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Abstract
Let be a ball Banach function space on . Let be a Lipschitz function on the unit
sphere of , which is homogeneous of degree zero and has mean value zero, and let

be the convolutional singular integral operator with kernel . In this article,
under the assumption that the Hardy–Littlewood maximal operator is bounded on both

and its associated space, the authors prove that the commutator is compact on
if and only if CMO . To achieve this, the authors mainly employ three key

tools: some elaborate estimates, given in this article, on the norm of about the commuta-
tors and the characteristic functions of some measurable subsets, which are implied by the
assumed boundedness of on and its associated space as well as the geometry of ;
the complete John–Nirenberg inequality in obtained by Y. Sawano et al.; the generalized
Fréchet–Kolmogorov theorem on also established in this article. All these results have a
wide range of applications. Particularly, even when (the variable Lebesgue
space), (the mixed-norm Lebesgue space), (the Orlicz space),
and (the Orlicz-slice space or the generalized amalgam space), all these
results are new.
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1 Introduction

Let be a Lipschitz function on the unit sphere of , which is homogeneous of degree
zero and has mean value zero, namely,

for any 1 (1.1)

for any 0 and 1 (1.2)

and

1
0 (1.3)

here and thereafter, 1 1 denotes the unit sphere in and
the area measure on 1. To study the factorization theorem of the Hardy space, Coifman
et al. [24] initiated the study of the commutator , where

BMO and denotes the Calderón–Zygmund operator defined by setting, for any
suitable function and any ,

p. v.

lim
0 1

(1.4)

here and thereafter, 0 means 0 and 0. The commutator of this type
plays key roles in harmonic analysis (see, for instance, [4, 5, 15, 17, 34, 63, 69]), partial
differential equations (see, for instance, [16, 18, 75]), and quasiregular mappings (see, for
instance, [47]).

The first significant result in this direction was made by Coifman et al. [24], which
characterizes the boundedness of such type commutators on the Lebesgue space
with 1 , via the well-known space BMO . Recall that the space BMO ,
introduced by John and Nirenberg [51], is defined to be the set of all locally integrable
functions on such that

BMO sup
ball

1

where the supremum is taken over all balls , and 1 for any
given ball . Precisely, Coifman et al. [24] proved that, if a function BMO ,
then the commutator is bounded on for any given 1 , and also
that, if is bounded on for any Riesz transform , 1 , then
BMO . Moreover, Uchiyama [76] proved that is bounded on for any
given 1 if and only if BMO . Later, such boundedness characterizations
were also established on various function spaces: for instance, Di Fazio and Ragusa [30] on
Morrey spaces, Lu et al. [58] on weighted Lebesgue spaces, and Karlovich and Lerner [52]
on variable Lebesgue spaces.

As for the compactness characterization of commutators, in [76] Uchiyama first proved
that is compact on for any given 1 if and only if CMO ,
where CMO denotes the closure of infinitely differentiable functions with compact
support in BMO . This characterization of compactness was also extended to Morrey
spaces in [19], and to weighted Lebesgue spaces in [23, 37]. However, to the best of our
knowledge, for other known function spaces, such as mixed-norm Lebesgue spaces, variable
Lebesgue spaces, Orlicz spaces, and Orlicz-slice spaces (see, respectively, Sections 4.2, 4.3,
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4.5, and 4.6 below for their histories and definitions), the equivalent characterization of
the compactness of commutators corresponding to these aforementioned spaces are still
unknown so far. Therefore, it is natural to ask whether or not there exists a unified theory on
the equivalent characterization for the boundedness and the compactness of commutators
on all aforementioned function spaces. In this article, we give an affirmative answer to this
question on so-called ball Banach function spaces.

Recall that the ball (quasi-)Banach function space was introduced by Sawano et al. [71]
(see also Definition 2.1 below), which contains all aforementioned function spaces as spe-
cial cases. For more studies of ball Banach function spaces, we refer the reader to [14, 43,
68, 77–80, 83, 84]. Very recently, Chaffee and Cruz-Uribe [13], and Guo et al. [36] studied
the necessity of the boundedness of commutators on ball Banach function spaces. However,
the sufficiency of the boundedness of commutators on the ball Banach function space
and the equivalent characterization of their compactness on are still unknown.

In what follows, we always let be a ball Banach function space satisfying the
following additional assumption which, when it is used, is explicitly indicated in the context.

Assumption 1.1 The Hardy–Littlewood maximal operator [see Eq. 2.5 below for its
definition] is bounded on and ; here and thereafter, denotes the associate space of

(see Definition 2.3 below for its definition).

Motivated by the aforementioned results, in this article, we establish the following
equivalent characterizations of the boundedness and the compactness of commutators on .

Theorem 1.2 Let be a ball Banach function space satisfying Assumption 1.1, a homo-
geneous function of degree zero satisfying Eqs. 1.1, 1.2, and 1.3, as in Eq. 1.4, and

1
loc . Then

(i) is bounded on if and only if BMO ;
(ii) is compact on if and only if CMO .

Indeed, we prove Theorem 1.2 under much weaker assumptions on ; see Theorems
2.17 and 2.22 [and also Remark 2.23(ii)] below for the boundedness, as well as Theorems
3.1 and 3.2 (and also Remark 3.3) below for the compactness. To obtain these results, we
need to overcome the essential difficulty caused by the lack of the explicit expression of
the norm of , via mainly employing three key tools: some elaborate lower and upper
estimates, obtained in Propositions 3.14 and 3.16 below, on the norm of about the com-
mutators and the characteristic functions of some measurable subsets, which are implied
by the assumed boundedness of on and its associated space as well as the geome-
try of ; the complete John–Nirenberg inequality in obtained by Sawano et al. in [48];
the generalized Fréchet–Kolmogorov theorem on established in Theorem 3.6 below. All
these results have a wide range of applications, which not only recover several well-known
results but also yield some new ones. Particularly, even when (the vari-
able Lebesgue space), (the mixed-norm Lebesgue space),
(the Orlicz space), and (the Orlicz-slice space or the generalized amal-
gam space), all these results are new. It should be mentioned that, applying the necessity of
boundedness, obtained in Theorem 2.22 below, into six concrete examples of ball Banach
function spaces in Section 4, we obtain even better results than [13] and [36] for the neces-
sity of the boundedness of commutators. In addition, the equivalent characterization of the
compactness, obtained in Theorems 3.1 and 3.2 below, coincides with Guo et al. [37, The-
orems 1.4 and 1.5] about the convolutional singular integral operator on the weighted
Lebesgue space.
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To be precise, the remainder of this article is organized as follows.
In Section 2, we first show that is bounded on for any given BMO in

Theorem 2.17 via the extrapolation theorem. It should be pointed out that ball Banach func-
tion spaces are embedded into weighted Lebesgue spaces (see Lemma 2.12 below), which
guarantees that the Calderón–Zygmund commutator under consideration is well defined
on ball Banach function spaces (see Proposition 2.14 below). Observe that the extrapola-
tion theorem plays an essential role in establishing the boundedness of operators on ball
Banach function spaces, which is a bridge connecting the ball Banach function space and
the weighted Lebesgue space. Moreover, combining the technique of the local mean oscil-
lation as in [37, 56] and a fine inequality on the norm of (see Lemma 2.21 below), we
also show that, if is bounded on , then BMO in Theorem 2.22 below. As
a consequence, Theorem 1.2(i) is a direct corollary of Theorems 2.17 and 2.22.

