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Abstract
We study direct integrals of quadratic and Dirichlet forms. We show that each quasi-regular
Dirichlet space over a probability space admits a unique representation as a direct integral of
irreducible Dirichlet spaces, quasi-regular for the same underlying topology. The same holds
for each quasi-regular strongly local Dirichlet space over a metrizable Luzin σ -finite Radon
measure space, and admitting carré du champ operator. In this case, the representation is
only projectively unique.

Mathematics Subject Classification (2010) Primary 37A30; Secondary 31C25 · 60J25 ·
60J35

1 Introduction

Let (X, τ,X , μ) be a locally compact Polish Radon measure space, and (E,D(E)) be a reg-
ular Dirichlet form on (X, τ,X , μ). As it is well-known, (E,D(E)) is properly associated
with a right process

M := (
Ω,F , (Mt )t≥0 , (Px)x∈X∂

, ξ
)

with state space X, life-time ξ , and cemetery ∂ .
For a μ-measurable subset A ⊂ X, we say that

– A is M-invariant (e.g. [23, Dfn. IV.6.1]) if there exists ΩAc ∈ F with PxΩAc = 0 for
every x ∈ A and

ΩAc ⊃
{
ω ∈ Ω : Ac ∩ {Ms(ω) : s ∈ [0, t]} �= ∅ for some 0 ≤ t < ξ

}
;
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– A is E-invariant (also cf. Dfn. 3.1 below) if 1Af ∈ D(E) for any f ∈ D(E) and

E(f, g) = E(1Af,1Ag)+ E(1Acf,1Acg) , f, g ∈ D(E)

If the form (E,D(E)) is additionally strongly local, then the process M is a Markov
diffusion, and the following are μ-essentially equivalent, see Rmk. 3.5 below:

– A is M-invariant;
– A is E-invariant;
– A is E-quasi-clopen, i.e., simultaneously E-quasi-open and E-quasi-closed (see

e.g., [15, p. 70]).

We say that a set A ⊂ X is μ-trivial if it is μ-measurable and either μA = 0 or μAc = 0.
The process M is irreducible if every M-invariant set is μ-trivial.

When M is not irreducible, it is natural — in the study of the pathwise properties of M —
to restrict our attention to “minimal” M-invariant subsets of X. In the local case, thanks to
the quasi-topological characterization of M-invariance, such sets may be thought of as the
“connected components” of the space X as seen by M.

This description is in fact purely heuristic, since it may happen that all such “minimal”
M-invariant sets are μ-negligible. The question arises, whether these ideas for the study of
M-invariance can be made rigorous by resorting to the Dirichlet form (E,D(E)) associated
with M. More precisely, we look for a decomposition

(
(Eζ ,D(Eζ ))

)
ζ∈Z

of (E,D(E))

over some index set Z, and we require that

– (Eζ ,D(Eζ )) is a Dirichlet form on (X, τ) additionally irreducible (Dfn. 3.1) for
every ζ ∈ Z;

– we may reconstruct (E,D(E)) from
(
(Eζ ,D(Eζ ))

)
ζ∈Z

in a unique way.

Because of the first property, such a decomposition — if any — would deserve the name
of ergodic decomposition of (E,D(E)).

For instance, let us consider the standard Dirichlet form Eg on a (second-countable) Rie-
mannian manifold (M, g), i.e. the one generated by the (negative halved) Laplace–Beltrami
operator 	g and properly associated with the Brownian motion on M . In this case, we
expect that Z is a discrete space, indexing the connected components of M , and that

Eg =
⊕

ζ∈Z

E
g
ζ ,

where (E
g
ζ ,D(E

g
ζ )) is but the standard form of the connected component of index ζ .

This simple example suggests that, in the general case of our interest, we should expect
that (E,D(E)) is recovered from the decomposition

(
(Eζ ,D(Eζ ))

)
ζ∈Z

as a “direct
integral”,

E =
∫ ⊕

Z

Eζ .

Our purpose is morefold:

– to introduce a notion of direct integral of Dirichlet forms, and to compare it with the
existing notions of superposition of Dirichlet forms [5, §V.3.1] (also cf. [15, §3.1(2◦),
p. 113] and [29]), and of direct integral of quadratic forms [3];

– to discuss an Ergodic Decomposition Theorem for quasi-regular Dirichlet forms, a
counterpart for Dirichlet forms to the Ergodic Decomposition Theorems for group
actions, e.g. [6, 9, 16];
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– to provide rigorous justification to the assumption — quite standard in the literature
about (quasi-)regular Dirichlet forms —, that one may consider irreducible forms with
no loss of generality;

– to establish tools for the generalization to arbitrary (quasi-regular) Dirichlet spaces of
results currently available only in the irreducible case, e.g. the study [22] of invariance
under order-isomorphism, cf. [11].

For strongly local Dirichlet forms, our ergodic decomposition result takes the following
form.

Theorem Let (X, τ,X , μ) be a metrizable Luzin Radon measure space, and consider a
quasi-regular strongly local Dirichlet form (E,D(E)) on L2(μ) admitting carré du champ
operator. Then, there exist

(i) a σ -finite measure space (Z,Z, ν);
(ii) a family of measures

(
μζ

)
ζ∈Z

so that (X, τ,X , μζ ) is a (metrizable Luzin) Radon
measure space for ν-a.e. ζ ∈ Z, the map ζ �→ μζ A is ν-measurable for every A ∈ X
and

μA =
∫

Z

μζ A dν(ζ ) , A ∈ X ,

and for ν⊗2-a.e. (ζ, ζ ′), with ζ �= ζ ′, the measures μζ and μζ ′ are mutually singular;
(iii) a family of quasi-regular strongly local irreducible Dirichlet forms (Eζ ,D(Eζ ))

on L2(μζ );

so that

L2(μ) =
∫ ⊕

Z

L2(μζ ) dν(ζ ) and E =
∫ ⊕

Z

Eζ dν(ζ ) .

Additionally, the disintegration is (ν-essentially) projectively unique, and unique if μ is
totally finite.

Plan of the work Firstly, we shall discuss the notion of direct integral of (non-negative
definite) quadratic forms on abstract Hilbert spaces, Section 2.3, and specialize it to direct
integrals of Dirichlet forms, Section 2.5, via disintegration of measures. In Section 3.2 we
show existence and uniqueness of the ergodic decomposition for regular and quasi-regular
(not necessarily local) Dirichlet forms on probability spaces. The results are subsequently
extended to strongly local quasi-regular Dirichlet forms on σ -finite spaces and admitting
carré du champ operator, Section 3.3. Examples are discussed in Section 3.4; an application
is discussed in Section 3.5.

Bibliographical note Our reference of choice for direct integrals of Hilbert spaces is the
monograph [12] by J. Dixmier. For some results we shall however need the more general
concept of direct integrals of Banach spaces, after [9, 17]. For the sake of simplicity, all
such results are confined to the Appendix.

2 Direct Integrals

Every Hilbert space is assumed to be separable and a real vector space.
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2.1 Quadratic Forms

Let (H, ‖ · ‖) be a Hilbert space with scalar product 〈 · | · 〉.
By a quadratic form (Q,D) on H we shall always mean a symmetric positive semi-

definite — if not otherwise stated, densely defined — bilinear form. To (Q, D) we associate
the non-relabeled quadratic functional Q : H → R ∪ {+∞} defined by

Q(u) :=
{

Q(u, u) if u ∈ D

+∞ otherwise
, u ∈ H .

Additionally, for every α > 0, we set

Qα(u, v) := Q(u, v)+ α 〈u | v〉 , u, v ∈ D ,

Qα(u) := Q(u)+ α ‖u‖2 , u ∈ H .

For α > 0, we let D(Q)α be the completion of D, endowed with the Hilbert norm Q
1/2
α .

The following result is well-known.

Lemma 2.1 Let (Q, D) be a quadratic form on H . The following are equivalent:

(i) (Q,D) is closable, say, with closure (Q,D(Q));
(ii) the identical inclusion ι : D → H extends to a continuous injection ια : D(Q)α → H

satisfying ‖ια‖op ≤ α−1;
(iii) Q is lower semi-continuous w.r.t. the strong topology of H ;
(iv) Q is lower semi-continuous w.r.t. the weak topology of H .

Proof (i)⇐⇒ (ii) is [18, Lem. VIII.3.14a, p. 461]. (i) ⇐⇒ (ii) is noted in [23, Rmk. I.3.2.
(ii)]. For (ii) ⇐⇒ (iv) note that every convex subset of a Hilbert space is weakly closed
if and only if it is strongly closed and apply this fact to the sublevel sets of Q : H →
R ∪ {+∞}.

To every closed quadratic form (Q,D(Q)) we associate a non-negative self-adjoint oper-
ator −L, with domain defined by the equality D(

√−L) = D(Q), such that Q(u, v) =
〈−Lu | v〉 for all u, v ∈ D(L). We denote the associated strongly continuous contraction
semigroup by Tt := etL, t > 0, and the associated strongly continuous contraction resolvent
by Gα :=(α − L)−1, α > 0. By Hille–Yosida Theorem, e.g. [23, p. 27],

Qα(Gαu, v) = 〈u | v〉H , u ∈ H , v ∈ D(Q) , (1a)

Tt = H - lim
α→∞ etα(αGα−1) . (1b)

Q(u, v) = lim
β→∞Q(β)(u, v) := lim

β→∞
〈
βu− βGβu

∣∣ v
〉
H

, u, v ∈ H . (1c)

2.2 Direct Integrals

Let
(
Hζ

)
ζ∈Z

be a family of Hilbert spaces indexed by some index set Z. If Z is at most
countable, the direct sum of the Hilbert spaces Hζ is defined as

⊕

ζ∈Z

Hζ :=
⎧
⎨

⎩
(
hζ

)
ζ∈Z

: hζ ∈ Hζ for all ζ ∈ Z and
∑

ζ∈Z

∥
∥hζ

∥
∥2

Hζ
<∞

⎫
⎬

⎭
. (2)

The direct integral of a family of Hilbert spaces is a natural generalization of the concept
of direct sum of Hilbert spaces to the case when the indexing set Z is more than countable. In
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this case, the requirement of �2-summability in the definition of direct sum is replaced by a
requirement of L2-integrability (see below for the precise definitions), which implies that Z

should be taken to be a measure space (Z,Z, ν). When Z is an at most countable discrete
space, and ν is the counting measure, then the direct integral of the Hilbert spaces

(
Hζ

)
ζ

is
isomorphic to their direct sum (2).

Since their introduction by J. von Neumann in [24, §3], direct integrals have become a
main tool in operator theory, and in particular in the classification of von Neumann algebras.

In order to make the definition of direct integral precise, let us first introduce some
measure-theoretical notions.

Definition 2.2 (Measure spaces) A measurable space (X,X ) is

– separable if X contains all singletons in X, i.e. {x} ∈ X for each x ∈ X;
– separated if X separates points in X, i.e. for every x, y ∈ X there exists A ∈ X

with x ∈ A and y ∈ Ac;
– countably separated if there exists a countable family of sets in X separating points

in X;
– countably generated if there exists a countable family of sets in X generating X as a

σ -algebra;
– a standard Borel space if there exists a Polish topology τ on X so that X coincides with

the Borel σ -algebra induced by τ .

For any subset X0 of a measurable space (X,X ), the trace σ -algebra on X0 is X ∩
X0 := {A ∩X0 : A ∈ X }. A σ -finite measure space (X,X , μ) is standard if there exists
X0 ∈ X , μ-conegligible and so that (X0,X ∩ X0) is a standard Borel space. We denote
by (X,Xμ, μ̂) the (Carathéodory) completion of (X,X , μ). A [−∞,∞]-valued function is
called μ-measurable if it is measurable w.r.t. Xμ. For measures μ1, μ2 we write μ1 ∼ μ2 to
indicate that μ1 and μ2 are equivalent, i.e. mutually absolutely continuous. A σ -idealN of
a measure space (X,X , μ) is any sub-σ -algebra of X closed w.r.t. ∩, i.e. satisfying A∩N ∈
N whenever A ∈ X and N ∈ N . In particular, the family Nμ of μ-negligible subsets
of (X,X ) is always a σ -ideal of (X,Xμ, μ̂).

For functions f, g : X → R ∪ {±∞} we denote by f+ := 0 ∨ f , resp. f− :=−(0 ∧ f ),
the positive, resp. negative part of f , and by f ∧ g, resp. f ∨ g, the pointwise minimum,
resp. maximum, of f and g.

We now recall the main definitions concerning direct integrals of separable Hilbert
spaces, referring to [12, §§II.1, II.2] for a systematic treatment.

Definition 2.3 (Measurable fields, [12, §II.1.3, Dfn. 1, p. 164]) Let (Z,Z, ν) be a σ -
finite measure space,

(
Hζ

)
ζ∈Z

be a family of separable Hilbert spaces, and F be the linear
space F :=∏

ζ∈Z Hζ . We say that ζ �→ Hζ is a ν-measurable field of Hilbert spaces (with
underlying space S) if there exists a linear subspace S of F with

(a) for every u ∈ S, the function ζ �→ ∥
∥uζ

∥
∥

ζ
is ν-measurable;

(b) if v ∈ F is such that ζ �→ 〈
uζ

∣∣ vζ

〉
ζ

is ν-measurable for every u ∈ S, then v ∈ S;

(c) there exists a sequence (un)n ⊂ S such that
(
un,ζ

)
n

is a total sequence1 in Hζ for
every ζ ∈ Z.

1A sequence (un)n in a Banach space B is called total if the strong closure of its linear span coincides with B.
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Any such S is called a space of ν-measurable vector fields. Any sequence in S possessing
property (c) is called a fundamental sequence.

Proposition 2.4 ([12, §II.1.4, Prop. 4, p. 167]) Let S be a subfamily of F satisfying both
Definition 2.3(a) and (c) with S in place of S. Then, there exists exactly one space of ν-
measurable vector fields S so that S ⊂ S.

Definition 2.5 (Direct integrals, [12, §II.1.5, Prop. 5, p. 169]) Let ζ �→ Hζ be a ν-
measurable field of Hilbert spaces with underlying space S. A ν-measurable vector field u ∈
S is called (ν-)square-integrable if

‖u‖ :=
(∫

Z

∥
∥uζ

∥
∥2

ζ
dν(ζ )

)1/2

<∞ . (3)

Two square-integrable vector fields u, v are called (ν-)equivalent if ‖u− v‖ = 0. The
space H of equivalence classes of square-integrable vector fields, endowed with the non-
relabeled quotient norm ‖ · ‖, is a Hilbert space [12, §II.1.5, Prop. 5(i), p. 169], called the
direct integral of ζ �→ Hζ (with underlying space S) and denoted by

H =
S∫ ⊕

Z

Hζ dν(ζ ) . (4)

The superscript ‘S’ is omitted whenever S is apparent from context.

In the following, it will occasionally be necessary to distinguish an element u of H

from one of its representatives modulo ν-equivalence, say û in S. In this case, we shall
write u = [

û
]
H

. When the specification of the variable ζ is necessary, given u ∈ H ,
resp. û ∈ S, we shall write ζ �→ uζ in place of u, resp. ζ �→ ûζ in place of û. In most cases,
the distinction between u and û is however immaterial, similarly to the distinction between
the class of a function in L2(ν) and any of its ν-representatives. Therefore in most cases we
shall simply write u in place of both u and û.

Lemma 2.6 Let (Z,Z, ν) be a σ -finite countably generated measure space. Then, the
space H in Eq. 4 is separable.

Proof It suffices to note that L2(ν) is separable, e.g. [14, 365X(p)]. Then, the proof of [12,
§II.1.6, Cor., p. 172] applies verbatim.

Remark 2.7 In general, the space H in Eq. 4 depends on S, cf. [12, p. 169, after Dfn. 3].
It is nowadays standard to define the direct integral of ζ �→ Hζ as the one with underlying
space S generated (in the sense of Proposition 2.4) by an algebra S of ‘simple functions’,
see e.g. [17, §6.1, p. 61] or the Appendix. Here, we prefer the original definition in [12],
since we shall make a (possibly) different choice of S, more natural when addressing direct
integrals of Dirichlet forms.

Let H be a direct integral Hilbert space defined as in Eq. 4. We now turn to the discussion
of bounded operators in B(H) and their representation by measurable fields of bounded
operators.

Definition 2.8 (Measurable fields of bounded operators, decomposable operators) A field
of bounded operators ζ �→ Bζ ∈ B(Hζ ) is called ν-measurable (with underlying space S)
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if ζ �→ Bζ uζ ∈ Hζ is a ν-measurable vector field with underlying space S for every
ν-measurable vector field u with underlying space S.

A ν-measurable vector field of bounded operators is called ν-essentially bounded if ν-
esssupζ∈Z

∥
∥Bζ

∥
∥

op,ζ
<∞. In this case, the direct integral operator B : H → H of ζ �→ Bζ

given by

B : [û]
H
�−→ [

ζ �→ Bζ ûζ

]
H

(5)

is well-defined (in the sense that it does not depend on the choice of the representative û ∈ S

of
[
û
]
H
∈ H ), and a bounded operator in B(H). Its operator norm ‖B‖op satisfies ‖B‖op =

ν- esssupζ∈Z

∥
∥Bζ

∥
∥

op,ζ
, [12, §II.2.3, Prop. 2, p. 181]. Conversely, a bounded operator B ∈

B(H) is called decomposable, [12, §II.2.3, Dfn. 2, p. 182], if B is represented by a ν-
essentially bounded ν-measurable field of bounded operators ζ �→ Bζ in the sense of Eq. 5,
in which case we write

B =
∫ ⊕

Z

Bζ dν(ζ ) .

