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Abstract
In this paper, we prove that the sequence (un, φn) of the Galerkin approximation of the
solution (u, φ) to a stochastic 2D Cahn-Hilliard-Navier-Stokes model verifies the following
convergence result

lim
n→∞E sup

t∈[0,T ]
ψ̃ (un(t)), φn(t) − (u(t), φ(t)) 2

V
= 0

for any deterministic time T > 0 and for a specified moment function ψ̃(x). Also, we
provide a result on uniform boundedness of the moment

E sup
t∈[0,T ]

ψ( (u(t), φ(t)) 2
V
)

where ψ grows as a single logarithm at infinity and furthermore, we establih the results on
convergence of the Galerkin approximation up to a deterministic time T when the V-norm
is replaced by the H-norm.
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1 Introduction

In a series of recent papers (see [6–8, 15, 18]) the following nonlinear evolution system has
been analyzed⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − + u · ∇u + ∇p = Kμ∇φ + g1(t, u) + g2(t, u)Ẇt ,

∇ · u = 0,

∂tφ + u · ∇φ − 0 = 0,

μ = − + αf (φ),

u = 0,
∂μ
∂η

= 0 on ∂M × (0, T ),

u(0) = u0, φ(0) = φ0 in M,

(1.1)

on a bounded domain M ⊂ R
d , d = 2, 3, for t ∈ (0, T ), and where η is the unit outward

normal to the boundary ∂M and T > 0 is a fixed time. This system is the stochastic version
of the well-known Cahn-Hilliard-Navier-Stokes system, which is based on a well-known
diffuse interface model and which describes the evolution of an incompressible isothermal
mixture of binary fluids. The system consits of the Navier-Stokes equations (NSE) for the
fluid velocity u coupled with a convective Cahn-Hilliard (CH) equation for the order (phase)
parameter φ (i.e. the relative concentration of one fluid or the difference of the two concen-
trations). Here p, u = (u1, u2) and φ denote the pressure, the velocity and the order (phase)
parameter, respectively; g1(t, u) is an external volume force applied to the binary mixture
fluid and g2(t, u)Ẇt represents random external forces depending eventually on u, where
Ẇt denotes the time derivative of a cylindrical Wiener process; 0 and K are positive con-
stants that correspond to the kinematic viscosity of fluid, mobility constant and capillarity
(stress) coefficient, respectively, and we assume the density equal to one. Also, the quantity
μ is the variational derivative of the following free energy functional

F(φ) =
M 2

|∇φ|2 + αF(φ) dx,

where, e.g., F(r) = r

0 f (ζ )dζ , is a suitable double-well potential, and 0 are two
positive parameters describing the interactions between the two phases. In particular, is
related to the thickness of the interface separating the two fluids. We note that the no flux
boundary condition for the chemical potential μ yields the conservation of the following
quantity

φ(t) = 1

|M| M
φ(t, x)dx, (1.2)

where |M| stands for the Lebesgue measure of M. More precisely, we get from Eq. 1.13
that

φ(t) = φ(0) for all t ≥ 0.
The addition of the white noise driven terms to the basic governing equations is natural
for both practical and theoretical applications. Such stochastically forced terms are used to
account for numerical and empirical uncertainties and have been proposed as a model for
turbulence.

As far as the stochastic CH-NSE (1.1) is concerned, there are very few work about his
solvability (see for instance [6–8, 15, 18, 19] and the references therein). In [18], the third
author of the present paper proved the existence and uniqueness of the probabilistic strong
solution to a stochastic 2D CH-NSE. The proof is based on Galerkin approximation and
the principle of weak convergence in functional analysis. Moreover, he showed that the
Galerkin approximation converges in means square to the probabilistic strong solution. The
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paper [15] concerns the existence of a random attractor for the stochastic 2D CH-NSE. The
authors in [7, 8] have also studied the stochastic 3D globally modified CH-NSE. In [7], we
proved the existence of the unique strong solution (in probability and partial differential
equations senses), and used the limiting argument to derive the existence of a global weak
martingale solution for the stochastic CH-NSE. In [8], we studied the stability of the solution
of the stochastic 3D globally modified CH-NSE. In particular, we proved that under some
conditions on the forcing terms, the solution converges exponentially in the mean square and
almost surely exponentially to the stationary solution. In [6] recently, we prove the existence
and uniqueness of a local maximal strong solution of problem (1.1) when the initial data
(u0, φ0) takes values in H 1 × H 2 and particularly in the two-dimensional case, we prove
global existence of the solutions. The proof is based on a finite dimensional approximations,
decomposition into high low modes and pairwise comparison techniques for the solvability
of the stochastic NSE.

When φ = 0, Eq. 1.1 becomes the stochastic system of compressible or incompressible
NSE. Since the work of Bensoussan and Temam [1], there have been numeros studies on
the existence and uniqueness of solutions for the the stochastic NSE in the literature. Here
we only mention some of them related to our study of the convergence properties of the
Galerkin approximation to the stochastic CH-NSE. In [3], the author proved that the solu-
tions u of the stochastic NSE can be approximated by solutions un of the corresponding
Galerkin systems. More precisely, she proved that for all t > 0,

lim
n→∞E un(t) − u(t) 2

H1
+

t

0
un(s) − u(s) 2

V1
ds = 0,

where the space H1 and V1 are defined as in Eq. 2.3 below. Her results can be extended
to the case of stronger norms, in the absence of boundaries conditions. Namely, using the
cancellation property

(B0(u, u), A0u) = 0 (1.3)

where A0 is the Stokes operator and B0 is the bilinear form defined in Eqs. 2.4 and 2.9,
respectively below, which is valid in the case of periodic boundary conditions, one can
obtain a stronger convergence result

lim
n→∞E un(t) − u(t) 2

V1
+

t

0
un(s) − u(s) 2

H 2ds = 0,

under suitable assumptions on the noise. However, the finiteness of the expected value of the
second moment of the norm u(t) 2

V1
for any fixed non-random time t is an open problem.

