = u(t, ·) ∈ F θ by Definition 2.1 and the supposed prop-
erties of ψ guarantee that e2ψut ∈ F θ also. Therefore, setting φ = e2ψut in (2.1) and
rearranging gives

d

dt
(vt , vt )θ + 2 Jω(vt , vt ) = 0.

Since aω is symmetric,

Jω(vt , vt ) =
Rd

(aω∇vt ) · ∇vt − v2t (a
ω∇ψ) · ∇ψ dx

≥ −
Rd

v2t (a
ω∇ψ) · ∇ψ dx

≥ −hω(ψ)2 vt
2
2,θ .

Therefore,
d

dt
vt

2
2,θ ≤ 2hω(ψ)2 vt

2
2,θ ,

from which the result follows.
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We now establish an energy estimate which we will go on to apply iteratively in order to
derive a maximal inequality for v.

Lemma 2.3 Let I = (t1, t2) ⊆ R+ and B ⊆ R
d be any Euclidean ball, Q := I × B. Let

u be a locally bounded positive caloric function on I × B, and v(t, x) := eψ(x)u(t, x) for
ψ ∈ W

1,∞
loc (Rd) with ψ ∞ < ∞ and hω(ψ)2 < ∞. Define cut-off functions η ∈ C∞

0 (B)

such that 0 ≤ η ≤ 1 and ξ : R → [0, 1] differentiable with ξ ≡ 0 on (−∞, t1]. Then, there
exists c6 > 1 such that for any α ≥ 1,

1

|I | ξ(ηvα)2 1,∞,Q,θ
+ 1

|I | I

ξ(t)
Eω(ηvα

t , ηvα
t )

|B| dt

≤ c6 ∇η
2
∞

ω/θω
p,B,θ

v2α
p∗,1,Q,θ

+ α2 hω(ψ)2 + ξ ∞ (ηvα)2 1,1,Q,θ
.

Proof One can show using (2.2) and the same argument as [18, Lemma B.3] that

d

dt
(v2αt , η2)θ + 2α Jω(vt , η

2v2α−1
t ) ≤ 0 ∀ t ≥ 0. (2.3)

Then

α Jω(vt , η
2v2α−1

t ) =
Rd α (aω∇vt ) · ∇(η2v2α−1

t ) + α η2v2α−1
t (aω∇vt ) · ∇ψ

−α vt (a
ω∇ψ) · ∇(η2v2α−1

t ) − α η2v2αt (aω∇ψ) · ∇ψ dx.

We label these integrands J1, . . . , J4 in order.

J1 = α (aω∇vt ) · ∇(η2v2α−1
t )

= η2(aω∇vt ) · ∇(αv2α−1
t ) + 2α η v2α−1

t (aω∇vt ) · ∇η.

By algebraic manipulation,

J1 = 2α − 1

α
(aω∇(ηvα

t )) · ∇(ηvα
t ) − α − 1

α
vα
t (aω∇(ηvα

t )) · ∇η − 1

α
(aω∇η) · ∇(ηv2αt ).

Then since α ≥ 1,

J1 ≥ (aω∇(ηvα
t )) · ∇(ηvα

t ) − vα
t |(aω∇(ηvα

t )) · ∇η| − v2αt (aω∇η) · ∇η

≥ 1

2
(aω∇(ηvα

t )) · ∇(ηvα
t ) − 2 v2αt (aω∇η) · ∇η. (2.4)

Similarly,

|J2| ≤ 1

8
(aω∇(ηvα

t )) · ∇(ηvα
t ) + 3ηv2αt (aω∇ψ) · ∇ψ + v2αt (aω∇η) · ∇η. (2.5)

|J3| ≤ 1

8
(aω∇(ηvα

t )) · ∇(ηvα
t ) + 8α2η2v2α(aω∇ψ) · ∇ψ

+η2v2αt (aω∇ψ) · ∇ψ + v2αt (aω∇η) · ∇η. (2.6)

Substituting the above estimates into (2.3),

d

dt
η2v2αt 1,θ ≤

Rd

4 v2αt (aω∇η) · ∇η − 1

4
(aω∇(η vα

t )) · ∇(η vα
t ) dx

+(9α2 + 4)
Rd

η2v2αt (aω∇ψ) · ∇ψ dx. (2.7)

 1433 



P.A. Taylor

Therefore,

d

dt
η2v2αt 1,B,θ

+ Eω(ηvα
t , ηvα

t )

4|B|
≤ 1

|B| 4
Rd

v2αt (aω∇η) · ∇η dx + (9α2 + 4)
Rd

η2v2αt (aω∇ψ) · ∇ψ dx .

We can then bound these terms as follows

Rd

v2αt (aω∇η) · ∇η dx ≤ ∇η
2
∞

B

v2αt
ω dx ≤ ∇η

2
∞|B| v2αt 1,B,

≤ ∇η
2
∞|B| ω/θω

p,B,θ
v2αt p∗,B,θ

.

Rd

η2v2αt (aω∇ψ) · ∇ψ dx ≤ hω(ψ)2

Rd

η2v2αt θω dx

= hω(ψ)2|B| η2v2αt 1,B,θ
,

where we used Hölder’s inequality on the first term. So,

d

dt
η2v2αt 1,B,θ

+ Eω(ηvα
t , ηvα

t )

4|B|
≤ 4 ∇η

2
∞

ω/θω
p,B,θ

v2αt p∗,B,θ
+ (9α2 + 4)hω(ψ)2 η2v2αt 1,B,θ

. (2.8)

Now let t ∈ (t1, t2), multiply the above by ξ(s) and integrate from s = t1 to s = t ,

1

|I | ξ(t) η2v2αt 1,B,θ
+ 1

4

t

t1

Eω(ηvα
s , ηvα

s )

|B| ds

≤ 4 ∇η
2
∞

ω/θω
p,B,θ

v2α
p∗,1,I×B,θ

+ (9α2 + 4)hω(ψ)2 η2v2α 1,1,I×B,θ

+ sup
s∈I

|ξ (s)| η2v2α 1,1,I×B,θ
. (2.9)

Note that the final term on the right-hand side appears by integration by parts with the first
term on the left-hand side. Finally, take supremum over t ∈ I on the left-hand side.

