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Abstract
In this paper we prove mean curvature comparisons and volume comparisons on a smooth
metric measure space when the integral radial Bakry-Émery Ricci tensor and the poten-
tial function or its gradient are bounded. As applications, we prove diameter estimates and
eigenvalue estimates on smooth metric measure spaces. These results not only give a sup-
plement of the author’s previous results under integral Bakry-Émery Ricci tensor bounds,
but also are generalizations of the Wei-Wylie’s pointwise results.
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1 Introduction andMain Results

Classical comparison properties of the pointwise Ricci curvature condition, such as the
mean curvature comparison and the volume comparison, are basic theories for Riemannian
manifolds. See [25] for a survey and references therein. These comparison results were later
generalized to the integral Ricci tensor condition, which are briefly described as follows.
Given an n-dimensional complete Riemannian manifold (M, g), for each point x ∈ M , let
λ(x) be the smallest eigenvalue for the Ricci curvature Ric : TxM → TxM , and let

RicH− (x) := [(n − 1)H − λ(x)]+ = max {0, (n − 1)H − λ(x)} ,

the amount of the Ricci tensor below (n − 1)H , where H ∈ R. For any real number p > 0
and R > 0, we consider

‖RicH− ‖p(R) := sup
x∈M

(∫
B(x,R)

(RicH− )p dv

) 1
p

,
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which measures the amount of Ricci tensor lying below (n − 1)H in the Lp sense, where
B(x, R) is the geodesic ball with radius R and center x. It is easy to see that ‖RicH− ‖p(R) ≡
0 if and only if Ric ≥ (n−1)H . Under certain assumption of ‖RicH− ‖p(R), Petersen andWei
[15, 16] generalized classical comparison theorems to the integral case. For more related
results, we refer the reader to [1, 2, 5–8, 13, 14, 17, 24] and references therein.

In another direction, Wei and Wylie [21] extended comparison results of Riemannian
manifolds to smooth metric measure spaces. Recall that a complete smooth metric measure
space (SMMS for short) is a triple (M, g, e−f dv), where (M, g) is an n-dimensional Rie-
mannian manifold, dv is the volume element of the metric g, f is a smooth function on
M and e−f dv is the weighted volume element. The Bakry-Émery Ricci tensor [3] and the
f -Laplacian associated to (M, g, e−f dv) are respectively defined by

Ricf := Ric + Hess f and �f := � − ∇f · ∇,

where Hess and � are the Hessian and Laplacian with respect to the metric g, respectively.
The Bakry-Émery Ricci tensor and the f -Laplacian are related by the generalized Bochner
formula

�f |∇u|2 = 2|Hess u|2 + 2g(∇u, ∇�f u) + 2Ricf (∇u,∇u)

for u ∈ C∞(M). The Bakry-Émery Ricci tensor is also related to the gradient Ricci soliton
defined by

Ricf = λg

for some λ ∈ R, which plays an important role in the singularities of the Ricci flow [9].
When Ricf is bounded below and f or |∇f | is bounded, Wei and Wylie [21] applied the
generalized Bochner formula to prove various weighted comparisons and topological results
on (M, g, e−f dv). Meanwhile, they expect that weighted comparisons can be extended to
the case that Ricf is bounded below in the integral sense.

Inspired by the above work, the author [23] generalized pointwise weighted comparison
theorems [21] to the integral Bakry-Émery Ricci tensor setting. To be more precise, for each
point x ∈ (M, g, e−f dv), we consider a weighted geometric quantity

RicH
f −(x) := [(n − 1)H − λ(x)]+ = max{0, (n − 1)H − λ(x)},

whereH ∈ R and λ(x) is the smallest eigenvalue of Ricf : TxM → TxM . When ∂rf ≥ −a

(∂r := ∇r) for some constant a ≥ 0, along a minimal geodesic segment r from x, we
introduce a weighted Lp norm of RicH

f −

‖RicH
f −‖p,a(R) := sup

x∈M

(∫
B(x,R)

|RicH
f −|pAf e−at dtdθn−1

) 1
p

,

where Af (t, θ) is the volume element of e−f dvg = Af (t, θ)dt ∧ dθn−1 in polar coordi-
nate, and dθn−1 is the volume element on unit sphere Sn−1. When ∂rf ≥ −a, we easily
see that ‖RicH

f −‖p,a(R) ≡ 0 if and only if Ricf ≥ (n − 1)H . In [23], the author proved

many weighted comparison theorems on (M, g, e−f dv) when ‖RicH
f −‖f,a(R) is bounded

and ∂rf ≥ −a. As applications, classical eigenvalue estimates, Sobolev constant esti-
mates and Myers’ type theorems, etc were generalized to the case of some assumptions of
‖RicH

f −‖f,a(R) and ∂rf ; see [10, 20, 23]. However, when f is bounded, there seem to be

lack of effective comparison theorems under the integral Bakry-Émery Ricci tensor, though
some progress has been made in [23].
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In this paper we will prove some comparison results on (M, g, e−f dv) when the integral
radial Bakry-Émery Ricci tensor is bounded and f or ∂rf is bounded. Our results are dif-
ferent from the case of [23] and seem to be new even in the manifold case. As applications,
we prove some new Myers’ type theorems and eigenvalue estimates.

To state our results, we fix some notations. On SMMS (M, g, e−f dv), for any point x ∈
M and any r(y) := d(y, x) a distance function from x to y, in geodesic polar coordinates
(r, θ), we have another expression of RicH

f −:

ρ(r, θ) := [(n − 1)H − λ(r, θ)]+ ,

where H ∈ R and λ(r, θ) be the smallest eigenvalue for Ricf at the point (r, θ). Clearly,

(n − 1)H − Ricf (∂r , ∂r ) ≤ ρ(r, θ)

along that minimal geodesic segment from x; while ρ(r, θ) ≡ 0 along the minimal geodesic
segment r if and only if Ricf (∂r , ∂r ) ≥ (n − 1)H . Let mn

H denote the mean curvature
of the geodesic sphere in the model space (Mn

H , gH ), the n-dimensional simply connected
space with constant sectional curvature H . For the weighted measure e−f dv, we define the
weighted mean curvature

mf := m − ∂rf,

which measures the relative rate of change of the weighted volume element of the geodesic
sphere, where m is the mean curvature of the geodesic sphere in the outer normal direction.

Let us first state weighted mean curvature comparisons on (M, g, e−f dv) along the
integral radial Bakry-Émery Ricci tensor.

Theorem 1.1 (Mean Curvature Comparison) Let (M, g, e−f dv) be an n-dimensional
smooth metric measure space with a base point x ∈ M . Fix H ∈ R.

