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Abstract
We study a system of hard rods of finite size in one space dimension, which move by
Brownian noise while avoiding overlap. We consider a scaling in which the number of
particles tends to infinity while the volume fraction of the rods remains constant; in this
limit the empirical measure of the rod positions converges almost surely to a determinis-
tic limit evolution. We prove a large-deviation principle on path space for the empirical
measure, by exploiting a one-to-one mapping between the hard-rod system and a system
of non-interacting particles on a contracted domain. The large-deviation principle naturally
identifies a gradient-flow structure for the limit evolution, with clear interpretations for both
the driving functional (an ‘entropy’) and the dissipation, which in this case is the Wasser-
stein dissipation. This study is inspired by recent developments in the continuum modelling
of multiple-species interacting particle systems with finite-size effects; for such systems
many different modelling choices appear in the literature, raising the question how one can
understand such choices in terms of more microscopic models. The results of this paper give
a clear answer to this question, albeit for the simpler one-dimensional hard-rod system. For
this specific system this result provides a clear understanding of the value and interpretation
of different modelling choices, while giving hints for more general systems.
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1 Introduction

1.1 ContinuumModelling of Systems of Interacting Particles

Systems of interacting particles can be observed in physics (e.g. gases, liquids, solutions [72,
93]), biology (e.g. populations of cells [99]), social sciences (e.g. animal swarms [81]), engi-
neering (e.g. swarms of robots [14]), and various other fields. Such systems are routinely
described with different types of models: particle- or individual-based models characterize
the position and velocity of every single particle, while continuum models characterize the
behaviour of the system in terms of (often continuous) densities or concentrations. While
particle-based models contain more information and may well be more accurate, continuum
models are easier to analyze and less demanding to simulate, and there is a natural demand
for continuum models that describe such systems in as much accuracy as possible.

In this paper we focus on systems of particles for which the finite size of the particles
has a prominent effect on the larger-scale, continuum-level behavior of the system. For such
systems a wide range of continuum models has been postulated (see below) but very few
of these continuum models have been rigorously justified, and particularly the dynamics of
these continuum models have rarely been rigorously justified. We present here a rigorous
derivation of the continuum equation that describes such a class of interacting particles, but
restricted to one space dimension. The proof uses large-deviation theory, and this method
identifies not only the limiting equation but also the gradient-flow structure of the limit. In
this way it gives a rigorous derivation of the Variational Modelling structure of the limit.

1.2 Sterically Interacting Particles

In many applications, the finite size of the particles can be witnessed in various ways,
such as in the natural upper bound on the density of such particles, in the way particles
‘push away’ other particles (cross-diffusion, possibly leading to uphill diffusion), and in the
striking oscillations of ion densities near charged walls (see e.g. [50, 51, 55]).

Characterizing the macroscopic, continuum-level behaviour of such ‘sterically inter-
acting’ particles (from the Greek for ‘hard, solid’) is a major challenge, and
various communities have addressed this challenge. In the mathematical community, in
one-dimensional systems the behaviour of single, ‘tagged’ particles has been character-
ized [67, 73, 77], the equilibrium statistical properties of the ensemble were determined
by Percus [84], and the dynamic continuum limit was first derived by Rost [89]. In higher
dimensions cluster expansions have opened the door to accurate expansions of the free
energy [59, 60]. In a number of papers Bruna and Chapman [11–13, 24] have given asymp-
totic expressions for the continuum-limit partial differential equation in the limit of low
volume fraction. A related line of research focuses on strongly interacting particle systems
with soft interaction; Spohn characterized the central-limit fluctuations in an infinite system
of interacting Brownian particles [95], and Varadhan proved the continuum limit as n → ∞
for a system of n interacting particles [101, 102] in one dimension.

In the chemical-engineering community there has been a strong interest in the case of
finite-size particles that are charged. For such systems the classical stationary Poisson-
Boltzmann theory (e.g. [82, Ch. 6]) and time-dependent Poisson-Nernst-Planck equations
(e.g. [92]) both give unsatisfactory predictions, such as unphysically high concentrations
near charged walls. Starting with the early work of Bikerman [15] various authors have mod-
ified the static Poisson-Boltzmann theory by incorporating the entropy of solvent molecules,
thus limiting the concentration of the ions [6–8, 16, 17, 21, 29, 40, 44, 45, 52, 53, 61–63,
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88, 97, 98, 105, 106, 108]. The Boublik-Mansoori-Carnahan-Starling-Leland theory [22,
30, 74] further modifies this by adding higher-order concentration dependencies, and later
works [69, 100] generalize this to the case of ions of different sizes. Other approaches
include modelling the solvent as polarizable spheres [71], and the addition to the free energy
of convolution integrals with various kernels, such as Lennard-Jones-type kernels [42, 48,
55, 56] or step functions and their derivatives [90, 91]. See [19] for further review and
references.

Despite all this activity, however, the main question for this paper is still open: Which
continuum-level partial differential equation describes the evolution of systems of many
finite-size particles, and what is the corresponding gradient-flow structure? Before describ-
ing the answer of this paper we first comment on the philosophy of Variational Modelling,
which underlies both this paper and some of the work in this area.

1.3 Variational Modelling

Many strongly damped continuum systems can be modelled by gradient flows; they are
then fully characterized by a driving functional (e.g., a Gibbs free energy) and a dissipation
mechanism that describes how the system dissipates its free energy. By choosing these two
components one fully determines the model, and the model equations are readily derived
as an outcome of the these two inputs. We call this way of working Variational Modelling;
recent examples can be found in e.g. [5, 37, 110], and the lecture notes [83] describe this
modelling philosophy and its foundations in detail.

The quality of a variational-modelling derivation rests on the quality of the two choices,
the choice of the driving functional and the choice of the dissipation (e.g., drift-diffusion
or Wasserstein gradient flow). Different combinations of choices, however, can lead to the
same equation (see e.g. [85] or [31, Eq. 2.1]). Therefore, it is not possible to assess the
quality of the independent modelling choices, nor to deduce that the combined choices are
right, based on comparison of the model predictions to particle-based simulations, or to
experimental data. Accordingly, there is great importance in systematically determining the
driving functional and dissipation mechanism from ‘first principles’. In recent years it has
been discovered that not only the free energy, but also the dissipation mechanism can be
rigorously deduced from an upscaling of the underlying particle system, by determining the
large-deviation rate functional in the many-particle limit. In this way various free energies
and dissipation mechanisms have been placed on a secure foundation [2, 23, 78, 79, 85].

In a series of works, Hyon, Horng, Lin, Liu, and Eisenberg applied a special case of the
variational modelling approach, called ‘Energetic Variational Approach’, to derive evolution
equations for hard-sphere ions [54, 58, 68]. However, the authors solely focused on the
effect of the finite size on the free energy. The impact of the finite size on the dissipation
mechanism, and therefore the dynamics, was not considered, and implicitly taken to be the
same as for zero-size particles.

Instead, in this work we develop a systematic derivation of both the driving functional
and the dissipation mechanism for the system of this paper: a one-dimensional system of
Brownian hard rods.

1.4 TheModel: One-Dimensional Hard Rods

The system that we consider is a collection of n hard rods of length α/n, for α ∈ (0, 1),
that are free to move along the real line R, except that they may not overlap. The position of
each rod is given by its left-hand point Yn

i , i.e. the rod occupies the space [Yn
i , Y n

i + α/n).
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Since the rods can not overlap, the state space is the ‘swiss cheese’ space

�n :=
{
y ∈ R

n : ∀i, j, i �= j, |yi − yj | ≥ α/n
}

. (1)

Note that the length α/n is scaled such that the total volume fraction of the rods is O(1).
The evolution of the rods is that of Brownian motion in a potential landscape with the

non-overlap constraint, where we additionally allow for mean-field interaction between the
particles. For this paper we choose as potentials an on-site potential V and a two-particle
interaction potential W , and both are assumed to be sufficiently smooth.

In the interior of �n we therefore solve

dYn
i (t) = −V ′(Y n

i (t)) dt − 1

n

n∑
j=1

W ′(Y n
i (t) − Yn

j (t)) dt + dBi(t), (2)

where Bi are independent one-dimensional standard Brownian motions. On the boundary
∂�n we assume reflecting boundary conditions.

This system has been studied before. For the case V ≡ W ≡ 0, Percus [84] calculated
various distribution functions for finite n. Also for V ≡ W ≡ 0, Rost [89] proved that in
the the n → ∞ limit, the empirical measures

ρ̂n(t) := 1

n

n∑
i=1

δYn
i (t)

converge almost surely (the continuum limit) to a solution of the nonlinear parabolic
equation

∂tρ = 1

2
∂y

∂yρ

(1 − αρ)2
on R.

Bodnar and Velazguez generalized this convergence by allowing for n-dependent Wn that
shrinks to a Dirac delta function as n → ∞, leading to an additional term ∂y(ρ∂yρ) in the
equation above [26]. Bruna and Chapman studied the related case of fixed n in the limit
α → 0, in arbitrary dimensions, and calculated the approximate limit equation up to order
O(α) [11–13, 24].

Based on analogy with continuum limits in other interacting particle systems (see
e.g. [32, 80]), one would expect that the continuum limit for the case of non-zero V and W

is

∂tρ = 1

2
∂y

∂yρ

(1 − αρ)2
+ ∂y

[
ρ∂y

(
V + W ∗ ρ

)]
. (3)

Here (W ∗ ρ)(y) = ∫
R

W(y − y′)ρ(dy′) is the convolution of W with ρ.
The aims of this paper are (a) to prove the limit equation above rigorously, and (b) show

that it has a variational, gradient-flow structure that is generated by large deviations in a
canonical way.