The next statement is readily deduced from e.g. [8, Thm. 2] or [21, Thm. 1.10]. For the
reader’s convenience, a short proof is included.

Lemma 2.9 Let H be defined as in Eq. 4, B ∈ B(H) be decomposable, and DB be the
closed disk of radius ‖B‖op in the complex plane. Then, for every ϕ ∈ C(DB) the continuous
functional calculus ϕ(B) of B is decomposable and

ϕ(B) =
∫ ⊕

Z

ϕ(Bζ ) dν(ζ ) . (6)

Proof Well-posedness follows by [12, §II.2.3, Prop. 2, p. 181]. The proof is then a straight-
forward application of [12, §II.2.3, Prop. 3, p. 182] and [12, §II.2.3, Prop. 4(ii), p. 183] by
approximation of ϕ with suitable polynomials, since σ(B) is compact.

Remark 2.10 Arguing with Tietze Extension Theorem, it is possible to show that the direct-
integral representation (6) of ϕ(B) only depends on the values of ϕ on the spectrum σ(B)

of B.

2.3 Direct Integrals of Quadratic Forms

The main object of our study are direct integrals of quadratic forms. Before turning to the
case of Dirichlet forms on concrete Hilbert spaces (L2-spaces), we give the main definitions
in the general case of quadratic forms on abstract Hilbert spaces.

Definition 2.11 (Direct integral of quadratic forms) Let (Z,Z, ν) be a σ -finite countably
generated measure space. For ζ ∈ Z let (Qζ , Dζ ) be a closable (densely defined) quadratic
form on a Hilbert space Hζ . We say that ζ �→ (Qζ ,Dζ ) is a ν-measurable field of quadratic
forms on Z if

(a) ζ �→ Hζ is a ν-measurable field of Hilbert spaces on Z with underlying space SH ;
(b) ζ �→ D(Qζ )1 is a ν-measurable field of Hilbert spaces on Z with underlying

space SQ;
(c) SQ is a linear subspace of SH under the identification of D(Qζ ) with a subspace of Hζ

granted by Lemma 2.1.
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We denote by

Q =
SQ
∫ ⊕

Z

Qζ dν(ζ )

the direct integral of ζ �→ (Qζ ,D(Qζ )), i.e. the quadratic form defined on H as in Eq. 4
given by

D(Q) :=
{
[
û
]
H
: û ∈ SQ,

∫

Z

Qζ,1(ûζ ) dν(ζ ) <∞
}

,

Q(u, v) :=
∫

Z

Qζ (uζ , vζ ) dν(ζ ) , u, v ∈ D(Q) .
(7)

Remark 2.12 (Separability) It is implicit in our definition of ν-measurable field of Hilbert
spaces that Hζ is separable for every ζ ∈ Z. Therefore, when considering ν-measurable

fields of domains as in Definition 2.1(b), D(Qζ )1 is taken to be (Qζ )
1/2
1 -separable by

assumption.

Proposition 2.13 Let (Q,D(Q)) be a direct integral of quadratic forms. Then,

(i)
(
Q,D(Q)

)
is a densely defined closed quadratic form on H ;

(ii) ζ �→ Gζ,α , ζ �→ Tζ,t are ν-measurable fields of bounded operators for every α, t >

0;
(iii) Q has resolvent and semigroup respectively defined by

Gα :=
SH
∫ ⊕

Z

Gζ,α dν(ζ ) , α > 0 ;

Tt :=
SH
∫ ⊕

Z

Tζ,t dν(ζ ) , t > 0 .

(8)

Proof (i) Since ζ �→ Hζ is a ν-measurable family of Hilbert spaces by Definition 2.11(a),
the map ζ �→ ∥∥uζ

∥∥
ζ

is ν-measurable for every u ∈ SH by Definition 2.3(a). Analogously,

the map ζ �→ Q
1/2
ζ,1 (uζ ) is ν-measurable for every u ∈ SQ. Together with the polarization

identity for D(Q)1, this yields the measurability of the maps

ζ �→ Qζ,α(uζ , vζ ) , u, v ∈ D(Q) , α > 0 .

As a consequence, ζ �→ D(Qζ )α is a ν-measurable field of Hilbert spaces (on Z, with
underlying space SQ) for every α > 0. Thus, it admits a direct integral of Hilbert spaces

Dα :=
SQ
∫ ⊕

Z

D(Qζ )α dν(ζ ) , α > 0 .

For α > 0 let
(
uα

n

)
n

be a fundamental sequence of ν-measurable vector fields for Dα

and (un)n be a fundamental sequence of ν-measurable vector fields for H .
Since (Qζ , Dζ ) is closable on Hζ for every ζ ∈ Z, the extension of the canoni-

cal inclusion ιζ,1 : D(Qζ )1 → Hζ is injective and non-expansive2 for every ζ ∈ Z by
Lemma 2.1.

2We say that a linear map ι : H1 → H2 between Hilbert spaces (H1, ‖ · ‖1) and (H2, ‖ · ‖2) is non-expansive
if ‖ιh‖2 ≤ ‖h‖1 for every h ∈ H1.
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By Definition 2.11, Dα and H are defined on the same underlying space S. Therefore,
the maps

ζ �→
〈
ιζ,αuα

i,ζ

∣
∣
∣ uj,ζ

〉

ζ
=
〈
uα

i,ζ

∣
∣
∣ uj,ζ

〉

ζ
, i, j ∈ N , α > 0 ,

are ν-measurable. Together with the uniform boundedness of ιζ,α in ζ ∈ Z, this yields the
decomposability of the operator ια : Dα → H defined by

ια :=
SQ
∫ ⊕

Z

ιζ,α dν(ζ ) , α > 0 .

By [12, §II.2.3, Example, p. 182] and the injectivity of ιζ,α for every ζ ∈ Z and every α >

0, the operator ια : Dα → H is injective. In particular, the composition of ι1 with the
inclusion of D(Q) into H is injective, thus Q is closed.

Finally, since
(
uα

n,ζ

)
n

is Q
1/2
ζ,α -total in D(Qζ )α for every ζ ∈ Z by Definition 2.3(c),

it is additionally Hζ -total for every ζ ∈ Z by Hζ -density of D(Qζ ) in Hζ . As a
consequence,

(
uα

n

)
n

is fundamental also for H , thus D(Q) is H -dense in H .
(ii) For fixed α > 0 consider the field of linear operators ζ �→ Gζ,α . The map (cf. Eq. 1a)

ζ �→ Qζ,α(Gζ,αuα
i,ζ , u

α
j,ζ ) =

〈
uα

i,ζ

∣
∣
∣ uα

j,ζ

〉

ζ

is ν-measurable for every i, j ∈ N since uα
n is a ν-measurable vector field. Since∥∥Gα,ζ

∥∥
op ≤ α−1 and

(
uα

n

)
n

is a fundamental sequence of ν-measurable vector fields for H ,
then ζ �→ Gζ,α is a ν-measurable field of bounded operators by [12, §II.2.1, Prop. 1, p. 179]
and the operator Gα defined in Eq. 8 is decomposable for every α > 0.

By Lemma 2.9 any image of Gα via its continuous functional calculus is itself
decomposable.

For every ζ ∈ Z one has Tζ,t = limβ→∞ etβ(βGζ,β−1) strongly in Hζ by Eq. 1b, hence

ζ �→
〈
Tζ,tu

α
i,ζ

∣∣∣ uα
j,ζ

〉

ζ
= lim

β→∞

〈
etβ(βGζ,β−1)uα

i,ζ

∣∣∣ uα
j,ζ

〉

ζ

is a pointwise limit of ν-measurable functions, thus it is ν-measurable, for every i, j ∈ N

and every t > 0. As a consequence, ζ �→ Tζ,t is a ν-measurable field of bounded operators
for every t > 0, again by [12, §II.2.1, Prop. 1, p. 179].

(iii) It suffices to show Eq. 1 for (Q,D(Q)), Gα and Tt defined in Eq. 8.
Now, by definition of (Q,D(Q)) one has for every α > 0

Qα(Gαu, v) =
∫

Z

Qζ

(
(Gαu)ζ , vζ

)
dν(ζ )+ α

∫

Z

〈
(Gαu)ζ

∣
∣ vζ

〉
ζ

dν(ζ )

=
∫

Z

Qζ,α

(
(Gαu)ζ , vζ

)
dν(ζ )

=
∫

Z

Qζ,α

(
Gα,ζ uζ , vζ

)
dν(ζ )

By [12, §II.2.3, Cor., p. 182] and decomposability of Gα , one has Gα,ζ = Gζ,α for ν-
a.e. ζ ∈ Z, whence, by Eq. 1a applied to (Qζ ,D(Qζ )) and Gζ,α ,

Qα(Gαu, v) = ∫
Z

〈
uζ

∣
∣ vζ

〉
ζ

dν(ζ ) = 〈u | v〉 ,

which concludes the proof of Eq. 1a for Gα .
Let us show (1b) for Tt . Define the operators

T
(β)

t :=
∫ ⊕

Z

etβ(βGζ,β−1) dν(ζ ) , β, t > 0 ,
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and note that supβ>1

∥
∥T (β)

t

∥
∥

op <∞ for every t > 0. By Eq. 1b applied to Tζ,t for every ζ ∈
Z and every t > 0 we have that Tζ,t = limβ→∞ etβ(βGζ,β−1) strongly in Hζ . On the one
hand, we may now apply [12, §II.2.3, Prop. 4(ii), p. 183] to conclude that

H - lim
β→∞ T

(β)

t =
∫ ⊕

Z

(
Hζ - lim

β→∞ etβ(βGζ,β−1)

)
dν(ζ ) =

∫ ⊕

Z

Tζ,t dν(ζ ) =: Tt . (9)

strongly in H . On the other hand, by Lemma 2.9 we have that

T
(β)

t :=
∫ ⊕

Z

etβ(βGζ,β−1) dν(ζ ) = etβ(βGβ−1) , β, t > 0 . (10)

Taking the strong H -limit as β → ∞ in Eq. 10 yields the assertion by comparison
with Eq. 9.

Remark 2.14 (cf. [12, §II.1.3, Rmk. 3 p. 166 and §II.1.4, Rmk. p. 168]) Each of the above
statements holds with identical proof if one substitutes ‘ν-measurable’ with ‘measurable’.

Remark 2.15 Under the assumptions of Proposition 2.13, assertion (i) of the same Proposi-
tion implies that the space of ν-measurable vector fields SH is uniquely determined by SQ

as a consequence of Proposition 2.4. Thus, everywhere in the following when referring to a
direct integral of quadratic forms we shall — with abuse of notation — write S in place of
both SH and SQ.

The next proposition completes the picture, by providing a direct-integral representation
for the generator of the form (Q,D(Q)) in Eq. 7. Since we shall not need this result in
the following, we omit an account of direct integrals of unbounded operators, referring the
reader to [21, §1]. Once the necessary definitions are established, a proof is straightforward.

Proposition 2.16 Let (Q,D(Q)) be defined as in Eq. 7. Then, its generator (L,D(L)) has
the direct-integral representation

L =
∫ ⊕

Z

Lζ dν(ζ ) . (11)

Remark 2.17 (Comparison with [3]) As for quadratic forms, Eq. 11 is understood as a
direct-integral representation of the Hilbert space D(L), endowed with the graph norm, by
the measurable field of Hilbert spaces ζ �→ D(Lζ ), each endowed with the relative graph
norm. The set-wise identification of D(L) as a linear subspace of H as in Eq. 4 is already
shown in [3, Prop. 1.6].

2.4 Dirichlet Forms

We recall a standard setting for the theory of Dirichlet forms, following [23].

Assumption 2.18 The quadruple (X, τ,X , μ) is so that

(a) (X, τ) is a metrizable Luzin space with Borel σ -algebra X ;
(b) μ̂ is a Radon measure on (X, τ,Xμ) with full support.

By [14, 415D(iii), 424G] any space (X,X , μ) satisfying Assumption 2.18 is, in partic-
ular, σ -finite standard. The support of a (μ-)measurable function f : X → R (possibly
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defined only on a μ-conegligible set) is defined as the measure-theoretical support supp[|f |·
μ]. Every such f has support, independent of the μ-representative of f , cf. [23, p. 148].

A closed positive semi-definite quadratic form (Q,D(Q)) on L2(μ) is a (symmetric)
Dirichlet form if

f ∈ D(Q) =⇒ f+ ∧ 1 ∈ D(Q) and Q(f+ ∧ 1) ≤ Q(f ) . (12)

We shall denote Dirichlet forms by (E,D(E)). A Dirichlet form (E,D(E)) is

– local if E(f, g) = 0 for every f, g ∈ D(E) with supp[f ] ∩ supp[g] = ∅;
– strongly local if E(f, g) = 0 for every f, g ∈ D(E) with g constant on a neighborhood

of supp[f ];
– regular if (X, τ) is (additionally) locally compact and there exists a core C

for (E,D(E)), i.e. a subset C ⊂ D(E)∩C0(τ ) both E
1/2
1 -dense in D(E) and uniformly

dense in C0(τ ).

On spaces that are not necessarily locally compact, the interplay between a Dirichlet
form (E,D(E)) and the topology τ on X is specified by the following definitions.

For an increasing sequence (Fk)k of Borel subsets Fk ⊂ X set

D(E, (Fk)k) :=
{
f ∈ D(E) : f ≡ 0 μ-a.e. on F c

k for some k ∈ N

}
.

The sequence (Fk)k is called an E-nest if each Fk is closed and D(E, (Fk)k) is dense
in D(E)1. A set N ⊂ X is E-exceptional if N ⊂ ∩kF

c
k for some E-nest (Fk)k . A property

of points in X holds E-quasi-everywhere if it holds for every point in Nc for some E-
exceptional set N . A function f : X → R is E-quasi-continuous if there exists an E-
nest (Fk)k so that the restriction of f to Fk is continuous for every k ∈ N.

Finally, a form (E,D(E)) is

– quasi-regular on (X, τ) if there exist: (QR1) an E-nest (Fk)k of compact sets; (QR2)
an E

1/2
1 -dense subset of D(E)1 the elements of which all have an E-quasi-continuous

μ-version; (QR3) an E-exceptional set N ⊂ X and a countable family (fn)n of E-
quasi-continuous functions fn ∈ D(E) separating points in Nc.

We refer to [7] or [15, §A.4] for the notion of quasi-homeomorphism of Dirichlet forms.
We say that (E,D(E)) has carré du champ operator (Γ,D(E)), if Γ : D(E)⊗2 →

L1(μ) is a non-negative definite symmetric continuous bilinear operator so that

E(f, gh)+E(f h, g)− E(fg, h)=2
∫

X

h Γ (f, g) dμ , f, g, h ∈ D(E) ∩ L∞(μ) . (13)

Finally, let D(E)e be the linear space of all functions u ∈ L0(μ) so that there exists an
E1/2-Cauchy sequence (un)n ⊂ D(E) with limn un = u μ-a.e. We denote by (D(E)e, E)

the space D(E)e endowed with the extension of E to D(E)e called the extended Dirichlet
space of (E,D(E)). For proofs of well-posedness in this generality, see [19, p. 693].

If (E,D(E)) has semigroup T• : L2(μ)→ L2(μ), we denote as well by T• : L∞(μ)→
L∞(μ) the extension of the semigroup to L∞(μ).

We say that (E,D(E)) is

– conservative if Tt1 = 1 μ-a.e. for all t ≥ 0;
– transient if D(E)e is a Hilbert space with inner product E;
– recurrent if 1 ∈ D(E)e and E(1) = 0.
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These definitions are equivalent to the standard ones (e.g. [15, p. 55]) by [15,
Thm.s 1.6.2, 1.6.3, p. 58], a proof of which may be adapted to the case of spaces satisfying
Assumption 2.18.

2.5 Direct-integral Representation of L2-Spaces

In order to introduce direct-integral representations of Dirichlet forms, we need to construct
direct integrals of concrete Hilbert spaces in such a way to additionally preserve the Riesz
structure of Lebesgue spaces implicitly used to phrase the sub-Markovianity property (12).
To this end, we shall need the concept of a disintegration of measures.

Disintegrations Let (X,X , μ) and (Z,Z, ν) be (non-trivial) measure spaces. A
map s : (X,X ) → (Z,Z) is inverse-measure-preserving if s�μ :=μ ◦ s−1 = ν. Hereafter,
we fix an inverse-measure-preserving map s : (X,X )→ (Z,Z).

Definition 2.19 (Disintegrations, [14, 452E]) A pseudo-disintegration of μ over ν is any
family of non-zero measures

(
μζ

)
ζ∈Z

on (X,X ) so that ζ �→ μζ A is ν-measurable and

μA =
∫

Z

μζ A dν(ζ ) , A ∈ X .

A pseudo-disintegration is

– separated if there exists a family of pairwise disjoint sets
(
Aζ

)
ζ∈Z

⊂ Xμ so that Aζ is

μζ -conegligible for ν-a.e. ζ ∈ Z, henceforth called a separating family for
(
μζ

)
ζ∈Z

.