(a) If |f | ≤ k for some constant k ≥ 0, along a minimal geodesic segment r from x ∈ M

(assume r ≤ π

4
√

H
when H > 0), then

mf (r) ≤ mn+4k
H (r) +

∫ r

0
ρ(t, θ)dt

along that minimal geodesic segment from x. For the case H > 0 and π

4
√

H
≤ r ≤ π

2
√

H
,

then

mf (r) ≤
(
1 + 4k

n − 1
· 1

sin(2
√

Hr)

)
mn

H (r) +
∫ r

0
ρ(t, θ)dt (1)

along that minimal geodesic segment from x.
(b) If ∂rf ≥ −a for some constant a ≥ 0, along a minimal geodesic segment r from

x ∈ M (assume r ≤ π

2
√

H
when H > 0), then

mf (r) ≤ mn
H (r) + a +

∫ r

0
ρ(t, θ)dt

along that minimal geodesic segment from x. Equality holds if and only if the radial
sectional curvatures are equal to H and f (t) = f (x) − at for all t < r .

When ρ = 0, we have Ricf (∂r , ∂r ) ≥ (n − 1)H and Theorem 1.1 recovers Wei-Wylie’s
results [21]. When k = 0, Theorem 1.1 reduces to the manifold cases, which seems to be
firstly appeared in the literature. The estimate Eq. 1 will be used in the Myers’ type diameter
estimate.
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As in the classical case, weighted mean curvature comparisons have many applications.
First, we have weighted volume comparisons. On (M, g, e−f dv), the weighted volume of
the ball B(x, r) is defined by

Vf (x, r) :=
∫ r

0
e−f dv.

Let V n
H (R) be the volume of ball B(O,R) in the model space (Mn

H , gH ), where O ∈ Mn
H .

When ∂rf ≥ −a for some constant a ≥ 0 along all minimal geodesic segments from x, we
introduce a new model volume according to constant a. That is, let V a

H (R) be the h-volume
of ball B(O,R) in the pointed smooth metric measure space

Mn
H,a = (Mn

H , gH , e−hdvgH
,O),

where O ∈ Mn
H and h(x) = −a · d(O, x). Indeed we have

V a
H (R) :=

∫ R

0

∫
Sn−1

Aa
H (t, θ) dθn−1dt =

∫ R

0
Aa

H (t)dt,

where Aa
H (t, θ) = eatAH (t, θ), Aa

H (t) = eatAH (t), AH and AH are the volume element
and the volume of the geodesic sphere respectively in the model space (Mn

H , gH ).

Theorem 1.2 (Volume Comparison) Let (M, g, e−f dv) be an n-dimensional complete
smooth metric measure space with a base point x ∈ M . Fix H ∈ R. Assume that∫ ∞

0
ρ(t, θ)dt ≤ l

along all minimal geodesic segments from x ∈ M , where l ≥ 0 is a constant.
(a) If |f | ≤ k for some constant k ≥ 0, then for 0 < r ≤ R (assume R ≤ π

4
√

H
when

H > 0),

Vf (x, R)

V n+4k
H (R)

≤ Vf (x, r)

V n+4k
H (r)

exp

{∫ R

0

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}
,

where c(n, k,H) := V (Sn+4k−1)

V (Sn−1)
and V (Sn−1) is the area of the unit sphere Sn−1 ⊂ Mn−1

H .
(b) If ∂rf ≥ −a for some constant a ≥ 0, along all minimal geodesic segments from

x ∈ M , then for 0 < r ≤ R (assume R ≤ π

2
√

H
when H > 0),

Vf (x, R)

V a
H (R)

≤ Vf (x, r)

V a
H (r)

exp

{∫ R

0

(
elt − 1

) Aa
H (t)

V a
H (t)

dt

}
.

Furthermore, when r = 0, we have

Vf (x, R) ≤ V a
H (R) exp

{
−f (x) +

∫ R

0

(
elt − 1

) Aa
H (t)

V a
H (t)

dt

}

for R ≥ 0.

When l = 0, Theorem 1.2 returns to Wei-Wylie’s results [21]. We remark that the term
Vf (x,r)

V n+4k
H (r)

(k > 0) in Theorem 1.2 (a) blows up if r → 0. If we let r = 1, then

Vf (x, R) ≤ Vf (x, 1)

V n+4k
H (1)

V n+4k
H (R) exp

{∫ R

0

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}
(2)

for R ≥ 1. This estimate will be improved when H < 0; see Theorem 3.3 in Section 3.
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Next, we apply Theorem 1.1 to give Myers’ type diameter estimates, which are regarded
as generalizations of the Wei-Wylie’s result [21].

Theorem 1.3 (Myers’ Theorem) Let (M, g, e−f dv) be an n-dimensional complete smooth
metric measure space. Fix H ∈ R

+. Assume that∫ ∞

0
ρ(t, θ)dt ≤ l

along all minimal geodesic segments from every point p ∈ M , where l ≥ 0 is a constant.
(a) If |f | ≤ k for some constant k ≥ 0, then M is compact and

diam(M) ≤ π√
H

+ 4k
√

H + 2l

(n − 1)H
.

(b) If |∇f | ≤ a for some constant a ≥ 0, then M is compact and

diam(M) ≤ π√
H

+ 2a + 2l

(n − 1)H
.

We point out that our integral assumption in Theorem 1.3 needs to hold for every point
p ∈ M and it seems to be a stronger condition. In Section 4, we can apply the index form
argument to get another diameter estimate under a weaker assumption; see Theorem 4.1.

Finally, we apply volume comparisons to give a generalization of Cheng’s eigenvalue
estimates [4]. On an n-dimensional SMMS (M, g, e−f dv), we assume that ∂rf ≥ −a for
some constant a ≥ 0, along all minimal geodesic segments from a point x0 ∈ M . For
any H ∈ R and R > 0 (R ≤ π

2
√

H
when H > 0), we let λD

1 (B(x0, R)) be the first

eigenvalue of the f -Laplacian with the Dirichlet condition in B(x0, R) ⊆ M . We also let
λD
1 (n, a, H, R) be the first eigenvalue of the h-Laplacian �h, where h(x) := −a · d(x̄0, x),

with the Dirichlet condition in a metric ball B(x̄0, R) ⊆ Mn
H,a . Then we have a weighted

version of Petersen-Sprouse’s result [14].

Theorem 1.4 (Cheng’s Eigenvalue Estimate) Let (M, g, e−f dv) be an n-dimensional com-
plete smooth metric measure space with ∂rf ≥ −a for some constant a ≥ 0, along all
minimal geodesic segments from a point x0 ∈ M . Given H ∈ R, R > 0 (assume R ≤ π

2
√

H

when H > 0), for every δ > 0, there exists an ε = ε(n, a,H, R) such that if∫ ∞

0
ρ(t, θ)dt ≤ ε

along all minimal geodesic segments from the point x0 ∈ M , then

λD
1 (B(x0, R)) ≤ (1 + δ) λD

1 (n, a, H, R).