1.5 Main Result I: Large Deviations of the Invariant Measure

The first step in probing the variational structure of Eq. 3 is to derive the ‘free energy’
that will drive the gradient-flow evolution. For reversible stochastic processes, such as the
particle system Yn, it is well known (see e.g. [78]) that this driving functional is given by
the large-deviation rate functional of the invariant measure.
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Under our conditions on V and W , the system of particles Yn has an invariant measure

P
inv
n := 1

Zn

exp

[
−2

n∑
i=1

V (yi) − 1

n

n∑
i,j=1

W(yi − yj )

]
L n

∣∣∣
�n

, (4)

where L n|�n is n-dimensional Lebesgue measure restricted to �n, and Zn is the normal-
ization constant

Zn :=
∫

�n

exp

[
−2

n∑
i=1

V (yi) − 1

n

n∑
i,j=1

W(yi − yj )

]
dy. (5)

Our first main result identifies the large-deviation behaviour of these invariant measures. In
this paper, P(R) is the space of probability measures on R.

Theorem 1.1 (Large-deviation principle for the invariant measures) Assume that the func-
tions V and W satisfy Assumption 4.4. For each n ∈ N, let Yn ∈ R

n have law P
inv
n , and let

ρn := 1
n

∑n
i=1 δYn

i
∈ P(R) be the corresponding empirical measure. Then the measures ρn

satisfy a large-deviation principle with good rate function 2F̂ :

Prob(ρn ≈ ν) ∼ e−n2F̂(ν) as n → ∞. (6)

Here F̂ : P(R) → [0,∞] is given by

F̂(ρ) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫

R

ρ

[
1

2
log

ρ

1 − αρ
+ V

]
+ 1

2

∫

R

∫

Ry

W(y − y′)ρ(dy)ρ(dy′) + c

if ρ is Lebesgue-absolutely-continuous and ρ(y) < 1/α a.e.,

+∞ otherwise
(7)

The constant c in the definition (7) is chosen such that min{F̂(ρ) : ρ ∈ P(R)} = 0.

The functional F̂ is non-negative by definition; our assumptions on V and W imply
that F̂ has at least one minimizer at value zero, and possibly more than one.

The large-deviation principle (6) gives a characterization of the behaviour of the
empirical measures ρn that can be split into two parts:

(1) With probability one, and along a subsequence, ρn converges to a minimizer of F̂ .
(This can be proved using the Borel-Cantelli lemma; see e.g. [86, Th. A.2].)

(2) The event that ρn ≈ ν where ν is not a minimizer of F̂ becomes increasingly unlikely
as n tends to infinity; in fact, it is exponentially unlikely in n, with a prefactor 2F̂(ν)

that depends on ν. Large values of F̂(ν) correspond to ‘even more unlikely’ behaviour
of ρn than smaller values.

1.6 Gradient Flows

We now turn to the evolution. A gradient-flow structure is defined by a state space, a driving
functional, and a dissipation metric [75, 83]. The driving functional was identified above as
F̂ ; the large-deviation principle that we prove below will indicate that the state space for this
gradient-flow structure is the metric space given by the set P2(R) of probability measures
of finite second moment (i.e.

∫
R

y2ρ(dy) < ∞) equipped with the Wasserstein metric.
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We describe the Wasserstein metric and Wasserstein gradient-flow structures in more
detail in Section 2; here we only summarize a few aspects. The Wasserstein distance W2
is a measure of distance between two probability measures on physical space. When mod-
elling particles embedded in a viscous fluid, the appearance of the Wasserstein distance in
gradient-flow structures can be traced back to the drag force experienced by the particles
when moving through the fluid. This is illustrated by the property that if n particles are
dragged from positions y1, . . . , yn to positions y1, . . . , yn in time τ , then the minimal vis-
cous dissipation as a result of this motion is given by the Wasserstein distance between the
two empirical measures:

cn

τ
W2

(
1

n

n∑
i=1

δyi
,

1

n

n∑
i=1

δyi

)2

= c

τ
min

{ n∑
i=1

∣∣yσ(i) − yi

∣∣2 : σ permutation of 1, . . . , n

}
.

(8)
The drag-force parameter c depends on the size of the particles and the viscosity of the fluid.
This connection between the Wasserstein distance and viscous dissipation is described in
depth in the lecture notes [83, Ch. 5].

For the functional F̂ one can formally define a ‘Wasserstein gradient’ gradW F̂(ρ) for
each ρ as a real-valued function on R given by

gradW F̂(ρ)(y) := −∂y

[
ρ∂yξ

]
(y), ξ := δF̂

δρ
= 1

2
log

ρ

1 − αρ
+ 1

2(1 − αρ)
+ V + W ∗ ρ.

(9)
Therefore (3) can be rewritten abstractly as the Wasserstein gradient flow of F̂ ,

∂tρ = − gradW F̂(ρ). (10)

In this context there are two natural solution concepts for Eq. 3. The first is the more
classical, distributional defintion.

Definition 1.2 (Distributional solutions of Eq. 3) A Lebesgue measurable function ρ :
[0, T ] → P(R) is a distributional solution of Eq. 3 if it is a solution in the sense of
distributions on (0, T ) × R of the (slightly rewritten) equation

∂tρ = 1

2α
∂yy

( 1

1 − αρ

)
+ ∂y

[
ρ∂y

(
V + W ∗ ρ

)]
. (11)

We also use a second solution concept that is more adapted to the gradient-flow structure.
The monograph [3] formulates a number of alternative solution concepts for the general idea
of a ‘metric-space gradient flow’; in this paper we focus on the following one, called Curve
of Maximal Slope in [3] and Energy-Dissipation Principle in [76], and attributed originally
to De Giorgi [33].

Definition 1.3 (Gradient-flow solutions in the Energy-Dissipation Principle formulation)
A curve ρ ∈ AC2([0, T ];P2(R)) with F̂(ρ(0)) < ∞ is called a solution of the gradient
flow of F̂ if for all t ∈ [0, T ],

0 = F̂(ρ(t)) − F̂(ρ(0)) + 1

2

∫ t

0

[
|ρ̇|2(s) + |∂F̂ |2(ρ(s))

]
ds. (12)

Here

• AC2([0, T ];P2(R)) is the space of absolutely continuous functions ρ : [0, T ] →
P2(R) (see Definition 2.6);
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• The metric derivative |ρ̇| of a curve ρ ∈ AC2([0, T ];P2(R)) is defined as

|ρ̇|(t) := lim
h→0

W2(ρ(t + h), ρ(t))

h
, for 0 < t < T ; (13)

• The local slope is

|∂F̂ |(ρ) := lim sup
ν→ρ

(F̂(ρ) − F̂(ν))+
W2(ρ, ν)

. (14)

One can calculate that the metric velocity |ρ̇|(t) and the metric slope |∂F̂ |(ρ) are
formally given by the expressions (see Sections 2.3 and 2.4):

|ρ̇|2(t) :=
∫

R

v2(t, y) ρ(t, dy), v(t, y) := − 1

ρ(t, dy)

∫ y

−∞
∂tρ(t, dỹ),

|∂F̂ |2(ρ) :=
∫

R

|∂yξ(y)|2ρ(dy), with ξ given in Eq. 9.

Each gradient-flow solution also is a distributional solution, and for given initial datum ρ(0)

gradient-flow solutions are unique (see Lemma 2.11).
The definition (12) is inspired by the smooth Hilbert-space case, in which | · | is a Hilbert

norm, and an expression of the form of Eq. 12 for a curve x and a functional � in Hilbert
space can be rewritten as

0 = 1

2

∫ t

0
|ẋ(s) + D�(x(s))|2 ds, (15)

where D�(x) is the Hilbert gradient (Riesz representative) of � at x. The right-hand side
in Eq. 15 is non-negative, its minimal value is zero, and this minimal value is achieved
when ẋ(t) = −D�(x(t)) for almost all t . For metric spaces, under some conditions, the
same is true for Eq. 12: the right-hand side is non-negative, its minimal value is zero, and
this minimal value is achieved in exactly one curve x among all curves x̃ with given initial
datum x̃(0). In other words, equations such as Eqs. 12 and 15 both define a flow in the state
space, and this is what we call a ‘gradient flow’ in this paper.

In recent years it has become clear that expressions of the type of Eqs. 12 and 15 arise
naturally as large-deviation rate functions associated with stochastic processes, typically in
a many-particle limit; we describe this in detail below for the system of this paper, and the
general scheme can be found in [78, Prop. 3.7]. Through such connections, gradient-flow
structures of various partial-differential equations can be understood as a natural conse-
quence of the upscaling from a more microscopic system of which the PDE is a scaling
limit [1, 2, 36, 39, 43, 78, 85]. In addition, this connection provides a natural way to
derive and understand new gradient-flow structures for equations in the long term. In this
paper we use this method to investigate the gradient-flow structure that arises in this simple
one-dimensional, hard-rod system.

1.7 Main Result II: Large Deviations of the Stochastic Evolutions

The second main theorem of this paper then describes the large-deviation behaviour of
the empirical measures ρn(t) = 1

n

∑n
i=1 δYn

i (t) as functions of time, i.e. in the state space

C
([0, T ];P(R)

)
.
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The choice of initial data for the process Yn
i requires some care. From the point of view

of Eq. 3 we would like to fix a measure ρ◦ ∈ P(R) and then select initial data Yn
i (0) such

that the empirical measures 1
n

∑n
i=1 δYn

i (0) converge to ρ◦ as n → ∞.
However, not all ρ◦ ∈ P(R) are admissible, since initial data for Eq. 3 should have

Lebesgue density bounded by 1/α. This is a natural consequence of the fact that each par-
ticle occupies a section of length α/n, and it is also visible in the degeneration of the
denominators in Eqs. 3 and 7.

Given some ρ◦ satisfying this restriction, one might try to draw initial data Yn
i (0) i.i.d.

from ρ◦, since then with probability one we have n−1 ∑n
i=1 δYn

i (0) ⇀ ρ◦. This is still
problematic, since the strong interaction between the rods implies that the initial data for
Yn

i can never be chosen independently. Instead, in the theorem below, we choose initial data
for the Yn

i by modifying a version of the invariant measure P
inv
n instead.