By the same token, it is not known whether the expected value of the supremum of un(t)−
u(t) 2

V1
up to a deterministic time convergenges to 0 as n → ∞. A positive result in this

direction was obtained in [13], where the authors proved that

E sup
t∈[0,T ]

ψ u(t) 2
V1

< ∞ (1.4)

where

ψ(τ) = log (1 + log(1 + τ)) , τ ∈ (0, ∞). (1.5)

In [14], the authors proved that Eq. 1.4 holds with ψ̃(τ ) = log(1 + τ) instead of ψ and they
also obtained the convergence of the Galerkin approximation pointwise in time for the V1-
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norm in the case of the Dirichlet boundary conditions when the cancellation property (1.3)
does not hold. More precisely, they proved that

lim
n→∞E sup

t∈[0,T ]
ψ̃ un(t) − u(t) 2

V1

1−δ = 0, for all δ ∈ (0, 1). (1.6)

Motivated by the above work, we prove the convergence properties of the Galerkin approxi-
mation to the stochastic CH-NSE and obtain new estimates on the convergence in the strong
norm. Namely, we prove that

E sup
t∈[0,T ]

ψ̃ (u(t), φ(t)) 2
V

< ∞

where ψ̃ = log(1 + τ), τ ∈ (0, ∞) and V is defined as in Eq. 2.14 below; and that the
following convergence holds

lim
n→∞E sup

t∈[0,T ]
ψ̃ (un(t), φn(t)) − (u(t), φ(t)) 2

V

1−δ = 0, for all δ ∈ (0, 1).

The exposition is organized as follows. In Section 2, we present the mathematical setting
of our model, the stochastic framework and various notions of solutions. In Section 3, we
present our main results on the convergence of the Galerkin approximations in the V-norm
and on the finiteness of the logarithmic moment functions. In this section, we also gived
(cf. Proposition 3.1 below) some generalized estimates on the H-norm for the Galerkin
sequence (un, φn) and anothers generalized estimates on the H-norm for the solutions (u, φ)

of problem (1.1) instead of the estimates obtain in [6, Lemma 4.2]. In Proposition 3.2 on the
same section, we summarize results on convergence when the V-norm is replaced by the H-
norm defined in Eq. 2.12 below. Finally, Section 4 is devoted to the proof of the convergence
of the Galerkin approximation to the original solutions.

2 Functional Setting of the Equation

2.1 Deterministic Framework

Without loss of generality, we set 0 = 1. Hereafter, we assume that M is a bounded open
connected subset of R2 with a smooth boundary ∂M (e.g. of class C2). We also assume that
f ∈ C2(R) satisfies

lim inf|r|→+∞ f (r) > 0,

|f (i)(r)| ≤ cf (1 + |r|κ+1−i ), ∀r ∈ R, i = 0, 1, 2,
(2.1)

where cf is some positive constant and κ ∈ [2, +∞) is fixed. Thanks to Eq. 2.1, we have

|f (r)| ≤ cf (1 + |r|κ ), |f (r)| ≤ cf (1 + |r|κ+1), ∀r ∈ R. (2.2)

Note that the derivative of the typical double-well potential f satisfies (2.1) with κ = 2.
Let us now introduce the functional setup of Eq. 1.1. If X is real Hilbert space, we denote

by X its dual.
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We consider the Hilbert spaces

H1 := u ∈ C∞
c ((M))2 : divu = 0 in M

L
2

,

V1 := u ∈ C∞
c ((M))2 : divu = 0 in M

H
1
0
,

(2.3)

where L
2(M) := (L2(M))2 and H

1
0(M) := (H 1

0 (M))2. On H1 we take the L2 inner
product and norm

(u, v) :=
M

u(x).v(x) dx, |u| := (u, u)1/2.

Moreover, the space V1 is endowed with the scalar product and norm

((u, v)) :=
d

i=1

(∂xi
u, ∂xi

v), u ((u, u))1/2.

The norm in V1 is equivalent to the H
1(M)-norm (due to Poincaré’s inequality). We refer

the reader to [20] for more details on these spaces.
We now define the operator A0 by

A0u = −P ∀u ∈ D(A0) = H
2(M) ∩ V1, (2.4)

where P is the Leray-Helmholtz projector in L
2(M) onto H1. It is well-known that, see

e.g. Constantin [5, p.33] or Temam [21, p.36], that A0 is a non-negative self adjoint operator
in H1. Moreover, see [21, p.57], V1 = D(A

1/2
0 ). Furthermore, A−1

0 is a compact linear
operator on H1 and by the classical spectral theorem, there exists a sequence λj with 0 <

λ1 < λ2 ≤ ... ≤ λn ≤ λn+1 ≤ ... and a family wj ∈ D(A0) which is an orthonormal basis
in H1 and such that A0wj = λjwj .

We introduce the linear nonnegative unbounded operator on L2(M)

A1ϕ = − ∀ϕ ∈ D(A1) = ϕ ∈ H 2(M), ∂ηϕ = 0, on ∂M , (2.5)

and we endow D(A1) with the norm |A1 · | + | · |, which is equivalent to the H 2-norm.
We also define the linear positive unbounded operator on the Hilbert space L2

(0)(M) of the

L2-functions with null mean

Bnϕ = − ∀ϕ ∈ D(Bn) = D(A1) ∩ L2
(0)(M). (2.6)

Note that B−1
n is a compact linear operator on L2

(0)(M). More generally, we can define Bs
n,

for any s ∈ R, noting that |Bs/2
n · |, s > 0, is an equivalent norm to the canonical Hs-norm

on D(B
s/2
n ) ⊂ Hs(M) ∩ L2

(0)(M). Also note that A1 = Bn on D(Bn). If ϕ is such that

ϕ − ϕ ∈ D(B
s/2
n ), we have that |Bs/2

n (ϕ − ϕ )|+ |ϕ − ϕ | is equivalent to the Hs-norm.
Moreover, we set H−s(M) = (Hs(M)) , whenever s < 0.

We note that

D(A1) = φ ∈ H 2(M) : ∂φ
∂η

= 0 on ∂M , A1φ = −
2

l=1

∂2φ

∂x2
j

, φ ∈ D(A1). (2.7)

Classically, there exists a sequence βj with 0 < β1 < β2 ≤ · · · ≤ βn ≤ βn+1 ≤ · · ·
and a family ψj ∈ D(A1) which is an orthonormal basis in H2 = L2(M) and such that
A1ψj = βjψj .