A disintegration of μ over ν is a pseudo-disintegration additionally so that μζ is a sub-
probability measure for every ζ ∈ Z. A disintegration is

– ν-essentially unique if the measures μζ are uniquely determined for ν-a.e. ζ ∈ Z;
– consistent with s if

μ
(
A ∩ s−1(B)

) =
∫

B

μζ A dν(ζ ) , A ∈ X , B ∈ Z ; (14)

– strongly consistent with s if s−1(ζ ) is μζ -conegligible for ν-a.e. ζ ∈ Z.

If
(
μζ

)
ζ∈Z

is a pseudo-disintegration of μ over ν, then
∫

X

g dμ =
∫

Z

∫

X

g(x) dμζ (x) dν(ζ ) (15)

whenever the left-hand side makes sense, [14, 452F]. We note that a disintegration
(
μζ

)
ζ∈Z

of μ over ν strongly consistent with a map s is automatically separated, with separating
family

(
s−1(ζ )

)
ζ∈Z

.

Direct integrals and disintegrations Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -
finite countably generated, and

(
μζ

)
ζ∈Z

be a pseudo-disintegration of μ over ν. Denote
by

– L0(μ) the space of μ-measurable real-valued functions (not: μ-classes) on X;
– L∞(μ) the space of uniformly bounded (not: μ-essentially uniformly bounded)

functions in L0(μ);
– Lp(μ) the space of p-integrable functions in L0(μ).
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For a family A ⊂ L0(μ), let
[
A
]
μ

denote the family of the corresponding μ-classes.

Let now F :=∏
ζ∈Z L2(μζ ). We denote by δ : L2(μ) → F the diagonal embedding

of L2(μ) into F , regarded up to μζ -classes, viz. δ : f �→ (ζ �→ δ(f )ζ ), where

δ(f )ζ :=
{

[f ]μζ
if f ∈ L2(μζ )

0L2(μζ ) otherwise
. (16)

In general, it does not hold that f ∈ L2(μζ ) for every ζ ∈ Z, thus we need to adjust the
obvious definition of δ(f ) as above in such a way that δ(f ) ∈ F , that is δ(f )ζ ∈ L2(μζ ) for
every ζ ∈ Z. Note that δ is thus not linear. However, since f ∈ L2(μ), then δ(f )ζ = [f ]μζ

for ν-a.e. ζ ∈ Z by Eq. 15. It will be shown in Proposition 2.25 below that δ is well-defined
as linear morphism mapping μ-classes to H -classes.

Further let A be satisfying

A is a linear subspace of L2(μ), and
[
A
]
μ

is dense in L2(μ). (17)

Since
[
A
]
μ

is dense in L2(μ) and the latter is separable, then there exists a countable

family U ⊂ A so that
[
U
]
μζ

is total in L2(μζ ) for ν-a.e. ζ ∈ Z.

Thus for every A as in Eq. 17 there exists a unique space of ν-measurable vector
fields S = SA containing δ(A), generated by δ(A) in the sense of Proposition 2.4. We
denote by H the corresponding direct integral of Hilbert spaces

H :=
S∫ ⊕

Z

L2(μζ ) dν(ζ ) . (18)

Since S is unique, it is in fact independent of A. Indeed, let A0, A1 be satisfying (17)
and note that A :=A0 ⊕A1 satisfies (17) as well. Thus, δ(A0), δ(A1) ⊂ SA, and so SA =
SA0 = SA1 by uniqueness.

Remark 2.20 (cf. [17, §7.2, p. 84]) The direct integral H constructed in Eq. 18 is a Banach
lattice (e.g. [14, 354A(b)]) for the order

h ≥ 0H ⇐⇒ hζ ≥ 0L2(μζ ) for ν-a.e. ζ ∈ Z .

In particular, for every g, h ∈ H , the fields h+, h−, g∧h, and g∨h, respectively defined
by

h± : ζ �→ h±ζ , g ∧ h : ζ �→ (gζ ∧ hζ ) , g ∨ h : ζ �→ (gζ ∨ hζ ) ,

are ν-measurable fields representing elements of H .
In the following, we shall occasionally write — here, 1H is merely a shorthand —

0H ≤ h ≤ 1H

to indicate that

0 ≤ hζ ≤ 1 μζ -a.e. for ν-a.e. ζ ∈ Z .

Remark 2.21 For arbitrary measurable spaces, the standard choice for A is the algebra of
μ-integrable simple functions. If (X, τ,X , μ) were a locally compact Polish Radon mea-
sure space, one might take for instance A = Cc(τ ), the algebra of continuous compactly
supported functions. In fact, for the purposes of the present section, we might as well
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choose A = L2(μ), as the largest possible choice, or A a countable Q-vector subspace
of L1(μ) ∩ L∞(μ), as a smallest possible one. When dealing with direct integrals of regu-
lar Dirichlet forms however, the natural choice for A is that of a special standard core C for
the resulting direct-integral form.

Remark 2.22 (Comparison with [3]) We note that for every A as in Eq. 17,
[
A
]
μ

is a
determining class in the sense of [3, p. 402]. Conversely, every determining class L0 is
contained in a minimal linear space of functions

[
A
]
μ

satisfying (17).

Remark 2.23 (Caveat) Whereas the space H does not depend on A, in general it does
depend on SA, cf. Rmk. 2.7. Furthermore, H depends on the chosen pseudo-disintegration
too, and thus H need not be isomorphic to L2(μ), as shown in the next example.

Example 2.24 Let {∗} denote the one-point space, set μ := 2δ∗, and note that L2(μ) ∼=
R. On the other hand, if Z :=({0, 1} , ν) is the two-point space with uniform measure ν,
and μζ := δ∗ for ζ ∈ Z, then

(
μζ

)
ζ∈Z

is a (pseudo-)disintegration of μ, yet H ∼= L2(μ0)⊕
L2(μ1) ∼= R

2.

Proposition 2.25 Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -finite countably
generated, and

(
μζ

)
ζ∈Z

be a pseudo-disintegration of μ over ν. Then, the morphism

ι : L2(μ) −→ H :=
S∫ ⊕

Z

L2(μζ ) dν(ζ )

[f ]μ �−→ [δ(f )]H

(19)

(i) is well-defined, linear, and an isometry of Hilbert spaces, additionally unitary
if
(
μζ

)
ζ∈Z

is separated;
(ii) is a Riesz homomorphism (e.g. [14, 351H]). In particular,

– for each f ∈ L2(μ), it holds that (ι [f ]μ)ζ ≥ 0L2(μζ ) for ν-a.e. ζ ∈ Z if and only
if f ≥ 0 μ-a.e.;

– for each f, g ∈ L2(μ), it holds that (ι [f ∧ g]μ)ζ = (ι [f ]μ)ζ ∧ (ι [g]μ)ζ for ν-
a.e. ζ ∈ Z.

Proof As usual, we denote by ‖ · ‖ the norm on H , and by ‖ · ‖2, resp. ‖ · ‖2,ζ , the norm
on L2(μ), resp. L2(μζ ). Let A be satisfying (17), and define a map ι̂ : A→ H by ι̂ : f �→
[δ(f )]H .

By definition of ι̂ and δ, by definition (3) of ‖ · ‖, and by the property (15) of the
disintegration,

∥
∥ι̂f1 − ι̂f2

∥
∥2 =

∫

Z

‖f1 − f2‖2
2,ζ dν(ζ )

=
∫

Z

∫

X

|f1 − f2|2 dμζ dν(ζ )

= ‖f1 − f2‖2
2

f1, f2 ∈ A .

As a consequence, ι̂ : A → H descends to a linear isometry ι : [A]
μ
→ H , and the

latter extends to the non-relabeled (linear) isometry (19) by density of
[
A
]
μ

in L2(μ).
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Assume now that
(
μζ

)
ζ∈Z

is separated with separating family
(
Aζ

)
ζ∈Z

, and fix h ∈
(im ι)⊥. Let ĥ ∈ S be an H -representative of h. For each ζ ∈ Z, let h̃ζ ∈ L2(μζ ) be a
representative of ĥζ , and define a function h̃ : X → R by

h̃(x) :=
{

h̃ζ (x) if x ∈ Aζ , ζ ∈ Z ,

0 otherwise
.

This definition is well-posed since the sets Aζ ’s are pairwise disjoint.
Claim: h̃ ≡ 0 μ-a.e. With slight abuse of notation, set δ(h̃)ζ :=[h̃]μζ for ζ ∈ Z,

and δ(h̃) :=(ζ �→ δ(h̃)ζ ). By construction, δ(h̃) = ĥ, therefore δ(h̃) ∈ S, and so

0 = 〈
h
∣
∣ ι [f ]μ

〉 =
∫

Z

∫

X

h̃f dμζ dν(ζ ) , f ∈ L2(μ) ,

where the right-hand side is well-defined since ĥ ∈ S. As a consequence,

f �→
∫

Z

∫

X

h̃f dμζ dν(ζ )

is the 0-functional on L2(μ). By the Riesz Representation Theorem for L2(μ), and by
arbitrariness of [f ]μ ∈ L2(μ), we thus have h̃ ≡ 0 μ-a.e.

As a consequence of the claim, h = [δ(h̃)]H = ι̂(h̃) = 0H . By arbitrariness of h ∈
(im ι)⊥, we may conclude that (im ι)⊥ = {0H }, i.e. that ι is surjective.

We show the first assertion in (ii). A proof of the second assertion is similar, and therefore
it is omitted.

Argue by contradiction that there exists f ∈ L2(μ) with f ≥ 0 μ-a.e., yet such
that

[
(ι [f ]μ)ζ

]− �= 0L2(μζ ) for all ζ in some B ∈ Z with νB > 0. In particular,

since ζ �→ [
(ι [f ]μ)ζ

]− is a ν-measurable field by Remark 2.20, the following integral is
well-defined and strictly positive

∫

B

∥∥∥
[
(ι [f ]μ)ζ

]−∥∥∥
2

L2(μζ )
dν(ζ ) > 0 .

Then, by Eq. 15,
∫

X

f 2 dμ =
∫

X

(f+)2 dμ =
∫

Z

∫

X

(f+)2 dμζ dν(ζ ) =
∫

Z

∥∥
∥
[
f+

]
μζ

∥∥
∥

2

L2(μζ )
dν(ζ )

<

∫

Z

∥∥
∥
[
f+

]
μζ

∥∥
∥

2

L2(μζ )
dν(ζ )+

∫

B

∥∥
∥
[
(ι [f ]μ)ζ

]−∥∥
∥

2

L2(μζ )
dν(ζ ) .

Since
[
f+

]
μζ
= [f ]+μζ

for every ζ ∈ Z, and by definition of ι, continuing from the previous

inequality, we have that
∫

X

f 2 dμ <

∫

Z

∥
∥∥
[
f+

]
μζ

∥
∥∥

2

L2(μζ )
dν(ζ )+

∫

B

∥
∥∥
[
(ι [f ]μ)ζ

]−∥∥∥
2

L2(μζ )
dν(ζ )

=
∫

Z

∥
∥∥
[

[f ]μζ

]+∥∥∥
2

L2(μζ )
dν(ζ )+

∫

B

∥
∥∥
[

[f ]μζ

]−∥∥∥
2

L2(μζ )
dν(ζ )

≤
∫

Z

(∥∥∥
[

[f ]μζ

]+∥∥∥
2

L2(μζ )
+
∥∥∥
[

[f ]μζ

]−∥∥∥
2

L2(μζ )

)
dν(ζ )

=
∫

Z

∥
∥ [f ]μζ

∥
∥2

L2(μζ )
dν(ζ )

= ∥∥ι [f ]μ
∥∥2

H
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by definition of H . The inequality contradicts the fact, shown in (i), that ι : L2(μ) → H is
an isometry, and therefore

∥
∥ [f ]μ

∥
∥2

L2(μ)
= ∥
∥ι [f ]μ

∥
∥2

H
.

2.6 Direct Integrals of Dirichlet Forms

Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -finite countably generated, and
(
μζ

)
ζ∈Z

be a pseudo-disintegration of μ over ν. Further let ζ �→ (Qζ ,D(Qζ )) be a ν-measurable
field of quadratic forms, each densely defined in L2(μζ ) with separable domain, and denote
by (Q,D(Q)) their direct integral in the sense of Definition 2.11.

Definition 2.26 We say that (Q,D(Q)) is compatible with the pseudo-disintegration(
μζ

)
ζ∈Z

if the space SQ underlying ζ �→ D(Qζ )1 is of the form SA for some A as in Eq. 17
and additionally satisfying A ⊂ D(Q).

Note that, if SQ is of the form SA for A ⊂ D(Q) and satisfying (17), then SH is of the
form SA as well by Remark 2.15.

Definition 2.27 (Diagonal restriction) Let (Q,D(Q)) be a direct integral of quadratic
forms compatible with a pseudo-disintegration

(
μζ

)
ζ∈Z

. The form

Qres = Q :=
S∫ ⊕

Z

Qζ dν(ζ ) , D(Qres) :=D(Q) ∩ ι(L2(μ))

is a closed (densely defined) quadratic form on ι(L2(μ)), called the diagonal restriction
of (Q,D(Q)).

Remark 2.28 (Comparison with [3]) We note that the form (Qres,D(Qres)) coincides with
the form (E ,D(E )) defined in [3, Thm. 1.2]. As a consequence, at least in this case, the
closability of E in [3, Thm. 1.2] follows from our Proposition 2.13.

Our first result on direct integrals of concrete quadratic forms is as follows.

Proposition 2.29 Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -finite countably
generated, and

(
μζ

)
ζ∈Z

be a separated pseudo-disintegration of μ over ν. Further
let (E,D(E)) be a direct integral of closed quadratic forms ζ �→ (Eζ ,D(Eζ )) compatible
with

(
μζ

)
ζ∈Z

. Then, (E,D(E)) is a Dirichlet form on L2(μ) if and only if (Eζ ,D(Eζ )) is

so on L2(μζ ) for ν-a.e. ζ ∈ Z.

Remark 2.30 Since
(
μζ

)
ζ∈Z

is separated, the isometry ι in Proposition 2.25 is a unitary

operator, thus there exists ι−1 : H → L2(μ), where H is as in Eq. 19. For the sake of
clarity, only in the proof of Proposition 2.29 below, we distinguish between the quadratic
form (E,D(E)) on H and the quadratic form (ι∗E,D(ι∗E)) on L2(μ) defined by

ι∗E(f, g) :=E(ιf, ιg) , f, g ∈ D(ι∗E) := ι−1(D(E)) .

By definition of ι∗E and since ι : L2(μ) → H is unitary, we have that (ι∗E)1 = ι∗E1.
Therefore, (ι∗E,D(ι∗E)) is closed on L2(μ), since (E,D(E)) is closed on H by Propo-
sition 2.13(i). Furthermore, the Hilbert spaces D(E)1 and D(ι∗E)1 are intertwined via the
unitary isomorphism ι.
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In the statement of Proposition 2.29 above and everywhere after its proof — with a slight
abuse of notation — these two quadratic forms are identified. Again for the sake of clarity,
the statement of the proposition equivalently reads as follows: (ι∗E,D(ι∗E)) is a Dirichlet
form on L2(μ) if and only if (Eζ ,D(Eζ )) is a Dirichlet form on L2(μζ ) for ν-a.e. ζ ∈ Z.

Proof of Proposition 2.29 By e.g. [15, Thm. 1.4.1], the closed quadratic form
(ι∗E,D(ι∗E)) on L2(μ), resp. (Eζ ,D(Eζ )) on L2(μζ ), is a Dirichlet form if and only
if the associated semigroup T ι• : L2(μ) → L2(μ), resp. Tζ,ι : L2(μζ ) → L2(μζ ), is
sub-Markovian, viz.

0 ≤ T ι
t u ≤ 1 μ-a.e. , u ∈ L2(μ) : 0 ≤ u ≤ 1 μ-a.e. , t > 0 , (20a)

resp. 0 ≤ Tζ,t vζ ≤ 1 μζ -a.e. , vζ ∈ L2(μζ ) : 0 ≤ vζ ≤ 1 μζ -a.e. , t > 0 . (20b)

Thus, it suffices to show that T ι• is sub-Markovian if and only if Tζ,• is so for ν-a.e. ζ ∈
Z.

Since (E,D(E)) and (ι∗E,D(ι∗E)) are intertwined by the unitary isomorphism ι, it is
not difficult to show that their semigroups T• and T ι• are intertwined as well, viz.

T ι
t = ι∗Tt := Tt ◦ ι , t > 0 .

Furthermore, since ι : L2(μ)→ H is a Riesz homomorphism by Proposition 2.25(ii),

T ι• is sub-Markovian ⇐⇒ 0H ≤ Tth ≤ 1H , h ∈ H : 0H ≤ h ≤ 1H , (21)

where, by definition of the Banach lattice structure on H in Remark 2.20,

0H ≤ Tth ≤ 1H ⇐⇒ 0 ≤ (Tth)ζ ≤ 1 μζ -a.e. , t > 0

for ν-a.e. ζ ∈ Z , h ∈ H : 0H ≤ h ≤ 1H .
(22)

By Proposition 2.13(iii) we have that (Tth)ζ = Tζ,thζ for ν-a.e. ζ ∈ Z for every h ∈ H .
Thus, combining (21) and (22) we may conclude that

T ι• is sub-Markovian ⇐⇒ 0 ≤ Tζ,thζ ≤ 1 μζ -a.e. , t > 0

for ν-a.e. ζ ∈ Z , h ∈ H : 0H ≤ h ≤ 1H .
(23)

The reverse implication in Eq. 23 together with Eq. 20b immediately show that, if Tζ,•
is sub-Markovian for ν-a.e. ζ ∈ Z, then T ι• is sub-Markovian. The converse implication is
not immediate, since the right-hand side of Eq. 23, to be compared with Eq. 20b, contains
the additional consistency constraint that ζ �→ hζ be a measurable field representing an
element h ∈ H .