Let f ∈ Cb(R), and define the tilted, ‘W = 0’ invariant measure P
inv,f
n ∈ P(R) by

P
inv,f
n (dy) := 1

Zf
n

exp

[
−

n∑
i=1

f (yi) − 2
n∑

i=1

V (yi)

]
L n

∣∣∣
�n

(dy). (16)

Also define the tilted free energy

F̂f (ρ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

∫

R

ρ log
ρ

1 − αρ
+
∫

R

[1

2
f + V

]
ρ + Cf

if ρ is Lebesgue-absolutely-continuous and ρ(y) < 1/α a.e.,

+∞ otherwise
(17)

where the constant Cf is chosen such that inf F̂f = 0. The functional F̂f is strictly convex

and coercive, and we write ρ◦,f for the unique minimizer of F̂f :

ρ◦,f = arg min
P(R)

F̂f .

(It is not hard to verify that any ρ can be written this way, provided it satisfies ρ < 1/α a.e.
and log(ρ/e−2V ) ∈ Cb(R).)

Theorem 1.4 (Large-deviation principle on path space) Assume that V,W satisfy Assump-
tion 4.4. For each n, let the particle system t �→ Yn(t) ∈ R

n be given by Eq. 2, with initial
positions drawn from the tilted invariant measure Pinv,f

n .
The random evolving empirical measures ρn(t) = 1

n

∑n
i=1 δYn

i (t) then satisfy a large-

deviation principle on C
([0, T ];P(R)

)
with good rate function Î f :

Prob
(
ρn|t∈[0,T ] ≈ ν|t∈[0,T ]

)
∼ e−nÎf (ν) as n → ∞.

If in addition ρ satisfies ρ(0) ∈ P2(R) and F̂(ρ(0)) + Î f (ρ) < ∞, then we have
ρ ∈ C([0, T ];P2(R)) and Î f (ρ) can be characterized as

Î f (ρ) := 2 F̂f (ρ(0)) + F̂(ρ(T )) − F̂(ρ(0)) + 1

2

∫ T

0
|ρ̇|2(t) dt + 1

2

∫ T

0
|∂F̂ |2(ρ(t)) dt .

(18)
Here |ρ̇| and |∂F̂ | are the metric derivative and the local slope defined in Definition 1.3,
for the Wasserstein metric space X = (P2(R),W2) (see Section 2.3).
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1.8 Consequences: The Limit Equation as aWasserstein Gradient Flow

The large-deviation rate functional Î f in Eq. 18 can be decomposed as

Î f (ρ) = 2 F̂f (ρ(0)) + GF[F̂ ,W2](ρ),

where GF[F̂ ,W2](ρ) is shorthand for the right-hand side in the gradient-flow definition
in Eq. 12, with driving functional F̂ and dissipation metric W2. Both terms are non-negative,
and they represent different aspects of the large-deviation behaviour of the sequence of
particle systems Yn.

The first term, 2F̂f (ρ(0)), characterizes the probability of deviations of the initial empir-
ical measure ρn(0) = 1

n

∑n
i=1 δYn

i (0) from the minimizer ρ◦,f of F̂f . The second term

GF[F̂ , W2](ρ) measures deviations of the time course t �→ ρn(t) from ‘being a solution of
the gradient flow (3)’ (or 10). For minimizers both terms are zero, implying the following

Corollary 1.5 Minimizers ρ of the rate function Î f are solutions of the Wasserstein gra-
dient flow (3) (in the gradient-flow sense), with initial datum ρ(0) = ρ◦,f . Therefore
minimizers of Î f are unique.

Minimizers of Î f describe the typical behaviour of empirical measures ρn, by the Borel-
Cantelli argument that was already mentioned above:

Corollary 1.6 The curve of empirical measures t �→ ρn(t) converges almost surely in
C([0, T ];P(R)) to a (unique) solution ρ of Eq. 3 with initial datum ρ(0) = ρ◦,f .

Although the λ-convexity of F̂ already guarantees existence of gradient-flow solutions
by [3], Corollary 1.6 trivially gives the same:

Corollary 1.7 Equation 3 with initial datum ρ◦,f has a gradient-flow solution.

1.9 Ingredients of the Proofs

As in many proofs of large-deviation principles, the core of the argument is Sanov’s
theorem, which provides a large-deviation principle for independent particles.

In the case of this paper, however, the particles are not only correlated, but the hard-
core interaction is a very strong one. A central step in the proof is to replace this strong
interaction by a weaker one. This step is done by the second main ingredient, a map-
ping from the hard-rod particle system Yn to a system of weakly-interacting zero-length
particles called Xn. This map appears to have been known at least to Lebowitz and Per-
cus [73] and was used to prove the many-particle limit by Rost [89] and later by Bodnar and
Velazguez [26].

The idea behind this mapping is to map the original collection of rods of length α/n to a
collection of zero-length particles by ‘collapsing’ or ‘compressing’ them to zero length and
moving the rods on the right-hand side up towards the left (see Fig. 1). Two particles Yn

i and
Yn

i+1 that collide at some time t0 are mapped by this transformation to two particles Xn
i and

Xn
i+1 that occupy the same point x at time t0. While the compressed particles Xn

i and Xn
i+1

remain ordered for all time (Xn
i (t) ≤ Xn

i+1(t)), the distribution of the empirical measures
remains the same if the two particles are allowed to pass each other instead. Mapping the
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Fig. 1 The discrete compression
and expansion maps (see
Section 4.1). Particles of length
α/n at positions yi are mapped to
zero-length particles at positions
xi (the compression map A−1

n )
and vice versa (the expansion
map An)

length of the particles to zero therefore allows us to remove the non-passing restriction, and
by removing this restriction we eliminate the strong interaction between particles.

The price to pay is that after transformation the effects of the on-site potential V and the
interaction potential W come to depend on the whole particle system. This happens because
the amount that particle Xn

i should be considered ‘shifted to the right’ is equal to α/n times
the number of particles Xn

j that are—at that moment—to the left of Xn
i , and that therefore

the force exerted by the on-site potential V (for instance) is equal to

−V ′
(

Xn
i (t) + α

n
#
{
j ∈ 1, . . . , n : Xn

j (t) < Xn
i (t)

})
.

This force on the particle Xn
i depends in a discontinuous manner on the positions of all

particles. Had this force been smooth, a standard application of Varadhan’s Lemma would
convert Sanov’s theorem into a large-deviation principle for the particle system Xn, as done
by e.g. Dai Pra and Den Hollander (see [38] or [34, Ch. X]). Since it is not smooth, how-
ever, we use a recent result by Hoeksema, Holding, Maurelli, and Tse [57], that generalizes
Varadhan’s Lemma to mildly singular and discontinuous forcings (Theorem 6.2 below).

Finally, a fortuitous property of the expansion and compression maps is that they are
isometries for the Wasserstein metric. This implies that the metric structure of the large-
deviation rate functional Î f —in terms of the metric velocity |ρ̇| and the metric slope |∂F̂ |—
transforms transparently from the Xn to the Yn particle system.

1.10 Conclusion and Discussion, Part I: Mathematics

We have proved a large-deviation principle on path space for a one-dimensional system of
hard rods, in the many-particle limit. This large-deviation principle characterizes the entropy
of the system as a function of the density, and identifies the limit evolution as a Wasserstein
gradient flow of the entropy.

From a mathematical point of view, this result can be interpreted in different ways:

(1) It rigorously establishes (3) as the continuum limit of the particle system, in the sense
that the empirical measures ρn converge to a solution of Eq. 3. While this result was
proved for the case V = W = 0 by Rost in [89], it is new for the case of non-zero V

and W .
(2) In addition, it establishes the functional F̂ as the driving functional and the metric W2

as the dissipation of the gradient-flow structure for Eq. 3. This result is new, also for
the case V = W = 0.
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1.10.1 The Difference BetweenW2- and Narrow Topology

Hidden in the notation of the two large-deviation theorems is a subtlety concerning topology.
The W2-topology is central to the gradient-flow structure, and we argue here that this struc-
ture arises from the large deviations. On the other hand, the two large-deviation principles
themselves are proved in the narrow topology on P(R), which is weaker.

The large-deviation theorems themselves probably do not hold in the stronger W2-
topology. For independent particles this can be recognized in the characterization of the
validity of Sanov’s theorem in Wasserstein metric spaces by Wang, Wang, and Wu [109].
These authors show that Sanov’s theorem is invalid without exponential moments on the
underlying distribution, and this condition is much stronger than the first-moment condition
induced by V in the case of this paper.

This begs the question how the W2-topology is generated by the large-deviation rate
function while not being part of the large-deviation principle. The answer is that if If (ρ)

is finite and if the initial datum ρ(0) is in P2(R), then ρ(t) ∈ P2(R) for all time t ; this is
shown in Lemma 8.4. However, ρ(t) ∈ P2(R) is a much weaker property than finiteness
of exponential moments of ρ(t), which is necessary for exponential tightness in W2 of the
underlying particle system.

1.11 Conclusion and Discussion, Part II: Consequences for Modelling

This large-deviation result also gives rise to a rigorous Variational-Modelling derivation of
the limit (3). It explains and motivates the choice of the modified entropy F̂ as the driving
functional and the Wasserstein distance as the dissipation.

The appearance of the driving functional F̂ is expected. The first integral in F̂ arises
as a measure of ‘free space’ after taking into account the finite length of the particles; this
becomes apparent in the discussion of the ‘compression’ map in Section 4. The second and
third integrals are relatively standard contributions from on-site and interaction potentials.

On the other hand, the appearance of the Wasserstein distance as the dissipation metric is
unexpected. This is the same metric as for non-interacting particles [1, 32, 64, 83], and the
result therefore shows that incorporating steric interactions does not change the dissipation
metric, a fact that is surprising at first glance.

This fact can be understood from the proof, however. It is related to the property that
the compression and expansion maps are isometries for the Wasserstein distance. The cen-
tral observation is the following: the total travel distance between a set of initial points
y1, . . . , yn and final points y1, . . . , yn is the same as the total travel distance between the
corresponding compressed set of initial points x1, . . . , xn and final points x1, . . . , xn. This
is true because in the minimization problem (8) the optimal permutation of the particles is
such that particles preserve their ordering, and therefore the compression mapping moves
the points yσ(i) and yi to the left by the same amount.