Section 3 is devoted to Theorem 1.2(ii) which can be easily deduced from two more
general results: Theorem 3.1 below (the sufficiency) and Theorem 3.2 below (the neces-
sity). To prove these, we need to overcome some essential difficulties by borrowing some
basic ideas from the proof of the recent result on the weighted Lebesgue space given by
Guo et al. [37]; see also Uchiyama [76] for the corresponding one on the Lebesgue space,
and Chen et al. [19] for the corresponding one on the Morrey space. However, their cal-
culations are no longer completely feasible for the ball Banach function space because
they used the following three crucial properties of the norm under consideration, which
are not available for : the Lebesgue dominated convergence theorem, the translation
invariance, and the explicit expression of the norm. In the proof of Theorem 3.1, using a
skillful decomposition and the smooth truncated technique given by Clop and Cruz [23],
we successfully avoid the translation invariance as in Uchiyama [76] or Chen et al. [19].
Moreover, we establish a new criterion on the compactness of a set in the ball Banach func-
tion space (see Theorem 3.6 below), which generalizes the Fréchet–Kolmogorov theorem
in [12, 19, 23, 38] to the present setting. Indeed, via establishing a new Minkowski-type
inequality for the ball quasi-Banach function space (see Lemma 3.4 below), we drop the
assumption that has a absolutely continuous norm in [38, Theorem 3.1]. In the proof of
Theorem 3.2, since we do not have the aforementioned three key properties on the norm

, nearly all the corresponding calculations used in [19, 37, 76] are unworkable in
the present setting. To overcome these difficulties, we need to improve the method used in
[37]. Indeed, we first establish the lower estimate of commutators in Proposition 3.14 via
the aforementioned technique of the local mean oscillation; we then apply an equivalent
characterization of BMO via the ball Banach function space obtained in [48] (see also
Lemma 3.15 below) to establish the upper estimate of commutators (see Proposition 3.16
below); from Propositions 3.14 and 3.16, we finally deduce the desired necessity of the
equivalent characterization on the compactness of commutators.

In Section 4, we apply all these results obtained in Sections 2 and 3, respectively, to
(the Morrey space) or to (the weighted Lebesgue space), and

we find that, even for these well-known function spaces, some of our results also improve
the known results (see Remark 4.4 below for more details). Moreover, to the best of our
knowledge, when we apply all these results obtained in Sections 2 and 3, respectively, to

(the variable Lebesgue space), (the mixed-norm Lebesgue
space), (the Orlicz space), or (the Orlicz-slice space or the
generalized amalgam space), all these results are totally new.

Finally, we make some conventions on notation. Let 1 2 , 0 ,
and . We always denote by a positive constant which is independent of the
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main parameters, but it may vary from line to line. We also use to denote a positive
constant depending on the indicated parameters . The symbol means that

. If and , we then write . If and or ,
we then write or , rather than or . The
symbol for any denotes the largest integer not greater than . We use 0 to denote
the origin of and let 1 0 . If is a subset of , we denote by 1 its

characteristic function and by the set . Furthermore, for any 0 and any
ball in , with and 0 , we let .
Finally, for any 1 , we denote by its conjugate exponent, namely, 1 1 1.

2 Boundedness Characterization of Commutators on Ball Banach
Function Spaces

In this section, we first present some known facts on the ball quasi-Banach function space
in Section 2.1, and then establish the characterization of the boundedness on of

commutators in Section 2.2.

2.1 Ball Quasi-Banach Function Spaces

We now recall some preliminaries on ball quasi-Banach function spaces introduced in [71].
Denote by the symbol M the set of all measurable functions on . For any
and 0 , let and

and 0 . (2.1)

Definition 2.1 A quasi-Banach space M is called a ball quasi-Banach function
space if it satisfies

(i) 0 implies that 0 almost everywhere;
(ii) almost everywhere implies that ;

(iii) 0 almost everywhere implies that ;
(iv) implies that 1 , where is as in Eq. 2.1.

Moreover, a ball quasi-Banach function space is called a ball Banach function space if
the norm of satisfies the triangle inequality: for any ,

(2.2)

and, for any , there exists a positive constant , depending on , such that, for any
,

. (2.3)

Remark 2.2 (i) Observe that, in Definition 2.1, if we replace any ball by any bounded
measurable set , we obtain its another equivalent formulation.

(ii) Recall that a quasi-Banach space M is called a Banach function space if it
is a ball Banach function space and it satisfies Definition 2.1(iv) with ball replaced by
any measurable set of finite measure (see, for instance, [10, Chapter 1, Definitions 1.1
and 1.3]). It is easy to see that every Banach function space is a ball Banach function
space, and the converse is not necessary to be true. As was mentioned in [71, p. 9] and
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[78, Section 5], the family of ball Banach function spaces includes Morrey spaces,
mixed-norm Lebesgue spaces, variable Lebesgue spaces, weighted Lebesgue spaces,
and Orlicz-slice spaces, all of which are not necessary to be Banach function spaces.

The following notion of the associate space of a ball Banach function space can be found,
for instance, in [10, Chapter 1, Definitions 2.1 and 2.3].

Definition 2.3 For any ball Banach function space , the associate space (also called the
Köthe dual) is defined by setting

M (2.4)

where, for any M ,

sup
1

1

and is called the associate norm of .

Remark 2.4 By [71, Proposition 2.3], we know that, if is a ball Banach function space,
then its associate space is also a ball Banach function space.

The following lemma is just [85, Lemma 2.6].

Lemma 2.5 Let be a ball quasi-Banach function space satisfying the triangle inequality
as in Eq. 2.2. Then coincides with its second associate space . In other words, a
function belongs to if and only if it belongs to and, in that case,

.

The following Hölder inequality is a direct corollary of both Definition 2.1(i) and Eq. 2.4
(see [10, Theorem 2.4]).

Lemma 2.6 Let be a ball quasi-Banach function space satisfying the triangle inequality
as in Eq. 2.2, and its associate space. If and , then is integrable and

.

Also, recall the following notion of the convexity of ball quasi-Banach spaces, which is
a part of [71, Definition 2.6].

Definition 2.7 Let be a ball quasi-Banach function space and 0 . The -
convexification of is defined by setting M equipped
with the quasi-norm 1 .

In what follows, we denote by the symbol 1
loc the set of all locally integrable

functions on . The Hardy–Littlewood maximal operator is defined by setting, for any
1
loc and ,

sup
1

(2.5)

where the supremum is taken over all balls containing .
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For any 0 , the powered Hardy–Littlewood maximal operator is defined
by setting, for any 1

loc and ,

1
. (2.6)

The following lemma is a part of [85, Remark 2.19(i)].