Hereafter, we set

H2 = L2(M), V2 = H 1(M), H = H1 × H2, V = V1 × V2. (2.8)
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In order to define the variational setting for the Cahn-Hilliard-Navier-Stokes equation (1.1),
we introduce the following bilinear operators B0, B1 (and their associated trilinear forms
b0, b1) as well as the coupling mapping R0 which are defined, from D(A0) × D(A0) into
H1, D(A0)×D(A1) into H2 and H2×D(A

3/2
1 ) into H1, respectively. More precisely, we set

(B0(u, v), w) =
M

[(u · ∇)v]wdx

= b0(u, v, w), ∀u, v, w ∈ D(A0),

(B1(u, ϕ), ψ) =
M

[(u · ∇)ϕ]ψdx

= b1(u, ϕ, ψ), ∀u ∈ D(A0), ϕ, ψ ∈ D(A1),

(R0(μ, ϕ),w) =
M

[μ∇ϕ]wdx

= b1(w, ϕ, μ), ∀w ∈ D(A0), (μ, ϕ) ∈ H2 × D(A
3/2
1 ).

(2.9)

Note that
R0(μ, ϕ) = Pμ∇ϕ, ∀(μ, ϕ) ∈ H2 × D(A

3/2
1 ),

b0(u, v, v) = 0, ∀u, v ∈ V1,

b1(v, φ, φ) = 0, ∀v ∈ V1, φ ∈ V2,

R0 1φ, φ), v = B1(v, φ), μ = B1 1φ

= b1 1φ), ∀(v, φ) ∈ V1 × D(A1). Here μ = 1φ + αf (φ).
We recall that (due to the mass conservation) we have

φ(t) = φ(0) =: M0, ∀t ≥ 0. (2.10)

Thus, up to a shift of the order parameter field, we can always assume that the mean of φ is
zero a the initial time and, therefore it will remain zero for all positive times. Hereafter, we
assume that

φ(t) = φ(0) = 0, ∀t > 0. (2.11)
We set

H = H1 × D(A
1/2
1 ). (2.12)

The norm in D(A
1/2
1 ) is denoted by , where ψ 2 = |A1/2

1 ψ |2. The space H is a
complete metric space with respect to the metric associated with the norm

|(v, ψ)|2
H

= K−1|v|2 + ψ 2. (2.13)

We define the Hilbert space V by

V = V1 × D(A1), (2.14)

endowed with the scalar product whose associated norm is

(v, ψ) 2
V

v 2 + |A1ψ |2. (2.15)

Hereafter, for any (w,ψ) ∈ H, we set

Etot (w,ψ) = K−1|u|2 + ψ 2 + 2α F(ψ), 1 + c1, (2.16)

where c1 > 0 is a constant large enough and independent on (w,ψ) such that Etot (w,ψ) is
non-negative.

We can check that (see [11]) there exists a monotone non-decreasing function Q̃0
(independent on time and the initial condition) such that

|(w,ψ)|2
H

≤ Etot (w,ψ) ≤ Q̃0(|(w,ψ)|2
H
), ∀(w,ψ) ∈ H. (2.17)
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Using the notations above, we rewrite problem (1.1) as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du
dt

+ νA0u + B0(u, u) − KR0 1φ, φ) = g1(t, u) + g2(t, u)Ẇt , in V1,

dφ
dt

+ A1μ + B1(u, φ) = 0, in V2,

μ = 1φ + αf (φ),

(u, φ)(0) = (u0, φ0).

(2.18)

Remark 2.1 In the weak formulation (2.18), the term μ∇φ is replaced by 1φ∇φ. This
is justified since f (φ)∇φ is the gradient of F(φ) and can be incorporated into the pressure
gradient, see [11] for details.

2.2 Stochastic Framework and Notions of a Solution

In order to define the stochastic terms in Eq. 2.18, that is g2(t, u)Ẇt , we first recall some
basic notations and notions from stochastic analysis in Hilbert spaces, used here and after.
For an extended treatment of this topic, we refer to [9, 12, 16]. Fix a stochastic basis

S = F , {Ft }t≥0,P, {βk
t , t ≥ 0, k = 1, 2, ...}) ,

which consists of a probability space F ,P) equipped with a complete, right-continuous
filtration, namely P(A) = 0 ⇒ A ∈ F0,Ft = ∩s>tFs and a sequence of mutually
independent one dimensional Brownian motions βk

t adapted to {Ft }t≥0.
Let U be an auxiliary separable real Hilbert space endowed with a Hilbert basis {ek}k≥1.

We denote by {Wt : t ≥ 0} the cylindrical Wiener process with values in U defined formally
as

W(t, ., ω) := Wt(., ω) =
∞

j=1

β
j
t (ω)ej . (2.19)

It is well known that this series does not converge in U , but rather in any Hilbert space Ũ
such that U ⊂ Ũ , being the injection of U in Ũ Hilbert-Schmidt, see [9] for more details.
Given a separable Hilbert space X, we denote by L2(U , X) the space of Hilbert-Schmidt
operators from U to X, endowed with the following inner product and norm

((R,Z))L2(U,X) =
∞

k=1

Rek, Zek X and R 2
L2(U,X) =

∞

k=1

|Rek|2X . (2.20)

It is well-known that the definition of a Hilbert-Schmidt operator is independent of the
choice of the orthonormal basis ek .

Given an X-valued predictable process ρ ∈ L2 F ,P;L2
loc([0, ∞);L2(U , X))), the

stochastic integral of ρ with respect to the cylindrical Wiener process Wt is denoted Mt :=
t

0 ρ(s)dWs , and is defined as the unique continuous X-valued Ft -martingale such that for
all z ∈ X, we have

t

0
ρ(s)dWs, z

X

=
∞

k=1

t

0
ρ(s)ek, z X dβk

s ,

where the integral with respect to dβk
s is understood in the sense of Itô, and the series con-

verges in L2 C([0, T ])). For more details on the general theory of infinite dimensional
stochastic integration, the reader is referred to classical textbook such as [9, 16].

We recall the following definition of Lipschitz continuous functions.
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Definition 2.1 Let X and Y be two Banach spaces. We say that a continuous function
h : [0, ∞) × X → Y is Lipschitz if

h(t, u1) − h(t, u2) Y ≤ LX u1 − u2 X, for all t ≥ 0, u1, u2 ∈ X, (2.21)

for some positive constant LX and independent of t .
We denote the collection of all such mappings Lipu(X, Y ).

For the analysis below we shall assume that

g1 : × [0, ∞) × V1 → H1,

g1 ∈ Lipu(H1, V1) ∩ Lipu(V1, H1) (2.22)

and g1(., 0) ∈ L2 F ,P;L2
loc([0, ∞);H1)).