This result therefore is intrinsically limited to the one-dimensional setup of this paper.
In higher dimensions there is no such compression map, but one can still wonder whether
the dissipation of particles with finite and with zero size might be both respresented by the
Wasserstein distance. This appears not to be the case: we illustrate this in Fig. 2. In addition,
in the case of multiple species the metric can certainly not be Wasserstein, since particles
moving in opposite directions will be forced to move around each other.
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Fig. 2 In higher dimensions the metric will not be Wasserstein. In one dimension (left), linear interpolation
of particle positions preserves admissibility: if the initial and final positions do not overlap, then the interme-
diary positions also do not overlap. In higher dimensions, this is false: two spheres arranged in admissible
configurations may collide under linear interpolation (top right). We expect that the metric in higher dimen-
sions therefore will be non-Wasserstein, since it will have to accommodate particles ‘moving around’ each
other (bottom right)

1.11.1 Comparison with Bruna & Chapman’s Approximate Equation

In a series of publications [11–13, 24], Bruna and Chapman analyze systems of hard spheres
with Brownian noise in the limit of small volume fraction. Their approach is to apply a
singular-limit analysis to the Fokker-Planck equation associated with the particles, and this
allows them to address this issue in all dimensions and for finite numbers of particles. For
the setup of this paper with W = 0, Bruna finds an approximate equation in the small-α
limit [24, App. D]

∂tρ = ∂y

[1

2
∂yρ + αρ∂yρ + V ′(y)ρ

]
+ O(α2). (19)

This equation is also found by a Taylor development of the denominator in Eq. 3. Similarly
applying a formal Taylor development to F̂ in Eq. 7, we find that Eq. 19 has a formal
‘approximate’ gradient flow structure

driving functional F̂BC(ρ) =
∫ [1

2
ρ log ρ + αρ2 + Vρ

]
+ O(α2), and metric W2.

Bruna, Burger, Ranetbauer, and Wolfram study the concept of approximate gradient-flow
structures in more detail in [9, 10].

1.11.2 Comparison with Poisson-Nernst-Planck Type Models with Steric Effects

As described in the introduction, a wide family of generalized Poisson-Nernst-Planck mod-
els has been derived by modelling the effect of the finite particle size on the driving
functional (free energy) of the system, while assuming that the dissipation mechanism is the
same as for systems with point ions. Our work shows that the last assumption is valid for
the case of a single species of hard rods in one spatial dimension, and is therefore consistent
with the current literature.

As illustrated above, however, in the case of multiple species in higher dimensions a form
of cross-diffusion is to be expected. We present an example of such a system for charged
particles in [49]. Here the mobility matrix is nonlinear and degenerate, in that transport of
particles of species A to a region diminishes with increasing concentration of that species
in that region. The mobility matrix is also non-diagonal, reflecting inter-diffusion, i.e., the
movement of an ionic species must involve counter movement of water and other ionic
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species. (This also is observed in limits of lattice models with exclusion; see e.g. [25]).
Furthermore, while in classical Poisson-Nernst-Planck theory, the diffusivity of the ions is
proportional to their concentration, the modified equation show a super-linear increase of
diffusivity with ionic concentration. This increase reflects the solvent tendency to diffuse
to the regions of high ionic concentration and may be a significant effect since the entropy
per volume of many small particles is larger than the entropy of a fewer larger particles and
the solvent molecules are typically significantly smaller than the ions. This work should be
considered a step towards the study of such systems.

1.12 Overview of the Paper

In Section 2 we introduce the Wasserstein distance, Wasserstein gradient flows, and inverse
cumulative distribution functions, which play a central role in the analysis. In Section 3
we introduce large-deviation principles. In Section 4 we formally define the systems that
we study and the compression and expansion maps that we mentioned above. In Section 5
we formally define various functionals that appear in the analysis, and prove a number of
properties. In Sections 6, 8, and 9 we prove Theorems 1.1 and 1.4 in three stages, while
Section 7 is devoted to a number of estimates used in Section 8.

1.13 Notation

We sometimes write Rx and Ry to distinguish state spaces for particle systems of ‘com-
pressed’ particles (usually called Xn, sometimes Zn) and ‘expanded’ particles Yn. For
measures μ on R we write μ(x) for the Lebesgue density and μ(dx) for the measure
inside an integral. For time-dependent measures μ(t, dx) we write both μ(t) and μt for the
measure μ(t, ·), and correspondingly μ0 and μ(0) both indicate the measure μ(0, ·).

|ρ̇|(t) Metric derivative Eqs. 13, 26
‖ · ‖BL Bounded-Lipschitz norm on continuous and bounded

functions
Section 2.2

α Rods have length α/n

A, An Expansion maps Definition 4.1
b, b, bi Drifts in the SDEs Definition 4.5
γ (·) Correction term in entropy Eq. 52
dBL Dual bounded-Lipschitz metric on P(R) Section 2.2
EntV , ÊntV Entropies in compressed and expanded coordinates Section 5
EW , ÊW Interaction energies in compressed and expanded coor-

dinates
Section 5

F , F̂ Free energies in compressed and expanded coordinates Eq. 7, Section 5
F̂f Tilted free energy Eq. 17
∂F (ρ) Fréchet subdifferential of F Definition 2.9
∂◦F(ρ) Element of ∂F (ρ) of minimal norm Definition 2.9
|∂F |(ρ) Metric slope of F Eq. 14
ηn(·) Empirical measure map Eq. 42
H( · | · ) Relative entropy Eq. 48
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icdf Inverse cumulative distribution function Definition 2.2
If Rate functional for pathwise large-deviation principle Eq. 18
Iξ Dynamic rate function for i.i.d. initial data Eq. 56
LX,LY Generators for Xn and Yn stochastic particle systems Definition 4.5
�n State space for particle system Yn Eq. 1
P(R) Probability measures on R, with metric dBL Section 2.2
P2(R) Probability measures with finite second moments and

W2-metric
Section 2.3

Pn(R) Empirical measures of n points on R Eq. 32
P

inv
n Invariant measure for Yn Eq. 4

P
inv,f
n Tilted, W = 0 invariant measure for Yn Eq. 16

Q
ν Single-particle tilted measure on Rx Eq. 50

tνμ Transport map from μ to ν Lemma 2.5
Tμ Auxiliary expansion map Lemma 4.3
V On-site potential Assumption 4.4
W Interaction potential Assumption 4.4
W2 Wasserstein metric of order 2 Section 2.3
Zn Normalization constant for Pinv

n Eq. 5

2 Measures and theWasserstein Metric

The Wasserstein gradient of a functional F̂ , and the corresponding gradient flow, was infor-
mally defined in Section 1.5. There is an extensive literature on the Wasserstein metric and
its properties [3, 94, 103, 104], but for the discussion of this paper we only need a number
of facts, which we summarize in this section.

2.1 Preliminaries on One-Dimensional Measures

The concept of push-forward will be used throughout this work:

Definition 2.1 (Push-forwards) Let f : R → R be Borel measurable, and μ ∈ P(R). The
push-forward f#μ ∈ P(R) is the measure μ ◦ f −1, and has the equivalent characterization

∫

R

ϕ(y) (f#μ)(dy) =
∫

R

ϕ(f (x)) μ(dx), for all Borel measurable ϕ : R → R.

The Wasserstein distance and the energy functionals in this paper have convenient
representations in terms of inverse cumulative distribution functions.

Definition 2.2 (Inverse cumulative distribution functions) Let μ ∈ P(R). Let F : R →
[0, 1] be the right-continuous cumulative distribution function:

F(x) := μ((−∞, x]).

Then the inverse cumulative distribution function X of μ is the generalized (right-
continuous) inverse of F ,

X(m) := inf{x ∈ R : F(x) > m}.
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The following lemma collects some well-known properties of inverse cumulative distri-
bution functions.

Lemma 2.3 Let μ ∈ P(R) and let X be the inverse cumulative distribution function of μ.

(1) X is non-decreasing and right-continuous;
(2) If μ is absolutely continuous, then F(X(m)) = m, X′(m) exists for Lebesgue-almost-

every m ∈ [0, 1], and for those m we have

X′(m) = 1/μ(X(m));
(3) For all Borel measurable ϕ : R → R we have

∫

R

ϕ(x)μ(dx) =
∫ 1

0
ϕ(X(m)) dm. (20)

Proof The function X is obviously non-decreasing, and the right-continuity is a direct con-
sequence of the definition. To characterize X′(m) for absolutely-continuous μ, first note that
F then is an absolutely continuous function; by [107, Prop. 1] we then have F(X(m)) = m

for all m ∈ [0, 1]. Since X is monotonic, it is differentiable at almost all m ∈ [0, 1]. Let M

be the set of such m; then for each m ∈ M ,

X′(m) = lim
m̃→m

X(m̃) − X(m)

m̃ − m
= lim

m̃→m

X(m̃) − X(m)

F (X(m̃)) − F(X(m))
.

First, assume that X′(m) = 0. The identity above then implies that F is not differentiable
at x = X(m); the set X of such x is a Lebesgue null set of R, and since the function
F has the ‘Lusin N’ property [20, Def. 9.9.1] the corresponding set of values F(X ) has
Lebesgue measure zero as well. For all m in the full-measure set M \ F(X ) we therefore
have that X′(m) exists and is non-zero, and by the calculation above X′(m) = 1/F ′(X(m)) =
1/μ(X(m)).

Finally, the transformation rule (20) is proved in [107, Th. 2].

2.2 Narrow Topology and the Dual Bounded-Lipschitz Metric

We will be using two topologies on spaces of probability measures. The first type is the nar-
row topology, often called the weak topology of measures, which can be defined in various
ways. For the purposes of this paper it is convenient to introduce it through the set BL(R)

of bounded Lipschitz functions on R, with norm

‖f ‖BL := ‖f ‖∞ + Lip(f ), Lip(f ) := sup
x,y∈R

|f (x) − f (y)|
|x − y| .