Lemma 2.8 Let 0 and be a ball quasi-Banach function space. Assume that
there exists a positive constant such that, for any M ,

.

Then there exists a positive constant such that, for any ball and 1 ,

1 1 (2.7)

where the positive constant is independent of and .

Remark 2.9 From [71, Lemma 2.15(ii)], we deduce that, if is bounded on , then there
exists an 1 such that is bounded on , where is as in Eq. 2.6 with
replaced by .

2.2 Sufficiency and Necessity of the Boundedness of Commutators

In this subsection, we obtain the sufficiency and the necessity of the boundedness of
commutators, respectively, in Theorems 2.17 and 2.22 below.

First, recall the following notion of Muckenhoupt weights (see, for instance,
[33]).

Definition 2.10 An -weight , with 1 , is a locally integrable and
nonnegative function on satisfying that, when 1 ,

sup
1 1

[ ]
1

1

1

and, when 1,

1 sup
1 1

where is as in Eq. 2.1. Define 1 .

Definition 2.11 Let 0 and . The weighted Lebesgue space
is defined to be the set of all measurable functions on such that

1

.

By the proof of [25, Theorem 10.1], we have the following technical lemma, which plays
a vital role in the proof of Proposition 2.14 below.

Lemma 2.12 Let be a ball Banach function space satisfying Assumption 1.1, and 0
1 . Then

0

0 .
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Similarly to [25, Theorem 10.1], we have the following conclusion, whose proof is a
slight modification of the corresponding one of [25, Theorem 10.1]; we omit the details.

Lemma 2.13 Let be a ball Banach function space satisfying Assumption 1.1, and 0
1 . Let be the set of all pairs of nonnegative measurable functions such that,
for any given 0 ,

0
0 0 R

0

where the positive constant 0 0 R
is independent of , but depending on 0

and
0

. Then there exists a positive constant 0 such that, for any with
,

0 .

To study the boundedness of commutators in this article, we modify Lemma 2.13 as
follows.

Proposition 2.14 Let be a ball Banach function space satisfying Assumption 1.1, and
1 . Let be an operator satisfying, for any given and any ,

R

where
R

is a positive constant independent of , but depending on and
. Then there exists a positive constant such that, for any ,

. (2.8)

Proof Let be a ball quasi-Banach function space satisfying Assumption 1.1, and
1 . To show Eq. 2.8, let

max 1 0 .

Then, by the assumption on , we obtain, for any given and any
,

R

which, together with Lemma 2.13, further implies that, for any and
,

max 1 0 .

From this and Definition 2.1(iii), it follows that, for any ,

. (2.9)

By Lemma 2.12, we know that , which, combined with Eq. 2.9,
implies the desired boundedness and hence completes the proof of Proposition 2.14.

In order to introduce singular integral operators with homogeneous kernel, we now state
the following notion of the -Dini condition.
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Definition 2.15 A function 1 is said to satisfy the -Dini condition if
1

0
(2.10)

where, for any 0 1 ,

sup
1

.

Recall that the symbol 0 means that 0 and 0. Through this article,
assuming that satisfies Eqs. 1.2 and 1.3, and the -Dini condition, a linear operator

is called a singular integral operator with homogeneous kernel (see, for instance,
[58, p. 53, Corollary 2.1.1]) if, for any with 1 , and for any ,
Eq. 1.4 holds true. Let be a ball quasi-Banach function space satisfying Assumption 1.1.
By Lemma 2.12 and [31, Corollary 7.13], we know that, for any , exists
for almost every .

For any given 1
loc , the commutator is defined by setting, for any

bounded function with compact support, and for any ,

. (2.11)

To prove Theorem 2.17, we need the following weighted boundedness of the
commutator , which is a part of [58, Theorem 2.4.4].

Lemma 2.16 Let 1 , , and 1 satisfy with 1
1 1. Assume that BMO , 1 satisfies Eqs.1.2 and 1.3, and is a
singular integral operator with homogeneous kernel . Then there exists a positive constant

R
, depending on , , and , such that, for any ,

R BMO .

Then we immediately have the following sufficiency of the boundedness of commutators
on ball Banach function spaces.

Theorem 2.17 Let be a ball Banach function space satisfying Assumption 1.1. Let
1 . Assume that BMO , 1 satisfies Eqs. 1.2 and 1.3, and is a
singular integral operator with homogeneous kernel . Then there exists a positive constant

such that, for any ,

BMO .

Proof Using Lemma 2.16 and Proposition 2.14, we immediately complete the proof of
Theorem 2.17.

Remark 2.18 Let with 1 . Assume that 1 satisfies
Eqs. 1.1, 1.2, and 1.3. Then, in this case, Theorem 2.17 coincides with the classical con-
clusion in [24, Theorem 1]. Compared with the assumptions on in [24, Theorem 1], the
assumptions on in Theorem 2.17 are much weaker.

Now, we show the necessity of the boundedness of commutators. To this end, we need
three key lemmas, namely, Lemmas 2.19, 2.20, and 2.21, respectively.
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First, recall that, for any given measurable function , the non-increasing rearrangement
of is defined by setting, for any 0 ,

inf 0

for any given 1
loc and any given ball , the local mean oscillation of on

is defined by setting, for any 0 1 ,

inf [ 1 ] . (2.12)

The following characterization of BMO is a part of [37, Lemma 2.5]; see also [56,
Lemma 2.1].

Lemma 2.19 Let 0 1 2 . Then there exists a positive constant such that, for any
BMO ,

1
BMO sup

ball
BMO .

Moreover, the following geometrical lemma is just [37, Proposition 4.1] with cubes
replaced by balls.

Lemma 2.20 Let 0 1 and 1
loc . Let 1 satisfy that there

exists an open set 1 such that never vanishes and never changes sign on .
Then there exist an 0 0 and a 0 10 , depending only on and , such
that, for any given ball 0 0 with 0 and 0 0 , there exist an

1 and measurable sets 0 0 with 2 0 0 , 1 0 with

1 0 2 0 0 and 1
2 1 0 , and with 8 0 0

2

having the following properties:

(i) for any and , ;
(ii) and do not change sign on ;

(iii) for any , 0.

In addition, the following lemma shows that, for any ball , the converse of Lemma 2.6
also holds true with and replaced by 1 , which is a part of [49, Lemma 2.2 and Remark
2.3].

Lemma 2.21 Let X be a ball Banach function space such that is bounded on . Then
there exists a positive constant such that, for any ball ,

1
1 1 .

In what follows, for any operator mapping into itself, we use to denote
its operator norm. Also, it is natural to assume that, for any given 1 and

1
loc , and any bounded measurable set , 1 has the following

integral representation: for any ,

1 . (2.13)
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Theorem 2.22 Let be a ball Banach function space and 1
loc . Assume that

is bounded on . Let 1 satisfy that there exists an open set 1 such
that never vanishes and never changes sign on . If is bounded on and satisfies
Eq. 2.13, then BMO and there exists a positive constant , independent of , such
that

BMO .