Concerning the hypotheses for g2, we assume that

g2 : × [0, ∞) × H1 → L2(U , H1),

g2 ∈ Lipu(H1, L2(U ,H1)) ∩ Lipu(V1, L2(U , V1)) ∩ Lipu(D(A0), L2(U ,D(A0))),

g2(., 0) ∈ Z̃0
(2.23)

with

Z̃0 = L2 F ,P; L2
loc([0, ∞); L2(U , H1))) ∩ L2 F ,P; L2

loc([0, ∞);L2(U , V1))).
(2.24)

Remark 2.2 An example of operator g2 satisfying conditions (2.23)–(2.24) is the operator

defined as g2(., u)ej = g̃j (u), with (g̃j )j∈N ⊂ W 1,∞(R) and such that
∞

j=1
gj

2
W 1,∞(R)

<

+∞. It is widely employed in literature (see for example [17] and referein therein). Here for
example, {ej }j≥1 is an orthonormal basis in separable Hilbert space U having the following
regularity ej ∈ H 1(M) ∩ L∞(M). The following external force g1(., u) = u satisfy the
assumption (2.22).

Next, we introduce the concept of strong solutions of the stochastic Cahn-Hilliard-
Navier-Stokes equations. Here the word “strong” should be understood in the PDE and
probabilistic sense.

Definition 2.2 Let f ∈ C2(R) satisfy (2.1). We assume that g1 and g2 are V1 and
L2(U , H1) valued, predictable processes respectively with g1 and g2 satisfying (2.22)–
(2.23). We also assume that g1(t, 0) ∈ L1 F ,P; L(8κ+10)(κ+1)(0, T ; V1)) and g2(t, 0) ∈
L1 F ,P; L(8κ+10)(κ+1)(0, T ;L2(U , H1))). Assume that the initial data (u0, φ0) ∈
L2 F0,P;H) ∩ L2 F0,P;V) satisfies E[Etot (u0, φ0)](4κ+5)(κ+1) < ∞. The pair
{(u, φ), τ } is called a local strong solution of the system if τ is a strictly positive stopping
time and {u(· ∧ τ), φ(· ∧ τ)} is a predictable process in H with

(u(· ∧ τ), φ(· ∧ τ)) ∈ L2 C([0, ∞); V1 × D(A
1/2
1 ))),

(uIt≤τ , φIt≤τ ) ∈ L2 F ,P; L2
loc([0, ∞); D(A0) × D(A2

1)),
(2.25)
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and such that (u, φ) satisfies

(u(t ∧ τ), v) +
t∧τ

0
νA0u + B0(u, u) − KR0 1φ, φ), v ds = (u0, v)

+
t∧τ

0
g1(s, u), v ds +

∞

k=1

t∧τ

0
g2(s, u)ek, v dβk

s ,

φ(t ∧ τ), ψ +
t∧τ

0
A1μ + B1(u, φ), ψ ds = φ0, ψ ,

μ = 1φ + αf (φ),

(2.26)

for all (v, φ) ∈ H1 × H2. Moreover, {(u, φ), ξ} is called a local maximal strong solution if
ξ is a strictly positive stopping time and there exists a non-decreasing sequence of stopping
times τn such that τn → ξ and {(u, φ), τn} is a local strong solution and

sup
s∈[0,τn]

(u, φ)(s) 2
V

+
τn

0
(|A0u(s)|2 + |A2

1φ(s)|2)ds ≥ n (2.27)

on the set {ξ < ∞}. Such a solution is called global if

P(ξ < ∞) = 0. (2.28)

Now we introduce our Galerkin system.
Let {(wi, ψi), i = 1, 2, 3, ...} ⊂ V be an orthonormal basis in H, where {wi, i = 1, 2, ...},

{ψi, i = 1, 2, ...} are eigenvectors of A0 and A1, respectively. We set Vn = Hn =
span {(w1, ψ1), ..., (wn, ψn)}.

We look for (un, φn) ∈ Hn solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d un, wi + νA0un + B0(un, un) − KR0 1φn, φn), wi dt

= g1(t, un), wi dt +
∞

k=1

g2(t, un)ek, wi dβk
t ,

d φn,A1ψi + A1μn + B1(un, φn), A1ψi dt = 0,

μn = 1φn + αf (φn),

un(0), wi = u0, wi , φn(0), ψi = φ0, ψi ,

(2.29)

1 ≤ i ≤ n.
We can also write (2.29) as an system of equations in Hn (∼= R

n)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dun + νA0un + P1
n B0(un, un) − KP1

nR0 1φn, φn) − g1(t, un) dt

=
∞

k=1

P1
ng2(t, un)ekdβk

t ,

dφn + P2
n(A1μn + B1(un, φn))dt = 0,

μn = 1φn + αf (φn),

(un(0), φn(0)) = Pn(u0, φ0) := (u0n, φ0n),

(2.30)

where Pn = (P1
n,P2

n) : H1 × H2 → Hn is the orthogonal projection.
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As in the proof of Theorem 1.2.1 in [4], we can obtain the existence and uniqueness of a
solution (un, φn) ∈ L2 Ft ,P;Vn) of Eq. 2.29 with continuous trajectories.

3 Our Mains Results

Here we estabished the V-norm convergence of the sequence (un, φn) of the Galerkin
approximation up to any deterministic time T .

Theorem 3.1 Let δ ∈ (0, 1) and let T > 0 be arbitrary. Suppose that (u, φ) is a solution to
the Eq. 2.18, and let (un, φn) be the corresponding Galerkin approximation. It follows that

lim
n→∞E sup

t∈[0,T ]
ψ̃ (un(t), φn(t)) − (u(t), φ(t)) 2

V
= 0 (3.1)

where ψ̃(x) = [log(1 + x)]1−δ .

For the proof, we will drew our inspiration to the main result in [13].

Theorem 3.2 We assume that g1, g2, u0 and φ0 satisfy the same hypotheses as in Definition
2.2 and we suppose that (u, φ) is the solution to the problem (2.18). Then we have

E sup
t∈[0,T ]

ψ (u(t), φ(t)) 2
V

≤ C(u0, φ0, g1, g2, T ), (3.2)

with ψ(x) = log(1 + x) and C(u0, φ0, g1, g2, T ) is defined as in Eq. 4.18 below.