The narrow convergence on P(R) is metricised by duality with the set of bounded Lipschitz
functions, leading to the dual bounded-Lipschitz metric

dBL(μ, ν) := sup
‖f ‖BL≤1

∫

R

f (x)
[
μ(dx) − ν(dx)

]
.

Alternative ways of defining the same topology are by the Lévy metric or through duality
with continuous and bounded functions [87]. When we write P(R), we implicitly equip the
space with the dual bounded-Lipschitz metric dBL.
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2.3 TheWasserstein Metric

We write P2(R) for the space of probability measures with finite second moments,

P2(R) :=
{
μ ∈ P(R) :

∫

R

x2μ(dx) < ∞
}

.

Definition 2.4 (Wasserstein distance) The Wasserstein distance of order 2 between mea-
sures μ and ν in P2(R) is defined by

W2(μ, ν)2 := inf
{∫

R

|x − x′|2 γ (dxdx′) : γ ∈ �(μ, ν)
}
, (21)

where �(μ, ν) is the set of couplings (‘transport plans’) of μ and ν, i.e. of measures γ ∈
P(R × R) such that

γ (A × R) = μ(A), γ (R × A) = ν(A), for all Borel sets A ⊂ R.

In this paper we always consider P2(R) to be equipped with the metric W2.

Lemma 2.5 (Properties of the Wasserstein metric) (1) The infimum in Eq. 21 is achieved
and unique.

(2) We have the characterization

W 2
2 (μ, ν) =

∫ 1

0
|Xμ(m) − Xν(m)|2 dm, (22)

where Xμ and Xν are the inverse cumulative distribution functions of μ and ν.
(3) If μ is Lebesgue-absolutely-continuous, then the minimizer in Eq. 21 can be written

as a transport map: γ = (id × tνμ)#μ where tνμ : R → R pushes forward μ to ν, i.e.
ν = (tνμ)#μ. In terms of the inverse cumulative distribution functions Xμ and Xν of μ

and ν, the map tνμ satisfies

tνμ(Xμ(m)) = Xν(m) for all m ∈ [0, 1]. (23)

(4) dBL(μ, ν) ≤ W2(μ, ν) for all μ, ν ∈ P2(R).

Proof Parts 1, 2, and 3 are proved in [103, Th. 2.18 and 2.12]. To prove part 4, we use the
Kantorovich formulation of the Wasserstein distance of order 1 (e.g. [103, Th. 1.14]):

dBL(μ, ν) = sup
‖f ‖∞+Lip(f )≤1

∫

R

f
[
μ − ν

] ≤ sup
Lip(f )≤1

∫

R

f
[
μ − ν

]

= inf
{∫

R

|x − x′| γ (dxdx′) : γ ∈ �(μ, ν)
}

≤ inf
{∫

R

|x − x′|2 γ (dxdx′) : γ ∈ �(μ, ν)
}1/2

= W2(μ, ν).

Definition 2.6 (AC2-curves in the W2-metric [3, Ch. 8]) Define the space
AC2([0, T ];P2(R)) as the space of curves μ ∈ C([0, T ];P2(R)) such that there exists
w ∈ L2(0, T ) with the property

W2(μs, μt ) ≤
∫ t

s

w(σ ) dσ, for all 0 ≤ s ≤ t ≤ T .
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Lemma 2.7 (Characterization of AC2-curves in P2) A curve μ ∈ C([0, T ];P2(R)) is an
element of AC2([0, T ];P2(R)) if and only if there exists a Borel vector field v : (x, t) →
vt (x) such that vt ∈ L2(μt ) for a.e. t ∈ [0, T ], and

t �→ ‖vt‖L2(μt )
∈ L2(0, T ), (24)

and the continuity equation
∂tμt + ∂x(μtvt ) = 0 (25)

holds in the sense of distributions on (0, T ) × R. In this case, if two functions (t, x) �→
v(t, x), ṽ(t, x) satisfy (24) and (25), then μtvt = μt ṽt Lebesgue-almost everywhere in
(0, T ) × R,

In addition, if μ ∈ AC2([0, T ];P2(R)), then the metric derivative |μ̇| defined in Eq. 13
exists at a.e. t ∈ [0, T ], and satisfies

|μ̇|2(t) :=
∫

R

|vt |2μt , for a.e. t ∈ [0, T ]. (26)

Proof The statement follows directly from [3, Th. 8.3.1]; we only need to prove uniqueness
of v. Assume that there exist two functions (t, x) �→ v(t, x), ṽ(t, x) as in the Lemma.
Then ∂x(μ(v − ṽ)) = 0 in (0, T ) × R in the sense of distributions, and there exists a
Borel measurable function f : [0, T ] → R such that μt(x)(vt (x) − ṽt (x)) = f (t) for
Lebesgue-almost all (t, x) ∈ (0, T ) × R.

We then calculate for a < b and ϕ ∈ Cb([0, T ]),

(b − a)

∫ T

0
ϕ(t)f (t) dt =

∫ T

0
ϕ(t)

∫ b

a

(vt (x) − ṽt (x))μt (dx) dt

≤
∫ T

0
ϕ(t)

{
1

2

∫ b

a

(vt (x) − ṽt (x))2μt(dx) + 1

2

∫ b

a

μt (dx)

}
dt

≤ ‖ϕ‖∞
∫ T

0

{
‖vt‖2

L2(μt )
+ ‖ṽt‖2

L2(μt )
+ 1

2

}
dt .

Since the right-hand side does not depend on (b − a), we find
∫ T

0 ϕ(t)f (t) dt = 0 for all
ϕ ∈ Cb([0, T ]), and therefore f = 0. It follows that μv and μṽ are almost everywhere
equal.

2.4 Functionals onWasserstein Space

Definition 2.8 (λ-convex functionals; [3, Ch. 9]) Fix λ ∈ R. The functional F : P2(R) →
R ∪ {∞} is called λ-convex if

F(μ1→2
t ) ≤ (1 − t)F (μ1) + tF (μ2) − λ

2
t (1 − t)W 2

2 (μ1, μ2),

where μ1→2
t is the constant-speed geodesic connecting μ1 to μ2 (see e.g. [3, Sec. 7.2]).

Definition 2.9 (Fréchet subdifferentials; [3, Def. 10.1.1]) Let F : P2(R) → R ∪ {∞},
and let μ ∈ D(F) := {μ′ : F(μ′) < ∞} be Lebesgue-absolutely-continuous. The Fréchet
subdifferential ∂F (μ) is the set of all ξ ∈ L2(μ) such that

F(ν) − F(μ) ≥
∫

R

ξ(x)(tνμ(x) − x) μ(dx) + o(W2(μ, ν)) as ν → μ.

The subdifferential is a closed convex subset of L2(μ); if it is non-empty, it therefore admits
a unique element ξ◦ of minimal L2(μ)-norm. We write ∂◦F(μ) := ξ◦ if this element exists.
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Lemma 2.10 (Subdifferentials and the chain rule; [3, Lemma 10.1.5 and Proposition 10.3.18]) 1.
In the context of Definition 2.9, if the subdifferential is non-empty, then the local
slope (14) is finite and satisfies

|∂F |(μ) = ‖ξ◦‖L2(μ) = inf{‖ξ‖L2(μ) : ξ ∈ ∂F (μ)}. (27)

2. The following chain rule holds. Let F : P2(R) → R ∪ {∞} be λ-convex, and let
μ ∈ AC2([0, T ];P2(R)) be such that

(a) μt is Lebesgue-absolutely-continuous and ∂F (μt ) �= ∅ for almost all t ∈ [0, T ];
(b) We have ∫ T

0
|μ̇|(t)|∂F |(μt ) dt < ∞.

For any 0 ≤ s ≤ t ≤ T and any selection ξσ ∈ ∂F (μσ ) we then have

F(μt ) − F(μs) =
∫ t

s

∫

R

vσ (x)ξσ (x) μσ (dx)dσ, (28)

where vt is the velocity field given by Lemma 2.7.

2.5 Wasserstein Gradient Flows

Recall from Section 1.6 the definition of ‘gradient flow’ that we use here, applied to the
case of the Wasserstein metric space P2(R) and a functional F : P2(R) → R ∪ +∞: A
function ρ ∈ AC2([0, T ];P2(R)) is a gradient-flow solution if for all t > 0,

0 = F(μt ) − F(μ0) + 1

2

∫ t

0

[
|μ̇|2(s) + |∂F |2(μs)

]
ds. (29)

By [3, Th. 11.1.3], if F is proper, lower semicontinuous, and λ-convex, then solutions in
this sense satisfy the pointwise property

vt = −∂◦F(ρt ) for a.e. t > 0.

In the case of the Wasserstein gradient flow of F̂ , we show in Lemma 5.1 that F̂ satis-
fies these properties, and that ∂◦F̂(ρ) is ∂yξ , where the function ξ was already introduced
in Eq. 9,

ξ(ρ) := 1

2
log

αρ

1 − αρ
+ αρ

2(1 − αρ)
+ V + W ∗ ρ.

If ρ is a gradient-flow solution with F̂(ρ0) < ∞, then writing (29) as

F̂(ρt ) + 1

2

∫ t

0

[
|ρ̇|2(s) + |∂F̂(ρs)|2

]
dt = F̂(ρ0),

it follows that |∂F̂(ρt )| < ∞ and therefore ∂yξ(ρt ) ∈ L2(ρt ) for almost all t . Therefore

solutions ρ of the gradient flow of F̂ satisfy

∂tρ = ∂y

[
ρ∂yξ(ρ)

]
, (30)

in the sense of distributions on (0, T ) × R.

Lemma 2.11 Gradient-flow solutions of F̂ are unique, and a gradient-flow solution also is
a distributional solution in the sense of Definition 1.2.
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Proof The λ-convexity and lower semicontinuity properties of the functional F̂
(Lemma 5.1), in combination with e.g. [3, Th. 11.1.4], together imply that gradient-flow
solutions are unique.