Proof Let 0 1 2 . To prove this theorem, by Lemma 2.19, it suffices to show that
there exists a positive constant , independent of , such that, for any ball ,

. (2.14)

Let 1
loc and 0 0 with 0 and 0 0 . Let 0, 0, , , and

be as in Lemma 2.20. Then, by (i) and (iii) of Lemma 2.20, we conclude that

1

0
.

From this, the fact that 2 0 1 0 for any , Lemma 2.20(ii),

8
2, Eq. 2.13, and the observation , we deduce that

2 0 1 0

0

8 2 0 1 0

0
2

8 2 0 1 0

0
2

1

which, combined with Lemmas 2.6 and 2.21, Eq. 2.7, and the fact that is bounded
on , further implies that

8 2 0 1 0

0
2

1 1

1
1 0 1

1
1 1

where the implicit positive constants depend only on , 0, 0, and . This finishes the proof
of Eq. 2.14 and hence of Theorem 2.22.

Remark 2.23 (i) The necessity of the boundedness of commutators was also obtained
by Guo et al. [36, Theorem 2.1], under the assumption that there exists an open set

1 such that, for any 1, with constants and
satisfying 0 or 0, while, in Theorem 2.22, is assumed

to never vanish and never change sign on . Thus, Theorem 2.22 generalizes the
corresponding conclusion of [36, Theorem 2.1].
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(ii) It is easy to see that Theorem 1.2(i) is a direct corollary of Theorems 2.17 and 2.22.

3 Compactness Characterization of Commutators on Ball Banach
Function Spaces

In this section, applying Theorems 2.17 and 2.22, we further investigate the compactness of
the commutator on ball Banach function spaces.

In what follows, the space CMO is defined to be the closure in BMO of

c [the set of all infinitely differentiable functions on with compact support].
Recall that the Hardy–Littlewood operator is defined in Eq. 2.5, and the commutator

in Eq. 2.11.

Theorem 3.1 Let be a ball Banach function space satisfying Assumption 1.1,
1 satisfy Eqs. 1.2, 1.3, and 2.10, and be a singular integral operator

with homogeneous kernel . If CMO , then the commutator is compact
on .

Theorem 3.2 Let be a ball Banach function space satisfying Assumption 1.1, and
1
loc . Let 1 satisfy that there exists an open set 1 such that
never vanishes and never changes sign on . If is compact on and satisfies

Eq. 2.13, then CMO .

Remark 3.3 It is easy to see that the assumptions on in Theorems 3.1 and 3.2 are much
weaker than the Lipschitz condition which was also used in Uchiyama [76, Theorems 1 and
2], and hence Theorem 1.2(ii) is a direct corollary of Theorems 3.1 and 3.2.

The proofs of Theorems 3.1 and 3.2 are given, respectively, in Sections 3.1 and 3.2 below.

3.1 Proof of Theorem 3.1

To show Theorem 3.1, we need several key lemmas. The first one is the following
Minkowski-type inequality for ball Banach function spaces.

Lemma 3.4 Let be a ball Banach function space, a measurable subset of , and a
measurable function on . Then

sup .

Proof By Lemma 2.5 and the fact that is a ball Banach function space, we have

sup
1

. (3.1)
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From the Tonelli theorem and Lemma 2.6, it follows that, for any such that
1,

sup sup

sup

which, together with Eq. 3.1, then implies the desired inequality. This finishes the proof of
Lemma 3.4.

Definition 3.5 Let 0 , be a subset of the ball Banach function space , and
. Then is called an -net of if, for any , there exists a such that

. Moreover, if is an -net of and the cardinality of is finite, then
is called a finite -net of . Furthermore, is said to be totally bounded if, for any

0 , there exists a finite -net. In addition, is said to be relatively compact if the
closure in of is compact.

From the Hausdorff theorem (see, for instance, [81, p. 13, Theorem]), it follows that a
subset of a ball Banach function space is relatively compact if and only if is totally
bounded due to the completeness of .

Next, we give a sufficient condition for subsets of ball Banach function spaces to be
totally bounded, which is a generalization in of the well-known Fréchet–Kolmogorov
theorem in with 1 . In what follows, we use c to denote the set of
all continuous functions with compact support.

Theorem 3.6 Let be a ball Banach function space. Then a subset of is totally
bounded if the set satisfies the following three conditions:

(i) is bounded, namely,
sup

(ii) uniformly vanishes at infinity, namely, for any given 0 , there exists a
positive constant such that, for any ,

1

(iii) is uniformly equicontinuous, namely, for any given 0 , there exists a
positive constant such that, for any and with 0 ,

.

Conversely, assume that satisfies the following additional assumptions that c is
dense in and, for any and ,

. (3.2)

If a subset of is totally bounded, then satisfies (i) through (iii).

Proof We first show the first part of this theorem. To achieve this, let satisfy (i),
(ii), and (iii). We now prove that is totally bounded. To this end, by the fact that is a
Banach space, it suffices to find a finite -net of for any given 0 .
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For any , let 2 2 . From (ii), we deduce that there exists an
such that, for any ,

1 3.

Therefore, to find a finite -net of , it suffices to find a finite 2 3 -net of 1 .
To achieve this, we use the following finite dimensional method similar to that used in [23,
38].

First, by (iii), we conclude that there exists an such that, for any and
,

2 3. (3.3)

Observe that, for any , there exists a unique dyadic cube 1 2

1 2 which has the side length 2 and contains for some integers 1. Let
. Moreover, for any and , let

1

1
if

0 if .

By Eq. 2.3, we know that is well defined, namely, for any given and any ,
1 .

Now, we estimate 1 1 for any given . To this end, notice that,
for any ,

1

1
1

1
1

1
1 .

From this, we deduce that, for any ,

1 2 1

and hence, by Lemma 3.4 and Eq. 3.3, we have

1 1

1

2 1

2 sup

2 sup 3. (3.4)
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This is the desired estimate.
In addition, it is easy to see that 1 is a bounded subset of a finite dimen-

sional Banach space, which implies that 1 has a finite 3 -net. This,
together with Eq. 3.4, shows that there exists a finite 2 3 -net of 1 , which
completes the proof of the first part of this theorem.

Now, we show the second part of this theorem. Let be a totally bounded set of .
Then, by the definition of totally bounded sets, we easily know that (i) holds true.

Next, for any given 0 , let 1 be a finite 3 -net of , and choose
for any 1 . By the additional assumption that c is dense in ,

we may assume that also belongs to c for any 1 , which implies that
there exists a positive constant such that, for any 1 ,

1 0.

Thus, for any given 1 , if , then 3 and hence

1

1 1

1 3 .

This shows that (ii) holds true.
Finally, for any given 1 , by c , we conclude that there exists a

positive constant such that, for any with ,

3. (3.5)

Moreover, for any given , there exists a c with some 1
such that 3, which, combined with Eqs. 3.2 and 3.5, further implies that,
for any with ,

.