Proposition 3.1 Let p ≥ 2 be fixed. We assume that ∂ηφ = ∂η = 0, on (0, +∞) × ∂M
and (u0, φ0) ∈ L2 F0,P;H) is such that E[Etot (u0, φ0)]p/2 < ∞. We also suppose that
g1(t, 0) ∈ L1 F ,P; Lp(0, T ; V1)) and g2(t, 0) ∈ L1 F ,P;Lp(0, T ;L2(U , H1))).
Then the sequence (un, φn) of the Galerkin approximation satisfies

E sup
[0,T ]

[Etot (un, φn)]p/2 + E

T

0
( un

2 μn
2)ds

p/2

≤ cE[Etot (u0, φ0)]p/2 + cE
T

0
g1(s, 0)

p

V1
ds + c

T

0
g2(s, 0)

p

L2(U,H1)
ds

= Zp := Zp(u0, φ0, g1, g2),

(3.3)
where μ̄n := μn − μn = 1φn +αf (φn)−α f (φn) , c is a positive constant depending
only on H1 , p, T .

E sup
t∈[0,T ]

|(un, φn)|pH + E

T

0
(un, φn)

2
V
|(un, φn)|p−2

H
ds

≤ Zp + C Zp

p − 2
2 1 + Zp(κ+1) + Zp

2
p ,

(3.4)

where C is a positive constant depending only onM and p, andZp is defined
as in Eq. 3.3.
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Proof Reasoning similarly as in [18, inequality (3.27)], we derive (3.3).
Let us move to the proof of Eq. 3.4.
From Eqs. 2.17 and 3.3 we easily derive that

E sup
t∈[0,T ]

|(un, φn)|pH ≤ Zp(u0, φ0, g1, g2). (3.5)

Now fix p ≥ 4. Thanks to the Hölder inequality, Eqs. 3.5 and 3.3, we have

E

T

0
un

2|(un, φn)|p−2
H

ds

≤ E sup
t∈[0,T ]

|(un, φn)|p−2
H

T

0
un

2ds

≤ E sup
t∈[0,T ]

|(un, φn)|pH
p−2
p

⎛
⎝E T

0
un

2ds

p
2

⎞
⎠

2
p

≤ cE[Etot (u0, φ0)]p/2 + cE
T

0
g1(s, 0)

p

V1
ds + c

T

0
g2(s, 0)

p

L2(U,H1)
ds .

(3.6)
Taking the average over M of the third equation of Eq. 2.30 and notice that, due to ∂η =
0 and assumption (2.1), we can deduce as in [11, Page 8] the following estimate for the
average of μn over M; that is

μn
2 = α2 f (φn)

2

≤ α2cf (1 + |φn|2κ+2
L2κ+2)

≤ α2Cf,κ 1 φn
2κ+2 .

(3.7)

In Eq. 3.7, we have also used the embedding of H 1(M) in L2κ+2(M), κ ∈ [2, +∞), the
Poincaré-Wirtinger inequality and the fact that φn = 0 due to the mass conservation. Here,
Cf,κ is a positive constant depending on cf and κ .

Arguing similarly as in [11, Page 10], we obtain

|A1φn|2 ≤ −2|μn|2 + α2 −2cf (1 + |φn|2κ+2
L2κ+2)

≤ −2|μn|2 + α2 −2cf + α2cf
−2 φn

2κ+2,
(3.8)

for some positive constant cf depending on cf .
Now, owing to Eq. 3.7, Eq. 3.8 in conjunction with the Poincaré-Wirtinger inequality

(see [2]), we obtain

|A1φn|2 ≤ −2|μn|2 + α2 −2cf + α2cf
−2 φn

2κ+2

≤ −2 μn
2 + μn

2 + α2 −2cf + α2cf
−2 φn

2κ+2

≤ −2 μn
2 + K1 + K2 φn

2κ+2,

(3.9)

where K1 = Cf,κα2 −2 + α2 −2cf and K2 = α2 −2Cf,κ + α2cf
−2.
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Thanks to Eq. 3.5, Eq. 3.9 and the Hölder inequality, we have for p ≥ 4.

E

T

0
|A1φn|2|(un, φn)|p−2

H
ds

≤ E sup
[0,T ]

|(un, φn)|p−2
H

T

0
|A1φn|2ds

≤ E sup
[0,T ]

|(un, φn)|pH
p−2
p

⎛
⎝E T

0
|A1φn|2ds

p
2

⎞
⎠

2
p

≤ C E sup
[0,T ]

|(un, φn)|pH
p−2
p

⎛
⎝1 + E sup

[0,T ]
φn

p(κ+1) + E

T

0
μn

2ds

p
2

⎞
⎠

2
p

≤ C Zp

p−2
2 1 + Zp(κ+1) + Zp

2
p ,

(3.10)
where C is a positive large constant depending only on M and p and Zp is
defined as in Eq. 3.3.

Combining now these estimates (3.5), (3.6) and (3.10), we get (3.4) for p ≥ 4. With this
being proved for any p ≥ 4, it is subsequently true for any p ≥ 2.

Remark 3.1 Note that (see [11, page 403]) the natural no-flux conditions ∂ηφ = ∂η = 0
ensure the mass conservation, since it implies that ∂ημ = 0 on (0, ∞) × ∂M, which yields

the conservation of the following quantity φ(t) = 1
|M| M

φ(t, x)dx.

The following proposition gives a stronger results concerning the convergence of the
Gakerkin approximations (un, φn) in H.

Proposition 3.2 Let the assumptions (2.22)–(2.23) be satisfied. Let δ ∈ (0, 1).
We fix p ≥ 2

1−δ
such, g1(t, 0) ∈ Lp F ,P; L

p
loc([0, ∞); V1)), g2(t, 0) ∈

Lp F ,P; L
p
loc([0, ∞); L2(U ,H1))) and (u0, φ0) ∈ L2 ;H) ∩ L2 ;V) satisfies

E[Etot (u0, φ0)] p
2 < ∞. Let (u, φ) be the solution to the problem (1.1), and let (un, φn) be

the corresponding Galerkin approximation. Then we have the following convergence

E sup
t∈[0,T ]

|(un(t), φn(t)) − (u(t), φ(t))|p(1−δ)

H
→ 0 (3.11)

as n → +∞, for any deterministic time T > 0.