When ρ ≡ 0 and f is constant, Theorem 1.4 returns to Cheng’s result [4]. In [23],
the author proved another generalization of Cheng’s eigenvalue estimates, but this result
is different from that case. For the case |f | ≤ k, there seem to be essential obstacles to
deriving Cheng’s eigenvalue estimates because volume comparisons in this case depend on
the volumes of higher dimensional geodesic balls.

The rest of this paper is organized as follows. In Section 2, we study mean curvature
comparisons along the integral radial Bakry-Émery Ricci tensor. In particular we prove
Theorem 1.1. In Section 3, we prove various volume comparisons, including Theorem 1.2
and the volume doubling. In Section 4, we apply Theorem 1.1 to prove Myers’ diameter
estimates (Theorem 1.3). We also apply the index form to give another diameter estimate
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(Theorem 4.1). In Section 5, we apply the volume doubling to prove eigenvalue estimates
(Theorem 1.4).

2 Mean Curvature Comparison

In this section, we will discuss mean curvature comparisons on (M, g, e−f dv) when the
integral radial Bakry-Émery Ricci tensor and f or ∂rf are bounded. We shall prove Theo-
rem 1.1. The proof mainly uses the arguments of Petersen and Wei [15], and Wei and Wylie
[21]. First, we give a rough estimate on mf which will be used in the proof of Myers’ type
diameter estimates.

Theorem 2.1 Let (M, g, e−f dv) be an n-dimensional smooth metric measure space with
a base point x ∈ M . Fix H ∈ R. Then given any minimal geodesic segment from x and
r0 > 0,

mf (r) ≤ mf (r0) − (n − 1)H(r − r0) +
∫ r

r0

ρ(t, θ)dt

for r ≥ r0. Equality holds for some r > r0 if and only if all the radial sectional curvatures
are zero, Hess r ≡ 0, and ∂r∂rf = (n − 1)H − ρ(r, θ) along the geodesic from r0 to r .

Proof of Theorem 2.1 Let u = r(y), where r(y) = d(y, x) is the distance function. It is
well-known that distance function r is almost smooth on M and also |∇r| = 1 holds where
r is smooth. Applying u to the Bochner formula

�|∇u|2 = 2|Hess u|2 + 2g(∇u, ∇�u) + 2Ric(∇u, ∇u)

and using the fact |∇r| = 1, we get

0 = |Hess r|2 + ∂r (�r) + Ric(∂r , ∂r ), (3)

where ∂r = ∇r . Note that Hess r is the second fundamental from of the geodesic sphere
and �r = m, the mean curvature of the geodesic sphere. By the Schwarz inequality,

m′ ≤ − m2

n − 1
− Ric(∂r , ∂r ). (4)

Since mf := m − ∂rf , i.e. mf = �f r , then

m′
f = m′ − ∂r∂rf,

and hence

m′
f ≤ − m2

n − 1
− Ricf (∂r , ∂r ).

By the definition of ρ(r, θ), we get

m′
f ≤ − m2

n − 1
− (n − 1)H − ρ(r, θ)

≤ −(n − 1)H + ρ(r, θ). (5)

Integrating this inequality from r0 to r gives the result.
To see the equality statement, suppose that

m′
f = −(n − 1)H + ρ(r, θ)
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on an interval [r0, r], then from Eq. 5 we get m = 0 (i.e. �r = 0). We also have

(n − 1)H − Ricf (∂r , ∂r ) = ρ(r, θ).

So,
m′

f = −∂r∂rf = −Ricf (∂r , ∂r ) = −(n − 1)H + ρ(r, θ).

This implies Ric(∂r , ∂r ) = 0. Then from Eq. 3 we have Hess r = 0, which implies the
sectional curvatures must be zero.

In the following we will prove Theorem 1.1.

Proof of Theorem 1.1 We start to prove part (a) of Theorem 1.1. From Eq. 4, we see that
this inequality becomes equality if and only if the radial sectional curvatures are constant.
So the mean curvature mH (r) of the n-dimensional model space satisfies

m′
H = − m2

H

n − 1
− (n − 1)H,

where

mH (r) := (n − 1)
sn′

H (r)

snH (r)
,

and snH (r) is the unique function satisfying

sn′′
H (r) + H snH (r) = 0

with snH (0) = 0 and sn′
H (0) = 1. So

(m − mH )′ ≤ −m2 − m2
H

n − 1
+ (n − 1)H − Ric(∂r, ∂r)

≤ −m2 − m2
H

n − 1
+ ∂r∂rf + ρ(r, θ),

where we used the definition of ρ in the second inequality. Then we compute that

[
sn2H (m − mH )

]′ = sn2H
2mH

n − 1
(m − mH ) + sn2H

(
−m2 − m2

H

n − 1
+ ∂r∂rf + ρ(r, θ)

)

= −sn2H (r)
(m − mH )2

n − 1
+ sn2H (r)∂r∂rf + sn2H (r)ρ(r, θ)

≤ sn2H (r)∂r∂rf + sn2H (r)ρ(r, θ).

Integrating the above inequality from 0 to r yields

sn2H (r)m(r)≤ sn2H (r)mH (r) +
∫ r

0
sn2H (t)∂t ∂tf (t)dt +

∫ r

0
sn2H (t)ρ(t, θ)dt .

Integrating by parts on the above third term,

sn2H (r)mf (r)≤ sn2H (r)mH (r) −
∫ r

0
∂tf (t)(sn2H )′(t)dt +

∫ r

0
sn2H (t)ρ(t, θ)dt, (6)

where mf := m − ∂rf . Integrating by parts on the above third term again,

sn2H (r)mf (r)≤ sn2H (r)mH (r)−f (r)(sn2H (r))′+
∫ r

0
f (t)(sn2H )′′(t)dt+

∫ r

0
sn2H (t)ρ(t, θ)dt .

(7)
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We see that ifH ≤ 0, then (sn2H )′′(t) ≥ 0; ifH > 0 and 0 < r ≤ π

4
√

H
, then (sn2H )′′(t) ≥ 0.

Hence when |f | ≤ k, in any case, we have

sn2H (r)mf (r)≤ sn2H (r)mH (r) + 2k(sn2H (r))′ +
∫ r

0
sn2H (t)ρ(t, θ)dt .