This shows that (iii) holds true, which completes the proof of the second part of this theorem
and hence of Theorem 3.6.

Remark 3.7 (i) In the second part of Theorem 3.6, the additional assumption Eq. 3.2 is
reasonable because, even when is the weighted Lebesgue space, if , then

may not be in even when is small.
(ii) If has an absolutely continuous quasi-norm, then c is dense in [see Propo-

sition 3.8 below]. Recall that a ball quasi-Banach function space is said to have
an absolutely continuous quasi-norm if, for any and any sequence of measur-
able sets, , satisfying that 1 0 almost everywhere as ,

1 0 as .

Proposition 3.8 Let be a ball quasi-Banach function space having an absolutely
continuous quasi-norm. Then c is dense in .

Proof Without loss of generality, we may let be a non-negative measurable function
on . Then there exists an increasing sequence of non-negative simple functions, ,
which converges pointwise to as . From this and [10, p. 16, Proposition 3.6], it
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follows that, for any given 0 , there exists a simple function 1 1
such that

where, for any 1 , is a measurable set and is a positive constant. Fur-
thermore, by the inner regularity of the Lebesgue measure and [10, p. 16, Proposition 3.6],
we know that there exists a simple function 1 1 such that

where, for any 1 , is a compact set, which, together with the outer
regularity of the Lebesgue measure and [10, p. 16, Proposition 3.6], further implies that
there exists a simple function 1 1 such that

where, for any 1 , is a bounded open set. Then, using the Urysohn
lemma, we obtain 0 c satisfying that 0 0 and hence

0 .

By the above estimates, we conclude that 0 . This finishes the proof of
Proposition 3.8.

Let 1 satisfy Eqs. 1.2 and 1.3, and the -Dini condition, and be
a singular integral operator with homogeneous kernel . To show Theorem 3.1, we first
establish the boundedness of the maximal operator of a family of truncated transforms

0 defined as follows. For any given 0 and for any and ,
let

.

The maximal operator is defined by setting, for any and ,

sup
0

sup
0

. (3.6)

We point out that Proposition 3.10 below ensures that, for any , in Eq. 3.6 is
well defined.

Recall that the following weighted boundedness of the maximal operator is
a part of [58, Theorem 2.1.8].

Lemma 3.9 Let 1 , , and 1 satisfy Eqs. 1.2 and 1.3,
and the -Dini condition. Assume that is a singular integral operator with homo-
geneous kernel . Then there exists a positive constant

R
such that, for any

,

R
.

As an immediate consequence of Lemma 3.9, we have the following conclusion.
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Proposition 3.10 Let be a ball Banach function space satisfying Assumption 1.1,
1 satisfy Eqs. 1.2, 1.3, and 2.10, and be the maximal operator as in Eq. 3.6.

Then there exists a positive constant such that, for any ,

(3.7)

and, for any and almost every ,

lim
0 1

. (3.8)

Proof Using Lemma 3.9 and Proposition 2.14, we immediately obtain Eq. 3.7. Moreover,
from Lemma 2.12, we deduce that for any 1 . By this,
Lemma 3.9 and [31, Theorem 2.2], we know that, for any and almost every ,

lim
0 1

and hence Eq. 3.8 holds true. This finishes the proof of Proposition 3.10.

Next, we recall the following smooth truncated technique as in [23] (see also [55]). Let
0 satisfy

0 1 and
1 0 1 2

0 1 .

Let 1 satisfy Eqs.1.2 and 1.3, and the -Dini condition. For any 0
and any , define 1 . Let be a ball Banach
function space satisfying Assumption 1.1. By Lemma 2.12 and [33, Lemma 7.4.5], we know
that, for any , 0 , and ,

.

Remark 3.11 Let 1 satisfy Eqs. 1.2, 1.3, and 2.10. Then, for any given
0 , satisfies the following smoothness condition: there exists a positive constant

such that, for any with 2,

1 4
1

. (3.9)

Indeed, by Eq. 1.2, we conclude that, for any with 2,

4
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From this, , the mean value theorem, and the definition of , it follows that,
for any with 2,

1

1 1

1 1
3 2

1 4
1

1
1 1

3 2

1 4
1

where the implicit positive constants are independent of , , , and .

Lemma 3.12 Let c , be a ball Banach function space, and 1

satisfy Eqs. 1.2, 1.3, and 2.10. Then there exists a positive constant such that, for any
0 , , and ,

.

Moreover, if is bounded on , then

lim
0

0.

Proof Let . For any , by the mean value theorem and Eq. 3.8, we have

lim
0 1

0 2 1 2
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0
2 2 1

2

2
0

2

.

Moreover, if is bounded on , then

which implies that lim 0 0 and hence completes the proof
of Lemma 3.12.

Proof of Theorem 3.1 Let CMO . By the definition of CMO , we know that,
for any given 0 , there exists a c such that BMO .
Then, by the boundedness of on (see Theorem 2.17), we obtain, for any
given 0 and for any ,

BMO
.

From this, Lemma 3.12, and the fact that the limit of compact operators is also a compact
operator, it follows that, to prove Theorem 3.1, it suffices to show that, for any c

and any 0 small enough, is a compact operator on . To this end, by the
definition of compact operators, it suffices to prove that, for any bounded subset ,

is relatively compact. To achieve this, from Theorem 3.6, we deduce that it suffices to show
that satisfies the conditions (i) through (iii) of Theorem 3.6 for any given

c and 0 small enough.

By Theorem 2.17 and Lemma 3.12, we conclude that is bounded on for any

given 0 , which implies that satisfies the condition (i) of Theorem 3.6.
Next, since c , it follows that there exists a positive constant 0 such that

supp 0 0 . Let 2 0 . Then, for any 0 0 and with
, we have . Moreover, by this, 1 , and Lemma 2.6,

we conclude that, for any and with ,

0 0

1
1 0 0

1
.
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From this and Lemma 2.8 with replaced by 1 in Remark 2.9, we deduce that

1

0

1
1 2 2 1

0

1 2 1

2

0

2 1

2
0

1

2 1 1

1
1 1

.

Therefore, the condition (ii) of Theorem 3.6 holds true for .

It remains to prove that also satisfies the condition (iii) of Theorem 3.6. For
any , 0 , and , we have

[ ]

L1 L2 . (3.10)

We first estimate L1 . Observe that, by the mean value theorem and the definition of ,

L1
2

2

2

where the implicit positive constants are independent of , , and . From this, the
boundedness of on , and Proposition 3.10, we deduce that

L1 . (3.11)

Now, we estimate L2 . Observe that, for any with 4 and
8, we have 1 2 and 1 2, which implies that

0 and hence

0 . (3.12)
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Besides, for any with 4 and 8, we have 2.
From this, Eqs. 3.9 and 3.12, we deduce that, for any given with 8,

L2
4

1

4

4

0

2
1

2 4 2 1
4

0

2
2 4

2 4 2 1
4

0
2 4

2

2 1

1

0

32

32

0

and hence

L2

32

0
. (3.13)

Combining Eqs. 3.10, 3.11, and 3.13, and the -Dini condition, we have

lim
0

0

which implies the condition (iii) of Theorem 3.6. Thus, is a compact operator for
any given c and 0 . This finishes the proof of Theorem 3.1.