Proof Let δ ∈ (0, 1) and p ≥ 2
1−δ

. Arguing similarly as in Eq. 3.4, we have

E sup
t∈[0,T ]

|(u, φ)|p
H

+ E

T

0
(u, φ) 2

V
|(u, φ)|p−2

H
ds

≤ Zp + C Zp

p−2
2 1 + Zp(κ+1) + Zp

2
p ,

(3.12)

where C is a positive constant depending only on M and p, and Zp is defined
as in Eq. 3.3. For an amelioreted estimate of Eq. 3.12 we refer the reader to [6, Lemma 4.2].
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By Eqs. 3.4 and 3.12, we deduce that the sequence (un, φn) is uniformly integrable in
Lp(1−δ) F ,P;H) with (u, φ) ∈ Lp(1−δ) F ,P;H). Also thanks to [18, see the first
equality after Lemma 3.4], this sequence converges to (u, φ) ∈ Lp(1−δ) F ,P;H) in
probability; i.e., we have

P sup
t∈[0,T ]

|(un(t), φn(t)) − (u(t), φ(t))|H ≥ k → 0. (3.13)

Hence, it follows from the uniform integrability principle or Vitali’s convergence theorem
that

E sup
t∈[0,T ]

|(un(t), φn(t)) − (u(t), φ(t))|p(1−δ)

H
→ 0

as n → ∞, for every δ ∈ (0, 1), any deterministic time T > 0, and Eq. 3.11 is proven.

4 Galerkin Convergence inV

This section is devoted to the proof of our main result, Theorem 3.1. We begin by recalling
the existence result from [6].

Theorem 4.1 Let (un, φn) be the sequence of solutions of Eq. 2.29, and let (u, φ) be the
solution to the Eq. 2.18 with g1, g2, and (u0, φ0) as in Definition 2.2. Then there exists
a global, maximal strong solution {(u, φ), ξ}. More precisely, there exists an increasing
sequence of strictly positive stopping times {τk}k≥1 converging to ξ , for which P(ξ < ∞) =
0. Moreover, there exists an increasing sequence of measurable subsets { ι}ι≥1 with ι ↑
as ι → ∞ so that on any ι we have

lim
n→∞E 1 ι sup

t∈[0,τk ]
(un, φn) − (u, φ) 2

V
+ 2

τk

0
ν|A0(un − u)|2 + |A2

1(φn − φ)|2 ds = 0

(4.1)

for any τk .

Lemma 4.1 Let (u, φ) and (un, φn) be defined as in Definition 2.2, and as in Eqs. 2.29–
2.30, respectively. Let T > 0 be a fix deterministic time. Then, the sequence (un, φn)

converges in probability with respect to the V-norm to the solution (u, φ) of the problem
(1.1), i.e., for any ζ > 0 we have

P sup
t∈[0,T ]

(un(t), φn(t)) − (u(t), φ(t)) 2
V

≥ ζ → 0 as n → ∞. (4.2)

Proof Let δ > 0 and {τk}k≥1 be the stopping time as in Theorem 4.1. We denote by
τ̃k = τk ∧ T . Then there exists k0 such that P(τ̃k0 < T ) ≤ δ/4. Now, choose an ι such
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that P ι) > 1 − δ
2 , where ι is an in Theorem 4.1. From Eq. 4.1 in Theorem 4.1, we

have

lim
n→∞E 1 ι sup

t∈[0,τ̃k0 ]
(un(t), φn(t)) − (u(t), φ(t)) 2

V
= 0, (4.3)

from which we deduce the following convergence in probability:

lim
n→∞P 1 ι sup

t∈[0,τ̃k0 ]
(un(t), φn(t)) − (u(t), φ(t)) 2

V
≥ ζ = 0, for any ζ > 0. (4.4)

Hence, we have

P 1 ι sup
t∈[0,T ]

(un, φn) − (u, φ) 2
V

≥ ζ

= P sup
t∈[0,T ]

(un, φn) − (u, φ) 2
V

≥ ζ ∩ τ̃k0 < T ∩ {ω ∈ ι}

+P sup
t∈[0,T ]

(un, φn) − (u, φ) 2
V

≥ ζ ∩ τ̃k0 = T ∩ {ω ∈ ι}

≤ P(τ̃k0 < T ) + P 1 ι sup
t∈[0,τ̃k0 ]

(un, φn) − (u, φ) 2
V

≥ ζ .

(4.5)

So thanks to Eqs. 4.5 and 4.3, we have

P sup
t∈[0,T ]

(un, φn)(t) − (u, φ)(t) 2
V

≥ ζ

≤ P(τ̃k0 < T ) + P 1 ι sup
t∈[0,τ̃k0 ]

(un, φn)(t) − (u, φ)(t) 2
V

≥ ζ + P
c
ι )

≤ δ
4 + δ

4 + δ
2 = δ

(4.6)

for n sufficiently large, and the proof of Lemma 4.1 is completed.

We now give the proof of Theorem 3.2.
On the proof of Theorem 3.2, we will denote by c, a generic positive constant (possibly

depending on K f , κ,M, LV1 ,), which can vary even within the same line.

Proof From the infinite dimensional version of Itô’s lemma applied to the process u 2,
taking the inner product in L2(M) of Eq. 2.182 with 2A2

1φ, using Eq. 2.183 and adding the
resulting equalities, we derive an evolution system for the V-norm of (u, φ)

d (u, φ) 2
V

= −2[ν|A0u|2 + |A2
1φ|2]dt + 2 (g1(t, u), A0u) dt − 2 (B0(u, u), A0u) dt

g2(t, u) 2
L2(U,V1)

dt+2K(R0 1φ, φ),A0u) dt−2α A1f (φ), A2
1φ dt

−2 B1(u, φ),A2
1φ dt + 2

∞

j=1

g2(t, u)ej , A0u dβ
j
t .

(4.7)
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Also from the infinite dimensional version of Itô’s lemma and Eq. 4.7, we have

d ψ (u, φ) 2
V

+ 2ψ (u, φ) 2
V

[ν|A0u|2 + |A2
1φ|2]dt

= 2ψ (u, φ) 2
V

(g1(t, u), A0u) dt − 2ψ (u, φ) 2
V

(B0(u, u), A0u) dt

+ψ (u, φ) 2
V

g2(t, u) 2
L2(U,V1)

dt + 2Kψ (u, φ) 2
V

(R0 1φ, φ),A0u) dt

−2αψ (u, φ) 2
V

A1f (φ), A2
1φ dt − 2ψ (u, φ) 2

V
B1(u, φ),A2

1φ dt

+2ψ (u, φ) 2
V

∞

j=1

g2(t, u)ej , A0u dβ
j
t

+2ψ (u, φ) 2
V

∞

j=1

g2(t, u)ej , A0u
2
dt .