Noticing that

(sn2H (r))′ = 2snH (r)(snH (r))′ = 2mH (r)

n − 1
sn2H (r)

and sn2H (t) is increasing, we finally get

mf (r) ≤ mn+4k
H (r) +

∫ r

0
ρ(t, θ)dt

along that minimal geodesic segment from x. This proves the first inequality of theorem.
Next we prove the case H > 0 and π

4
√

H
≤ r ≤ π

2
√

H
. We start with Eq. 7 and give a

delicate estimate. Since mH (r) ≥ 0 for π

4
√

H
≤ r ≤ π

2
√

H
, we observe that

−f (r)(sn2H (r))′ = −f (r)
2mH (r)

n − 1
sn2H (r)

≤ 2k

n − 1
mH (r)sn2H (r).

Also, ∫ r

0
f (t) · (sn2H )′′(t)dt ≤ k

(∫ π

4
√

H

0
(sn2H )′′(t)dt −

∫ r

π

4
√

H

(sn2H )′′(t)dt

)

= k

(
2√
H

− snH (2r)

)
.

Substituting the above two estimates into Eq. 7, we have

sn2H (r)mf (r) ≤
(
1 + 2k

n − 1

)
mH (r)sn2H (r) + k

(
2√
H

− snH (2r)

)

+
∫ r

0
sn2H (t)ρ(t, θ)dt

=
(
1 + 4k

n − 1

)
sn2H (r)

mH (r)

sin(2
√

Hr)
+

∫ r

0
sn2H (t)ρ(t, θ)dt

≤
(
1 + 4k

n − 1

)
sn2H (r)

mH (r)

sin(2
√

Hr)
+ sn2H (r)

∫ r

0
ρ(t, θ)dt .

Hence,

mf (r) ≤
(
1 + 4k

n − 1
· 1

sin(2
√

Hr)

)
mH (r) +

∫ r

0
ρ(t, θ)dt

which completes the second inequality of theorem. Hence Theorem 1.1 (a) follows.
Under Theorem 1.1 (b) assumptions, we see that

(sn2H )′(t) = 2snH (t)(snH )′(t) ≥ 0.

So if ∂rf ≥ −a, from Eq. 6, we have

sn2H (r)mf (r)≤ sn2H (r)mH (r) + a

∫ r

0
(sn2H )′(t)dt +

∫ r

0
sn2H (t)ρ(t, θ)dt

and the third inequality of theorem follows.
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To see the equality statement, assume that ∂rf ≥ −a and

mf (r) = mn
H (r) + a +

∫ r

0
ρ(t, θ)dt

for some r . Substituting them into Eq. 6,

a sn2H (r) + sn2H (r2)

∫ r

0
ρ(t, θ)dt ≤ −

∫ r

0
∂tf (t)(sn2H )′(t)dt +

∫ r

0
sn2H (t)ρ(t, θ)dt

≤ a

∫ r

0
(sn2H )′(t)dt +

∫ r

0
sn2H (t)ρ(t, θ)dt,

where we used ∂rf ≥ −a. This implies ρ(r, θ) = 0 along that minimal geodesic segment r
from x ∈ M . In other words, Ricf (∂r , ∂r ) ≥ (n − 1)H . Therefore the rigidity follows from
the rigidity for the Wei-Wylie’s mean curvature comparison; see Theorem 1.1 in [21].

3 Volume Comparison

In this section, we will apply mean curvature comparisons to prove volume comparisons on
(M, g, e−f dv) when the integral radial Bakry-Émery Ricci tensor is bounded and f or ∂rf

is bounded.
On an n-dimensional SMMS (Mn, g, e−f dvg), let Af (t, θ) = e−fA(t, θ) be the

volume element of the weighted volume form e−f dvg = Af (t, θ)dt ∧ dθn−1 in polar
coordinate (r, θ), whereA(t, θ) is the standard volume element of the metric g. Let

Af (x, r) =
∫

Sn−1
Af (r, θ)dθn−1,

be the weighted volume of the geodesic sphere S(x, r) = {y ∈ M| d(x, y) = r}, and let
AH (r) be the volume of the geodesic sphere S(x, r) in the model space (Mn

H , gH ), the n-
dimensional simply connected space with constant sectional curvature H . Moreover, the
weighted volume of the ball B(x, r) = {y ∈ M|d(x, y) ≤ r} is defined by

Vf (x, r) =
∫ r

0
Af (x, t)dt .

When ∂rf ≥ −a for some constant a ≥ 0, along all minimal geodesic segments from
x ∈ M , we modify the usual model space (Mn

H , gH ) to the weighted model space Mn
H,a =

(Mn
H , gH , e−hdvgH

,O), where O ∈ Mn
H , and h(x) = −a · d(x,O). Let Aa

H be the h-
volume element in Mn

H,a . That is,

Aa
H (r) = earAH (r),

where AH is the Riemannian volume element in (Mn
H , gH ). The corresponding h-volume

of the geodesic sphere in the weighted model space Mn
H,a is defined by

Aa
H (r) =

∫
Sn−1

Aa
H (r, θ)dθn−1.

The h-volume of the ball B(O, r) ⊂ Mn
H is defined by

V a
H (r) =

∫ r

0
Aa

H (t)dt .

In order to prove Theorem 1.2, we first apply Theorem 1.1 to prove area comparisons of
the geodesic spheres.
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Theorem 3.1 Let (M, g, e−f dv) be an n-dimensional smooth metric measure space with
base point x ∈ M . Fix H ∈ R. Assume that∫ ∞

0
ρ(t, θ)dt ≤ l

along all minimal geodesic segments from x ∈ M , where l ≥ 0 is a constant.
(a) If |f | ≤ k for some constant k ≥ 0, then for 0 < r ≤ R (assume R ≤ π

4
√

H
when

H > 0),
Af (x, R)

An+4k
H (R)

≤ ec(n,k,H)Rl Af (x, r)

An+4k
H (r)

(8)

where c(n, k, h) := V (Sn+4k−1)

V (Sn−1)
and V (Sn−1) is the area of the unit sphere Sn−1 ⊂ Mn−1

H .
(b) If ∂rf ≥ −a for some constant a ≥ 0, along all minimal geodesic segments from

x ∈ M , then for 0 < r ≤ R (assume R ≤ π

2
√

H
when H > 0),

Af (x, R)

Aa
H (R)

≤ eRl Af (x, r)

Aa
H (r)

. (9)

Proof of Theorem 3.1 Applying

A′
f = mfAf and (An+4k

H )′ = mn+4k
H AH ,

we compute that
d

dt

(
Af (t, θ)

An+4k
H (t)

)
= (mf − mn+4k

H )
Af (t, θ)

An+4k
H (t)

.