In order to show that, if T ι• is sub-Markovian, then Tζ,• is sub-Markovian for ν-a.e. ζ ∈ Z

is sub-Markovian, we argue as follows. Since Tζ,t : L2(μζ ) → L2(μζ ) is bounded, and
since the unit contraction operator v �→ 0 ∨ v ∧ 1 operates continuously on L2(μζ ), it

suffices to show that, for any sequence
(
v

ζ
n

)

n
⊂ L2(μζ ) total in L2(μζ ),

0 ≤ Tζ,t (0 ∨ vζ
n ∧ 1) ≤ 1 , n ∈ N .

Let (un)n ⊂ H be a fundamental sequence of ν-measurable vector fields for H , and
recall that

(
un,ζ

)
n

is total in L2(μζ ) for every ζ ∈ Z by Definition 2.3(c). Applying (23) to
each element un of this sequence proves the assertion.

Proposition 2.29 motivates the next definition. A simple example follows.

Definition 2.31 A quadratic form (E,D(E)) on L2(μ) is a direct integral of Dirichlet
forms ζ �→ (Eζ ,D(Eζ )) on L2(μζ ) if it is a direct integral of the Dirichlet forms ζ �→

589Ergodic Decomposition of Dirichlet Forms via Direct Integrals...



(Eζ ,D(Eζ )) additionally compatible with the separated pseudo-disintegration
(
μζ

)
ζ

in the
sense of Definition 2.26.

Example 2.32 Let X = R
2 with standard topology, Borel σ -algebra, and the 2-dimensional

Lebesgue measure Leb2. Consider a Dirichlet form measuring energy only in the first
coordinate, viz.

E(f ) :=
∫

R2
|∂1f (x1, x2)|2 dLeb2(x1, x2)

with f ∈ L2(R2) and f ( · , x2) ∈ W 1,2(R) for Leb1-a.e. x2 ∈ R. Then, (E,D(E)) is the
direct integral x2 �→

(
Ex2 ,W

1,2(R)
)
, where x2 ranges in Z = R the real line, (X,X , μx2)

is again the standard real line for every x2 ∈ R, and

Ex2(f ) :=
∫

R

|df ( · , x2)|2 dLeb1 , for Leb1-a.e. x2 ∈ R .

2.7 Superposition of Dirichlet Forms

We recall here the definition of a superposition of Dirichlet forms in the sense of [5, §V.3.1].
Let (Z,Z, ν) be σ -finite, (X,X , μζ ) be σ -finite and (Eζ ,D(Eζ )) be a Dirichlet form
on L2(μζ ), for every ζ ∈ Z. Assume that

(SP1) ζ �→ μζ A is ν-measurable for every A ∈ X ;
(SP2) ζ �→ Eζ (f̂ ) ∈ [0,∞] is ν-measurable for every measurable f̂ : X → [−∞,∞].

Let us now consider

– a measure λ � ν on (Z,Z) so that μ := ∫
Z

μζ dλ(ζ ) is σ -finite on (X,X ) (therefore:
(X,X , μ) is standard);

– the subspace D of all functions f ∈ L2(μ) so that

E(f ) :=
∫

Z

Eζ (f ) dν(ζ ) <∞ , (24)

and let us further assume that

(SP3) D is dense in L2(μ).

Then, it is claimed in [5, p. 214] that Eq. 24 is well-defined and depends only on the
μ-class of f , and it is shown in [5, Prop. V.3.1.1] that

Definition 2.33 (E,D) is a Dirichlet form on L2(μ), called the superposition of ζ �→ Eζ .

Note that we may always choose λ = ν provided that the integral measure μ defined
above is σ -finite. If this is not the case, we may recast the definition by letting ν := λ. In
this way, we may always assume with no loss of generality that μ is given, and that

(
μζ

)
is

a pseudo-disintegration of μ over ν.

Remark 2.34 In fact, [5] requires all functions in (SP1)-(SP2) to be Z-measurable, rather
than only ν-measurable. Here, we relax this condition to ‘ν-measurability’ in order to
simplify the proof of the reverse implication in the next Proposition 2.35. Our definition of
‘superposition’ is equivalent to the one in [5].
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Proposition 2.35 Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -finite countably gen-
erated,

(
μζ

)
ζ∈Z

be a separated pseudo-disintegration of μ over ν, and (Eζ ,D(Eζ )) be a

Dirichlet form on L2(μζ ) for every ζ ∈ Z.
Then, the following are equivalent:

(i) there exists the superposition (E,D) of ζ �→ Eζ and the space D in Eq. 24 is E1/2
1 -

separable;
(ii) there exists a direct integral of Dirichlet forms (E,D(E)) of the forms ζ �→ Eζ .

Furthermore, if either one holds, then (E,D(E)) and (E,D) are isomorphic Dirichlet
spaces.

Proof We only show that (i) implies (ii). A proof of the reverse implication is similar, and it
is therefore omitted. For simplicity, set throughout the proof Hζ :=L2(μζ ), with norm ‖ · ‖ζ ,
for every ζ ∈ Z.

Assume (i). It follows from (SP1) that ζ �→ ‖f ‖ζ is ν-measurable for every f ∈ D, and
thus from (SP2) that ζ �→ Eζ,1(f, g) is ν-measurable for every f, g ∈ D by polarization. By

E1/2
1 -separability of D, there exists a countable Q-linear space U ⊂ L2(μ) so that

[
U
]
μ

is

E1/2
1 -dense in D, and dense in L2(μ) by (SP3). Since

(
μζ

)
ζ∈Z

is separated by assumption,

it follows by Proposition 2.25 that
[
U
]
μζ

is dense in L2(μζ ) for ν-a.e. ζ ∈ Z.

As a consequence, the quadratic form (Eζ ,
[
U
]
μζ

) is densely defined on Hζ .

Since (Eζ ,D(Eζ )) is closed, the closure (Eres
ζ ,D(Eres

ζ )) of (Eζ ,
[
U
]
μζ

) is well-defined

and a Dirichlet form on Hζ = L2(μζ ).
Again since

(
μζ

)
ζ∈Z

is separated, we may then construct a form (E,D(E)) as the direct
integral of Dirichlet forms (Dfn. 2.31) of the forms ζ �→ (Eres

ζ ,D(Eres
ζ )) with underlying

space of measurable vector fields S = SU generated by δ(U) in the sense of Proposition 2.4.
By construction, the pre-Hilbert spaces

([
U
]
μ

, E1/2
1

)
and

([
δ(U)

]
D(E)1

, E
1/2
1

)
are linearly

and latticially isometrically isomorphic. The isomorphism extends to a unitary lattice iso-
morphism between

(
D, E1/2

1

)
and D(E)1. The last assertion follows provided we show the

following claim.
Claim: D(Eζ ) = D(Eres

ζ ) for ν-a.e. ζ ∈ Z. Argue by contradiction that there exists B ∈
Zν , with νB > 0 and so that D(Eres

ζ ) � D(Eζ ) for every ζ ∈ B. We may assume with no
loss of generality that B ∈ Z . Furthermore, since (Z,Z, ν) is σ -finite countably generated,

we may and shall assume that νB < ∞. Denote by D(Eres
ζ )

⊥ζ

1 the (Eζ )
1/2
1 -orthogonal

complement of D(Eres
ζ )1 in D(Eζ )1. By the axiom of choice, there exists ĥ :=(ζ �→ ĥζ )

with ĥζ ∈ D(Eres
ζ )

⊥ζ

1 and ‖ĥζ ‖D(Eζ )1 = 1 for all ζ ∈ B and ĥζ := 0D(Eζ ) for ζ ∈ Bc.
By closability of (Eζ ,D(Eζ )), the domain D(Eζ )1 embeds identically via ιζ,1 into Hζ ,
thus ĥζ may be regarded as an element ιζ,1ĥζ of Hζ for every ζ ∈ Z. Since

∥
∥ιζ,1

∥
∥

op ≤ 1
for every ζ ∈ Z, then

0 < ‖ιζ,1ĥζ ‖ζ ≤ 1 , ζ ∈ B . (25)

Since (E,D(E)) is in particular a direct integral of quadratic forms, ζ �→ ιζ,1 is a ν-
measurable field of bounded operators, and thus ζ �→ ιζ,1ĥζ is a ν-measurable field of
vectors.
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Now, let H be defined as in Eq. 18. Setting h̄ :=(ζ �→ ιζ,1ĥζ ), it follows by Eq. 25 that

‖h̄‖2 :=
∫

Z

‖ιζ,1ĥζ ‖2
ζ dν(ζ ) =

∫

B

‖ιζ,1ĥζ ‖2
ζ dν(ζ ) ∈ (0, νB] .

In particular, for the equivalence class h :=[h̄]H , we have that h �= 0H . By Proposition 2.25,
there exists h̃ ∈ L2(μ) representing h ∈ H , and thus satisfying 0D �= [h̃]μ ∈ D. On the
other hand though,

E1([h̃]μ, [ũ]μ) :=
∫

Z

Eζ,1
([h̃]μζ ,

[
ũ
]
μζ

)
dν(ζ )

=
∫

Z

Eζ,1
(
ĥζ , δ(ũ)ζ

)
dν(ζ ) = 0 ,

ũ ∈ U ,

by definition of ĥ. By E1/2
1 -density of

[
U
]
μ

in D, the latter implies that h = 0D, the desired
contradiction.

Remark 2.36 If the disintegration in Proposition 2.35 is not separated, then (E,D) is still
isomorphic, as a quadratic form, to the diagonal restriction (Qres,D(Qres)) (Dfn. 2.27) of
the direct integral of quadratic forms (E,D(E)).

3 Ergodic Decomposition

Everywhere in this section, let (X, τ,X , μ) be satisfying Assumption 2.18. We are
interested in the notion of invariant sets for a Dirichlet form.

Definition 3.1 (Invariant sets, irreducibility, cf. [15, p. 53]) Let (E,D(E)) be a Dirichlet
form on L2(μ). We say that A ⊂ X is E-invariant if it is μ-measurable and any of the
following equivalent3 conditions holds.

(a) Tt (1Af ) = 1ATtf μ-a.e. for any f ∈ L2(μ) and t > 0;
(b) Tt (1Af ) = 0 μ-a.e. on Ac for any f ∈ L2(μ) and t > 0;
(c) Gα(1Af ) = 0 μ-a.e. on Ac for any f ∈ L2(μ) and α > 0;
(d) 1Af ∈ D(E) for any f ∈ D(E) and

E(f, g) = E(1Af,1Ag)+ E(1Acf,1Acg) , f, g ∈ D(E) (26)

(e) 1Af ∈ D(E)e for any f ∈ D(E)e and Eq. 26 holds for any f, g ∈ D(E)e.

The form (E,D(E)) is irreducible if, whenever A is E-invariant, then either μA = 0
or μAc = 0.

As shown by Example 2.32, the form (E,D(E)) constructed in Proposition 2.29 is
hardly ever irreducible, even if (Eζ ,D(Eζ )) is so for every ζ ∈ Z.

3See [15, Lem. 1.6.1, p. 53], the proof of which adapts verbatim to our more general setting.

592 L. Dello Schiavo



3.1 The Algebra of Invariant Sets

Invariants sets of symmetric Markov processes on locally compact Polish spaces are studied
in detail by H. Ôkura in [25]. In particular, he notes the following. For A ∈ X set

[A]E :=
{
Ã ∈ Xμ : 1

Ã
is an E-quasi-continuous version of 1A

}
.

For arbitrary A ∈ X it can happen that [A]E = ∅ or that A �∈ [A]E . If however (E,D(E))

is regular, then [A]E is non-empty for every E-invariant set A. Suppose now A0, A1 ∈ X
and [A0]E �= ∅. Then, one has the following dichotomy, [25, Rmk. 1.1(ii)],

– [A0]E = [A1]E if (and only if) μ(A0 A1) = 0;
– [A0]E ∩ [A1]E = ∅ if (and only if) μ(A0 A1) > 0.

As a consequence, when describing an E-invariant set A of a regular Dirichlet
form (E,D(E)), we may use interchangeably the E-class [A]E — i.e. the finest object
representing A, as far as E is concerned — and the μ-class [A]μ representing A in the mea-
sure algebra of (X,X , μ). This motivates to allow A in our definition of invariant set to be
μ-measurable, rather than only measurable.

We turn now to the study of invariant sets via direct integrals. We aim to show that, under
suitable assumptions on μ, a Dirichlet form (E,D(E)) on L2(μ) may be decomposed as a
direct integral ζ �→ (Eζ ,D(Eζ )) with (Eζ ,D(Eζ )) irreducible for every ζ ∈ Z.

To this end, we need to construct a measure space (Z,Z, ν) “indexing” E-invariant sets.
Let us start with a heuristic argument, showing how this cannot be done naı̈vely, at least in
the general case when (X,X , μ) is merely σ -finite.

Let X0 be the family of μ-measurable E-invariant subsets of X, and note that X0 is a
σ -sub-algebra of Xμ, e.g. [15, Lem. 1.6.1, p. 53]. Let μ0 be the restriction of μ̂ to (X,X0).

The space (X,X0, μ0) — our candidate for (Z,Z, ν) — is generally not σ -finite, nor
even semi-finite. For instance, in the extreme case when (E,D(E)) is irreducible and μX =
∞, then X0 is the minimal σ -algebra on X, the latter is an atom, and thus μ0 is purely
infinite.

Since (X,X , μ) is σ -finite, every disjoint family of μ-measurable non-negligible subsets
is at most countable [14, 215B(iii)], thus (X,X0, μ0) has up to countably many disjoint
atoms.

However, even in the case when (X,X0, μ0) has no atoms, μ0 might again be purely
infinite. This is the case of Example 2.32, where X0 = {∅,R} ⊗B(R)Leb1

is the product
σ -algebra of the minimal σ -algebra on the first coordinate with the Lebesgue σ -algebra on
the second coordinate, and where μ0 coincides with the μ̂-measure of horizontal stripes.

This latter example shows that, again even when (X,X0, μ0) has no atoms, the complete
locally determined version [14, 213D] of (X,X0, μ0) is trivial. Thus, in this generality, there
is no natural way to make (X,X0, μ0) into a more amenable measure space while retaining
information on E-invariant sets.

The situation improves as soon as (X,X , μ) is a probability space, in which case so
is (X,X0, μ0). The reasons for this fact are better phrased in the language of von Neumann
algebras.

Remark 3.2 (Associated von Neumann algebras) Denote by M the space L∞(μ) regarded
as the (commutative, unital) von Neumann algebra of multiplication operators in B(L2(μ)).
Then, L∞(μ0) is a (commutative) von Neumann sub-algebra of M , denoted by M0. Two
key observations are as follows:
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– since (X,X0, μ0) is now (semi-)finite, M0 is unital as well;
– by Definition 3.1(d), the algebra M0 acts by multiplication also on D(E), and the

action M0
�

L2(μ) is compatible with the action M0
�

D(E) by restriction.

The next definition, borrowed from [4], encodes a notion of “smallness” of the
σ -algebra X w.r.t. μ.

Definition 3.3 [4, Dfn. A.1] Let X ∗ ⊂ X be a countably generated σ -subalgebra. We say
that:

– X is μ-essentially countably generated by X ∗ if for each A ∈ X there is A∗ ∈ X ∗
with μ(A A∗) = 0;

– X is μ-essentially countably generated if it is so by some X ∗ as above.

By our Assumption 2.18, X is countably generated, thus X0 is μ0-essentially countably
generated by X ∗ :=X ∩ X0. We denote by μ∗0 the restriction of μ0 to X ∗. As noted in [4,
p. 418], atoms of X ∗ are, in general, larger (in cardinality, not in measure) than atoms of X .
It is therefore natural to pass to a suitable quotient space. Following [4, Dfn. A.5], we define
an equivalence relation ∼ on X by

x1 ∼ x2 if and only if x1 ∈ A ⇐⇒ x2 ∈ A for every A ∈ X ∗ . (27)

Further let p : X → Z :=X/ ∼ be the quotient map, Z := {
B ⊂ Z : p−1(B) ∈ X ∗} be

the quotient σ -algebra induced by p, and ν :=p�μ
∗
0 be the quotient measure. Similarly

to [4, p. 416], it follows by definition of ∼ that every A ∈ X ∗ is p-saturated. In particular:

∅ �= A ⊂ p−1(p(x)) =⇒ A = p−1(p(x)) , A ∈ X ∗ . (28)

As a consequence X ∗ and Z are isomorphic and thus both are countably generated,
since X ∗ is by assumption. Furthermore, (Z,Z) is separable by construction, and thus it is
countably separated.

3.2 Ergodic Decomposition of Forms: Probability Measure Case

We are now ready to state our main result, a decomposition theorem for Dirichlet forms
over their invariant sets.