3.2 Proof of Theorem 3.2

We begin with recalling the following equivalent characterization of CMO in terms of
the local mean oscillation, which is just [37, Theorem 3.3].

Lemma 3.13 Let BMO and 0 1 2 . Then CMO if and only if
satisfies the following three conditions:

(i) lim 0 sup 0;
(ii) lim sup 0;

(iii) lim sup 0 0,

where the local mean oscillation is as in Eq. 2.12.

To prove Theorem 3.2, we establish the lower and the upper estimates of commutators
on , respectively, in Propositions 3.14 and 3.16 below.
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Proposition 3.14 Let 1
loc , 0 1 , and be a ball Banach function space.

Assume that is bounded on and 1 satisfies that there exists an open set
1 such that never vanishes and never changes sign on . Let 0 0 , 0,

0, , and be as in Lemma 2.20, and satisfy Eq. 2.13. Then there exists a positive
constant 0 0 , depending only on , 0, 0, and , such that, for any measurable set

with 8 0 0 ,

1 0 0 1 1 .

Proof Let 1
loc , 0 1 , and 0 0 with 0 and 0 0 ;

let 0, 0, , , and be as in Lemma 2.20; and let be a measurable set in with

8 0 0 . Then, by (i) and (iii) of Lemma 2.20, we conclude that

0 0

1

0
.

From this, the fact that 2 0 1 0 for any , Lemma 2.20(ii), the
observations

8
0 0

2

8
0 0

0 0

2

16
0 0

2

as well as , and Eq. 2.13, we deduce that

0 0

2 0 1 0

0

16 2 0 1 0

0 0 0
2

1

0 0
1

which, combined with Lemma 2.6, 4 0 0 0 , 0 , and Lemma 2.21,
further implies that

0 0 1
1

0 0
1 1 1

14 0 0 0 1 0 0

0 0
1 1

1 1 .

This finishes the proof of Proposition 3.14.

To establish the upper estimate of commutators, we need the following equivalent BMO -
norm characterization on ball Banach function spaces, namely, Lemma 3.15 below, which
is just [48, Theorems 1.2] and an essential tool needed in this article.

666



Compactness Characterizations of Commutators on Ball Banach...

Lemma 3.15 Let X be a ball Banach function space such that is bounded on and, for
any 1

loc ,

BMO sup
1

1
1

where the supremum is taken over all balls . Then there exists a positive constant
such that, for any BMO ,

1
BMO BMO BMO .

Next, we give the upper estimate of commutators on as follows.

Proposition 3.16 Let BMO and be a ball Banach function space. Assume that
is bounded on and , and 1 satisfies that there exists an open set

1 such that never vanishes and never changes sign on . Let 0 0 and
1 0 be as in Lemma 2.20, and satisfy Eq. 2.13. Then there exist positive

constants , 0, and such that, for any 0 with 0,

1 1
0 2 1

0 0 2 0
2 BMO 1

where the positive constants and are independent of , as well as 0 0 , and 0 is
a large constant depending only on 0 in Lemma 2.20.

Proof Without loss of generality, we may assume that BMO 1. Let
BMO and 0 0 with 0 and 0 0 ; let 0, 0, , , and

1 0 be as in Lemma 2.20; and let 0 be a positive constant such that 2 0 4 0 .
Then, for any given positive constant 0 and for any 0 2 1

0 0 2 0
and 1 0 , we have 2 0. By this, Eq. 2.13, and Lemma 2.6, we conclude
that, for any 0 2 1

0 0 2 0 ,

1

1

1 0 1 0 1

1 0 1

1 0 1

1

2 0
1 0 1 1

1

2 0
1 1 0 1

H1 H2 (3.14)

where

H1
1

2 0
1 0 1 1

and

H2
1

2 0
1 1 0 1 .
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Observe that 1 2 0 0. Thus, for any 0 2 1
0 , we have

1 0 0 1 2 1
0 2 0 3 2 0

which implies that

0 2 1
0 1 2 2

0 . (3.15)

Moreover, by BMO 1, it is easy to see that

1 0 2 2
1 0

2 2 .

From this, Eqs. 3.14 and 3.15, and Lemmas 3.15, we deduce that

H11 0 2 1
0 0 2 0

2 0 1 1 1 0 1
0 2 1

0 0 2 0

2 0 1 1 1 0 1
1 2 2

0

2 0 1 1

1 2 2
0

1
1 2 2

0
1

1 2 2
0

2 0 1 1 1
1 2 2

0

which, combined with Lemma 2.8 with replaced by 1 in Remark 2.9, the con-
clusion 1 0 of Lemma 2.20, and Lemma 2.21 with replaced by 1 0 ,
further implies that

H11 0 2 1
0 0 2 0

2 1 1 1 1 1 0 1 1 0 0

2 1 1 1 . (3.16)

Similarly, by Eq. 3.14, the fact 1 0 again, and Lemmas 2.5, 3.15, 2.8, and 2.21,
we conclude that

H21 0 2 1
0 0 2 0

2 0 1 1 0 1 1
0 2 1

0 0 2 0

2 0 1 1 0 1 1 0 1
1 2 0

2 1 1 1 1 1 0 1 1 0 0

2 1 1 1 . (3.17)

Combining Eqs. 3.14, 3.16, and 3.17, and letting 1 1 , we then complete the proof
of Proposition 3.16.

Proof of Theorem 3.2 By Theorem 2.22, we conclude that BMO and then, with-
out loss of generality, we may assume that BMO 1. To show CMO , we
use a contradiction argument via Lemma 3.13. Now, observe that, if CMO , then
does not satisfy at least one of (i), (ii), and (iii) of Lemma 3.13. To finish the proof of this
theorem, we only need to show that, if does not satisfy one of (i), (ii), and (iii) of Lemma
3.13, then is not compact on . We prove this by three cases on as follows.
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Case i) Suppose that does not satisfy Lemma 3.13(i). In this case, there exist a constant
0 0 1 and a sequence of balls, with 0 as , such that, for any

,

0 (3.18)

where 0 1 2 and is as in Eq. 2.12 with and replaced, respectively, by
and . For any given ball 0 0 , let and be the sets associated with in

Lemma 2.20,
1 11

and 2 0 0 0 as in Proposition 3.14. Then, by Proposition 3.14, we conclude that,
for any measurable set with 8 ,

1 2 0 . (3.19)

For such chosen 0 and 0, by Proposition 3.16, we know that there exists a positive constant
0 such that

1
0 2 0 0

0

1
0 2 0 1

0 0 2 0 0 0 0. (3.20)

Take a subsequence of balls , still denoted by , such that, for any ,

1
min

2

64
2 2 0 .

Let 1
1 2 for any and 2. Then it is easy to see that, for any

and 2,

1
1

2

2 0 and
8

1 .