Then by Theorem 1.1 (a), we have

d

dt

(
Af (x, t)

An+4k
H (t)

)
= 1

V (Sn−1)

∫
Sn−1

d

dt

(
Af (t, θ)

An+4k
H (t)

)
dθn−1

= V (Sn+4k−1)

V (Sn−1)

1

An+4k
H (t)

∫
Sn−1

(∫ t

0
ρ(τ, θ)dτ

)
Af (t, θ)dθn−1

≤ c(n, k,H)l

An+4k
H (t)

∫
Sn−1

Af (t, θ)dθn−1

= c(n, k,H)l
Af (x, t)

An+4k
H (t)

,

where c(n, k, H) := V (Sn+4k−1)

V (Sn−1)
and V (Sn−1) is the area of the unit sphere Sn−1 ⊂ Mn−1

H .
Here we used the relation

An+4k
H (t) =

∫
Sn+4k−1

An+4k
H (t)dθ = V (Sn+4k−1)An+4k

H (t)

in the above second equality. Separating variables and integrating from r to R, we
immediately get Eq. 8.

Next we shall prove Eq. 9. We apply

A′
f = mfAf and Aa

H
′ = (mH + a)Aa

H

to compute that
d

dt

(Af (t, θ)

Aa
H (t)

)
= (mf − mH − a)

Af (t, θ)

Aa
H (t)

.

212 J.-Y. Wu



Using this, by Theorem 1.1 (b) and our theorem assumption, we estimate that

d

dt

(
Af (x, t)

Aa
H (t)

)
= 1

V (Sn−1)

∫
Sn−1

d

dt

(Af (t, θ)

Aa
H (t)

)
dθn−1

= 1

V (Sn−1)

∫
Sn−1

(mf − mH − a)
Af (t, θ)

Aa
H (t)

dθn−1

≤ 1

V (Sn−1)

∫
Sn−1

(∫ ∞

0
ρ(τ, θ)dτ

) Af (t, θ)

Aa
H (t)

dθn−1

≤ l
Af (x, t)

Aa
H (t)

.

Separating variables and integrating from r to R, we get Eq. 9.

Similar to the argument of Petersen andWei [15], we will apply Theorem 3.1 to complete
the proof of Theorem 1.2.

Proof of Theorem 1.2 We first prove part (a). Recall that

Vf (x, r)

V n+4k
H (r)

=
∫ r

0 Af (x, t)dt∫ r

0 An+4k
H (t)dt

.

So we have

d

dr

(
Vf (x, r)

V n+4k
H (r)

)
= Af (x, r)

∫ r

0 An+4k
H (t)dt − An+4k

H (r)
∫ r

0 Af (x, t)dt

(V n+4k
H (r))2

. (10)

Notice that, by Theorem 3.1 (a), for t ≤ r ,

Af (x, r)An+4k
H (t) − An+4k

H (r)Af (x, t) ≤ (ec(n,k,H)lr − 1)An+4k
H (r)Af (x, t).

Substituting this into Eq. 10 yields

d

dr

(
Vf (x, r)

V n+4k
H (r)

)
≤

(
ec(n,k,H)lr − 1

) An+4k
H (r)

V n+4k
H (r)

(
Vf (x, r)

V n+4k
H (r)

)
.

Separating variables and integrating from r to R (r ≤ R), we get

Vf (x, R)

V n+4k
H (R)

≤ Vf (x, r)

V n+4k
H (r)

exp

{∫ R

r

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}

≤ Vf (x, r)

V n+4k
H (r)

exp

{∫ R

0

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}

and Theorem 1.2 (a) follows.
Next we shall prove Theorem 1.2 (b). The proof is very similar to the arguments of part

(a) in Theorem 1.2. For the completeness we provide a detailed proof. It is known that

Vf (x, r)

V a
H (r)

=
∫ r

0 Af (x, t)dt∫ r

0 Aa
H (t)dt

.

So we compute

d

dr

(
Vf (x, r)

V a
H (r)

)
= Af (x, r)

∫ r

0 Aa
H (t)dt − Aa

H (r)
∫ r

0 Af (x, t)dt

(V a
H (r))2

. (11)
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By Eq. 9, we see that

Af (x, r)Aa
H (t) − Aa

H (r)Af (x, t) ≤ (elr − 1)Aa
H (r)Af (x, t)

for t ≤ r . Substituting this into Eq. 11 yields

d

dr

(
Vf (x, r)

V a
H (r)

)
≤

(
elr − 1

) Aa
H (r)

V a
H (r)

(
Vf (x, r)

V a
H (r)

)
.

Separating variables and integrating from r to R (r ≤ R), we have

Vf (x, R)

V a
H (R)

≤ Vf (x, r)

V a
H (r)

exp

{∫ R

r

(
elt − 1

) Aa
H (t)

V a
H (t)

dt

}

≤ Vf (x, r)

V a
H (r)

exp

{∫ R

0

(
elt − 1

) Aa
H (t)

V a
H (t)

dt

}

and Theorem 1.2 (b) follows.

The weighted volume comparisons immediately yield volume doubling properties of
smooth metric measure spaces.

Corollary 3.2 (Volume Doubling) Let (M, g, e−f dv) be an n-dimensional complete
smooth metric measure space.

(a) Assume that |f | ≤ k for some constant k ≥ 0. Given H ∈ R, α > 1 and R >

0(assume R ≤ π

4
√

H
when H > 0), there is an ε = ε(n, k,H, R, α) such that if

∫ ∞

0
ρ(t, θ)dt ≤ ε,

along all minimal geodesic segments from x ∈ M , then for all 0 < r1 < r2 ≤ R,

Vf (x, r2)

Vf (x, r1)
≤ α

V n+4k
H (r2)

V n+4k
H (r1)

.

(b) Assume that ∂rf ≥ −a for some constant a ≥ 0, along all minimal geodesic segments
from x ∈ M . Given H ∈ R, α > 1 and R > 0 (assume R ≤ π

2
√

H
when H > 0), there is an

ε = ε(n, a, H,R, α) such that if ∫ ∞

0
ρ(t, θ)dt ≤ ε,

along all minimal geodesic segments from x ∈ M , then for all 0 < r1 < r2 ≤ R,

Vf (x, r2)

Vf (x, r1)
≤ α

V a
H (r2)

V a
H (r1)

.

Proof of Corollary 3.2 We only prove part (a); the proof of part (b) is similar. Assume that∫ ∞
0 ρ(t, θ)dt ≤ l along all minimal geodesic segments from x ∈ M , where l ≥ 0 is a
constant. Since |f | ≤ k, by Theorem 1.2 (a), for 0 < r1 < r2 ≤ R,

Vf (x, r2)

V n+4k
H (r2)

≤ Vf (x, r1)

V n+4k
H (r1)

exp

{∫ r2

r1

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}

≤ Vf (x, r1)

V n+4k
H (r1)

exp

{∫ R

0

(
ec(n,k,H)lt − 1

) An+4k
H (t)

V n+4k
H (t)

dt

}
,

(12)
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where c(n, k,H) := V (Sn+4k−1)

V (Sn−1)
. Notice that the right hand side of integral quantity is finite

(depending on R) because that

lim
t→0

(ec(n,k,H)lt − 1)
An+4k

H (t)

V n+4k
H (t)

= 0.