The following Sobolev inequality is another component in deriving the maximal
inequality in Proposition 2.5.

Lemma 2.4 (Sobolev Inequality) Let B ⊆ R
d be a Euclidean ball and η ∈ C∞

0 (B) a
cut-off function. Then there exists c7(d, q) > 0 such that for all u ∈ F θ

loc ∪ Floc,

η2u2
ρ/r∗,B,θ

≤ c7 |B| 2d (λω)−1
q,B

θω r∗/ρ
r,B

Eω(ηu, ηu)

|B| , (2.10)

where ρ := qd/(q(d − 2) + d).

Proof Firstly, by Hölder’s inequality,

η2u2
ρ/r∗,B,θ

≤ θω r∗/ρ
r,B

η2u2
ρ,B

. (2.11)

Also by [18, Proposition 2.3],

η2u2
ρ

≤ 1B(λω)−1
q
Eω(ηu, ηu).
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After averaging over B this yields

η2u2
ρ,B

≤ c |B|2/d (λω)−1
q,B

Eω(ηu, ηu)

|B| , (2.12)

for some c = c(d, q) > 0. The result then follows from (2.11) and (2.12).

We now derive the maximal inequality for v using Moser iteration. For x0 ∈ R
d , δ ∈

(0, 1] and n ∈ R+ we denote a space-time cylinder Qδ(n) := [0, δn2] × B(x0, n).
Furthermore, for σ ∈ (0, 1] and ∈ (0, 1], let s = δn2, s = (1 − )δn2 and define

Qδ,σ (n) := [(1 − σ)s , (1 − σ)s + σδn2] × B(x0, σn). (2.13)

Proposition 2.5 Let x0 ∈ R
d , δ ∈ (0, 1], ∈ (0, 1/4), 1/2 ≤ σ < σ ≤ 1 and n ∈

[1, ∞). Let v be as in Lemma 2.3. Then there exist constants c8(d, p, q, r) and κ(d, p, q, r)

such that

v ∞,∞,Qδ,1/2(n)
≤ c8 (1 + δn2hω(ψ)2)

Aω(n)

(σ − σ )2

κ
p∗

v 2p∗,2,Qδ,σ (n),θ
. (2.14)

In the above,Aω(n) := 1∨( ω/θω)
p,B(x0,n),θ

1∨(λω)−1
q,B(x0,n)

1∨θω
r,B(x0,n)

and

κ(d, p, q, r) = p∗ (p∗ + 1)qd − r∗(q(d − 2) + d)

2 qd − p∗r∗(q(d − 2) + d) .

Proof Define α := 1+ 1
p∗ − r∗

ρ
> 1 and write αk := αk for k ∈ N. Let σk := σ +2−k(σ −

σ ) and τk := 2−k−1(σ − σ ). Also introduce shorthand Ik = [(1 − σk)s , (1 − σk)s +
σkδn

2], Bk := B(x0, σkn) and Qk = Ik × Bk = Qδ,σk
(n). Note that |Ik|/|Ik+1| ≤ 2 and

|Bk /|Bk+1| ≤ c 2d . We begin by applying Hölder’s and Young’s inequalities,

v2αk

αp∗,α,Qk+1,θ
≤ v2αk

1,∞,Qk+1,θ
+ v2αk

ρ/r∗,1,Qk+1,θ
, (2.15)

with ρ as in Lemma 2.4. Now let k ∈ N and define a sequence of cut-off functions in space,
ηk : Rd → [0, 1] such that supp ηk ⊆ Bk , ηk ≡ 1 on Bk+1 and ∇ηk ∞ ≤ 2

τkn
. Similarly,

let ξk : R → [0, 1] be time cut-offs such that ξk ≡ 1 on Ik+1, ξk ≡ 0 on (−∞, (1 − σk)s ]
and ξ ∞ ≤ 2

τkδn
2 . Then by (2.15),

v2αk

αp∗,α,Qk+1,θ
≤ c ξk(ηkv

αk )2 1,∞,Qk,θ
+ ξk(ηkv

αk )2
ρ/r∗,1,Qk,θ

. (2.16)

We will bound both terms on the right-hand side. By the Sobolev inequality (2.10),

ξk(ηkv
αk )2

ρ/r∗,1,Qk,θ

≤ c n2 (λω)−1
q,Bk

θω r∗/ρ
r,Bk

1

|Ik| Ik

ξk(t)
Eω(ηkv

αk
t , ηkv

αk
t )

|Bk| dt . (2.17)

So,

ξk(ηkv
αk )2 1,∞,Qk,θ

+ ξk(ηkv
αk )2

ρ/r∗,1,Qk,θ
≤ c n2

|Ik| ξk(ηkv
αk )2 1,∞,Qk,θ

+c n2

|Ik| (λω)−1
q,Bk

θω r∗/ρ
r,Bk

Ik

ξk(t)
Eω(ηkv

αk
t , ηkv

αk
t )

|Bk| dt . (2.18)
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By Lemma 2.3 and Hölder’s inequality,

(2.18) ≤ c αk Aω(n)
1

δτ 2k

+ n2hω(ψ)2 v2αk

p∗,1,Qk,θ
.