From this and the monotonicity of , we deduce that, for any integers and with
2,

2 0 and
8

1
8

. (3.21)

Now, for any , let and be the sets associated with as in Lemma 2.20 with
replaced by , and

1 1 1 .

Then, for any integers and with 2, by Eqs. 3.19, 3.18, 3.21, and 3.20, we
conclude that

1 2 0 2 0 0

and
1 1 2 0 0 0

which further implies that

1

1 1 0 0.
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Therefore, is not relatively compact in , which leads to a contradiction
with the compactness of on . This shows that satisfies Lemma 3.13(i), which is
the desired conclusion.

Case ii) Suppose that dose not satisfy Lemma 3.13(ii). In this case, similarly to above
Case i), there exist a 0 0 1 and a sequence of balls such that, for any ,

0 and
1

min
2

64
2 2 0

where 0 and 0 are as in Case i) such that Eqs. 3.19 and 3.20 hold true. For any , let
, , and be as in Case i), and 1

1 2
1 for any 2. Then it is

easy to see that, for any integers and with 2 ,

2 0
1 and

8
.

Using a method similar to that used in Case i), we conclude that

0 0

and hence is not relatively compact in , which is a contradiction. This
shows that satisfies Lemma 3.13(ii), which is also the desired conclusion.

Case iii) Suppose that does not satisfy Lemma 3.13(iii). In this case, there exist a
0 0 1 and a sequence of balls such that, for any ,

0. (3.22)

From this and Cases i) and ii), we deduce that there exist a constant 1 0 with 0
as in Lemma 2.20, and a subsequence of balls , still denoted by , such that

1

and
2 1 2 1 .

For any , let , , , and 0 be as in Case i). Notice that, for any positive integers
and ,

2 0 2 1 2 1 .

By this, Proposition 3.14 with , and Eq. 3.22, we conclude that, for any positive
integers and ,

1 2 0 1

2 0 2 0 0. (3.23)

Moreover, from Proposition 3.16, we deduce that, for any positive integers and ,

1 2 0 1 2 0 0 0. (3.24)

Combining Eqs. 3.23 and 3.24, we obtain

1 2 0

1 2 0 1 2 0 0 0

and hence is not relatively compact in , which is a contradiction. This
shows that satisfies Lemma 3.13(iii), which completes the proof of Theorem 3.2.
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4 Applications

In this section, we apply Theorems 2.17, 2.22, 3.1, and 3.2, respectively, to six con-
crete examples of ball Banach function spaces, namely, Morrey spaces (see Section 4.1
below), mixed-norm Lebesgue spaces (see Section 4.2 below), variable Lebesgue spaces
(see Section 4.3 below), weighted Lebesgue spaces (see Section 4.4 below), Orlicz spaces
(see Section 4.5 below), and Orlicz-slice spaces (see Section 4.6 below). Observe that,
among these six examples, only variable Lebesgue spaces and Orlicz spaces are Banach
function spaces as in Remark 2.2(ii), while the other four examples are ball Banach function
spaces, which are not necessary to be Banach function spaces.

4.1 Morrey Spaces

Recall that, due to the applications in elliptic partial differential equations, the Morrey space
with 0 was introduced by Morrey [60] in 1938. In recent decades,

there exists an increasing interest in applications of Morrey spaces to various areas of anal-
ysis such as partial differential equations, potential theory, and harmonic analysis; see, for
instance, [1, 2, 21, 50, 72–74, 82].

Definition 4.1 Let 0 . The Morrey space is defined to be the set of
all measurable functions on such that

sup 1 1

where is as in Eq. 2.1 (the set of all balls of ).

Remark 4.2 Observe that, as was pointed out in [71, p. 86], may not be a Banach
function space, but it is a ball Banach function space as in Definition 2.1.

Let 1 . From [21, Theorem 1], it follows that the Hardy–Littlewood maxi-
mal operator is bounded on . Recall that the associate space of the Morrey space
is the block space (see, for instance, [70, Theorem 4.1]) and is bounded on block spaces
(see, for instance, [20, Theorem 3.1] and [39, Lemma 5.7]). Using these and Definition 2.7,
we can easily show that is bounded on , where . Thus, all the assump-
tions of the main theorems in Sections 2 and 3 are satisfied. Using Theorems 2.17, 2.22, 3.1,
and 3.2, we obtain the following characterization of the boundedness and the compactness
of commutators on Morrey spaces, respectively, via BMO and CMO .

Theorem 4.3 Let 1 . Then Theorems 2.17, 2.22, 3.1, and 3.2 hold true with
replaced by .

Remark 4.4 (i) The boundedness of commutators on Morrey spaces was first obtained
by Di Fazio and Ragusa [30, Theorem 1]. Indeed, Di Fazio and Ragusa [30] proved
Theorem 4.3 under the assumption that Lip 1 satisfies Eqs. 1.2 and 1.3,
which is a spacial case of Theorem 4.3.

(ii) Let 1 . Theorem 3.1 with replaced by was obtained by Chen
et al. [19, Theorem 1.1]. On the other hand, Chen et al. [19, Theorem 1.2] showed the
necessity under the assumption that Lip 1 satisfies Eqs. 1.2 and 1.3, which
is stronger than Theorem 4.3.
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4.2 Mixed-norm Lebesgue Spaces

The mixed-norm Lebesgue space was studied by Benedek and Panzone [9] in 1961,
which can be traced back to Hörmander [42]. Later on, in 1970, Lizorkin [57] further devel-
oped both the theory of multipliers of Fourier integrals and estimates of convolutions in the
mixed-norm Lebesgue spaces. Particularly, in order to meet the requirements arising in the
study of the boundedness of operators, partial differential equations, and some other analy-
sis subjects, the real-variable theory of mixed-norm function spaces, including mixed-norm
Morrey spaces, mixed-norm Hardy spaces, mixed-norm Besov spaces, and mixed-norm
Triebel–Lizorkin spaces, has rapidly been developed in recent years (see, for instance, [22,
32, 44–46, 64, 65]).

Definition 4.5 Let 1 0 . The mixed-norm Lebesgue space
is defined to be the set of all measurable functions on such that

1
1

1

2
1

1

with the usual modifications made when for some 1 .

In this subsection, for any 1 0 , we always let
min 1 and max 1 .

Let 1 . Then is bounded on (see, for instance, [44, Lemma 3.5]).
Applying this and the dual theorem (see, for instance, [9, Theorem 1.a]), we can easily show
that is bounded on , where . Thus, all the assumptions of the main the-
orems in Sections 2 and 3 are satisfied. Using Theorems 2.17, 2.22, 3.1, and 3.2, we obtain
the following characterization of the boundedness and the compactness of commutators on
mixed-norm Lebesgue spaces.

Theorem 4.6 Let 1 1 . Then Theorems 2.17, 2.22, 3.1, and 3.2
hold true with replaced by .

Remark 4.7 To the best of our knowledge, Theorem 4.6 is totally new.