Set

F(σ) :=
∫ R

0

(
ec(n,k,H)σ t − 1

) An+4k
H (t)

V n+4k
H (t)

dt .

We see that F(0) = 0 and eF(0) = 1. Moreover, the function F(σ) is continuous
with respect to the parameter σ . Therefore, for any α > 1, there exists a number ε =
ε(n, k,H, R, α) (as long as ε is small enough) such that if

∫ ∞
0 ρ(t, θ)dt ≤ ε, then

eF(ε) ≤ α.

Hence the conclusion follows.

In the end of this section, we will give an absolute volume comparison when H < 0 by
modifying the argument of Jaramillo [12], which is an improvement of Eq. 2. When ρ ≡ 0,
this result returns to Jaramillo’s result [12].

Theorem 3.3 Let (M, g, e−f dv) be an n-dimensional complete smooth metric measure
space with a base point x ∈ M . Fix H < 0. Assume that∫ ∞

0
ρ(t, θ)dt ≤ l

along all minimal geodesic segments from x ∈ M , where l ≥ 0 is a constant. If |f | ≤ k for
some constant k ≥ 0, then

Vf (x, R) ≤ e3k
∫ R

0
AH (t)ecosh(2

√−Ht)+lt dt

for all R ≥ 0.

Proof of Theorem 3.3 Recall that in the course of proving Theorem 1.1 (a), by Eq. 7 and
the increase of sn2H (r), we indeed prove that

mf (r) ≤ mH (r) − f (r)
(sn2H (r))′
sn2H (r)

+
∫ r

0
f (t)

(sn2H )′′(t)
sn2H (r)

dt +
∫ r

0
ρ(t, θ)dt

along any a minimal geodesic segment from x, where snH (r) = 1√−H
sinh

√
Hr , since

H < 0. Integrating the above inequality from r1 to r2 (r2 ≥ r1) gives

∫ r2

r1

mf (r)dr ≤
∫ r2

r1

mH (r)dr −
∫ r2

r1

f (r)
(sn2H (r))′
sn2H (r)

dr +
∫ r2

r1

1

sn2H (r)

[∫ r

0
f (t)(sn2H )′′(t)dt

]
dr

+
∫ r2

r1

(∫ r

0
ρ(t, θ)dt

)
dr .
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Notice that

−
∫ r2

r1

f (r)
(sn2H (r))′
sn2H (r)

dr +
∫ r2

r1

1

sn2H (r)

[∫ r

0
f (t)(sn2H )′′(t)dt

]
dr

= −2
√−H

∫ r2

r1

f (r) coth
√−Hrdr − 2H

∫ r2

r1

csch2
√−Hr

[∫ r

0
f (t) cosh 2

√−Htdt

]
dr

= −2
√−H

∫ r2

r1

f (r) coth
√−Hrdr − 2H

[
− coth

√−Hr√−H

∫ r

0
f (t) cosh 2

√−Htdt

]r2

r1

− 4H
∫ r2

r1

coth
√−Hr√−H

f (r) sinh2
√−Hrdr − 2H

∫ r2

r1

coth
√−Hr√−H

f (r)dr .

Using the assumption |f | ≤ k, we further have

−
∫ r2

r1

f (r)
(sn2H (r))′

sn2H (r)
dr +

∫ r2

r1

1

sn2H (r)

[∫ r

0
f (t)(sn2H )′′(t)dt

]
dr

≤ k coth
√−Hr2 sinh(2

√−Hr2) + k coth
√−Hr1 sinh(2

√−Hr1)

+ 2k
(
sinh2

√−Hr2 − sinh2
√−Hr1

)

= 2k
[
cosh(2

√−Hr2) + 1
]
.

Therefore, for r1 ≤ r2, we have∫ r2

r1

mf (r)dr ≤
∫ r2

r1

mH (r)dr + 2k
[
cosh(2

√−Hr2) + 1
]

+ l(r2 − r1),

where we used |f | ≤ k and
∫ ∞
0 ρ(t, θ)dt ≤ l. This implies

ln

(Af (r2, θ)

Af (r1, θ)

)
≤ ln

(AH (r2)

AH (r1)

)
+ 2k

[
cosh(2

√−Hr2) + 1
]

+ l(r2 − r1)

for r1 ≤ r2, and hence

Af (r2, θ)AH (r1) ≤ Af (r1, θ)AH (r2)e
2k

[
cosh(2

√−Hr2)+1
]+lr2 .

for all r1 ≤ r2. Integrating both sides of the inequality over Sn−1 with respect to θ gives

AH (r1)

∫
Sn−1

Af (r2, θ)dθ ≤ AH (r2)e
2k

[
cosh(2

√−Hr2)+1
]+lr2

∫
Sn−1

Af (r1, θ)dθ

for r1 ≤ r2. Then integrating both sides of the inequality with respect to r1 from 0 to R1,

VH (r1)

∫
Sn−1

Af (r2, θ)dθ ≤ Vf (x, R1)AH (r2)e
2k

[
cosh(2

√−Hr2)+1
]+lr2

for R1 ≤ r2. Finally integrating both sides of the inequality with respect to r2 from 0 to R2,

VH (R1)Vf (x, R2) ≤ Vf (x, R1)

∫ R2

0
AH (r2)e

2k
[
cosh(2

√−Hr2)+1
]+lr2dr2

for R1 ≤ R2. Namely,

VH (R1)

Vf (x, R1)
≤

∫ R2
0 AH (r2)e

2k
[
cosh(2

√−Hr2)+1
]+lr2dr2

Vf (x, R2)
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for R1 ≤ R2. Letting R1 → 0, the left hand side tends to ef (x) and hence

Vf (x, R2) ≤ ef (x)

∫ R2

0
AH (r2)e

2k
[
cosh(2

√−Hr2)+1
]+lr2dr2

≤ e3k
∫ R2

0
AH (r2)e

cosh(2
√−Hr2)+lr2dr2

for all R2 ≥ 0. This finishes the proof.

4 Myers’ Theorem

In this section, we will discuss some Myers’ type diameter estimates on (M, g, e−f dv)

when the integral radial Bakry-Émery Ricci tensor and f or |∇f | are bounded. First, we
will apply mean curvature comparisons of Section 2 to prove Theorem 1.3. The proof uses
the excess function which is similar to the Wei-Wylie’s argument [21]; see also [22].