Returning to (2.15),

v 2αk+1p∗,2αk+1,Qk+1,θ
= v2αk 1/(2αk)

αp∗,α,Qk+1,θ

≤ c αk 2
2k (1 + δn2hω(ψ)2)

δ(σ − σ )2
Aω(n)

1
2αk v 2αkp∗,2αk,Qk,θ

.

Iterating the above, for any K ∈ Z+,

v 2αKp∗,2αK,QK,θ
≤ c

K−1

k=0

αk 2
2k (1 + δn2hω(ψ)2)

δ(σ − σ )2
Aω(n)

1
2αk v 2p∗,2,Qδ,σ (n),θ

.

Sending K → ∞, observing that QK ↓ Q
δ, 12

(n) and K−1
k=0 (αk22k)

1
2αk is uniformly

bounded in K , we have

v ∞,∞,Qδ,1/2(n)
≤ c (1 + δn2hω(ψ)2)

Aω(n)

(σ − σ )2

κ
p∗

v 2p∗,2,Qδ,σ (n),θ
, (2.19)

where κ := p∗
2

∞
k=0

1
αk

< ∞.

Corollary 2.6 In the same setting as Proposition 2.5, there exists c9(d, p, q, r) > 0 such
that

v ∞,∞,Qδ,1/2(n)
≤ c9 (1 + δn2hω(ψ)2)

Aω(n)

(σ − σ )2

κ

v 2,∞,Qδ(n),θ
. (2.20)

Proof This is derived from Proposition 2.5, in a similar fashion to [24, Theorem 2.2.3].

2.2 Heat Kernel Bound

We first conglomerate the two results of the preceding section – the Cauchy problem
estimate and the maximal inequality.

Proposition 2.7 In the same setting as Proposition 2.5, there exists c10(d, p, q, r, ) > 0
such that

v ∞,∞,Qδ,1/2(n)
≤ c10

nd/2

Aω(n)

δ

κ

e2(1− )hω(ψ)2δn2 eψf 2,θ . (2.21)

Proof By combining Corollary 2.6 with Lemma 2.2, we obtain

v ∞,∞,Qδ,1/2(n)
≤ c

nd/2
(1 + δn2hω(ψ)2)

Aω(n)

δ

κ

ehω(ψ)2δn2 eψf 2,θ .

The result follows since for any ∈ (0, 1/2) there exists c( ) < ∞ such that

(1 + δn2hω(ψ)2)κ ≤ c( ) e(1−2 )hω(ψ)2δn2 ,

for all n ≥ 1, δ ∈ (0, 1].
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Proposition 2.8 (Heat Kernel Bound) Suppose M1(p, q, r) < ∞ and let x0 ∈ R
d . Then

P-a.s. there exist c11(d, p, q, r), γ (d, p, q, r) > 0 such that for all
√

t ≥ Nω
2 (x0) and

x, y ∈ R
d ,

pω
θ (t, x, y) ≤ c11 t−

d
2 1 + d(x0, x)√

t

γ

1 + d(x0, y)√
t

γ

e2h
ω(ψ)2t−ψ(x)+ψ(y). (2.22)

The exponent γ = 2κ − d
2 , with κ as in Proposition 2.5.

Proof Fix = 1
8 . By the ergodic theorem there exists Nω

2 (x0) > 0 such that

Aω(n) ≤ c 1 + E[ ω(0)pθω(0)1−p] 1 + E[λω(0)−q ] 1 + E[θω(0)r ] =: Ā < ∞,

for all n ≥ Nω
2 (x0). For given x ∈ R

d and
√

t > Nω
2 (x0), we choose δ, n such that

(t, x) ∈ Q
δ, 12

(n), for example by setting n = 2d(x0, x) + √
8t/7 and δ := 8t/(7n2). Then

considering the caloric function u(t, x) := Ptf (x) for f ∈ F θ , by Proposition 2.7,

eψ(x)u(t, x) ≤ c n−d/2(n2/t)κe2h
ω(ψ)2t eψf 2,θ

≤ c nγ t−κe2h
ω(ψ)2t eψf 2,θ , (2.23)

for some c = c( , d, p, q, r, Ā), where γ = 2κ − d
2 . Write r(t) := c t−κe2h

ω(ψ)2t and
bt (x) := 2d(x0, x) + √

8t/7 γ . Since the above holds for all x ∈ R
d and

√
t > Nω

2 (x0),
we have

eψ(x)Ptf (x) ≤ bt (x)r(t) eψf 2,θ .

That is,
b−1
t eψPtf ∞ ≤ r(t) eψf 2,θ . (2.24)

Now define an operator P
ψ
t (g) := eψPt (e−ψg) for e−ψg ∈ F θ . Then we can bound the

operator norm
b−1
t P

ψ
t L2(Rd ,θωdx)

≤ r(t).

The above also holds with ψ replaced by −ψ . Since the dual of P
ψ
t is P

−ψ
t , the dual of

b−1
t P

−ψ
t (·) is P

ψ
t (b−1

t ·). So by duality,

P
ψ
t (b−1

t g) 2,θ ≤ r(t) g 1,θ . (2.25)

Since b t
2
(x) ≤ bt (x), we have

b−1
t eψPtf ∞ ≤ b−1

t
2
eψP t

2
P t

2
f ∞

≤ r(t/2) eψP t
2
f 2,θ by (2.24),

≤ r(t/2)2 eψb t
2
f 1,θ by (2.25). (2.26)

That is, for all x ∈ R
d and

√
t ≥ Nω

2 (x0), we have

Ptf (x) ≤ c

t2κ
e2h

ω(ψ)2t−ψ(x)(d(x0, x) + √
t)γ

Rd

(d(x0, y) + √
t)γ eψ(y)|f (y)|θω(y) dy.