To prove the distributional-solution property, set

ψ(s) := 1

2
log

αs

1 − αs
+ αs

2(1 − αs)
and ψ̃(s) := 1

2α(1 − αs)
− 1

2α
,

so that ψ̃ ′(s) = sψ ′(s).
Comparing (30) with (11) it follows that ρ satisfies (11) in the sense of distributions if we

prove that
[
∂yψ̃(ρt )

]
(y) = ρt (y)

[
∂yψ(ρt )

]
(y) in the sense of distributions on (0, T ) × R.

This identity follows from the next Lemma and the fact that ∂yξ(ρt ) ∈ L2(ρt ).

Lemma 2.12 Let u ∈ L∞(R) ∩ P(R) satisfy ∂yψ(u) ∈ L2
u and u < 1/α a.e. on R. Then

u∂yψ(u) = ∂yψ̃(u) in L1
loc(R).

Proof First note that since ψ ′(s) ≥ (2s)−1, the property ∂yψ(u) ∈ L2
u implies that ∂yu ∈

L2 and that u is continuous. For ε > 0 set Aε := {y ∈ R : ε < u(y) < 1/α − ε}. Since ψ

and ψ̃ are smooth on [ε, 1/α − ε] and u is continuous, on Aε we have u∂yψ(u) = ∂yψ̃(u).
Take ϕ ∈ Cc(R). From the estimate ϕu∂yψ(u) ≤ 1

2uϕ2+ 1
2u(∂yψ(u))2 and the Lebesgue

dominated convergence theorem we find
∫

R

ϕu∂yψ(u) =
∫

u>0
ϕu∂yψ(u) = lim

ε↓0

∫

Aε

ϕu∂yψ(u)

= lim
ε↓0

∫

Aε

ϕ∂yψ̃(u) =
∫

u>0
ϕ∂yψ̃(u) =

∫

R

ϕ∂yψ̃(u).

This proves the assertion.

3 Large-Deviation Principles

The theory of large deviations characterizes the probability of events that become exponen-
tially small in an asymptotic sense. Consider a sequence of probability measures {γn}∞n=1
on some space X . Large-deviation theory describes exponentially small probabilities under
the γn’s in the limit n → ∞, in terms of a rate function I : X → [0,∞], in the following
(rough) sense: for A ⊂ X ,

γn(A) ∼ e−n infx∈A I (x), as n → ∞.

This is formalized by the notion of a large-deviation principle. Before giving the definition
we define the type of functions I of interest in this setting; X is here taken to be a complete
separable metric space.

Definition 3.1 A function I : X → [0,∞] is called a rate function if it is lower semiconti-
nous. The function I is called a good rate function if for each α ∈ [0,∞), the sublevel sets
{x : I (x) ≤ α} are compact.

Note that for a good rate function lower semicontinuity follows from the compact
sublevel sets.
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We are now ready to state the definition of a large-deviation principle. The definition can
be made more general, however the following form suffices for this paper.

Definition 3.2 Let {γn} be a sequence of probability measures on a complete separable
metric space X . We say that the sequence {γn} satisfies a large-deviation principle with rate
function I : X → [0,∞] if for every measurable set A ⊂ X ,

− inf
x∈A◦ I (x) ≤ lim inf

n→∞
1

n
log γn(A

◦) ≤ lim sup
n→∞

1

n
log γn(Ā) ≤ − inf

x∈Ā
I (x),

where A◦ and Ā denote the interior and closure, respectively, of the set A.

This definition is also referred to as a strong large-devation principle and there is a related
notion of a weak large-deviation principle: The sequence {γn} is said to satisfy a weak large-
deviation principle, with rate function I , if the lower bound in the previous definition holds
for all measurable sets, and the following upper bound holds for every α < ∞:

lim sup
1

n
log γn(A) ≤ −α,

for A a compact subset of �I (α)c, where �I (α) is the α-sublevel set of I .
A weak LDP can be strengthened to a full, or strong, LDP by showing exponential

tightness of {γn}:

Definition 3.3 The sequence {γn} is exponentially tight if for every α < ∞, there exists a
compact Kα such that

lim sup
n→∞

1

n
log γn(K

c
α) < −α.

If γn → δx for some x ∈ X , that is if the sequence of underlying random elements has a
unique deterministic limit as n → ∞, then I (x) = 0 and I (x̃) > I (x) for all x̃ ∈ X \ {x}.

A useful result when dealing with large deviations is the so-called contraction principle,
a continuous-mapping-type theorem for the large-deviation setting.

Theorem 3.4 (Contraction principle for large-deviations [41]) Let X and Y be two com-
plete separable metric spaces and f : X → Y a continuous mapping. Suppose the
sequence {γn} ⊂ P(X ) satisfies a large-deviation principle with good rate function
I : X → [0,∞]. Then the sequence of push-forward measures {f#γn} satisfies a
large-deviation principle on Y with good rate function Ĩ defined as

Ĩ (y) = inf{I (x) : x ∈ X , y = f (x)}, y ∈ Y .

This result can be extended to ‘approximately continuous’ maps (see [41, Section 4.2]).
To prove the main theorems of this paper we will use both the standard contraction principle
above and a version with n-dependent maps.

We will also use the following ‘mean-field’ localization result two times.

Lemma 3.5 (Simple mean-field large-deviations result) Let X be a metric space. For
each n let Pn ∈ P(X ), and for each n and each y ∈ X let Q

y
n ∈ P(X ). Assume that

for each y, Q
y
n satisfies a strong large-deviation principle with good rate function I y . Let

f : X → R be lower semi-continuous.
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Assume that

(1) If I y(y) < ∞, then

lim
δ↓0

lim sup
n→∞

∣∣∣1

n
log Pn(Bδ(y)) − 1

n
log Q

y
n(Bδ(y)) + f (y)

∣∣∣ = 0.

(2) If I y(y) = ∞,

sup
δ>0

sup
n≥1

∣∣∣1

n
log Pn(Bδ(y)) − 1

n
log Q

y
n(Bδ(y)) + f (y)

∣∣∣ =: C < ∞.

Then Pn satisfies a weak large-deviation principle with good rate function x �→ I x(x) +
f (x).

Proof By [41, Th. 4.1.11], the sequence Pn satisfies a weak large-deviation principle
provided that for all y ∈ X ,

lim
δ↓0

lim inf
n→∞

1

n
log Pn(Bδ(y)) = lim

δ↓0
lim sup
n→∞

1

n
log Pn(Bδ(y)), (31)

in which case the common value of the two is the negative of the rate function at y.
If y is such that I y(y) < ∞, then by condition 1, and using the lower semi-continuity of

I y ,

lim
δ↓0

lim inf
n→∞

1

n
log Pn(Bδ(y)) ≥ lim

δ↓0
lim inf
n→∞

1

n
log Q

y
n(Bδ(y)) − f (y)

≥ lim
δ↓0

(
− inf

x∈Bδ(y)
I y(x)

)
− f (y)

= −I y(y) − f (y).

Similarly,

lim
δ↓0

lim sup
n→∞

1

n
log Pn(Bδ(y)) ≤ lim

δ↓0
lim sup
n→∞

1

n
log Q

y
n(Bδ(y)) − f (y)

≤ lim
δ↓0

(
− inf

x∈Bδ(y)

I y(x)
)

− f (y)

= −I y(y) − f (y).

This proves (31) for the case I y(y) < ∞. If I y(y) = ∞, then by condition 2,

lim
δ↓0

lim sup
n→∞

1

n
log Pn(Bδ(y)) ≤ lim

δ↓0
lim sup
n→∞

1

n
log Q

y
n(Bδ(y)) − f (y) + C

≤ lim
δ↓0

(
− inf

x∈Bδ(y)

I y(x)
)

− f (y) + C

= −∞.

This concludes the proof of the lemma.

4 The Particle System Yn and the Transformed Particle System Xn

As mentioned in the introduction, the proofs of the results of this paper are based on a ‘com-
pression’ mapping that is very specific for this system, and which was already illustrated in
Fig. 1.
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4.1 The ‘Compression’ Map

The idea is to consider a collection of rods of length α/n in the one-dimensional domain Ry ,
described by their empirical measure, and map them to a collection of zero-length particles
by ‘collapsing’ them to zero length and moving the rods on the right-hand side up towards
the left. For notational reasons we prefer to define the inverse operation, which is to map
zero-length particles in Rx to particles of length α/n in Ry by ‘expanding’ each zero-length
particle to length α/n and ‘pushing along’ all the particles to the right.

This mapping comes in two forms, one for the discrete case and one for the continuous
case. For convenience we write Pn(E) for the set of empirical measures of n points, i.e.

Pn(E) :=
{

1

n

n∑
i=1

δzi
: zi ∈ E, i = 1, . . . , n

}
. (32)

Definition 4.1 (Expansion maps) (1) The operator An maps empirical measures of zero-
length particles to the corresponding empirical measures of rods by expanding each
particle by α/n:

An : Pn(Rx) → Pn(Ry),
1

n

n∑
i=1

δxi
�→ 1

n

n∑
i=1

δyi
, yi = xi+(i−1)

α

n
, (33)

where we assume that the xi are ordered (xi ≤ xi+1).
(2) The operator A maps ‘particle densities’ to ‘rod densities’ in a similar way: if ρ ∈

P(Rx), then

A : P(Rx) → P(Ry), μ �→ ρ,

where ρ is constructed as follows: let X be the inverse cumulative distribution function
(icdf) of μ, i.e.

X(m) := inf{x ∈ Rx : F(x) > m}, F (x) = μ((−∞, x]), (34)

and set

Y(m) := X(m) + αm, for all m ∈ [0, 1]. (35)

Then ρ ∈ P(Ry) is defined to be the measure whose icdf is Y, i.e. we set ρ to be the
distributional derivative of the corresponding cumulative distribution function G,

ρ := G′, with G(y) := inf
{
m ∈ [0, 1] : Y(m) > y

}
for y ∈ Ry .