Theorem 3.4 (Ergodic decomposition: regular case) Let (X, τ,X , μ) be a locally compact
Polish probability space, and (E,D(E)) be a τ -regular Dirichlet form on L2(μ). Then,
there exist

(i) a probability space (Z,Z, ν) and a measurable map s : (X,X )→ (Z,Z);
(ii) a ν-essentially unique disintegration

(
μζ

)
ζ∈Z

of μ̂ w.r.t. ν, strongly consistent with s,

and so that, when s−1(ζ ) is endowed with the subspace topology and the trace σ -
algebra inherited from (X, τ,Xμ), then (s−1(ζ ), μζ ) is a Radon probability space
for ν-a.e. ζ ∈ Z;

(iii) a ν-measurable field ζ �→ (Eζ ,D(Eζ )) of τ -regular irreducible Dirichlet forms
(Eζ ,D(Eζ )) on L2(μζ );

so that

L2(μ) =
∫ ⊕

Z

L2(μζ ) dν(ζ ) and E =
∫ ⊕

Z

Eζ dν(ζ ) . (29)
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Proof (i) Let (Z,Z, ν) be the quotient space of (X,X ∗, μ∗0) defined in Section 3.1, and
recall that (Z,Z) is countably separated. Note that idX : (X,Xμ, μ̂) → (X,Xμ0

0 , μ̂0) is
inverse-measure-preserving [14, 235H(b)], thus so is

s :=p ◦ idX : (X,Xμ, μ̂)→ (Z,Z, ν) . (30)

Since (X, τ,Xμ, μ̂) is Radon (in the sense of [14, 411H(b)]) and (Z,Z, ν) is a
probability space (in particular: strictly localizable [14, 322C]), there exists a disintegra-
tion

(
μζ

)
ζ∈Z

of μ̂ over ν consistent with s, and so that (X, τ,X , μζ ) is a Radon probability

space [14, 452O, 452G(a)]. Since (Z,Z) is countably separated,
(
μζ

)
ζ∈Z

is in fact strongly
consistent with s [14, 452G(c)]. By definition of strong consistency, we may restrict μζ

to s−1(ζ ); the Radon property is preserved by this restriction [14, 416R(b)]. Since s fac-
tors through p, one has s−1(ζ ) ∈ X ∗ ⊂ X for every ζ ∈ Z. In particular, s−1(ζ ) is a
Borel subset of the metrizable Luzin space (X, τ), and thus a metrizable Luzin space itself
by [27, §II.1, Thm. 2, p. 95]. It follows that supp[μζ ], endowed with the subspace topol-
ogy inherited from (X, τ) and the induced Borel σ -algebra, satisfies Assumption 2.18. The
disintegration is ν-essentially unique, similarly to [4, Thm. A.7, Step 1, p. 420].

This shows (i)–(ii). The proof of (iii) is divided into several steps.

1. Measurable fields Let C be a special standard core [15, p. 6] for (E,D(E)), and N ⊂ Z

be a ν-negligible set so that (X, τ,X , μζ ) is Radon for every ζ ∈ Nc. Then, C
∣∣
supp[μζ ] is

dense in L2(μζ ) for every ζ ∈ Nc. In particular, since L2(μ) is separable, there exists a
fundamental sequence (un)n ⊂ C, i.e. total in L2(μζ ) for every ζ ∈ N c, and additionally
total in L2(μ). Since (E,D(E)) is regular, D(E)1 is separable by [23, Prop. IV.3.3(i)],
and therefore we can and will assume, with no loss of generality that (un)n is additionally
E

1/2
1 -total in D(E)1.
Moreover, C is an algebra, thus ζ �→ 〈f | g〉ζ = μζ (fg) is ν-measurable by defini-

tion of disintegration for every f , g ∈ C. As a consequence, by Proposition 2.4 there
exists a unique ν-measurable field of Hilbert spaces ζ �→ L2(μζ ) making ν-measurable
all functions of the form ζ �→ μζ f with f ∈ C. We denote by SC the underlying space
of ν-measurable vector fields. Everywhere in the following, we identify [f ]μζ

with a fixed
continuous representative f ∈ C, thus writing f in place of δ(f ).

2. L2-isomorphism Since
(
μζ

)
ζ∈Z

is strongly consistent with s, it is separated. Therefore,
the first isomorphism in Eq. 29 follows now by Eq. 19 with underlying space SC . In the
following, set H :=L2(μ) and Hζ :=L2(μζ ).

3. Semigroups Let Tt be the semigroup associated to (E,D(E)) and consider the natural
complexification T C

t of Tt defined on HC :=H ⊗R C. For g ∈ L∞(ν) denote by

Mg :=
SC∫ ⊕

Z

g(ζ )1Hζ dν(ζ )

the associated diagonalizable operator in B(H), [12, §II.2.4 Dfn. 3, p. 185]. For B ∈ Z
set MB :=M1B

.
Claim: the commutator [T C

t , MC
g ] vanishes for g ∈ L∞

C
(ν). By [12, §II.2.3, Prop. 4(ii),

p. 183] and the norm-density of simple functions in L∞(ν), it suffices to show
that [Tt ,MB ] = 0 for every B ∈ Z . To this end, recall the discussion [12, p. 165]
on ν-measurable structures induced by ν-measurable subsets of Z. Since B ∈ Z ,
then A :=p−1(B) ∈ Xμ0

0 , and A ∈ Xμ as well [14, 235H(c)]. Note further that, since H
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is reconstructed as a direct integral with underlying space SC , for every h ∈ C the rep-
resentative hζ of h in Hζ may be chosen so that hζ = h for every ζ ∈ Z. Thus, for
all f, g ∈ C,

〈MBf | g〉H =
∫

Z

1B(ζ )
〈
1Hζ fζ

∣
∣ gζ

〉
ζ

dν(ζ )

=
∫

B

∫

X

fg dμζ dν(ζ ) =
∫

A

fg dμ

= 〈1Af | g〉H .

By density of C in H and since MB is bounded, it follows that MB = 1A as elements
of B(H). Thus, [Tt ,MB ] = [Tt ,1A] = 0 for every t > 0 by Definition 3.1(a), since A is
E-invariant.

By the characterization of decomposable operators via diagonalizable opera-
tors [12, §II.2.5, Thm. 1, p. 187], Tt is decomposable, and represented by a ν-measurable
field of contraction operators ζ �→ Tζ,t .

Finally, in light of [12, §II.2.3, Prop. 4, p. 183], it is a straightforward verifica-
tion that Tζ,t , t > 0, is a strongly continuous symmetric contraction semigroup on Hζ

for ν-a.e. ζ ∈ Z, since so is Tt . Analogously to the proof of Proposition 2.29, Tζ,t is
sub-Markovian for ν-a.e. ζ ∈ Z, since so is Tt .

4. Forms: construction Denote by (Eζ ,D(Eζ )) the Dirichlet form on L2(μζ ) associated
to the sub-Markovian semigroup Tζ,t for ν-a.e. ζ ∈ Z. Let further Gζ,α , α > 0, be the
associated strongly continuous contraction resolvent.

We claim that C ⊂ D(Eζ ) for ν-a.e. ζ ∈ Z.
Firstly, note that ζ �→ Eζ (f, g) is ν-measurable, since it is the ν-a.e.-limit of the

measurable functions ζ �→ E
(β)
ζ (f, g) := 〈

f − βGζ,βf
∣∣ g
〉
ζ

as β → ∞ by Eq. 1c.
By [23, p. 27],

Eζ (f, g) = lim
β→∞

〈
f − β

∫ ∞

0
e−βtTζ,t f dt

∣
∣∣∣ g
〉

ζ

, f, g ∈ C .

Now,
∫

Z

Eζ (f ) dν(ζ ) =
∫

Z

lim
β→∞

〈
f − β

∫ ∞

0
e−βtTζ,t f dt

∣
∣∣∣ f

〉

ζ

dν(ζ )

≤ lim inf
β→∞

∫

Z

〈
f − β

∫ ∞

0
e−βtTζ,t f dt

∣
∣∣∣ f

〉

ζ

dν(ζ )

by Fatou’s Lemma. It is readily checked that, since
∥
∥Tζ,t

∥
∥

op ≤ 1, we may exchange the
order of both integration and Hζ -scalar products by Fubini’s Theorem. Thus,

∫

Z

Eζ (f ) dν(ζ ) ≤ lim inf
β→∞

∫

Z

〈
f − β

∫ ∞

0
e−βtTζ,t f dt

∣∣
∣∣ f

〉

ζ

dν(ζ )

=
∫

Z

‖f ‖2
ζ dν(ζ )− lim sup

β→∞

∫ ∞

0

∫

Z

βe−βt
〈
Tζ,tf

∣
∣ f

〉
ζ

dν(ζ ) dt .

By the representation of Tt via ζ �→ Tζ,t established in Step 3,
∫

Z

Eζ (f ) dν(ζ ) ≤
∫

Z

∫

X

f 2 dμζ dν(ζ )− lim sup
β→∞

∫ ∞

0
βe−βt 〈Ttf | f 〉H dt .
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Finally, by Eqs. 14, [23, p. 27] and 1c,
∫

Z

Eζ (f ) dν(ζ ) ≤ lim inf
β→∞ β

∫ ∞

0

〈
f − e−βtTtf

∣
∣ f

〉
H

dt

= lim inf
β→∞ β

〈
f −

∫ ∞

0
e−βtTtf dt

∣
∣
∣
∣ f

〉

H

= E(f ) <∞ .

This shows that Eζ (f ) <∞ for every f ∈ C for ν-a.e. ζ ∈ Z, thus C ⊂ D(Eζ ) ν-a.e.
Claim: C is a core for (Eζ ,D(Eζ )) for ν-a.e. ζ ∈ Z. It suffices to show that the inclu-

sion C ⊂ D(Eζ ) is (Eζ )
1/2
1 -dense for ν-a.e. ζ ∈ Z. Argue by contradiction that there exists

a ν-measurable non-negligible set B so that the inclusion C ⊂ D(Eζ ) is not (Eζ )
1/2
1 -dense

for every ζ ∈ B, and let C⊥ζ be the (Eζ )
1/2
1 -orthogonal complement of C in D(Eζ ). By

the axiom of choice we may construct h ∈ ∏
ζ∈Z Hζ so that hζ ∈ C⊥ζ \ {0} for ζ ∈ B

and hζ = 0 for ζ ∈ Bc. Further let (un)n ⊂ C be as in Step 1. Then, ζ �→ 〈
un

∣
∣hζ

〉
ζ
= 0

is ν-measurable for every n. As a consequence, ζ �→ hζ is ν-measurable (i.e., it belongs
to SC) by [12, §II.1.4, Prop. 2, p. 166]. By the first isomorphism in Eq. 29, established in
Step 1, ζ �→ hζ represents an element h in H . Since (un)n is total in H , there exists n so that

0 �= 〈un |h〉H =
∫

Z

〈
un

∣
∣hζ

〉
ζ

dν(ζ ) = 0 ,

a contradiction. Since functions in C are continuous, the form (Eζ ,D(Eζ )) is regular for
ν-a.e. ζ ∈ Z. In particular, D(Eζ )1 is separable for ν-a.e. ζ ∈ Z by [23, Prop. IV.3.3].

We note that, by the above claim and [23, Prop. IV.3.3(i)], D(Eζ )1 is separable for
every ζ ∈ Z, and so the observation in Remark 2.12 is satisfied.

5. Forms: direct integral By Step 1, resp. Step 4, ζ �→ L2(μζ ), resp. ζ �→ D(Eζ )1,
is a ν-measurable field of Hilbert spaces with underlying space SC . In particular, ζ �→
(Eζ ,D(Eζ )) satisfies Definition 2.11, and we may consider the direct integral of quadratic
forms

Ẽ(f ) :=
SC∫ ⊕

Z

Eζ (f ) dν(ζ ) (31)

defined by Eq. 7.
We claim that (Ẽ,D(Ẽ)) = (E,D(E)). This is a consequence of Proposition 2.13(iii),

since (8) was shown in Step 3 for Tt . Definition 2.26 holds with A = C by construction.

6. Forms: irreducibility Let Aζ be Eζ -invariant, with μ̂ζ Aζ > 0.
With no loss of generality, we may and will assume that Aζ ∈ X . Up to removing a ν-

negligible set of ζ ’s, we have that Aζ ⊂ s−1(ζ ), by strong consistency of the disintegration.
Thus, by Eq. 14,

μAζ = μ
(
Aζ ∩ s−1(ζ )

) =
∫

{ζ }
μζ Aζ dν(ζ ) = μζ Aζ · ν {ζ } . (32)

Claim: Aζ ∈ X0. Assume first that ν {ζ } = 0. Then, Aζ is contained in the μ-negligible
invariant set s−1(ζ ), hence, it is E-invariant, i.e. Aζ ∈ X0. Assume now ν {ζ } > 0.
By Eq. 32, μAζ > 0, thus Aζ �= ∅ and 1Aζ �= 0H . By [12, §II.2.3, Prop. 3, p. 182] and the
direct-integral representation of Tt established in Step 3,

1Aζ Tt =
∫ ⊕

Z

1Aζ Tζ ′,t dν(ζ ′) .
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By strong consistency, Aζ is μζ ′ -negligible for every ζ ′ �= ζ , thus in fact

1Aζ Tt = ν{ζ }1Aζ Tζ,t ,

whence, by Eζ -invariance of Aζ ,

1Aζ Tt = ν{ζ }1Aζ Tζ,t = ν{ζ } Tζ,t1Aζ = Tt1Aζ ,

and so Aζ is E-invariant, and thus Aζ ∈ X0.
Now, since Aζ ∈ X by assumption, then Aζ ∈ X ∗ :=X ∩ X0. Together with Aζ ⊂

s−1(ζ ), this implies that either Aζ = ∅, or Aζ = s−1(ζ ) by Eq. 28. Thus, it must
be Aζ = s−1(ζ ), since μ̂ζ Aζ > 0 by assumption. Since s−1(ζ ) is μ̂ζ -conegligible, this
shows that (Eζ ,D(Eζ )) is irreducible.

In the statement of Theorem 3.4, we write that each (Eζ ,D(Eζ )) is a regular Dirichlet
form on L2(μζ ) with underlying space (X, τ,X , μζ ) to emphasize that the topology of
the space is the given one. As it is well-known however, in studying the potential-theoretic
and probabilistic properties of a Dirichlet form (E,D(E)) on L2(μ), one should always
assume that μ has full support, which is usually not the case for μζ on (X, τ). In the present
case, the restriction of μζ to s−1(ζ ) is however harmless, since s−1(ζ ) is E-invariant, and
therefore s−1(ζ )c is also Eζ -exceptional.

Remark 3.5 As anticipated in Section 1, if (E,D(E)) is regular and strongly local, then
every invariant set admits an E-quasi-clopen μ-modification [15, Cor. 4.6.3, p. 194]. This
suggests that, at least in the local case, one may treat E-invariant sets as “connected com-
ponents” of X. Our intuition can be made rigorous by noting that E-invariant subsets of X

are in bijective correspondence to compact open subsets of the spectrum spec(M0) of the
von Neumann algebra M0 (cf. Rmk. 3.2), endowed with its natural weak* topology. In par-
ticular, spec(M0) coincides with the Stone space of the measure algebra of (X,X0, μ0),
and is thus a totally disconnected Hausdorff space. Its singletons correspond to the “mini-
mal connected components” sought after in Section 1. At this point, we should emphasize
that (Z,Z) and spec(M0) are different measure spaces, the points of which index “mini-
mal invariant sets” in X. However, points in Z index — via s — sets in X ∗, whereas points
in spec(M0) index sets in X0. In this sense at least, Z is minimal with the property of index-
ing such “minimal invariant sets”, while spec(M0) is maximal. For this reason, one might
be tempted to use spec(M0) in place of (Z,Z) in Theorem 3.4. The issue is that spec(M0)

is nearly always too large for the disintegration to be strongly consistent with the indexing
map.

In the next result we show that the regularity of the Dirichlet form (E,D(E)) in The-
orem 3.4 may be relaxed to quasi-regularity. As usual, a proof of this result relies on the
so-called transfer method.

Let (X, τ,X , μ) and (X�, τ �,X �, μ�) be measure spaces satisfying Assumption 2.18.
We note en passant that a Hilbert isomorphism of Dirichlet spaces ι : D(E)1 → D(E�)1,
additionally preserving the L∞-norm on D(E) ∩ L∞(μ), is automatically a lattice
isomorphism, e.g. [15, Lem. A.4.1, p. 422].

Theorem 3.6 (Ergodic decomposition: quasi-regular case) The conclusions of Theorem 3.4
remain valid if (X, τ,X , μ) is a topological probability space satisfying Assumption 2.18
and “regular” is replaced by “quasi-regular”.
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Proof By the general result [7, Thm. 3.7], there exist a locally compact Polish, Radon
probability space (X�, τ �,X �, μ�) and a quasi-homeomorphism

j : (X, τ,X , μ) −→ (X�, τ �,X �, μ�)

so that (E,D(E)) is quasi-homeomorphic, via j , to a regular Dirichlet form (E�,D(E�))

on (X�, τ �,X �, μ�).
Applying Theorem 3.4 to (E�,D(E�)) gives a disintegration

(
μ

�
ζ

)
ζ

of μ w.r.t. ν and a

direct-integral representation

E� =
∫ ⊕

Z

E
�
ζ dν(ζ ) ,

where (E
�
ζ ,D(E

�
ζ )) is a regular Dirichlet form on L2(μ

�
ζ ) for ν-a.e. ζ ∈ Z.

1. Forms In the following, whenever (Fk)k is a nest, let us set F :=⋃
k Fk . With no loss

of generality by [15, Lem. 2.1.3, p. 69], we may and will always assume that every nest is
increasing, and regular w.r.t. a measure apparent from context.