It is standard that the above implies the heat kernel estimate (2.22) for almost all x, y ∈ R
d .

Furthermore, local boundedness in Assumption 1.1 allows us to pass to all x, y ∈ R
d .

Finally, we show that γ = 2κ − d
2 > 0. It suffices to bound κ = p∗

2 1 − 1
α

−1 below.
Recall that α = 1 + 1

p∗ − r∗
ρ
, where ρ = qd/(q(d − 2) + d) is defined in Lemma 2.4. We
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need to bound α above; by definition, p∗, r∗ ≥ 1 and since ρ is monotonically increasing
in q, we have ρ ≤ d

d−2 . Therefore,

α ≤ 2 − d − 2

d
= d + 2

d
.

So,

κ ≥ 1

2
1 − d

d + 2

−1 = d + 2

4
>

d

4
.

2.3 Properties of the Intrinsic Metric

In order to prove the off-diagonal estimate in Theorem 1.3 from Proposition 2.8, we aim to
set the function ψ(·) = β dω

θ (x, ·) in (2.22), then optimise over the constant β. This requires
checking that this function ψ satisfies the necessary regularity assumptions for the proofs
in Section 2.1. Recall that the intrinsic metric is defined as follows,

dω
θ (x, y) := sup φ(y) − φ(x) : φ ∈ C(Rd) ∩ F θ

loc, hω(φ)2 ≤ 1 .

In deriving the required regularity of dω
θ , we first show that it is equal to Dω

θ , the Rieman-
nian distance computed with respect to ( aω

θω )−1. This Riemannian metric is defined via the
following path relation. Consider the following Hilbert space

H := f ∈ C [0, ∞),Rd : f (0) = 0, ḟ ∈ L2 [0, ∞),Rd ,

where ḟ denotes the weak derivative of f , together with the following norm

f H := ḟ
L2([0,∞),Rd )

.

Given f ∈ H, define (t, x; f ) : [0, ∞) × R
d → R

d via

d

dt
(t, x; f ) = aω( (t, x; f ))

θω( (t, x; f ))

1/2
ḟ (t),

with initial condition (0, x; f ) = x. The Riemannian distance is then given by

Dω
θ (x, y) := t1/2 inf f H : f ∈ H, (t, x; f ) = y ,

for any t > 0.

Lemma 2.9 (Riemannian Distance Representation) For all x, y ∈ R
d , dω

θ (x, y) =
Dω

θ (x, y).

Proof This follows by the proof of [34, Lemma I.1.24].

Next we will apply the additional Assumption 1.2 on the environment to derive the reg-
ularity we require of dω

θ . Our objective is to pass a function resembling ρx(·) := dω
θ (x, ·)

into (2.22). In order to do this we must show some conditions such as ρx ∈ W
1,∞
loc (Rd) and

hω(ρx)
2 ≤ 1. The requisite property is that the metric dω

θ is strictly local i.e. that dω
θ induces

the original topology onRd . For further discussion of the properties of such intrinsic metrics
and the distance function ρx see [33], [15, Appendix A] and [35]. In the following proposi-
tion, we invoke a recent result from geometric analysis to directly deduce strict locality of
the intrinsic metric dω

θ under Assumption 1.2.
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Proposition 2.10 If Assumption 1.2 holds then the intrinsic metric dω
θ is strictly local for

P-a.e. ω.

Proof Given Assumption 1.2 and Lemma 2.9, this follows directly from Proposition 4.1ii)
or Theorem 4.5 in [16], noting that the Euclidean metric corresponds to the Riemannian
metric given by the identity matrix [33, Proposition 3.3].

2.4 Upper Off-Diagonal Estimate

Having proven the necessary regularity of the intrinsic metric in the preceding subsection,
we are now in a position to optimise over the test function in Proposition 2.8 and derive the
upper off-diagonal estimate.

Proof of Theorem 1.3 As a corollary to Proposition 2.10, we have for example by
[35, Lemma 1] that for any x ∈ R

d , ρx ∈ C(Rd) ∩ L2
loc(R

d , θ) and hω(ρx)
2 ≤ 1

almost surely. Furthermore ρx has a weak derivative and [33, Theorem 5.1] implies that
ess supz∈Rd |∇ρx(z)| < ∞. The final property to check is that our test function is essen-
tially bounded, whilst ρx may be unbounded we can take a bounded version with the desired
properties. In accordance with [15, Eqn. (2)], consider ηx = ξ ◦ρx for a continuously differ-
entiable cut-off function ξ to construct a function such that ηx(x) = dω

θ (x, x) = 0, ηx(y) =
dω
θ (x, y), ηx is essentially bounded and ηx satisfies the aforementioned properties, including

hω(ηx)
2 ≤ 1. This is another consequence of Proposition 2.10. Therefore we are justified in

setting ψ(·) = −β ηx(·) in (2.22) for β ∈ R, and hω(ψ)2 ≤ β2. Then by choosing the con-
stant β = dω

θ (x, y)/(4t) and setting x0 = x in (2.22) we have for P-a.e. ω, all x, y ∈ R
d

and
√

t ≥ Nω
2 (x),

pω
θ (t, x, y) ≤ c t−

d
2 1 + d(x, y)√

t

γ

exp − dω
θ (x, y)2

8t
, (2.27)

which completes the proof.