Proof of Theorem 1.3 We first prove part (a). Choose two any points p1 and p2 in (M, g, f )

such that d(p1, p2) ≥ π√
H

and set

B := d(p1, p2) − π√
H

.

Let
r1(x) = d(p1, x) and r2(x) = d(p2, x),

and let e(x) be the excess function for the points p1 and p2, that is,

e(x) := d(p1, x) + d(p2, x) − d(p1, p2).

The excess function measures how much the triangle inequality fails to be an equality. By
the triangle inequality, we obviously have e(x) ≥ 0 and e(γ (t)) = 0, where γ is a minimal
geodesic from p1 to p2. Hence �f (e(γ (t))) ≥ 0 in the barrier sense. Let

y1 = γ

(
π

2
√

H

)
and y2 = γ

(
π

2
√

H
+ B

)
.

Then we see that ri(yi) = π

2
√

H
, i = 1, 2. Furthermore, by the estimate Eq. 1 of Theorem

1.1 and our assumption, we have

�f (ri(yi)) ≤ 2k
√

H +
∫ ∞

0
ρ(t, θ)dt

≤ 2k
√

H + l.

(13)

Noticing that r1(y2) > π

2
√

H
, we can not give an upper estimate for �f (r1(y2)) by directly

using Theorem 1.1. But we can apply Theorem 2.1 and Eq. 13 to get that

�f (r1(y2)) ≤ 2k
√

H − B(n − 1)H +
∫ ∞

0
ρ(t, θ)dt

≤ 2k
√

H − B(n − 1)H + l.

(14)

Combining Eq. 13 and Eq. 14, we get that

0 ≤ �f (e(y2)) = �f (r1(y2)) + �f (r2(y2))

≤ 4k
√

H − B(n − 1)H + 2l,
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which implies

B ≤ 4k
√

H + 2l

(n − 1)H

and hence

d(p1, p2) ≤ π√
H

+ 4k
√

H + 2l

(n − 1)H
.

Since p1 and p2 are arbitrary two points, this completes the proof of part (a).
The proof of part (b) is almost the same as the part (a) and the main difference is that we

apply Theorem 1.1 (b) instead of the estimate Eq. 1. So we omit it here.

In the end of this section, we will apply the index form technique to get another Myers’
type diameter estimate. In this case, the integral assumption is weaker than that of Theorem
1.3 (a). The proof is inspired by the argument of Limoncu [11]; see also [18].

Theorem 4.1 Let (M, g, e−f dv) be an n-dimensional complete smooth metric measure
space. Fix a point p ∈ M and H ∈ R

+. Assume that∫ ∞

0
ρ(t, θ)dt ≤ l

along all minimal geodesic segments from the point p, where l ≥ 0 is a constant. If |f | ≤ k

for some constant k ≥ 0, then M is compact and

diam(M) ≤ 2π√
H

√
1 + 8k

(n − 1)π
+ l2

(n − 1)2Hπ2
+ 2l

(n − 1)H
.

We would like to point out that Tadano [19] also proved a Myers’ type diameter estimate
for the integral radial Bakry-Émery Ricci tensor. But his curvature condition is different
from our case.

Before proving the theorem, let us recall some notations. Let X, Y,Z be three smooth
vector fields on Riemannian manifold (M, g). For any smooth function f ∈ C∞(M), the
gradient vector field and Hessian of f are defined by

g(∇f,X) = df (X) and Hess f (X, Y ) = g(∇X∇f, Y ),

respectively. The Riemannian curvature tensor and the Ricci curvature are defined by

Rm(X, Y )Z=∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z and Ricg(X, Y )=
n∑

i=1

g(Rm(ei, X)Y, ei),

respectively, where {ei}ni=1 denotes an orthonormal frame of (M, g).

Proof of Theorem 4.1 On (M, g, e−f dv), for the fixed point p ∈ M , let any point q ∈ M

and let σ be a minimizing unit speed geodesic segment from p to q of length L. Con-
sider a parallel orthonormal frame {e1 = σ̇ , e2, ..., en} along σ and a smooth function
φ ∈ C∞([0, L]) such that φ(0) = φ(L)=0, and we have

I (φei, φei) =
∫ L

0

[
g(φ̇ei, φ̇ei) − g(Rm(φei, σ̇ )σ̇ , φei)

]
dt,
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where I (·, ·) deontes the index form of the geodesic segment σ . Summing i from 1 to n in
the above equality and using g(Rm(σ̇ , σ̇ )σ̇ , σ̇ ) = 0, we get

n∑
i=2

I (φei, φei) =
∫ L

0

[
(n − 1)φ̇2 − φ2 Ricg(σ̇ , σ̇ )

]
dt .

According to the definition of ρ, we have

n∑
i=2

I (φei, φei) �
∫ L

0

[
(n − 1)(φ̇2 − Hφ2) + φ2 Hess f (σ̇ , σ̇ )

]
dt +

∫ L

0
φ2ρ(t, θ)dt

=
∫ L

0

[
(n − 1)(φ̇2 − Hφ2) + φ2g(∇σ̇ ∇f, σ̇ )

]
dt +

∫ L

0
φ2ρ(t, θ)dt

=
∫ L

0

[
(n − 1)(φ̇2 − Hφ2) + φ2σ̇ (g(∇f, σ̇ ))

]
dt +

∫ L

0
φ2ρ(t, θ)dt,

(15)
where we used the parallelism of the Riemannian metric g and ∇σ̇ σ̇ = 0 in the last equality.
Along the geodesic segment σ(t), we get that

φ2σ̇ (g(∇f, σ̇ )) = φ2 d

dt
(g(∇f, σ̇ ))

= d

dt

(
φ2g(∇f, σ̇ )

)
− 2φφ̇g(∇f, σ̇ )

= d

dt

(
φ2g(∇f, σ̇ )

)
+ 2f

d

dt

(
φφ̇

) − 2
d

dt

(
f φφ̇

)
,

where we used g(∇f, σ̇ ) = df
dt

(σ (t)) in the last equality. Then integrating the both sides of
the above equality, we get

∫ L

0
φ2σ̇ (g(∇f, σ̇ ))dt = φ2g(∇f, σ̇ )

∣∣∣L
0

+
∫ L

0
2f

d

dt

(
φφ̇

)
dt − 2f φφ̇

∣∣∣L
0

= 2
∫ L

0
f

d

dt

(
φφ̇

)
dt,

where we used φ(0) = φ(L) = 0 in the last equality. Since |f | � k by the theorem
assumption, then ∫ L

0
φ2σ̇ (g(∇f, σ̇ ))dt ≤ 2k

∫ L

0

∣∣∣∣ d

dt
(φφ̇)

∣∣∣∣ dt .