Let (Fk)k , resp.
(
F

�
k

)
k
, be an E-, resp. E�-, nest, additionally so that j : F → F� restricts

to a homeomorphism j : Fk → F
�
k for every k. Since (Fk)k is increasing, j : F → F� is

bijective. Let N1 be ν-negligible so that (E
�
ζ ,D(E

�
ζ )) is regular by Theorem 3.4.

Let X∂ :=X ∪ {∂}, where ∂ is taken to be an isolated point in X∂ . Since j may be not
surjective, in the following we extend j−1 on X� \ j (F ) by setting j−1(x�) = ∂ . Note that
this extension is X �-to-X -measurable (having care to extend X on X∂ in the obvious way).

Since j�μ = μ� the set N2 :={ζ ∈ Z : μ
�
ζ j (F ) < 1} is ν-measurable, since j is

measurable on F , and thus it is ν-negligible. In particular, j−1
� μ� {∂} = 0, and j−1

� μ
�
ζ {∂} =

0 for every ζ ∈ Nc
2 .

Set now N :=N1 ∪ N2. For ζ ∈ Nc set μζ := j−1
� μ

�
ζ and denote by (Eζ ,D(Eζ ))

the image form of (E
�
ζ ,D(E

�
ζ )) via j−1 on L2(μζ ), cf. [7, Eqn. (3.2)]. For ζ ∈ N

let (Eζ ,D(Eζ )) be the 0-form on L2(μ).
For f � : X� → R denote further by j∗f := f � ◦ j : X → R the pullback of f � via j , and

recall [7, Eqn. (3.3)]:

Gα(j∗f �) = j∗G�
αf � , f � ∈ L2(μ�) . (33)

2. Nests For ζ ∈ Nc let
(
F

�
ζ,k

)
k

be a μ
�
ζ -regular E

�
ζ -nest witnessing the (quasi-)regularity

of the form, i.e. verifying [7, Dfn. 2.8]. With no loss of generality, up to intersect-
ing F

�
ζ,k with F

�
h if necessary, we may assume that for every k there exists h :=hk so

that F
�
ζ,k ⊂ F

�
h . In particular, j−1 : F

�
ζ,k → Fζ,k := j (F

�
ζ,k) is a homeomorphism onto its

image. Let X
�
ζ
:= supp

[
μ

�
ζ

]
and note that F

�
ζ,k ⊂ X

�
ζ since

(
F

�
ζ,k

)
k

is μ
�
ζ -regular. Denote

by j−1
ζ the restriction of j−1 to X

�
ζ .

Claim: j−1
ζ is a quasi-homeomorphism for ν-a.e. ζ ∈ Z. It suffices to show that

(
Fζ,k

)
k

is an Eζ -nest for ν-a.e. ζ ∈ Z, which holds by construction.
Finally, set jζ := j

∣∣
j−1(X

�
ζ )

and note that, again by [7, Eqn. (3.3)],

Gζ,α(j∗ζ f �) = j∗ζ G
�
ζ,αf � , f � ∈ L2(μ

�
ζ ) , ζ ∈ Nc . (34)
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3. Direct integral representation By Eq. 8 for the resolvent applied to (E�,D(E�)),

G�
α =

∫ ⊕

Z

G
�
ζ,α dν(ζ ) . (35)

By Step 1 and [7, Lem. 3.3(ii)], j∗ζ : L2(μ�) → L2(μ) is an isomorphism for ν-a.e. ζ ∈
Z, with inverse (j−1

ζ )∗, and

j∗ =
∫ ⊕

Z

j∗ζ dν(ζ ) . (36)

Now, by a subsequent application of Eqs. 33, 35, 36 and [12, §II.2.3, Prop. 3, p. 182],
and 34,

Gα ◦ j∗ = j∗ ◦G�
α = j∗ ◦

∫ ⊕

Z

G
�
ζ,α dν(ζ ) =

∫ ⊕

Z

j∗ζ ◦G
�
ζ,α dν(ζ )

=
∫ ⊕

Z

Gζ,α ◦ j∗ζ dν(ζ ) .

Thus, by a further application of [12, §II.2.3, Prop. 3, p. 182],

Gα ◦ j∗ =
∫ ⊕

Z

Gζ,α dν(ζ ) ◦ j∗ .

Cancelling j∗ by its inverse (j−1)∗, this yields the direct-integral representation of Gα

via ζ �→ Gα,ζ . By Eq. 8 for the resolvent, this shows

E =
∫ ⊕

Z

Eζ dν(ζ ) .

4. Quasi-regularity and irreducibility By Step 2 and [7, Thm. 3.7], the form (Eζ ,D(Eζ ))

is quasi-regular for ν-a.e. ζ ∈ Z. Again by Step 2, it is also irreducible, since it is isomorphic
to the irreducible form (E

�
ζ ,D(E

�
ζ )).

3.3 Ergodic Decomposition of Forms: σ -Finite Measure Case

Under some additional assumptions, we may now extend the results in Theorem 3.4 to the
case when μ is only σ -finite. The main idea — borrowed from [6] — is to reduce the
σ -finite case to the probability case.

General strategy Let (E,D(E)) be a strongly local regular Dirichlet form on a locally
compact Polish, Radon measure space (X, τ,Xμ, μ̂) with full support. In particu-
lar, (X,X , μ) is σ -finite, [14, 415D(iii)]. Assume further that (E,D(E)) has carré du
champ (Γ,D(E)).

Let ϕ ∈ D(E), with ϕ > 0 μ-a.e. and ‖ϕ‖L2(μ) = 1, and set μϕ :=ϕ2·μ. Here, we under-
stand ϕ as a fixed E-quasi-continuous representative of its μ-class. Note that (X,X , μϕ)

is a probability space and that μϕ is equivalent to μ. Therefore, μ-classes and μϕ-classes
coincide. On L2(μϕ) we define a bilinear form

D(Eϕ) :=
{∫

(Γ (f )+ f 2) dμϕ <∞
}

, Eϕ(f, g) :=
∫

Γ (f, g) dμϕ . (37)

Suppose now that

(a) the form (Eϕ,D(Eϕ)) is a (closed) regular Dirichlet form on L2(μϕ).
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Then, we may apply Theorem 3.4 to obtain

– a probability space (Zϕ,Zϕ, νϕ) and a measurable map sϕ : X → Z;

– a νϕ-essentially unique disintegration
(
μ

(ϕ)
ζ

)
ζ∈Z

of μϕ over νϕ , strongly consistent

with sϕ ;

– a family of regular strongly local Dirichlet forms
(
E

(ϕ)
ζ ,D(E

(ϕ)
ζ )

)
on L2

(
μ

(ϕ)
ζ

)
;

satisfying the direct-integral representation

Eϕ =
∫ ⊕

Zϕ

E
(ϕ)
ζ dνϕ(ζ ) . (38)

For ζ ∈ Z let now μ
[ϕ]
ζ
:=ϕ−2 · μ(ϕ)

ζ be a measure on (X,X ) and suppose further that

(b) the form
(
E

(ϕ)
ζ ,D(E

(ϕ)
ζ )

)
has carré du champ operator

(
Γ

(ϕ)
ζ ,D(Γ

(ϕ)
ζ )

)
for νϕ-

a.e. ζ ∈ Zϕ ;
(c) the form

D(E
[ϕ]
ζ ) :=

{∫ (
Γ

(ϕ)
ζ (f )+ f 2) dμ

[ϕ]
ζ <∞

}
,

E
[ϕ]
ζ (f, g) :=

∫
Γ

(ϕ)
ζ (f, g) dμ

[ϕ]
ζ , f, g ∈ D(E

[ϕ]
ζ ) ,

(39)

is a (closed) regular Dirichlet form on L2(μ
[ϕ]
ζ ) for νϕ-a.e. ζ ∈ Z.

Then, finally, we may expect to have a direct-integral representation

E =
∫ ⊕

Zϕ

E
[ϕ]
ζ dνϕ(ζ ) . (40)

As it turns out, the properties of the Girsanov-type transformation (37) are quite delicate.
Before discussing the technical details, let us note here that, provided we have shown the

direct-integral representation in Eq. 40, it should not be expected that the latter is (essen-
tially) unique, but rather merely essentially projectively unique — as it is the case for
other ergodic theorems, e.g. [6, Thm. 2]. In the present setting, projective uniqueness is
understood in the following sense.

Definition 3.7 We say that the direct integral representation (40) is essentially projectively
unique if, for every ϕ, ψ as above:

(a) the measurable space (Z,Z) :=(Zϕ,Zϕ) = (Zψ,Zψ) is uniquely determined;
(b) the measures νϕ , νψ are equivalent (i.e., mutually absolutely continuous);

(c) the forms E
[ϕ]
ζ , E

[ψ]
ζ are multiple of each other for νϕ- (hence νψ -)a.e. ζ ∈ Z.

As it is clear, the definition only depends on the σ -ideal of νϕ-negligible sets in Z . By
condition (b), this ideal does not, in fact, depend on νϕ , hence the omission of the measure in

the designation. The lack of uniqueness is shown as follows. Since μ
[ϕ]
ζ is merely a σ -finite

(as opposed to: probability) measure, the family
(
μ
[ϕ]
ζ

)
ζ∈Z

is merely a pseudo-disintegration

(as opposed to: a disintegration). Thus, for every measurable g : Z → (0,∞),

μA =
∫

Z

μ
[ϕ]
ζ A dνϕ(ζ ) =

∫

Z

g(ζ ) · μ[ϕ]ζ A d
(
g−1 · νϕ

)
(ζ ) , A ∈ X .
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Since g is defined on Z, the pullback function f :=(sϕ)∗g is X0-measurable, i.e. all its
level sets are E-invariant; by strong locality of (E,D(E)), f is E-quasi-continuous, and
therefore an element of the extended domain Fe of (E,D(E)). As soon as f ∈ L2(μ), then
we have the direct-integral representation

E =
∫ ⊕

Zϕ

g(ζ )E
[ϕ]
ζ d

(
g−1 · νϕ

)
(ζ ) , g(ζ ) E

[ϕ]
ζ (u) =

∫

X

Γ
(ϕ)
ζ (u) d

(
f · μ[ϕ]ζ

)
.

Proofs’ summary The Girsanov-type transformations (37) are thoroughly studied by
A. Eberle in [13], where (a) is proved. We shall therefore start by showing (b) above,
Lemma 3.8 below. Informally, in the setting of Theorem 3.4, if (E,D(E)) has carré du
champ Γ , then

Γ =
∫ ⊕

Z

Γζ dν(ζ ) , (41)

where Γζ is the carré du champ of (Eζ ,D(Eζ )).
Since the range of Γ is a Banach (not Hilbert) space, we shall need the concept of direct

integrals of Banach spaces. In particular, we shall need an analogue of Proposition 2.25 for
L1-spaces, an account of which is given in the Appendix, together with a proof of the next
lemma.

Lemma 3.8 Under the assumptions of Theorem 3.4 suppose further that (E,D(E))

admits carré du champ operator (Γ,D(E)). Then, (Eζ ,D(Eζ )) admits carré du champ
operator (Γζ ,D(Eζ )) for ν-a.e. ζ ∈ Z.

Lemma 3.9 Under the assumptions of Theorem 3.4 suppose further that (E,D(E)) is
strongly local. Then, (Eζ ,D(Eζ )) is strongly local for ν-a.e. ζ ∈ Z.

Proof Note: In this proof we shall make use of results in [5]. We recall that a regular
form is ‘strongly local’ in the sense of [15, p. 6] if and only if it is ‘local’ in the sense
of [5, Dfn. I.V.1.2, p. 28]. This is noted e.g. in [28, §2, p. 78], after [26, Prop. 1.4]. In
this respect, we always adhere to the terminology of [15, 23]. Let (E,D(E)) be a regular
Dirichlet form. By [5, Cor. I.5.1.4 and Rmk. I.5.1.5, p. 31], (E,D(E)) is strogly local if and
only if |u| ∈ D(E) and E(|u|) = E(u) for every u ∈ D(E). Further note that |u| is a normal
contraction of u ∈ D(E) for every u ∈ D(E). As a consequence, |u| ∈ D(E) and E(|u|) ≤
E(u) for every u ∈ D(E), see e.g. [15, Thm. 1.4.1]. In particular, a Dirichlet form (E,D(E))

is not strongly local if and only if there exists u ∈ D(E) with E(u) > E(|u|).
Since μζ X ≤ 1 for every ζ ∈ Z, it is not difficult to show, arguing by contradiction, that

1X ∈ D(Eζ ) , Eζ (1X) = 0 for ν-a.e. ζ ∈ Z . (42)

Let (un)n ⊂ C be the fundamental sequence constructed in Step 1 in the proof of The-
orem 3.4(iii). The Dirichlet form (Eζ ,D(Eζ )) on L2(μζ ) is strongly local if and only
if Eζ (un) = Eζ (|un|) for every n ≥ 1. The same holds for (E,D(E)).

Now, argue by contradiction that there exists a ν-measurable non-negligible
set B ⊂ Z so that the form (Eζ ,D(Eζ )) is not strongly local for each ζ ∈ B.
Let Bn :=

{
ζ ∈ Z : Eζ (un) > Eζ (|un|)

}
and note that Bn ⊂ B is ν-measurable for

every n ≥ 1 since (un)n ⊂ C. Since B = ∪nBn and νB > 0, there exists some fixed n∗ so
that νBn∗ > 0. Without loss of generality, up to relabeling, we may choose n∗ = 1.
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Analogously to the proof of the Claim in Step 3 of Theorem 3.4(iii), set A :=p−1(B1)

and note that it is E-invariant. Thus, finally, 1Au1 ∈ D(E) and

E(u11A) =
∫

B1

Eζ (u1) dν(ζ ) >

∫

B1

Eζ (|u1|) dν(ζ ) = E(|u1|1A) = E(|u11A|) ,

which contradicts the strong locality of (E,D(E)).

Remark 3.10 The converse implications to Lemmas 3.8, and 3.9 are true in a more general
setting, viz.

(a) if (E,D(E)) is a direct integral of Dirichlet forms ζ �→ (Eζ ,D(Eζ )) each with carré
du champ operator (Γζ ,D(Γζ )), then (E,D(E)) has carré du champ given by Eq. 41,
see [5, Ex. V.3.2, p. 216];

(b) if (E,D(E)) is a direct integral of strongly local Dirichlet forms ζ �→ (Eζ ,D(Eζ )),
then (E,D(E)) is strongly local, see [5, Ex. V.3.1, p. 216].

We are now ready to prove the main result of this section.

Theorem 3.11 (Ergodic decomposition: σ -finite case) Let (X, τ,X , μ) be a locally com-
pact Polish Radon measure space, and (E,D(E)) be a regular strongly local Dirichlet form
on L2(μ) with carré du champ operator (Γ,D(Γ )). Then, there exist

(i) a probability space (Z,Z, ν) and a measurable map s : (X,X )→ (Z,Z);
(ii) an essentially projectively unique family of measures

(
μζ

)
ζ∈Z

so that, when s−1(ζ )

is endowed with the subspace topology and the trace σ -algebra inherited from
(X, τ,Xμ), then (s−1(ζ ), μ̂ζ ) is a Radon measure space for ν-a.e. ζ ∈ Z;

(iii) a ν-measurable field ζ �→ (Eζ ,D(Eζ )) of regular irreducible Dirichlet forms
(Eζ ,D(Eζ )) on L2(μζ );

so that

L2(μ) =
∫ ⊕

Z

L2(μζ ) dν(ζ ) and E =
∫ ⊕

Z

Eζ dν(ζ ) .

Proof Let ϕ ∈ D(E) with 0 < ϕ < 1 μ-a.e. and ‖ϕ‖L2 = 1. Since (E,D(E)) is regu-
lar strongly local on L2(μ) and admits carré du champ (Γ,D(E)), then the Girsanov-type
transform (Eϕ,D(Eϕ)) defined in Eq. 37 is a quasi-regular strongly local Dirichlet form
on L2(μϕ) by [13, Thm.s 1.1 and 1.4(ii)], and admits carré du champ (Γ,D(Eϕ)) by con-
struction. We note that we are applying the results in [13] in the context of [13, Example 1),
p. 501]. In particular, Assumption (D3) in [13, p. 501] holds by definition.

1. Constructions Let now C be a core for (E,D(E)). Since ϕ ≤ 1 μ-a.e., then E
ϕ
1 ≤

E1, and the form (Eϕ,D(Eϕ)) is in fact regular, with same core C. Since μϕ is a fully
supported probability measure by construction, we may apply Theorem 3.4 to obtain the
direct integral representation (38). For νϕ-a.e. ζ ∈ Zϕ , the form

(
E

(ϕ)
ζ ,D(E

(ϕ)
ζ )

)
is regular

with core C and irreducible by Theorem 3.4, strongly local by Lemma 3.9, and admitting
carré du champ

(
Γ

(ϕ)
ζ ,D(E

(ϕ)
ζ )

)
by Lemma 3.8.

Claim: ϕ−2 ∨ n ∈ D(E
(ϕ)
ζ ) for νϕ-a.e. ζ ∈ Zϕ , for every n ≥ 1. Since E

ϕ
1 ≤ E1, one

has ϕ ∈ D(Eϕ), hence ϕ ∈ D(E
(ϕ)
ζ ) for νϕ-a.e. ζ ∈ Zϕ as a consequence of Eq. 7. The

claim then follows by strong locality of (Eζ ,D(Eζ )) for νϕ-a.e. ζ ∈ Zϕ .
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Let now
(
E
[ϕ],n
ζ ,D(E

[ϕ],n
ζ )

)
be defined analogously to Eq. 39 with μ

[ϕ],n
ζ

:=(ϕ−2 ∨ n) ·
μ

(ϕ)
ζ in place of μ

[ϕ]
ζ .