3 Lower Off-Diagonal Estimate

The starting point for proving the lower off-diagonal estimate of Theorem 1.6 is the follow-
ing near-diagonal estimate. Throughout this section suppose Assumptions 1.1 and 1.5 hold.
Also let p, q ∈ (1,∞) satisfy 1

p
+ 1

q
< 2

d
.

Proposition 3.1 Let t > 0 and x ∈ R
d , then for all y ∈ B x,

√
t
2 we have

pω(t, x, y) ≥ t−d/2

CPH
ω

p,B(x,
√

t)
, λω

q,B(x,
√

t)

. (3.1)

The constant CPH is given explicitly by

CPH = c12 exp c13 1 ∨ ω
p,B(x,

√
t)

1 ∨ λω
q,B(x,

√
t)

κ

, (3.2)

for ci(d, p, q) > 0 and κ(d, p, q) := (2+d)pq−(p+2q)d
2pq−(p+q)d

> 0.
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Proof A parabolic Harnack inequality with constant CPH is established in [18, Theorem
3.9] and this is a standard consequence of it, see for instance [3, Proposition 4.7] or [23,
Proposition 3.1].

The chaining method is to apply Proposition 3.1 along a sequence of balls. Let x ∈ R
d ,

a radius 0 < r ≤ 4 d(0, x) and k ∈ N satisfying 12d(0,x)
r

≤ k ≤ 16d(0,x)
r

. Consider

the sequence of points xj = j
k
x for j = 0, . . . , k that interpolates between 0 and x. Let

Bxj
= B(xj ,

r
48 ) and s := r d(0,x)

k
, noting r2

16 ≤ s ≤ r2

12 .
To apply estimate (3.1) along a sequence we will need to control the ergodic average

terms in (3.2) simultaneously for balls with different centre-points. To this end we establish
a moment bound in Proposition 3.3 which employs finite range dependence to get better
control than in the general ergodic setting. First, a prerequisite lemma.

Lemma 3.2 For any k > 2 and independent random variables Y1, ..., Yn ∈ Lk(P) with
E[Yi] = 0 for all i, there exists c14(k) > 0 such that

E

⎡

⎣
n

i=1

Yi

k
⎤

⎦ ≤ c14 max

⎧
⎨

⎩

n

i=1

E Yi
k

,

n

i=1

E |Yi |2
k
2

⎫
⎬

⎭
. (3.3)

Proof This follows from [32, Theorem 3].

For u ∈ R
d , p, q > 0 we write ω

p(u) := ω(u)p − E[ ω(0)p] and λω
q (u) :=

λω(u)q − E[λω(0)q ] for the deviation of these moments from their respective means.

Proposition 3.3 Let ξ > 1 and assumeM2(2ξp, 2ξq) < ∞. Recall thatR is as in Assump-
tion 1.5. Let R ⊂ R

d be any region which can be covered by a disjoint partition of K balls
of radiusR in the maximum norm, i.e. R ⊂ K

i=1{zi +[0,R)d} for some z1, . . . , zK ∈ R
d .

Then there exists c15(d,R, ξ) > 0 such that

E

R

ω(u)p − E[ ω(0)p] du
2ξ ≤ c15 Kξ , (3.4)

E

R

λω(u)q − E[λω(0)q ] du
2ξ ≤ c15 Kξ . (3.5)

Proof We prove the statement only for ω, since the one for λω is analogous. Denote
f (u) := ω

p(u)1u∈R . Then by Jensen’s inequality and Fubini’s theorem,

E

R

ω
p(u) du

2ξ = E

[0,R)d

K

i=1

f (zi + u) du
2ξ

≤ Rd(2ξ−1)
E

[0,R)d

K

i=1

f (zi + u)
2ξ

du

= c
[0,R)d

E

K

i=1

f (zi + u)
2ξ

du. (3.6)
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For fixed u ∈ [0,R)d the sequence f (zi + u)
K

i=1 has mean zero and is independent by
Assumption 1.5. So we have by Lemma 3.2 and shift-invariance of the environment,

E

K

i=1

f (zi + u)
2ξ ≤ c14 max

⎧
⎨

⎩

K

i=1

E f (zi + u)
2ξ

,

K

i=1

E f (zi + u)
2

ξ
⎫
⎬

⎭

≤ c Kξ . (3.7)

Combining (3.6) and (3.7) gives the result.

Proposition 3.4 Let ξ > d and assume M2(2ξp, 2ξq) < ∞. For P-a.e. ω, there exists
N4(ω) ∈ N such that for all r > 0 and x ∈ R

d with N4(ω) < r ≤ 4 d(0, x), for any
sequence y0, . . . , yk where y0 = 0, yk = x and yj ∈ Bxj

for 1 ≤ j ≤ k − 1, we have
c16(d,R, ξ) > 0 such that

k−1

j=0

1 ∨ ω
p,B(yj ,

√
s)

1 ∨ λω
q,B(yj ,

√
s)

≤ c16 k. (3.8)

Furthermore, we have the following estimate on N4(ω), there exists c17(d,R, ξ) > 0 such
that

P(N4(ω) > n) ≤ c17 n1−d(ξ−1) ∀ n ∈ N. (3.9)

Proof Let x and r be as in the statement and denote z = x ∈ Z
d , r0 = r ∈ Z. We

will work with these discrete approximations of the variables x and r in order to apply
countable union bounds and the Borel-Cantelli lemma. Note that x ∈ Cz := z + [0, 1]d and
r ∈ Ir0 := [r0 − 1, r0]. Assuming w.l.o.g. that r > 1 and d(0, x) > d we have r r0 and
|x| |z|. We define a region that covers the union of balls of interest

k

j=0

B(yj ,
√

s) ⊂ Rz,r0 := τz + − 2r0, 2r0
d : τ ∈ 0, 2 .