(4.8)
Thanks to Cauchy-Schwarz’s and Young’s inequalities in conjunction with Eq. 2.22, we
have

2ψ (u, φ) 2
V

|(g1(t, u), A0u)|
≤ 2ψ (u, φ) 2

V
|A0u||g1(t, u)|

≤ ν

4
ψ (u, φ) 2

V
|A0u|2 + cψ (u, φ) 2

V
|g1(t, u)|2

≤ ν

4
ψ (u, φ) 2

V
|A0u|2 + cψ (u, φ) 2

V
|g1(t, 0)|2

+cψ (u, φ) 2
V

(u, φ) 2
V

. (4.9)

Thanks to the Agmon inequality, the Young inequality and the fact that ψ (u, φ) 2
V

u 2 ≤ 1, we get

2ψ (u, φ) 2
V

|(B0(u, u),A0u)|
≤ cψ (u, φ) 2

V
|u|1/2 u A0u|3/2

≤ ν
4 ψ (u, φ) 2

V
|A0u|2 + cψ (u, φ) 2

V
|u|2 u 2 u 2

≤ ν
4 ψ (u, φ) 2

V
|A0u|2 + c|(u, φ)|2

H
(u, φ) 2

V
.

(4.10)

Note that

ψ (u, φ) 2
V

g2(t, u) 2
L2(U,V1)

≤ cψ (u, φ) 2
V

(u, φ) 2
V

g2(t, 0) 2
L2(U,V1)

.

Arguing similarly as in [6, Inequality (4.81)], we have

2Kψ (u, φ) 2
V

|(R0 1φ, φ),A0u)|
≤ ψ (u, φ) 2

V

ν
4 |A0u|2 + 4 |A2

1φ|2 + c φ 10.
(4.11)

Also, as in [6, Inequalities (4.82) and (4.83)], we have

2αψ (u, φ) 2
V

A1f (φ),A2
1φ

≤ 2αψ (u, φ) 2
V

f (φ)(A
1/2
1 φ)2, A2

1φ + 2αψ (u, φ) 2
V

f (φ)A1φ,A2
1φ

≤ 4ψ (u, φ) 2
V

|A2
1φ|2 + cψ (u, φ) 2

V
φ 6 φ 4κ+5 φ 8κ+10 + |A1φ|2 .

(4.12)
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We also note that

2ψ (u, φ) 2
V

B1(u, φ),A2
1φ≤ cψ (u, φ) 2

V
u 1/2|A0u|1/2 φ A2

1φ|
≤ ψ (u, φ) 2

V

ν
4 |A0u|2 + 2 |A2

1φ|2 + cψ (u, φ) 2
V

u 2 φ 4

≤ ψ (u, φ) 2
V

ν
4 |A0u|2 + 2 |A2

1φ|2 + c φ 4,

2 ψ (u, φ) 2
V

∞

j=1

g2(t, u)ej , A0u
2

≤ 2 ψ (u, φ) 2
V

u 2 g2(t, u) 2
L2(U,V1)≤ c ψ (u, φ) 2

V
u 2 g2(t, 0) 2

L2(U,V1)
+ c ψ (u, φ) 2

V
u 4

≤ cψ (u, φ) 2
V

g2(t, 0) 2
L2(U,V1)

+ c ψ (u, φ) 2
V

(u, φ) 4
V
,

(4.13)

and by the Burkholder-Davis-Gundy inequality, we have

2E sup
s∈[0,τ̃k]

s

0
ψ (u, φ) 2

V

∞

j=1

g2(r, u)ej , A0u dβ
j
r

≤ 6E

⎡
⎣ τ̃k

0
ψ (u, φ) 2

V

2 ∞

j=1

g2(s, u)ej , A0u
2
ds

⎤
⎦

1/2

≤ 6E
τ̃k

0
ψ (u, φ) 2

V

2
u 2 g2(s, u) 2

L2(U,V1)
ds

1/2

≤ cE
τ̃k

0
ψ (u, φ) 2

V

2
u 2 g2(s, 0) 2

L2(U,V1)
ds

1/2

+cE
τ̃k

0
ψ (u, φ) 2

V

2
u 4ds

1/2

= cE
τ̃k

0

1

(1 (u, φ) 2
V
)2

u 2 g2(s, 0) 2
L2(U,V1)

ds

1/2

+cE
τ̃k

0

1

(1 (u, φ) 2
V
)2

u 4ds

1/2

.

Furthermoe, owing to the Young inequality in conjunction with the fact that
1

(1 (u, φ) 2
V
)2

≤ 1 and
u 4

(1 (u, φ) 2
V
)2

≤ 1, we obtain

τ̃k

0

u 2 g2(s, 0) 2
L2(U,V1)

(1 (u, φ) 2
V
)2

ds ≤ c
τ̃k

0

(1 u 4) g2(s, 0) 2
L2(U,V1)

(1 (u, φ) 2
V
)2

ds

≤ c
τ̃k

0 g2(s, 0) 2
L2(U,V1)

ds,

and then

cE
τ̃k

0

u 2 g2(s, 0) 2
L2(U,V1)

(1 (u, φ) 2
V
)2

ds

1/2

+ cE
τ̃k

0
u 4

(1 (u, φ) 2
V
)2

ds

1/2

≤ cE
T

0 g2(s, 0) 2
L2(U,V1)

ds
1/2 + cT 1/2.
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Hence,

2E sup
s∈[0,τ̃k ]

s

0
ψ (u, φ) 2

V

∞

j=1

g2(r, u)ej , A0u dβ
j
r

≤ cE
T

0
g2(s, 0) 2

L2(U,V1)
ds

1/2

+ cT 1/2,

(4.14)

where τ̃k = τk ∧ T = min(τk, T ), and τk introduced in Theorem 4.1.
Now, we integrate with respect to time in Eq. 4.8 and then we take the supremum up to

the stopping time τ̃k = τk ∧ T to the corresponding inequality. We recall that the stopping
time τk has been introduced in Theorem 4.1. Denoting k = {ω ∈ : τ̃k = T }, we observe
that k ↑ as k → ∞ by Theorem 4.1. By taking the expectation on k and, suppressing
1

k
for simplicity of notation, using also the estimates (4.9)–(4.14), we obtain

E supt∈[0,τ̃k ] ψ (u, φ) 2
V

+ E
τ̃k

0 ψ (u, φ) 2
V

[ν|A0u|2 + |A2
1φ|2]ds

≤ E ψ (u0, φ0)
2
V

+ cE
T

0 |g1(t, 0)|2dt + cE
T

0 |(u, φ)|2
H

(u, φ) 2
V
dt + cT

+cE
T

0 g2(t, 0) 2
L2(U,V1)

dt + +cE
T

0 g2(s, 0) 2
L2(U,V1)

ds
1/2 + cT 1/2

+cE
T

0 φ 4 φ 6 φ 10 φ 4κ+5 φ 8κ+10 dt,

(4.15)
where we have also use the fact ψ (u, φ) 2

V
= 1

1 (u,φ) 2
V

≤ 1.