By applying once more [13, Thm.s 1.1 and 1.4(ii)], the Girsanov-type trans-
form

(
E
[ϕ],n
ζ ,D(E

[ϕ],n
ζ )

)
defined in Eq. 39 is a regular Dirichlet form on L2(μ

[ϕ],n
ζ ) with

core C, strongly local, irreducible, and admitting carré du champ operator
(
Γ

(ϕ)
ζ ,D(E

[ϕ],n
ζ )

)

for νϕ-a.e. ζ ∈ Zϕ , for every n ≥ 1.

Claim: the quadratic form
(
E
[ϕ]
ζ ,D(E

[ϕ]
ζ )

)
defined in Eq. 39 is a regular Dirichlet

form on L2(μ
[ϕ]
ζ ), strongly local, irreducible, and admitting carré du champ opera-

tor
(
Γ

(ϕ)
ζ ,D(E

[ϕ]
ζ )

)
for νϕ-a.e. ζ ∈ Zϕ . Firstly, note that E

[ϕ]
ζ = supn E

[ϕ],n
ζ is well-defined

on D(E
[ϕ]
ζ ) = ⋂

n≥1 D(E
[ϕ],n
ζ ), thus

(
E
[ϕ]
ζ ,D(E

[ϕ]
ζ )

)
is a closable quadratic form

by [23, Prop. I.3.7(ii)]. The Markov property, the strong locality and the existence and com-
putation of the carré du champ operator are straightforward. Note that C ⊂ D(E

[ϕ]
ζ ), so that

the latter is dense in L2(μ
[ϕ]
ζ ) for νϕ-a.e. ζ ∈ Zϕ . By Dominated Convergence and Eq. 15

E(u) =
∫

X

Γ (u) dμ = lim
n

∫

X

Γ (u) · (ϕ−2 ∨ n) dμϕ

= lim
n

∫

Zϕ

∫

X

Γ
(ϕ)
ζ (u) dμ

[ϕ],n
ζ dνϕ(ζ )

=
∫

Zϕ

∫

X

Γ
(ϕ)
ζ (u) dμ

[ϕ]
ζ dνϕ(ζ ) ,

which establishes the direct integral representation (40), with underlying space SC . The
regularity of the forms

(
E
[ϕ]
ζ ,D(E

[ϕ]
ζ )

)
, all with core C, follows from the regularity

of (E,D(E)), exactly as in the Claim in Step 4 in the proof of Theorem 3.4.

2. Projective uniqueness By Eq. 38, E-invariant sets are also Eϕ-invariant. The reverse
implication follows since μ and μϕ are equivalent. As a consequence, the σ -algebras X0
and X ∗ defined w.r.t. μϕ as in Section 3.1 are independent of ϕ and thus so are the
space (Zϕ,Zϕ), henceforth denoted simply by (Z,Z), and the map sϕ , henceforth denoted
simply by s. Let now ϕ,ψ ∈ D(E), ϕ, ψ > 0 μ-a.e., and replicate every construction for ψ

as well. Note that μϕ :=ϕ2 · μ and μψ :=ψ2 · μ are equivalent.
Claim 1: νϕ ∼ νψ . It suffices to recall that νϕ = s�μ

ϕ and analogously for ψ w.r.t. the
same map s, hence the conclusion, since μϕ ∼ μψ .

It follows that the σ -ideal N :=Nϕ of νϕ-negligible sets in Z does not in fact depend
on ϕ. In the following, we write therefore “N -negligible” in place of “νϕ-negligible”
and “N -a.e.” in place of “νϕ-a.e.”.

Claim 2: μ
(ϕ)
ζ ∼ μ

(ψ)
ζ for N -a.e. ζ ∈ Z. Argue by contradiction that there exist B ∈

Z \ N and a family
(
Aζ

)
ζ∈B

with Aζ ∈ X and, without loss of generality, μ
(ϕ)
ζ Aζ >

μ
(ψ)
ζ Aζ = 0 for all ζ ∈ B. Set further Ã :=∪ζ∈BAζ and let A ∈ X be its measurable

envelope [14, 132D]. Then, by Eq. 14 and strong consistency of (μ
(ϕ)
ζ )ζ∈Z with s,

μϕA = μϕ
(
A ∩ s−1(B)

) =
∫

B

μ
(ϕ)
ζ A dνϕ(ζ ) =

∫

B

μ
(ϕ)
ζ

(
A ∩ s−1(ζ )

)
dνϕ(ζ )

≥
∫

B

μ
(ϕ)
ζ Aζ dνϕ(ζ ) > 0 .

(43)
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Let now μψ∗ be the outer measure of μψ , and analogously for μ
(ψ)∗
ζ . Note that, by

Assumption 2.18, the Carathéodory measure induced by μψ∗ coincides with the comple-
tion measure μ̂ψ = μ̂ψ . Furthermore, by strong consistency of (μ

(ψ)
ζ )ζ∈Z with s, one

has μ
(ψ)∗
ζ Ã = μ

(ψ)∗
ζ

(
Ã ∩ s−1(ζ )

) = μ
(ψ)∗
ζ Aζ = 0 by assumption. In particular, the

function ζ �→ μ
(ψ)∗
ζ Ã ≡ 0 is measurable. Thus, by [14, 452X(i)],

0 =
∫

B

μ
(ψ)∗
ζ Ã = μψ∗Ã = μψA ,

which contradicts (43) since μϕ ∼ μψ by the previous claim.
By the last claim, μ

[ϕ]
ζ -classes and μ

[ψ]
ζ -classes coincide. Therefore, the carré du champ

operator Γ
[ϕ]
ζ = Γ

(ϕ)
ζ is independent of ϕ, and henceforth denoted by Γζ . Thus we have

E(u) =
∫

Z

∫

X

Γζ (u) dμ
[ϕ]
ζ dνϕ(ζ ) =

∫

Z

∫

X

Γζ (u) dμ
[ψ]
ζ dνψ(ζ ) , u ∈ C ,

and, finally, it suffices to show the following.

Claim 3: μ
[ϕ]
ζ = dνψ

dνϕ
· μ

[ψ]
ζ . By construction,

(
μ
[ϕ]
ζ

)
ζ∈Z

, resp.
(
μ
[ψ]
ζ

)
ζ∈Z

, is a

pseudo-disintegration of μ over νϕ , resp. νψ . For fixed f ∈ L1(μ)+ and every t > 0
set At :={f/ϕ2 = t}. By consistency of the disentegration of μϕ over νϕ ,

∫ ∞

0
μϕ

(
At ∩ s−1(B)

)
dt =

∫ ∞

0

∫

B

μ
(ϕ)
ζ At dνϕ(ζ ) dt , B ∈ Z .

whence, by the level-set representation of the Lebesgue integral and Tonelli’s Theorem
∫

s−1(B)

f dμ =
∫

B

∫

X

f dμ
[ϕ]
ζ dνϕ(ζ ) . (44)

Note that the left-hand side does not depend on ϕ. Therefore, equating (44) with the same
representation for ψ and using Claim 1 yields
∫

B

∫

X

f dμ
[ϕ]
ζ dνϕ(ζ ) =

∫

B

∫

X

f dμ
[ψ]
ζ dνψ(ζ ) =

∫

B

dνψ

dνϕ

(ζ )

∫

X

f dμ
[ψ]
ζ dνϕ(ζ ) ,

and the conclusion follows, since f and B were arbitrary.

3.4 Some Examples

Here, we specialize the results in the previous sections to some particular cases.
In order to discuss the next example, we shall need the definition of 1-capacity capE of

a regular Dirichlet form (E,D(E)) on a locally compact Polish space (X, τ), for which we
refer the reader to [15, §2.1]. We recall that capE is a Choquet capacity on X in the sense
of e.g. [15, §A.1], see e.g. [15, Thm. 2.1.1]. Finally, we say that A ⊂ X is E-capacitable if

capE(A) = sup
K∈Kτ :K⊂A

capE(K) ,

where Kτ denotes the family of all τ -compact subsets of X.

Example 3.12 (Ergodic decomposition of forms on product spaces) Let X = Y × Z be a
product of locally compact Polish spaces endowed with a probability (hence Radon) mea-
sure μ, and

(
μζ

)
ζ∈Z

be a disintegration of μ over ν := prZ� μ strongly consistent with the

standard projection prZ : X → Z. This includes the setting of Example 2.32.
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Indeed, let (Eζ ,D(Eζ )) be regular irreducible Dirichlet forms on L2(μζ ), all with com-
mon core C ⊂ C0(Y ), and assume that ζ �→ (Eζ ,D(Eζ )) is a ν-measurable field of
quadratic forms in the sense of Definition 2.11 with underlying ν-measurable field S = SC .
Then, it is readily verified that

(i) the direct integral (E,D(E)) of quadratic forms ζ �→ (Eζ ,D(Eζ )) is a direct
integral of Dirichlet forms;

(ii) (E,D(E)) is a regular Dirichlet form on L2(μ) with core C ⊗ C0(Z) and semigroup

(Ttu)(y, ζ ) = (
Tζ,t ⊗ idL2(ν)u

)
(y, ζ ) = (

Tζ,tu( · , ζ )
)
(y) ;

(iii) if A ⊂ Z is ν-measurable and U ⊂ Y is Eζ -capacitable for every ζ ∈ Z, then U ×
A ⊂ X satisfies

capE(U × A) ≤
∫

A

capEζ
(U) dν(ζ ) .

As a further example, we state here the ergodic decomposition theorem for mixed Pois-
son measures on the configuration space over a connected Riemannian manifold. We refer
the reader to [2] for the main definitions.

Example 3.13 (Mixed Poisson measures, [2]) Let (M, g) be a Riemannian manifold with
infinite volume, and σ = ρ ·volg be a non-negative Borel measure on M with density ρ > 0

volg-a.e., and satisfying ρ1/2 ∈ W
1,2
loc (M). Let further �M be the configuration space

over M , endowed with the vague topology and the induced Borel σ -algebra, and denote
by πσ the Poisson measure on �M with intensity measure σ . Let now λ be a Borel probabil-
ity measure on R+ :=(0,∞) with finite second moment. The mixed Poisson measure with
intensity measure σ and Lévy measure λ is the measure

μλ,σ :=
∫

R+
πsσ dλ(s) .

In [2], Albeverio, Kondratiev, and Röckner construct a canonical Dirichlet
form

(
Eμλ,σ ,D(Eμλ,σ )

)
on L2(μλ,σ ) and show that

–
(
Eμλ,σ ,D(Eμλ,σ )

)
is quasi-regular strongly local, [2, Thm. 6.1];

–
(
Eμλ,σ ,D(Eμλ,σ )

)
is irreducible if and only if λ = δs , i.e. μλ,σ = πsσ , for some s ≥ 0,

[2, Thm. 4.3];
– πsσ ⊥ πrσ for all r, s ≥ 0, r �= s.

Applying Theorem 3.6 to the form
(
Eμλ,σ ,D(Eμλ,σ )

)
yields the direct-integral represen-

tation

Eμλ,σ =
∫ ⊕

R+
Eπsσ dλ(s) ,

where (Z,Z, ν) = (R+,B(R+), λ), and the disintegration of μλ,σ constructed in the
theorem coincides with (πsσ )s∈R+ .

Remark 3.14 Other examples are given by [1, Thm. 3.7] and [3], both concerned with
strongly local Dirichlet forms on locally convex topological vector spaces, and by [10], con-
cerned with a particular quasi-regular Dirichlet form on the space of probability measures
over a closed Riemannian manifold.
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3.5 Some Applications

We collect here some applications of the direct-integral decomposition discussed in the
previous sections.

Transience/recurrence Let (X, τ,X , μ) be satisfying Assumption 2.18.
For an invariant set A ∈ X0, we denote by μA the restriction of μ to A, and

by (EA,D(EA)) the Dirichlet form

D(EA) := {
1Af : f ∈ D(E)

}
, EA(f, g) :=E(1Af,1Ag) ,

well-defined on L2(μA) as a consequence of Definition 3.1(d). The next result is standard.
In the generality of Assumption 2.18, a proof is readily deduced from the corresponding
result for μ-tight Borel right processes, shown with different techniques by K. Kuwae in [20,
Thm. 1.3], in the far more general setting of quasi-regular semi-Dirichlet forms.

Corollary 3.15 (Ergodic decomposition: transience/recurrence) Under the assumptions of
Theorem 3.6, there existE-invariant subsetsXc,Xd , and a properlyE-exceptional subsetN
of X, so that

(i) X = Xc !Xd !N ;
(ii) the restriction (Ed,D(Ed)) of (E,D(E)) to Xd is transient;

(iii) the restriction (Ec,D(Ec)) of (E,D(E)) to Xc is recurrent.

As an application, we have the following proposition. Similarly to Remark 3.10, some
implications hold for superpositions of arbitrary Dirichlet forms.

Proposition 3.16 Let (X, τ,X , μ) be a topological measure space satisfying Assump-
tion 2.18, (Z,Z, ν) be σ -finite countably generated,

(
μζ

)
ζ∈Z

be a separated pseudo-
disintegration of μ over ν, and (E,D(E)) be a direct integral of quasi-regular Dirichlet
forms ζ �→ (Eζ ,D(Eζ )) on L2(μζ ). Then,

(i) (E,D(E)) is conservative if and only if (Eζ ,D(Eζ )) is conservative for ν-a.e. ζ ∈
Z;

(ii) (E,D(E)) is transient if and only if (Eζ ,D(Eζ )) is transient for ν-a.e. ζ ∈ Z.
Furthermore, one has the direct-integral representation of Hilbert spaces

D(E)e =
∫ ⊕

Z

D(Eζ )e dν(ζ ) ; (45)

(iii) if (E,D(E)) is recurrent, then (Eζ ,D(Eζ )) is recurrent for ν-a.e. ζ ∈ Z. In the
situation of Theorem 3.4 or Theorem 3.11, the converse implication holds as well.

Proof Analogously to the proof of Theorem 3.6 we may restrict to the regular case by the
transfer method. Thus we can and will assume with no loss of generality that (X, τ,Xμ, μ̂)

is a locally compact Polish Radon measure space with full support, and (E,D(E)) is
a direct integral of Dirichlet forms ζ �→ (Eζ ,D(Eζ )) with underlying space of ν-
measurable vector fields SC generated by a core C for (E,D(E)). By this assumption, the
form (E,D(E)) and all forms (Eζ ,D(Eζ )) are regular, with common core C. Analogously
to the proof of Theorem 3.4, if u ∈ C, then we may choose u as a representative for uζ ,
thus writing u in place of uζ for every ζ ∈ Z and every u ∈ C. Without loss of generality,
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possibly up to enlargement of C, we may assume that C is special standard (e.g., [15, p. 6]).
In particular, C is a lattice.

(i) Let (un)n ⊂ Cc(τ ) with 0 ≤ un ≤ 1 and so that limn un ≡ 1 locally uniformly
on (X, τ), and note that limn un = 1 both μ- and μζ -a.e. for every ζ ∈ Z. By the direct-
integral representation (8) of T• and by Eq. 19,
∫

X

f Ttun dμ =
∫

Z

∫

X

fζ Tζ,tun dμζ dν(ζ ) ,
f ∈ L1(μ) ∩ L2(μ) ,

f = (
ζ �→ fζ

)
,

t > 0 .

Letting n to infinity, it follows by several applications of the Dominated Convergence
Theorem that
∫

X

f Tt1 dμ =
∫

Z

∫

X

fζ Tζ,t1 dμζ dν(ζ ) ,
f ∈ L1(μ) ∩ L2(μ) ,

f = (
ζ �→ fζ

)
,

t > 0 .(46)

Now, assume that T• is not conservative and argue by contradiction that Tζ,• is con-
servative for ν-a.e. ζ ∈ Z. Then, choosing f ∈ L1(μ) ∩ L2(μ), with f > 0 μ-a.e.,
in Eq. 46,

∫

X

f dμ >

∫

X

f Tt1 dμ =
∫

Z

∫

X

fζ Tζ,t1 dμζ dν(ζ ) =
∫

Z

fζ1 dμζ dν(ζ )

=
∫

X

f dμ ,

a contradiction. The reverse implication follows from Eq. 46 in a similar way.
(ii) Assume (Eζ ,D(Eζ )) is transient for every ζ ∈ Nc for some ν-negligible N ⊂ Z.

That is, D(Eζ )e is a Hilbert space with inner product Eζ for every ζ ∈ Nc. By (the proof

of) [15, Lem. 1.5.5, p. 42], the space D(Eζ ) is E
1/2
ζ -dense in D(Eζ )e for every ζ ∈ N c.

Thus, the space of ν-measurable vector fields SC is underlying to each of the direct integrals

D(E)1 =
SC∫ ⊕

Z

D(Eζ )1 dν(ζ ) ,

Fe :=
SC∫ ⊕

Z

D(Eζ )e dν(ζ ) ,

L2(μ) =
SC∫ ⊕

Z

L2(μζ ) dν(ζ ) .