Lemma 4.2 (Wasserstein properties of the expansion maps) (1) A and An are isome-
tries for the Wasserstein-2 distance, i.e. W2(Aμ1, Aμ2) = W2(μ1, μ2) and
W2(Anμn,1, Anμn,2) = W2(μn,1, μn,2);

(2) For μ ∈ P(Rx) and μn ∈ Pn(Rx),
∣∣W2(Aμ,Anμn) − W2(μ,μn)

∣∣ ≤ α

n
; (36)

(3) If μn = 1
n

∑n
i=1 δxi

∈ Pn(Rx), then Aμ is equal to

1

n

n∑
i=1

δ
α,n
xi+(i−1)α/n := 1

n

n∑
i=1

n

α
1[xi+(i−1)α/n, xi+iα/n]
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Proof The isometry of A follows from writing the Wasserstein distance in terms of the icdf
(see Eq. 22):

W2(μ1, μ2)
2 =

∫ 1

0
|X1(m) − X2(m)|2 dm =

∫ 1

0
|X1(m) − αm − (X2(m) − αm)|2 dm

=
∫ 1

0
|Y1(m) − Y2(m)|2 dm = W2(Aμ1, Aμ2)

2.

For An the isometry follows from observing that monotone transport maps in fact map x1,i

to x2,i and y1,i to y2,i (i.e. they preserve the order) and therefore

W2(μn,1, μn,2)
2 = 1

n

n∑
i=1

|x1,i − x2,i |2 = 1

n

n∑
i=1

∣∣∣x1,i − i
α

m
−
(
x2,i − i

α

m

)∣∣∣
2

= 1

n

n∑
i=1

|y1,i − y2,i |2 = W2(Anμn,1, Anμn,2)
2.

To estimate the difference W2(Aμ,Anμn) − W2(μ,μn), the same formulation of the
Wasserstein distance in terms of icdf’s becomes

W2(μ,μn) =
[∫ 1

0
|X(m) − x�nm�|2dm

] 1
2

=
[∫ 1

0

∣∣∣Y(m) + αm −
(
y�nm� + �nm�α

n

)∣∣∣
2
dm

] 1
2

≤
[∫ 1

0

∣∣Y(m) − y�nm�
∣∣2 dm

] 1
2

+
[∫ 1

0

∣∣∣αm − �nm�α

n

∣∣∣
2

dm

] 1
2

≤ W2(Aμ,Anμn) + α

n
.

The opposite inequality follows similarly.
Finally, to prove part 3, the fact that A maps 1

n

∑n
i=1 δxi

to 1
n

∑n
i=1 δ

α,n
xi+α(i−1)/n ∈ P(Ry)

follows from remarking that δx1 is mapped by A to the left-most smeared delta function
δ
α,n
x1 ; the second one, δx2 , to δ

α,n
x2+α/n; and so forth.

4.2 Mapping Particle Systems

The compression and decompression maps An and A−1
n create a one-to-one connection

between two stochastic particle systems, which is the basis for the proofs of the two main
theorems. We now make this connection explicit.

First, given a measure μ on Rx , the maps A and An induce corresponding maps from Rx

to Ry , made explicit by the following Lemma.

Lemma 4.3 Let μ ∈ P(Rx). Define the map

Tμ : Rx → Ry, x �→ x + α μ
(
(−∞, x)

)
. (37)

Then

(1) If μ = 1
n

∑n
i=1 δxi

∈ Pn(Rx), and xi < xi+1 for all i, then Anμ = (Tμ)#μ.
(2) If X is the icdf of an absolutely continuous μ, then

TμX(m) = X(m) + αm. (38)
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(3) If μ is Lebesgue-absolutely-continuous, and μ̃ ∈ P(Rx), then Aμ = (Tμ)#μ and

(t
Aμ̃
Aμ − id)Aμ = (Tμ)#

[
(t

μ̃
μ − id)μ

]
.

Proof For μ = 1
n

∑n
i=1 δxi

, with xi < xi+1, the claim Anμ = (Tμ)#μ follows from
observing that Tμ(xi) = xi + α(i − 1)/n, and therefore

(Tμ)#μ = 1

n

n∑
i=1

δTμxi
= 1

n

n∑
i=1

δxi+α(i−1)/n = Anμ.

Next, assume that μ ∈ P(Rx) is Lebesgue-absolutely-continuous; then the cumulative
distribution function F(x) := μ((−∞, x]) is continuous, and consequently the inverse
cumulative distribution function X satisfies F(X(m)) = m for all m (Lemma 2.3). The
expression (38) then follows from remarking that

TμX(m)
(37)= X(m) + αμ

(
(−∞, X(m))

) = X(m) + αμ
(
(−∞, X(m)]) = X(m) + αm.

Turning to part 3, we have for any ϕ ∈ Cb(Ry), writing Y for the icdf of Aμ as in
Definition 4.1,
∫

Ry

ϕ(y)(Aμ)(dy)
(20)=

∫ 1

0
ϕ(Y(m)) dm

(35)=
∫ 1

0
ϕ(X(m) + αm) dm

=
∫ 1

0
ϕ(X(m) + αF(X(m))) dm

(20)=
∫

Rx

ϕ(x + αF(x)) μ(dx)

μ a.c.=
∫

Rx

ϕ
(
x + αμ

(
(−∞, x)

))
μ(dx)

=
∫

Ry

ϕ(y) (Tμ)#μ(dy).

This proves Aμ = (Tμ)#μ for absolutely-continuous μ.

Finally, to prove that (tAμ̃
Aμ−id)Aμ = (Tμ)#

[
(t

μ̃
μ−id)μ

]
, we write similarly, using Eqs. 20

and 23,
∫

Ry

ϕ(y)(t
Aμ̃
Aμ (y) − y) (Aμ)(dy) =

∫ 1

0
ϕ(Y(m))(Ỹ(m) − Y(m)) dm

=
∫ 1

0
ϕ(X(m) + αm)(X̃(m) − X(m)) dm

=
∫

Rx

ϕ(x + αμ((−∞, x)))(t μ̃μ (x) − x) μ(dx)

=
∫

Rx

ϕ(Tμx)(tμ̃μ (x) − x) μ(dx).

4.3 The Particle Systems of this Paper

We now state the assumptions on V and W and define precisely the systems of particles that
we consider in this paper.
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Assumption 4.4 (Assumptions on V and W .) Throughout the paper we make the following
assumptions.

(V ) The function V : R → R is C2(R), globally Lipschitz, V ′ is C1
b (R) and there exist

constants c1 > 0, c2 > 0 such that

V (y) ≥ c1|y| − c2 for all y ∈ R. (39)

(W ) The function W : R → R is C2(R), bounded and even, and W ′ is C1
b (R).

We will use two consequences of these assumptions:

sup
μ∈P(Rx )

sup
x∈R

|V (x) − V (Tμx)| < ∞; (40)

∃C > 0 : inf
μ∈P(Rx )

V (Tμx) ≥ C(|x| − 1) (41)

The first set of particles Yn
i was already informally defined in the introduction; the second

set Xn
i is a compressed version of Yn

i . We will often use the notation ηn for the empirical
measure of a set of particles,

ηn : Rn �→ P(R), ηn(x) := 1

n

n∑
i=1

δxi
. (42)

Definition 4.5 (1) For each n ∈ N, the system of particles Yn = (Y n
i )i=1,...,n ⊂

C([0,∞);�n) is defined by the generator

LY = 1

2
� + b · ∇, with bi (y) = −V ′(yi) − 1

n

n∑
j=1

W ′(yi − yj ),

with domain

D(LY ) =
{
f ∈ C2

b (�n) : ∂f

∂n
= 0 on ∂�n

}
.

(2) For each n ∈ N, the system of particles Xn = (Xn
i )i=1,...,n ⊂ C([0,∞);Rn

x) is
defined by the generator

LX = 1

2
� + b · ∇, with domain D(LX) = C2

b (Rn
x),

where the drift b is now given by

bi (x) := b(xi, ηn(x)) := −V ′(Tηn(x)xi) −
∫

Rx

W ′(Tηn(x)xi − Tηn(x)x
′) ηn(x)(dx′).

(43)

Lemma 4.6 For these two particle systems, weak solutions exist and are unique, and at each
t > 0 the laws of Xn(t) and Yn(t) are absolutely continuous with respect to the Lebesgue
measure.

This result is more-or-less standard, and the proof is given in the Appendix. In fact,
throughout this paper, unless explicitly stated otherwise, whenever we speak of existence or
uniqueness of a solution of a stochastic differential equation, we are referring to the exis-
tence of weak solutions and uniqueness in law [65, Section 5.3]. Henceforth, unless required
for the argument at hand, we do not go into details (such as corresponding filtrations, or
similar aspects) about the weak solutions under study.

The following lemma makes the relationship between the two particle systems precise.
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Lemma 4.7 (Equality of distributions) Let ρn(t) = 1
n

∑n
i=1 δYn

i (t) and μn(t) =
1
n

∑n
i=1 δXn

i (t) be the empirical measures of the particle systems Yn and Xn. The stochastic

processes ρn and Anμn have the same distribution in C
([0,∞);P(Ry)

)
.

Proof The idea of this property goes back to Rost [89], who used it for the particle sys-
tem Yn without potentials V and W . Because of the additional complexity of the two
potentials V and W we give an independent proof.

Since every function of ηn(x) maps one-to-one to a symmetric function of x (that is,
a function f : R

n → R such that f (x1, . . . , xn) = f (xσ1 , . . . , xσn) for all permuta-
tions σ ), the martingale problem for the random measure-valued process ρn = ηn(Y

n) can
be reformulated as the property that

Mt := f (Y n(t)) −
∫ t

0
(LY f )(Y n(s)) ds is a martingale for all symmetric f ∈ D(LY ).

(44)
Given the process Xn, consider the transformed process Ŷ n that is given by the expression
(at each time t)

Ŷ n := (
Tηn(Xn)X

n
1 , Tηn(Xn)X

n
2 , . . . , Tηn(Xn)X

n
n

)
.