Substituting this into Eq. 15, we get that

n∑
i=2

I (φei, φei) ≤ (n − 1)
∫ L

0
(φ̇2 − Hφ2)dt + 2k

∫ L

0

∣∣∣∣ d

dt
(φφ̇)

∣∣∣∣ dt +
∫ L

0
φ2ρ(t, θ)dt .

If we take φ(t) = sin( πt
L

), then

φ̇(t) = π

L
cos

(
πt

L

)
and φφ̇ = π

2L
sin

(
2πt

L

)
.

We also know ∫ ∞

0
sin2

(
πt

L

)
ρ(t, θ)dt ≤

∫ ∞

0
ρ(t, θ)dt ≤ l
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from our assumption. We collect these results together and the above estimate becomes

n∑
i=2

I (φei, φei) ≤ (n − 1)
∫ L

0

[
π2

L2
cos2

(
πt

L

)
− H sin2

(
πt

L

)]
dt

+ 2k
(π

L

)2 ∫ L

0

∣∣∣∣cos 2πt

L

∣∣∣∣ dt + l.

We simplify it and have that

n∑
i=2

I (φei, φei) ≤ − 1

2L

[
(n − 1)HL2 − (n − 1)π2 − 8πk

]
+ l.

Since σ is a minimizing geodesic, then

n∑
i=2

I (φei, φei) ≥ 0

and we must have

− 1

2L

[
(n − 1)HL2 − (n − 1)π2 − 8πk

] + l ≥ 0.

This gives

L ≤ π√
H

√
1 + 8k

(n − 1)π
+ l2

(n − 1)2Hπ2
+ l

(n − 1)H
.

Therefore for any two points q1, q2 ∈ M , we have

d(q1, q2) ≤ d(p, q1) + d(p, q2) ≤ 2L

and the result follows.

Remark 4.2 The index form argument also gives a Myers’ type diameter estimate when the
integral radial Bakry-Émery Ricci tensor bounds and ∂rf is bounded below along geodesics.
To save the length of the paper, we omit them here.

5 Eigenvalue Estimate

In this section we will apply the volume doubling of Section 3 (Corollary 3.2 (b)) to prove
Theorem 1.4 by following the argument of [14] and [23].

Proof of Theorem 1.4 Recall that B(x̄0, R), where R ≤ π

2
√

H
when H > 0 is a metric

ball in the weighted model space Mn
H,a . Let λD

1 (n, a, H, R) be the first eigenvalue of the
h-Laplacian �h with the Dirichlet condition in Mn

H,a , where h(x) = −a · d(x̄0, x). Let

u(x) = φ(r) be the corresponding eigenfunction of λD
1 (n, a, H, R) such that

φ′′ + (mH + a)φ′ + λD
1 (n, a, H, R)φ = 0
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with φ(0) = 1 and φ(R) = 0. Since φ′ < 0 on [0, R], we see that 0 ≤ φ ≤ 1. Now we
consider the Rayleigh quotient of u(x) = φ(d(x0, x)). We compute that

∫
B(x0,R)

|∇u|2e−f dv =
∫

Sn−1

∫ R

0
(φ′)2Af (t, θ) dtdθn−1

=
∫

Sn−1

(
φφ′Af

∣∣∣R
0

−
∫ R

0
φ(φ′Af )′ dt

)
dθn−1

= −
∫

Sn−1

∫ R

0
φ(φ′′ + mf φ′)Af dtdθn−1

= −
∫

Sn−1

∫ R

0
φ(φ′′ + (mn

H + a)φ′)Af dtdθn−1

−
∫

Sn−1

∫ R

0
(mf − mn

H − a)φφ′Af dtdθn−1.

Noticing that

φ′′ + (mH + a)φ′ = −λD
1 (n, a, H, R)φ

so ∫
B(x0,R)

|∇u|2e−f dv≤ λD
1 (n, a, H, R)

∫
Sn−1

∫ R

0
φ2Af dtdθn−1

+
∫

Sn−1

∫ R

0
(mf − mH − a)+|φ′|Af dtdθn−1.

Hence the Rayleigh quotient satisfies

Q :=
∫
B(x0,R)

|∇u|2e−f dv∫
B(x0,R)

u2e−f dv
≤ λD

1 (n, a, H, R)+
∫
Sn−1

∫ R

0 (mf −mn
H − a)+ |φ′|Af dtdθn−1∫

Sn−1

∫ R

0 φ2Af dtdθn−1

.

(16)
Next we will estimate the last term of the above inequality by choosing a proper function

φ. Now we choose the first value r = r(n, a, H, R) such that φ(r) = 1/2. Then the last
error term can be estimated as follows:∫

Sn−1

∫ R

0 (mf − mn
H − a)+ |φ′|Af∫

Sn−1

∫ R

0 φ2Af

≤
(∫

Sn−1

∫ R

0 (mf − mn
H − a)2+ Af

) 1
2
(∫

Sn−1

∫ R

0 |φ′|2Af

) 1
2

1
2V

1
2

f (x0, r)
(∫

Sn−1

∫ R

0 φ2Af

) 1
2

= 2

(∫
Sn−1

∫ R

0 (mf − mn
H − a)2+ Af

Vf (x0, r)

) 1
2 √

Q,

where we used the Cauchy-Schwarz inequality and
∫

Sn−1

∫ R

0
φ2Af ≥ 1

4
Vf (x0, r)

in the above second inequality. On the other hand, if
∫ ∞
0 ρ(t, θ)dt ≤ ε(n, a,H, R) is very

small along all minimal geodesic segments from x0 ∈ M , by Corollary 3.2 (b), we have the
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volume doubling
Vf (x0, R)

Vf (x0, r)
≤ 4

V a
H (R)

V a
H (r)

.

Substituting this into the above error estimate,

∫
Sn−1

∫ R

0 (mf − mn
H − a)+ |φ′|Af∫

Sn−1

∫ R

0 φ2Af

≤ 4

(
V a

H (R)

V a
H (r)

) 1
2
(∫

Sn−1

∫ R

0 (mf − mn
H − a)2+ Af

Vf (x0, R)

) 1
2 √

Q.

Since
∫ ∞
0 ρ(t, θ)dt ≤ ε(n, H, a, R) by the assumption of theorem, we observe that∫

Sn−1

∫ R

0
(mf − mn

H − a)2+ Af ≤ ε2Vf (x0, R).

Hence we finally get∫
Sn−1

∫ R

0 (mf − mn+4k
H )+ |φ′|Af∫

Sn−1

∫ R

0 φ2Af

≤ C(n, a,H, R)ε
√

Q

for some constant C(n, a,H, R) depending on n, a, H and R. Substituting this estimate
into Eq. 16, we have

Q ≤ λD
1 (n, a, H, R) + C(n, a,H, R)ε

√
Q,

which implies the desired result.
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