In particular, there exists a sequence (un)n ⊂ C simultaneously D(E)1-, Fe- and L2(μ)-
fundamental in the sense of Definition 2.3. Denote by ιζ,e the identity of L2(μζ ), regarded
as the continuous embedding ιζ,e : D(Eζ )1 → D(Eζ )e and note that

ζ �→ 〈
ιζ,eun

∣∣ um

〉
D(Eζ )e

= Eζ (un, um) = 〈un | um〉D(Eζ )1
− 〈un | um〉L2(μζ )

is ν-measurable for every n, m. By [12, §II.1.4, Prop. 2, p. 166] this implies that ζ �→ ιζ,e

is a ν-measurable field of bounded operators. Writing

ιe : D(E)1 → Fe , u �→
∫ ⊕

Z

ιζ,euζ dν(ζ ) ,

and arguing as in the proof of Proposition 2.13, the map ιe is injective, and thus
it is a continuous embedding of D(E)1 into the Hilbert space (Fe, E). As a conse-
quence, K := clFe

(
ιeD(E)1

)
is a Hilbert space with scalar product E. By definition

of D(E)e, the identity map ιe is a continuous embedding (D(E)e, E) ⊂ (K,E) ⊂
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(Fe, E). In particular, (D(E)e, E) is a Hilbert space, and the form (E,D(E)) is transient
by [15, Thm. 1.6.2, p. 58].

Claim: D(E)e = K = Fe and Eq. 45 holds. By (the proof of) [15, Lem. 1.5.5, p. 42], the
space D(E) is E1/2-dense in D(E)e, thus the same holds for C. It suffices to show that C
is E1/2-dense in Fe as well. We denote by C⊥ the E-orthogonal complement of C in Fe,
resp. by C⊥ζ the Eζ -orthogonal complement of C in D(Eζ ). By assumption, C⊥ζ = {0} for
every ζ ∈ N c. Finally, by the direct-integral representation of Fe,

C⊥ =
∫ ⊕

Z

C⊥ζ dν(ζ ) = {0} ,

similarly to the proof of the Claim in Step 4 of Theorem 3.4.
We say that u, v ∈ C are E-equivalent if E(u − v) = 0, and we write u ∼ v. Let

the analogous definition for u ∼ζ v be given. By the direct-integral representation (24)
of (E,D(E)), it is readily seen that

u ∼ v ⇐⇒ u ∼ζ v for ν-a.e. ζ ∈ Z . (47)

Assume now that (E,D(E)) is transient. That is, D(E)e is a Hilbert space with inner
product E. It suffices to show Eq. 45. Since E1/2 is non-degenerate on D(E)e, it is
non-degenerate on C, thus u ∼ v if and only if u = v μ-a.e. By Eq. 47, E

1/2
ζ is non-

degenerate on C for ν-a.e. ζ ∈ Z, thus (C, E
1/2
ζ ) is a pre-Hilbert space for ν-a.e. ζ ∈ Z.

For each ζ ∈ Z denote by Kζ the abstract completion of (C, E
1/2
ζ ), endowed with the

non-relabeled extension of E
1/2
ζ . It is a straightforward verification that there holds the

direct-integral representation

D(E)e =
SC∫ ⊕

Z

Kζ dν(ζ ) . (48)

By definition of D(Eζ )e, the completion embedding ιζ : C → Kζ extends to a setwise
injection ῑζ : D(Eζ )e → Kζ . Indeed, let uζ ∈ D(Eζ )e and (un)n ⊂ C be its approximating

sequence. Since (un)n is, by definition, E
1/2
ζ -Cauchy, it converges to some hζ ∈ Kζ by

completeness of Kζ . Set ῑζ (uζ ) :=hζ , and note that the definition is well-posed since E
1/2
ζ

is a norm in Kζ . Thus, D(Eζ )e, identified with a subset of Kζ via ῑζ , is a pre-Hilbert space

with scalar product Eζ , and in fact it holds that D(Eζ )e = Kζ by E
1/2
ζ -density of C in Kζ .

We note that the equality D(Eζ )e = Kζ is not a mere isomorphism of Hilbert spaces, but
rather an extension of the completion embedding ιζ , thus preserving the lattice property of C
regarded as a subspace of both D(Eζ )e and Kζ . Together with Eq. 48, this shows Eq. 45.

(iii) Assume (E,D(E)) is recurrent. By [15, Thm. 1.6.3, p. 58] there exists a
sequence (un)n ⊂ D(E), so that limn un(x) = 1 for μ-a.e. x ∈ X, and limn E(un) = 0.
By the Markov property for (E,D(E)) we may assume that un ∈ [0, 1]. By regularity
of (E,D(E)), we may assume that (un)n ⊂ C+ ⊂ C0(τ ). By e.g. [19, Prop. 3.1(iii),
p. 690], E(u ∨ v) ≤ E(u) + E(v), thus, up to passing to a suitable non-relabeled sub-
sequence, we may assume that (un)n is monotone non-decreasing. Then, limn un ≡ 1

τ -locally uniformly on supp[μ] = X by Dini’s Theorem, and therefore limn un(x) = 1
for μζ -a.e. x ∈ X for every ζ ∈ Z.

By the direct integral representation (24), it is readily seen arguing by contradiction
that limn Eζ (un) = 0 for ν-a.e. ζ ∈ Z. As a consequence, (Eζ ,D(Eζ )) is recurrent
for ν-a.e. ζ ∈ Z, again by [15, Thm. 1.6.3, p. 58].
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Suppose now that (E,D(E)) is given as the direct integral of Dirichlet forms in
Theorem 3.4, and assume that (Eζ ,D(Eζ )) is recurrent for ν-a.e. ζ ∈ Z. We show
that (E,D(E)) is recurrent. A proof in the setting of Theorem 3.11 is nearly identical, and
therefore it is omitted.

Recall the notation in Section 3.1 and argue by contradiction that (E,D(E)) is not
recurrent. By Corollary 3.15, there exists an E-invariant subset Xd , with μXd > 0, so
that (Ed,D(Ed)) is transient. Since X0 is μ-essentially countably generated by X ∗, we
may and shall assume without loss of generality that Xd ∈ X ∗, so that B := s(Xd) ∈ Z .
Since μXd > 0, we have νB > 0. It is not difficult to show that the direct-integral
decomposition of L2(μ) splits as a direct sum of Hilbert spaces

L2(μ) ∼= L2(μXd
)⊕ L2(μXc

d
) ∼=

∫ ⊕

B

L2(μζ ) dν(ζ )⊕
∫ ⊕

Bc
L2(μζ ) dν(ζ ) .

Since Xd is E-invariant, a corresponding direct-integral decomposition of D(E) is
induced by Corollary 3.15

D(E)1 ∼= D(Ed)1 ⊕D(Ec)1 ∼=
∫ ⊕

B

D(Eζ )1 dν(ζ )⊕
∫ ⊕

Bc
D(Eζ )1 dν(ζ ) .

Applying the reverse implication in (ii), it follows from the transience of (Ed,D(Ed))

that D(Eζ ,D(Eζ )) is transient for ν-a.e. ζ ∈ B. Since νB > 0, this contradicts the
assumption.

Ergodic decomposition of measures Let (X, τ,X , μ) be a locally compact Polish proba-
bility space. Since (X,X ) is a standard Borel space, the space M of all σ -finite measures
on (X,X ) is a standard Borel space as well when endowed with the σ -algebra generated by
the family of sets

{η ∈M : a1 < ηA < a2} , a1, a2 ∈ R+ , A ∈ X .

Let now (E,D(E)) be a regular Dirichlet form on L2(μ), and

M := (
Ω,F , (Mt )t≥0 , (Px)x∈X∂

, ξ
)

be the properly associated right process. We set

pt (x,A) :=Px {ω ∈ Ω : Mt(ω) ∈ A} , x ∈ X∂ , t ≥ 0 , A ∈ X∂ .

The semigroup T• of (E,D(E)) is thus well-defined on bounded Borel measurable
functions, by letting

Tt : Xb(R) −→ Xb(R)

f �−→
∫

X

f (y) pt ( · , dy)
, t ≥ 0 .

Definition 3.17 We say that a σ -finite measure η on (X,X ) is T•-invariant if
∫

X

Ttf dη =
∫

X

f dη , f ∈ Xb(R) , t ≥ 0 .

An invariant measure η is T•-ergodic if every E-invariant set is either η-negligible or η-
conegligible. We denote by Minv, resp. Merg, the set of all σ -finite T•-invariant, resp. T•-
ergodic, measures.

The formulation of the following result is adapted from [6, Thm. 1]. In light of
Corollary 3.15, we may restrict to the case of recurrent Dirichlet forms.
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Corollary 3.18 Let (X, τ,X , μ) be a probability space satisfying Assumption 2.18, and
let (E,D(E)) be a recurrent quasi-regular Dirichlet form on L2(μ). Then, there exists a
properly E-coexceptional subset Xinv of X, and a surjective map π : Xinv →Merg so that

(i) for every λ ∈Merg the set π−1(λ) is λ-conegligible;
(ii) for every η ∈Minv,

η =
∫

Merg

λ dη(λ) , η :=π�η ;

(iii) the map π� : Minv →M(Merg) is a Borel isomorphism;
(iv) for any η1, η2 ∈ Minv one has η1 � η2 if and only if π�η1 � π�η2, and η1 ⊥ η2 if

and only if π�η1 ⊥ π�η2.

Proof As a consequence of Theorem 3.6, we may restrict to the case when (X, τ) is a
locally compact Polish space. This reduces measurability statements to the case of standard
Borel spaces.

By Theorem 3.4(iii), there exists a ν-negligible set N ∈ Zν so that, for every ζ ∈ Nc, (a)
μζ s

−1(ζ ) = 1, in particular, μζ is a probability measure (as opposed to: sub-probability);
(b) (Eζ ,D(Eζ )) is a regular irreducible recurrent Dirichlet form on L2(μζ ) over the
space supp[μζ ]. Set Xinv := s−1(Nc) and note that Xc

inv is properly E-exceptional. Further
define π : x �→ μs(x). For notational simplicity, we relabel Z as Z \ N , so that (a),(b) hold
for every ζ ∈ Z, and Xinv = s−1(Z). Assertions (ii)-(iii) are standard, e.g. [30, Thm. 6.6].
As a consequence of (ii), assertion (i) is precisely the strong consistency of

(
μζ

)
ζ∈Z

with s.
The ‘only if’ part of assertion (iv) is straightforward. The ‘if’ part is a consequence of the
representation in (ii), together with (i).

Appendix

The theory of direct integrals of Banach spaces is inherently more sophisticated than the
corresponding theory for Hilbert spaces. We discuss here an irreducible minimum after [17,
Ch.s 5-7] and especially [9, §3]. For simplicity, we restrict ourselves to the case of σ -finite
(not necessarily complete) indexing spaces (Z,Z, ν).

A decomposition (Zα)α∈A of (Z,Z, ν) is a family of subsets Zα ⊂ Z so that

Z = {B ⊂ Z : B ∩ Zα ∈ Z for all α ∈ A} and

νB =
∑

α∈A

ν(B ∩ Zα) , B ∈ Z .

Definition 1.1 (Measurable fields, cf. [17, §6.1, p. 61f.] and [9, §3.1]) Let (Z,Z, ν) be a
σ -finite measure space, and V be a real linear space. A ν-measurable family of semi-norms
on V is a family (q‖·‖ζ )ζ∈Z so that

– ‖ · ‖ζ is a semi-norm on V for every ζ ∈ Z;
– the map ζ �→ ‖v‖ζ is ν-measurable for every v ∈ V .

Letting Yζ denote the Banach completion of V/ ker ‖ · ‖ζ , we say that a vector field u ∈∏
ζ∈Z Yζ is ν-measurable if, for each B ∈ Z with νB < ∞, there exists a sequence (un)n

of simple V -valued vector fields on B so that lim‖uζ − un,ζ ‖ζ = 0 ν-a.e. on B.
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A family
(
Yζ

)
ζ∈Z

of Banach spaces Yζ is a ν-measurable field of Banach spaces if there
exist

– a decomposition (Zα)α∈A of (Z,Z, ν) consisting of sets of finite ν-measure;
– a family of real linear spaces (Y α)α∈A;
– for each α ∈ A, a ν-measurable family of norms ‖ · ‖ζ on Yα ,

so that, for each α ∈ A and each ζ ∈ Zα , the space Yζ is the completion of (Y α, ‖ · ‖ζ ).
Extending the above definition of ν-measurability, we say that u ∈ ∏

ζ∈Z Yζ is
ν-measurable if (and only if) the restriction of u to each Zα is ν-measurable.

Let p ∈ [1,∞]. A ν-measurable vector field u is called Lp(ν)-integrable if ‖u‖p :=∥
∥(ζ �→ ∥

∥uζ

∥
∥

ζ
)
∥
∥

Lp(ν)
is finite. Two Lp(ν)-integrable vector fields u, v are ν-equivalent

if ‖u− v‖p = 0.
The space Yp of equivalence classes of Lp(ν)-integrable vector fields modulo

ν-equivalence, endowed with the non-relabeled quotient norm ‖ · ‖p , is a Banach
space [9, Prop. 3.2], called the Lp-direct integral of ζ �→ Yζ and denoted by

Yp =
(∫ ⊕

Z

Yζ dν(ζ )

)

p

. (49)

The following is a generalization of Proposition 2.25 to direct integrals of Lp-spaces.
Recall (16).

Proposition 1.2 Let (X,X , μ) be σ -finite standard, (Z,Z, ν) be σ -finite countably gen-
erated, and

(
μζ

)
ζ∈Z

be a separated pseudo-disintegration of μ over ν. Further let A be
the lattice algebra of all real-valued μ-integrable simple functions on (X,X ). Then, for
every p ∈ [1,∞), the map

ι : [A]
μ
−→ Yp :=

(∫ ⊕

Z

Lp(μζ ) dν(ζ )

)

p

[s]μ �−→ [δ(s)]Yp

(50)

extends to an isomorphism of Banach lattices ιp : Lp(μ)→ Yp .

A proof of the above Proposition 1.2 is quite similar to that of Proposition 2.25, and
therefore it is omitted. Alternatively, a proof may be adapted from [9, §4.2], having care
that:

– the algebra A corresponds to the vector lattice V in [9, p. 694];
– the order on Yp is defined analogously to Remark 2.20, cf. [9, p. 694];
– the map ι corresponds to the map defined in [9, Eqn. (4.6)];
– the surjectivity of ιp follows as in [9, p. 696] since it only depends on the disintegration

being separated. In the terminology and notation of [9], this is accounted by the fact
that the decomposition β satisfies [9, Thm. 4.2(2)].

As an obvious corollary to Proposition 1.2, we obtain that the direct integral of Hilbert
spaces H in Eq. 18 with underlying space of measurable vector fields generated by A is
identical to Y2 as in Eq. 50. The specification of the underlying space of ν-measurable
vector fields is necessary in light of Remark 2.23.
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Proof of Lemma 3.8 Retain the notation established in Section 3.1 and in the proof of
Theorem 3.4. Firstly, note that L1(μ) is, trivially, an L∞(μ0)-module, and D(E) is an
L∞(μ0)-module too, by Definition 3.1(d). As in Section 3.1, let p be the quotient map
of Eq. 27. For u ∈ L∞(ν) denote by p∗u ∈ L∞(μ0) the pullback of u via p. Set-
ting u. : f �→ p∗u · f defines an action of L∞(ν) on L2(μ) and D(E). Thus, since the
spaces (X,X0, μ0) and (Z,Z, ν) have the same measure algebra by construction of Z, here
and in the following we may replace L∞(μ0)-modularity with L∞(ν)-modularity.

Let now A ∈ X0. Since A is E-invariant, then 1Af ∈ D(E) and

E(1Af, g) = E(f,1Ag) = E(1Af,1Ag) , f, g ∈ D(E) (51)

by Definition 3.1. Replacing f with 1Af in Eq. 13, and applying (51) and again (13) yields

1A�(f, g) = �(1Af, g) , f, g ∈ D(E) ∩ L∞(μ) , (52)

which is readily extended to f, g ∈ D(E) by approximation. Then, Eq. 52 shows that f �→
�(f, g) : D(E)1 → L1(μ) is, for every fixed g ∈ D(E), a bounded L∞(ν)-modular oper-
ator in the sense of [17, §5.2]. By Step 1 in the proof of Theorem 3.4(iii), D(E)1 is a
countably generated direct integral of Banach spaces, thus we may apply [17, Thm. 9.1] to
obtain, for every fixed g ∈ D(E), a direct integral decomposition

�( · , g) =
∫ ⊕

Z

�ζ,g dν(ζ ) :
∫ ⊕

Z

D(Eζ )1 dν(ζ ) −→
(∫ ⊕

Z

L1(μζ ) dν(ζ )

)

1

∼= L1(μ)

for some family of bounded operators �ζ,g : D(Eζ )1 → L1(μζ ). Let C be a
core for (E,D(E)) underlying the construction of the direct integral representation
of (E,D(E)) as in Step 1 in the proof of Theorem 3.4. It follows by symmetry of �

that �ζ,g(f ) = �ζ,f (g) for every f, g ∈ C and ν-a.e. ζ ∈ Z. In particular, the assign-
ment g �→ �ζ,g is linear on C ⊂ D(Eζ ) for ν-a.e. ζ ∈ Z. A symmetric bilinear map is then
induced on C⊕2 by setting �ζ : (f, g) �→ �ζ,g(f ).

Thus, finally, it suffices to show Eq. 13 for �ζ and (Eζ ,D(Eζ )) for ν-a.e. ζ ∈ Z

with f, g, h ∈ C, which is readily shown arguing by contradiction, analogously to the proof
of the claim in Step 4 of Theorem 3.4.
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