This region has volume |Rz,r0 | ≤ c rd−1
0 |z| ≤ c rdk and can be covered by at most K ≤

c rd−1
0 |z|/Rd non-intersecting balls of radius R in the maximal norm. Also there exists

c18(d) such that for all w ∈ R
d , |{j ∈ {0, . . . , k} : w ∈ B(yj ,

√
s)}| ≤ c18, therefore

k−1

j=0

ω p

p,B(yj ,
√

s)
≤ c18 r−d

k
j=0 B(yj ,

√
s)

ω(u)p du ≤ c r−d

Rz,r0

ω(u)p du

≤ c r−d |Rz,r0 |E ω(0)p + c r−d

Rz,r0

ω
p(u) du

≤ c k + c r−d

Rz,r0

ω
p(u) du. (3.10)
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By Markov’s inequality and Proposition 3.3 we have

P

Rz,r0

ω
p(u) du > krd ≤ P

Rz,r0

ω
p(u) du > c|z|rd−1

0

≤ cE
Rz,r0

ω
p(u) du

2ξ
/ |z|rd−1

0
2ξ

≤ c |z|rd−1
0

−ξ . (3.11)

Now let ρ, l ∈ N with ρ ≤ l. By (3.11) and a union bound, summing over {z ∈ Z
d : |z| =

l} and r0 ≥ ρ,

P ∃ z ∈ Z
d , r0 ∈ N : |z| = l, r0 ∈ [ρ, 4|z|],

Rz,r0

ω
p(u) du > krd

≤ c ld−1−ξ ρ−ξ(d−1)+1. (3.12)

Now consider the event

Eρ := ∃ z ∈ Z
d , r0 ∈ N : |z| ≥ ρ, r0 ∈ [ρ, 4|z|],

Rz,r0

ω
p(u) du > krd .

Since ξ > d, we can take a countable union bound over l in (3.12) to obtain

P Eρ) ≤ c ρd(1−ξ)+1. (3.13)

Also d(1 − ξ) + 1 < −1 so by the Borel-Cantelli lemma there exists Ñ(ω) ∈ N such that
for all z ∈ Z

d , r0 ∈ N with Ñ(ω) < r0 < 4|z| we have

Rz,r0

ω
p(u) du ≤ krd .

Together with (3.10), this implies the existence of N4(ω) ∈ N such that for all x ∈ R
d and

r > 1 with N4(ω) < r ≤ 4 d(0, x) we have for y0, . . . , yk defined as in the statement,

k−1

j=0

ω p

p,B(yj ,
√

s)
≤ c k. (3.14)

By the exact same reasoning, one can show the corresponding inequality for λω. Moreover
by Hölder’s inequality,

k−1

j=0

1 ∨ ω
p,B(yj ,

√
s)

1 ∨ λω
q,B(yj ,

√
s)

≤ k
1− 1

p
− 1

q

⎛

⎝
k−1

j=0

1 ∨ ω p

p,B(yj ,
√

s)

⎞

⎠

1
p
⎛

⎝
k−1

j=0

1 ∨ λω q

q,B(yj ,
√

s)

⎞

⎠

1
q

. (3.15)

This, together with (3.14) and the equivalent bound for λω, gives the result.
The stated decay of N4(ω) follows from N4(ω) < c Ñ(ω) and the following bound on

Ñ(ω). For n ∈ N, we have

{Ñ(ω) ≤ n} =
n

m=1

∞

ρ=m

Ec
ρ .
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Note that, by the definition, Eρ+1 ⊆ Eρ for all ρ ∈ N, so the events Ec
ρ are increasing,

Ec
ρ ⊆ Ec

ρ+1 for all ρ ∈ N. In particular, for all m ∈ N,

∞

ρ=m

Ec
ρ = Ec

m.

Therefore, using (3.13),

P(Ñ(ω) ≤ n) = P

n

m=1

Ec
m ≥ P(Ec

n)

= 1 − P(En) ≥ 1 − c n1−d(ξ−1).

Since Ñ(ω) is finite a.s., we conclude that

P(Ñ(ω) > n) ≤ c n1−d(ξ−1).

Corollary 3.5 Let ξ > d and assume M2(2ξκp, 2ξκq) < ∞. In the same setting as Propo-
sition 3.4 there exists N5(ω) ∈ N with decay as in (3.9) and c19(d, p, q,R, ξ) > 0 such
that P-a.s. for all r > 0, x ∈ R

d with N5(ω) < r ≤ 4 d(0, x) we have

k−1

j=0

1 ∨ ω
p,B(yj ,

√
s)

κ

1 ∨ λω
q,B(yj ,

√
s)

κ ≤ c19 k. (3.16)

Proof By Jensen’s inequality ω κ

p,B(yj ,
√

s)
≤ ( ω)κ

p,B(yj ,
√

s)
and similarly for the

λω terms. Then proceed as for Proposition 3.4 to prove the result, with ω replaced by
( ω)κ .

Proof of Theorem 1.6 By shift-invariance of the environment it suffices to prove the esti-
mate for pω(t, 0, x). Fix ξ > d and for the moment assumption M2(p0, q0) < ∞ choose
p0 = 2ξκp, q0 = 2ξκq, in order to apply Corollary 3.5. Let Nω

3 (0) := Nω
1 (0)2 ∨Nω

4 ∨Nω
5

and assume as in the statement that t ≥ Nω
3 (0) 1 ∨ d(0, x) . We split the proof into two

cases.
Firstly in the case |x|2/t < 1/4 we have x ∈ B 0,

√
t/2 so we may apply the near-

diagonal lower estimate of Proposition 3.1,

pω(t, 0, x) ≥ t−d/2

CPH
ω

p,B(0,
√

t)
, λω

q,B(0,
√

t)

.