4.3 Variable Lebesgue Spaces

Let 0 be a measurable function. Then the variable Lebesgue space
is defined to be the set of all measurable functions on such that

inf 0 1 .

We refer the reader to [26, 28, 54, 61, 62] for more details on variable Lebesgue spaces, and
[27] for the study on variable Hardy spaces.

For any measurable function 0 , in this subsection, we let

ess inf and ess sup .

If 1 , then, similarly to the proof of [29, Theorem 3.2.13], we know that
is a Banach function space and hence a ball Banach function space.
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A measurable function 0 is said to be globally log-Hölder continuous
if there exist a and a positive constant such that, for any ,

1

log 1

and
1

log
.

Let 0 be a globally log-Hölder continuous function satisfying
1 . The boundedness of the Hardy–Littlewood maximal operator on vari-
able Lebesgue spaces was obtained in [29, Theorem 4.3.8]; see also [26, Theorem 3.16].
Furthermore, from this and the dual theorem (see, for instance, [26, Theorem 2.80]), we
deduce that is bounded on , where . Thus, all the assumptions of
the main theorems in Sections 2 and 3 are satisfied. Using Theorems 2.17, 2.22, 3.1, and
3.2, we obtain the following characterization of the boundedness and the compactness of
commutators on variable Lebesgue spaces.

Theorem 4.8 Let 0 be a globally log-Hölder continuous function
satisfying 1 . Then Theorems 2.17, 2.22, 3.1, and 3.2 hold true with
replaced by .

Remark 4.9 The boundedness characterization of commutators on variable Lebesgue spaces
was first studied by Karlovich and Lerner [52, Theorem 1.1]; meanwhile, they pointed out
in [52, Remark 4.3] that the corresponding conclusion also holds true in Banach function
spaces. Moreover, Guo et al. [36, Theorem 2.1] proved a generalization for the necessity part
in ball Banach function spaces, based on a weaker assumption than [52, Theorem 1.1(b)].
Furthermore, Theorem 2.22 generalizes the corresponding conclusion of [36, Theorem 2.1];
see Remark 2.23(i). As for the compactness characterization, to the best of our knowledge,
the corresponding conclusions of Theorem 4.8 are totally new.

4.4 Weighted Lebesgue Spaces

It is worth pointing out that a weighted Lebesgue space with an -weight may not
be a Banach function space; see [71, Section 7.1]. From [3, Theorem 3.1(b)], it follows that,
for any 1 ,

is bounded on if and only if . (4.1)

Therefore, satisfies Assumption 2.8 for any given 1 and .
Moreover, from [29, Theorem 2.7.4], we deduce that, when 1 and ,

1

where denotes the associated space of as in Eq. 2.4 with .
By this, Eq. 4.1, and the observation that

if and only if 1

we conclude that is bounded on . Thus, all the assumptions of the main
theorems in Sections 2 and 3 are satisfied. Using Theorems 2.17, 2.22, 3.1, and 3.2, we
immediately obtain the following characterization of the boundedness and the compactness
of commutators on weighted Lebesgue spaces.
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Theorem 4.10 Let 1 and . Then Theorems 2.17, 2.22, 3.1, and 3.2
hold true with replaced by .

Remark 4.11 The boundedness characterization of Theorem 4.10 was obtained in
[58, p. 129, Theorem 2.4.3], [35, Theorem 1.3], and [56, Theorem 1.1] under weaker
assumptions on both the kernel of the operator under consideration and the weight under
consideration. The compactness characterization of Theorem 4.10 coincides with that of
[37, Theorems 1.4 and 1.5].

4.5 Orlicz Spaces

Birnbaum and Orlicz [11] (see also Orlicz [66]) introduced the Orlicz space which is another
generalization of . Since then, Orlicz spaces have been well developed and widely
used in harmonic analysis, partial differential equations, potential theory, probability, and
some other fields of analysis; see, for instance, [6, 59, 67] and their references.

First, we recall the notions of both Orlicz functions and Orlicz spaces.

Definition 4.12 A function 0 0 is called an Orlicz function if it is non-
decreasing and satisfies 0 0, 0 whenever 0 , and lim

.

An Orlicz function as in Definition 4.12 is said to be of lower (resp., upper) type
with if there exists a positive constant , depending on , such that, for any

0 and 0 1 [resp., 1 ],

.

A function 0 0 is said to be of positive lower (resp., upper) type if it is
of lower (resp., upper) type for some 0 .

Definition 4.13 Let be an Orlicz function with positive lower type and positive upper
type . The Orlicz space is defined to be the set of all measurable functions on

such that

inf 0 1 .

It is well known that, if , 1 , then the dual space of is ,
where denotes the complementary function defined by setting

sup 0

for any 0 (see [83, Definition 2.14]) of . Moreover, is a Banach function
space and hence a ball Banach function space. Furthermore, is bounded on
and . These basic properties can be found in, for instance, [71, Subsection 7.6].
Thus, all the assumptions of the main theorems in Sections 2 and 3 are satisfied. Using
Theorems 2.17, 2.22, 3.1, and 3.2, we immediately obtain the following characterization of
the boundedness and the compactness of commutators on Orlicz spaces.

Theorem 4.14 Let 1 and be an Orlicz function with positive lower type
and positive upper type . Then Theorems 2.17, 2.22, 3.1, and 3.2 hold true with

replaced by .
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Remark 4.15 To the best of our knowledge, Theorem 4.14 is totally new.

4.6 Orlicz-slice Spaces

Now, we recall the notion of Orlicz-slice spaces.

Definition 4.16 Let 0 and be an Orlicz function with positive lower type
and positive upper type . The Orlicz-slice space is defined to be the set of all
measurable functions on such that

1

1

1

.

Remark 4.17 By [83, Lemma 2.28], we know that the Orlicz-slice space is a
ball Banach function space, but it may not be a Banach function space (see, for instance,
[85, Remark 7.41(i)]).

The Orlicz-slice space was introduced by Zhang et al. [83], which is a generalization of
slice spaces proposed by Auscher and Mourgoglou [7, 8] and Wiener amalgam spaces in
[40, 41, 53]. Let 0 1 , and be an Orlicz function with positive lower
type 1 and positive upper type 1 . Then is bounded on
with the implicit positive constant independent of (see [83, Proposition 2.22]). Besides,
from [83, Theorem 2.26], it follows that

where is the complementary function of . By this, [83, Proposition 2.22 and Lemma
4.4], we conclude that is bounded on . Thus, all the assumptions of the
main theorems in Sections 2 and 3 are satisfied. Using Theorems 2.17, 2.22, 3.1, and 3.2, we
immediately obtain the following characterization of the boundedness and the compactness
of commutators on Orlicz-slice spaces.

Theorem 4.18 Let 0 , 1 , and be an Orlicz function with
positive lower type and positive upper type . Then Theorems 2.17, 2.22, 3.1, and 3.2
hold true with replaced by .

Remark 4.19 To the best of our knowledge, Theorem 4.18 is totally new and, even for slice
spaces in [7, 8], namely, with for any 0 and 1 ,
it is also new.
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