Note that by Eq. 3.12, we have

cE
T

0
|(u, φ)|2

H
(u, φ) 2

V
dt + cE

T

0
φ 4dt ≤ cZ4 + c (Z4) 1 + Z4(κ+1) + Z4

1
2 ,

cE
T

0
φ 6dt ≤ cZ6 + c (Z6)

2 1 + Z6(κ+1) + Z6
1
3 ,

cE
T

0
φ 10dt ≤ cZ10 + c (Z10)

4 1 + Z10(κ+1) + Z10
1
5 ,

cE
T

0
φ 4κ+5dt ≤ cZ(4κ+5) + c Z(4κ+5)

4κ+3
2 1 + Z(4κ+5)(κ+1) + Z(4κ+5)

2
(4κ+5) ,

cE
T

0
φ 8κ+10dt ≤ cZ(8κ+10) + c Z(8κ+10)

4κ+4 1 + Z(8κ+10)(κ+1) + Z(8κ+10)

1
4κ+5 .

(4.16)
From the estimates (4.15)-(4.16) and writing out 1

k
explicitly, we infer that

E 1
k

sup[0,τ̃k ] ψ (u, φ) 2
V

≤ E ψ (u0, φ0)
2
V

+ cE
T

0
|g1(t, 0)|2dt + cT

+cE
T

0
g2(t, 0) 2

L2(U,V1)
dt + cE

T

0
g2(s, 0) 2

L2(U,V1)
ds

1/2

+ cT 1/2

+cZ4 + c (Z4) 1 + Z4(κ+1) + Z4
1
2 + cZ6 + c (Z6)

2 1 + Z6(κ+1) + Z6
1
3

+cZ10 + c (Z10)
4 1 + Z10(κ+1) + Z10

1
5

+cZ(4κ+5) + c Z(4κ+5)

4κ+3
2 1 + Z(4κ+5)(κ+1) + Z(4κ+5)

2
(4κ+5)

+cZ(8κ+10) + c Z(8κ+10)
4κ+4 1 + Z(8κ+10)(κ+1) + Z(8κ+10)

1
4κ+5 .

(4.17)
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Letting k → ∞ in Eq. 4.17, using the monotone convergence theorem, we obtain

E sup
∈[0,T ]

ψ (u, φ) 2
V

≤ E ψ (u0, φ0)
2
V

+ cE
T

0
|g1(t, 0)|2dt + cT

+cE
T

0
g2(t, 0) 2

L2(U,V1)
dt + cE

T

0
g2(s, 0) 2

L2(U,V1)
ds

1/2

+ cT 1/2

+cZ4 + c (Z4) 1 + Z4(κ+1) + Z4
1
2 + cZ6 + c (Z6)

2 1 + Z6(κ+1) + Z 6
2

1
3

+cZ10 + c (Z10)
4 1 + Z10(κ+1) + Z10

1
5

+cZ(4κ+5) + c Z(4κ+5)

4κ+3
2 1 + Z(4κ+5)(κ+1) + Z(4κ+5)

2
(4κ+5)

+cZ(8κ+10) + c Z(8κ+10)
4κ+4 1 + Z(8κ+10)(κ+1) + Z(8κ+10)

1
4κ+5

≡ C(u0, φ0, g1, g2, T ).
(4.18)

which completes the proof of Theorem 3.2.

We now go back to the proof of Theorem 3.1. First we establish the following result.

Lemma 4.2 Let (un, φn) be the sequence of the Galerkin system (2.29) or (2.30). Then we
have

E sup
t∈[0,T ]

log 1 (un(t), φn(t))
2
V

≤ C1(u0, φ0, g1, g2, T ),

E sup
t∈[0,T ]

log 1 (un(t), φn(t)) − (u(t), φ(t)) 2
V

≤ C2(u0, φ0, g1, g2, T )

(4.19)

for all n ∈ N.

Proof The proof of Eq. 4.191 follows the same steps as the proof of Theorem 3.2 and it is
thus omitted.

Note that

log 1 (un, φn) − (u, φ) 2
V

≤ log 1 (un, φn)
2
V

2
1 (u, φ) 2

V

2

≤ 2 log 1 (un, φn)
2
V

+ 2 log 1 (u, φ) 2
V

.
(4.20)

Hence the inequality (4.19)2 follows from Eqs. 4.20, 4.19 1 and 3.2.

We can now give the proof of Theorem 3.1, which is the first stated main result of this
paper.

Proof Let δ ∈ (0, 1) be fix and let Kn = sup
[0,T ]

log (1 (un, φn) − (u, φ) 2
V
)

1−δ

. Note

that for any k > 0, we have

P (Kn ≥ k) = P sup
[0,T ]

log (1 (un, φn) − (u, φ) 2
V
) ≥ k

1 − δ

≤ P sup
[0,T ]

(un, φn) − (u, φ) 2
V

≥ k

1 − δ

(4.21)
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since log(1 + x) ≤ x, x ≥ 0. Hence, thanks to Eq. 4.19 2, 4.21 and 4.2, we infer that

P (Kn ≥ k) → 0 as n → ∞ (4.22)

which proves the convergence in probability of the the sequence {Kn}n.
Due to Eq. 4.192, we have

sup
n

E K
1

1−δ
n ≤ C2(u0, φ0, g1, g2, T ), (4.23)

which proves that the sequence {Kn} is uniformly integrable in L1 F ,P;R). Hence,
using de la Vallée-Poussin criterion for the uniform integrability (see e.g. [10]), we infer
that Kn → 0 in L1 F ,P;R) as n → ∞ and Theorem 3.1 is proven.
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