Since
√

t ≥ Nω
1 (0), recalling the form of CPH we apply the ergodic theorem to bound

CPH
ω

p,B(0,
√

t)
, λω

q,B(0,
√

t)
≤ c12 exp c (1 ∨ ¯

p)(1 ∨ λ̄q )
κ . (3.17)

Therefore,
pω(t, 0, x) ≥ c t−d/2.

Secondly, consider the case |x|2/t ≥ 1/4. Since ω and λω are locally bounded, it follows
from the semigroup property that for any 0 < τ < t ,

pω(t, 0, x) =
Rd

pω (τ, 0, u)pω(t − τ, u, x) ω(u) du. (3.18)
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We will employ the chaining argument over the sequence of balls introduced below Propo-
sition 3.1, set r = t/|x| ≥ Nω

3 (0) which gives s = t/k. Iterating the above relation k − 1
times gives

pω(t, 0, x) ≥

Bx1

. . .
Bxk−1

pω(s, 0, y1) . . . pω (s, yk−1, x) ω(y1) . . . ω(yk−1) dy1 . . . dyk−1.

We have by Proposition 3.1, for all yj ∈ Bxj
,

k−1

j=0

pω(s, yj , yj+1) ≥ c s−dk/2

exp c k−1
j=0 1∨ ω

p,B(yj ,
√

s)
1∨ λω

q,B(yj ,
√

s)

κ

≥ c s−dk/2

exp(c k)
, (3.19)

where the second step is due to Corollary 3.5. Therefore,

pω(t, 0, x) ≥
c s−dk/2 k−1

j=1 |Bxj
| ω

1,Bxj

exp(c k)

≥
c r−dkrd(k−1) k−1

j=1
ω

1,Bxj

ck . (3.20)

To bound the remaining stochastic term in the numerator we apply the harmonic-geometric
mean inequality,

k−1

j=1

ω
1,Bxj

1
k−1 ≥ k − 1

k−1
j=1

ω −1
1,Bxj

≥ c(k − 1)
k−1
j=1 λω

1,Bxj

. (3.21)

Since r > Nω
4 , it follows from Proposition 3.4 with the choice yj = xj , that

k−1
j=1 λω

1,Bxj

≤ c k. Therefore,

k−1

j=1

ω
1,Bxj

≥ ck . (3.22)

Combining (3.20) and (3.22) gives for some c20 > 0, c21 ∈ (0, 1),

pω(t, 0, x) ≥ c20 r−d ck
21. (3.23)

Finally, since |x|2
t

≥ 1
4 we have r ≤ 2 t1/2. Also k

|x|
r

= |x|2
t

so we arrive at

pω(t, 0, x) ≥ c2 t−
d
2 exp − c3 d(0, x)2

t
, (3.24)

which completes the proof.

4 The Green Function Scaling Limit

We shall now prove the Green function scaling limit in Theorem 1.9. The strategy is to
apply the local limit theorem [18, Theorem 1.1], then control remainder terms using the
off-diagonal estimate of Theorem 1.3 and the long range bound established below in Propo-
sition 4.2. Throughout this section, suppose Assumptions 1.1, 1.2 and 1.8 hold. Also, let
d ≥ 3 so that the Green function exists and let p, q ∈ (1,∞] satisfying 1

p−1 + 1
q

< 2
d
.
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Herein, since the Green function is independent of the choice of speed measure, we
specify the case θω ≡ 1. We denote the corresponding heat kernel pω(· , · , ·), and the
intrinsic metric dω(· , ·). This choice is analogous to the variable speed random walk in the
random conductance model setting, cf. for example [2]. The benefit of this speed measure
is that it is clearly uniformly bounded, which assists with deriving the pointwise estimate in
Proposition 4.2.

Corollary 4.1 Suppose M2(p, q) < ∞. For P-a.e. ω, there exist Nω
6 (x) > 0 and

c22(d, p, q), c23(d, p, q) > 0 such that for all x, y ∈ R
d ,

√
t > Nω

6 (x),

pω(t, x, y) ≤ c22 t−
d
2 exp − c23

d(x, y)2

t
. (4.1)

Proof Note that M2(p, q) < ∞ implies M1(p, q, r) < ∞ with r = ∞ if θω ≡ 1. So by
Theorem 1.3, we have that P-a.s., there exists Nω

6 (x) > 0 such that if
√

t > Nω
6 (x), then

for all x, y ∈ R
d ,

pω(t, x, y) ≤ c t−
d
2 1 + d(x, y)√

t

γ

exp − dω(x, y)2

8t
.

Assumption 1.8 gives that dω(x, y) ≥ c d(x, y) for all x, y ∈ R
d , we then conclude by

absorbing the polynomial pre-factor into the exponential term.

Whilst the above off-diagonal estimate provides optimal bounds on the heat kernel for
large enough time t , it is clear that to control the convergence in (1.14) we also require
a bound on the rescaled heat kernel that holds for small t > 0. We obtain this from the
following long range bound, derived in a similar fashion to results in the graph setting such
as [22, Theorem 10]. Interestingly, we obtain stronger decay in the present diffusion setting
than for the aforementioned random walks on graphs [22, 30], where a logarithm appears in
the exponent. See also [4, Theorem 1.6(ii)] for the degenerate environment.

Proposition 4.2 Suppose M2(p, q) < ∞. There exists c24 > 0 such that for all t ≥ 0,
n ≥ 1 and x ∈ R

d with |x| ≤ 2, we have

pω(t, 0, nx) ≤ exp − c24
n2|x|2

t
, P-a.s. (4.2)

Proof Firstly note that by Lemma 2.2, for any f ∈ L2(Rd) and suitable ψ ,

eψPtf
2
2 ≤ e2h

ω(ψ)2t eψf
2
2. (4.3)

By the local boundedness in Assumption 1.1, this implies the pointwise estimate

e2ψ(x)pω(t, x, y)2 ≤ e2h
ω(ψ)2t+2ψ(y), (4.4)

for all t ≥ 0 and x, y ∈ R
d . Rearranging,

pω(t, x, y) ≤ exp hω(ψ)2t + ψ(y) − ψ(x) . (4.5)
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Arguing as in Section 2.4, then applying the bound in Assumption 1.8 gives

pω(t, x, y) ≤ exp − c d(x, y)2

t
.

Setting x = 0 and re-labelling y = nx with |x| ≤ 2 gives the result

pω(t, 0, nx) ≤ exp − c n2|x|2
t

. (4.6)

Proof of Theorem 1.9 By shift-invariance of the environment it suffices to prove the result
for x0 = 0. For simplicity we set r1 = 1, r2 = 2, and in a slight abuse of notation we write
kt (x) = kt (0, x). For 1 ≤ |x| ≤ 2, T1, T2 > 0 and n > 0 we have

|nd−2gωega(0, nx) − gBM(0, x)| = nd
∞

0
pω(n2t, 0, nx) dt −

∞

0
kt (x) dt

≤ nd
T1

0
pω(n2t, 0, nx) dt +

T1

0
kt (x) dt +

T2

T1

ndpω(n2t, 0, nx) − kt (x) dt

+nd
∞

T2

pω(n2t, 0, nx) dt +
∞

T2

kt (x) dt . (4.7)

In controlling these terms we first employ the main result of this paper; the off-diagonal
estimate in Corollary 4.1 gives

nd
∞

T2

pω(n2t, 0, nx) dt ≤ c22

∞

T2

t−d/2e−c23/t dt, (4.8)

provided n > Nω
6 (0)/T2. Similarly, for the Gaussian heat kernel there exists c > 0 such

that for all t ≥ 0 and 1 ≤ |x| ≤ 2,

kt (x) ≤ c t−d/2e−c/t . (4.9)

For the first term in (4.7) we apply both the off-diagonal estimate and the long range bound
of Proposition 4.2. Provided n > Nω

6 (0)/
√

T1, we have

nd
T1

0
pω(n2t, 0, nx) dt ≤nd

Nω
6 (0)2

n2

0
pω(n2t, 0, nx) dt+nd

T1

Nω
6 (0)2

n2

pω(n2t, 0, nx) dt

≤ nd

Nω
6 (0)2

n2

0
e− c

t dt + nd
T1

Nω
6 (0)2

n2

c n−d t−
d
2 e− c

t dt (by (4.2) and (4.1) resp.)

≤ Nω
6 (0)2nd−2 exp − c n2/Nω

6 (0)2 + c
T1

0
t−

d
2 e− c

t dt . (4.10)

Let > 0. Combining the above we have that for suitably large n,

|nd−2gωega(0, nx) − gBM(0, x)| ≤ c
T1

0
t−d/2e−c/t dt +

∞

T2

t−d/2e−c/t dt

+Nω
6 (0)2nd−2 exp − c n2/Nω

6 (0)2 +
T2

T1

ndpω(n2t, 0, nx) − kt (x) dt . (4.11)

 1446 



Off-Diagonal Heat Kernel Estimates for Symmetric Diffusions in...

Now, t−d/2e−c/t is integrable on (0,∞), so we may fix T1, T2 such that

T1

0
t−d/2e−c2/t dt +

∞

T2

t−d/2e−c2/t dt < .

For large enough n,
Nω
6 (0)2nd−2 exp − c n2/Nω

6 (0)2 < .

Furthermore, by the local limit theorem, see [18, Theorem 1.1] and [18, Remark 1.2],

T2

T1

ndpω(n2t, 0, nx) − kt (x) dt < ,

for large enough n, uniformly over x ∈ A. This gives the claim.
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14. Bella, P., Schäffner, M.: Non-uniformly parabolic equations and applications to the random conductance
model. Probab. Theory Related Fields 182(1-2), 353–397 (2022)

15. Boutet de Monvel, A., Lenz, D., Stollmann, P.: Sch’nol’s theorem for strongly local forms. Israel J. Math.
173, 189–211 (2009)

16. Burtscher, A.Y.: Length structures on manifolds with continuous Riemannian metrics. NewYork J. Math.
21, 273–296 (2015)

17. Carlen, E.A., Kusuoka, S.: D. W. Stroock. Upper bounds for symmetric Markov transition functions.
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(1995)

36. Zhikov, V.V.: Estimates of nash-Aronson type for degenerate parabolic equations. Sovrem.Mat. Fundam.
Napravl. 39, 66–78 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

 1448 


	Off-Diagonal Heat Kernel Estimates for Symmetric Diffusions in...
	Abstract
	Introduction
	Davies' Method
	Maximal Inequality for the Perturbed Cauchy Equation
	Heat Kernel Bound
	Properties of the Intrinsic Metric
	Upper Off-Diagonal Estimate

	Lower Off-Diagonal Estimate
	The Green Function Scaling Limit
	References