Whenever all Xn
i are distinct, we have ηn(Ŷ

n) = Anηn(X
n) by part 1 of Lemma 4.3. Since

the Xn are almost surely distinct at any time, we have proved the lemma if we show that Ŷ n

satisfies (44).
Note that for any x ∈ R

n without collisions, i.e. with xi �= xj for i �= j ,
[
∂xk

(f ◦ Tηn)
]
(x) = ∂xk

[
f
(
Tηn(x)x1, . . . , Tηn(x)xn

)]

= ∂xk

[
f
(
x1 + α

n
#{� : x� < x1}, . . . , xn + α

n
#{� : x� < xn}

)]

(∗)= (∂kf )
(
x1 + α

n
#{� : x� < x1}, . . . , xn + α

n
#{� : x� < xn}

)

= [
(∂kf ) ◦ Tηn

]
(x).

The equality (∗) holds because each of the terms #{� : x� < xj } is constant away from the
set of collisions. With this expression we find that e.g. for each k,

−V ′(Tηn(x)xk)∂xk

[
f
(
Tηn(x)x

)] = −V ′(y)(∂kf )(y)

∣∣∣
yj=Tηn(x)xj ∀j

and by collecting similar arguments we conclude that

LX(f ◦ Tηn)(x) = [
(LY f ) ◦ Tηn

]
(x) at any non-collision point x ∈ R

n. (45)

Also note that the function f ◦ Tηn is an element of D(LX). This follows since at non-
collision points f ◦ Tηn is as smooth as f (by the same constancy argument as above); at
the collision set, f ◦ Tηn connects with regularity C2 by the C2–regularity of f in �n, the
boundary condition ∂nf = 0, and the symmetry of f .

To conclude the proof, we show that Ŷ n satisfies (44) by rewriting

f
(
Ŷ n(t)

)−
∫ t

0
(LY f )

(
Ŷ n(s)

)
ds = (

f ◦ Tηn

)
(Xn(t)) −

∫ t

0
(LY f ) ◦ Tηn(X

n(s)) ds

(∗∗)= (
f ◦ Tηn

)
(Xn(t)) −

∫ t

0

[
LX(f ◦ Tηn)

]
(Xn(s)) ds,
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and this expression is a martingale by the properties of Xn. Note that although the iden-
tity (45) holds only for non-collision points x, the process Xn spends zero time on the set
of remaining points. Therefore the identity (∗∗) above holds almost surely.

Lemma 4.8 (Transformed version of Pinv
n and Zn) The particle system Xn has invariant

measure Pn ∈ P(Rn
x), given by

Pn(dx) := 1

Zn

exp

[
−2

n∑
i=1

V (Tηn(x)xi) − 1

n

n∑
i,j=1

W(Tηn(x)xi − Tηn(x)xj )

]
dx.

The normalization constant Zn is the same as in Eq. 5 and can be written as

Zn =
∫

Rn

exp

[
−2

n∑
i=1

V (Tηn(x)xi) − 1

n

n∑
i,j=1

W(Tηn(x)xi − Tηn(x)xj )

]
dx. (46)

This property follows from arguments very similar to those of Lemma 4.7, and we omit
the proof.

5 The Functionals of this Paper

With the maps A and Tρ defined in the previous section, we can also define the various

functionals that we use in this paper. The functional F̂ as defined in the introduction is one
of these; in this section we review this definition and place it in a larger context.

We define in total six functionals, three functionals F̂ , ÊntV , and ÊW , on the set of
“expanded” measures P(Ry), and at the same time three transformed versions F , EntV ,

and EW on the set of “compressed” measures P(Rx). We split the definition of F̂ of the
introduction up into an entropic part ÊntV and an interaction-energy part ÊW :

F̂ := ÊntV + ÊW + CF , F̂ , Ênt, ÊW : P(Ry) → R ∪ {∞},

ÊntV (ρ) :=
⎧⎨
⎩

∫

R

ρ

[
1

2
log

ρ

1 − αρ
+ V

]
+ CEnt if ρ is Lebesgue-a.c. and ρ(y) < 1/α a.e.,

+∞ otherwise

ÊW (ρ) := 1

2

∫

Ry

∫

Ry

W(y − y′) ρ(dy)ρ(dy′), for ρ ∈ P(Ry). (47)

The constants CF and CEnt are such that inf ÊntV = inf F̂ = 0. The integral in ÊW is well-
defined by the boundedness of W , and we show in Lemma 5.1 below that the integral in
ÊntV is well-defined in (−∞,+∞].

We then define the corresponding functionals on “compressed” space P(Rx) through the
isometry A:

F , EntV , EW : P(Rx) → R ∪ {∞},
F := F̂ ◦ A, EntV := ÊntV ◦ A, and EW := ÊW ◦ A.

We also need the relative entropy: for two measures μ and ν on the same space,

H(μ|ν) :=
{∫

f log f dν if μ � ν, μ = f ν,

+∞ otherwise.
(48)
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Lemma 5.1 (Properties of the functionals) (1) (Alternative formula for F .) We have

F(μ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Rx

[1

2
log μ(x) + V (Tμx)

]
μ(dx)

+1

2

∫

Rx

∫

Rx

W(Tμx − Tμx′) μ(dx)μ(dx′) + CF if μ is Lebesgue-a.c.,

+∞ otherwise.

(49)

(2) (Alternative formula for EntV ) For given ν ∈ P(Rx), define the measureQν ∈ P(Rx),

Q
ν(dx) := 1

ZQ,ν
exp

[−2V (Tνx)
]
dx, with ZQ,ν :=

∫

Rx

exp
[−2V (Tνx)

]
dx.

(50)
We then have

EntV (μ) := 1

2
H(μ|Qμ) + 1

2
γ (μ), for μ ∈ P(Rx), (51)

γ (μ) := Cγ − logZQ,μ, (52)

where Cγ is determined by the property inf
μ∈P(Rx )

H(μ|Qμ) + γ (μ) = 0.

(3) The functionals F and F̂ are lower semicontinuous and λ-convex for some λ ∈ R.
(4) (Subdifferential of F .) If μ is Lebesgue-a.c. and

∫
Rx

|∂xμ|2/μ < ∞, then

∂xμ

2μ
− b(·, μ) is the element of minimal norm of ∂F(μ), (53)

where b was already given in Eq. 43:

b(x, μ) := −V ′(Tμx) −
∫

Rx

W ′(Tμx − Tμx′) μ(dx′).

1. (Subdifferential of F̂ .) If |∂F̂(ρ)| < ∞, then

∂yρ

2ρ(1 − αρ)2
+ V ′ + W ′ ∗ ρ

is the element of minimal norm of ∂F̂(ρ).

Remark 5.2 (Mean-field structure of the compressed rate functions) The invariant-measure
rate function F̂ and the dynamic rate function Î that we introduce in Eq. 69 below both have
a particular form. This is best observed in Eq. 51 and in Eq. 56 below: the argument of the
functional appears twice, first as the first argument in the relative entropy, and secondly as
a parameter in the reference measure. This is a common structure in mean-field interacting
particle systems (see e.g. [70] or [34, Ch. X]). It reflects the fact that once the system
has been ‘compressed’ (i.e., transformed to Xn) the interaction between the particles has a
‘nearly-weakly-continuous’ dependence on the empirical measure. The estimate (64) below
illustrates this: while 1

n
log dPn/dQ

ν
n is not completely continuous in the empirical measure

(the right-hand side does not vanish as δ → 0 for finite n), the discontinuity does vanish in
the limit n → ∞.

This structure is reflected in the fact that the entropic part of the free energy F is of the
Gibbs-Boltzmann type

∫
μ log μ. By contrast, the expanded system has a different entropic

term
∫

ρ log(ρ/(1 − αρ), which reflects the fact that in the expanded system the particles
have a strong interaction with each other.
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Proof We first show that the integrals in Eqs. 49 and 47 are well defined; since μ �→∫
R

μ log μ is unbounded from below on the space of probability measures, this is not imme-
diate. For the first integral in Eq. 49, we write μV (dx) := e−2V (Tμx)dx, and use the
inequality s− ≤ (s + t)− + |t | for the negative part s− := max{−s, 0} to estimate
∫

Rx

[1

2
log μ(x) + V (Tμx)

]
− μ(dx) = 1

2

∫

Rx

[ μ

μV

log
μ

μV

]
−μV

≤ 1

2

∫

Rx

[ μ

μV

log
μ

μV

− μ

μV

+ 1
]
−μV + 1

2

∫

Rx

∣∣∣∣
μ

μV

− 1

∣∣∣∣μV

= 1

2

∫

Rx

[
μ − μV ] < ∞.

It follows that the first integral in Eq. 49 is well defined in (−∞,∞], and a similar
calculation shows the same for the first integral in Eq. 47.

We next prove the formula (49) for the functional F . Since F(μ) is defined as
ÊntV (Aμ) + ÊW (Aμ) + CF , finiteness of F(μ) implies that μ is absolutely continuous.
The second integral in Eq. 49 then follows by Lemma 4.3:∫

Ry

∫

Ry

W(y − y′)(A−1μ)(dy)(A−1μ)(dy′) =
∫

Rx

∫

Rx

W(Tμx − Tμx′)μ(dx)μ(dx′).

We turn to the first integral in Eq. 49. Again let F(μ) be finite, which implies that there
exists ρ such that ρ = Aμ and ÊntV (ρ) = EntV (μ) < ∞. This implies that ρ is Lebesgue-
absolutely-continuous and satisfies ρ(y) < 1/α for almost all y. By Lemma 2.3 the icdf Y
of ρ is monotonic, and its derivative Y′(m) exists at almost all m ∈ (0, 1) and is equal to
1/ρ(Y(m)). We then calculate

ÊntV (ρ) =
∫

Ry

ρ(y)

[
1

2
log

ρ(y)

1 − αρ(y)
+ V (y)

]
dy

(20)=
∫ 1

0

[
1

2
log

ρ(Y(m))

1 − αρ(Y(m))
+ V (Y(m))

]
dm

=
∫ 1

0

[
1

2
log

( 1

Y′(m) − α

)
+ V (Y(m))

]
dm.

Since this integral is assumed to be finite, Y′(m) > α for Lebesgue-a.e. m, and therefore
X′(m) = Y′(m) − α > 0 for almost all m. Inserting this into the expression above yields

ÊntV (ρ) =
∫ 1

0

[
1

2
log

( 1

X′(m)

)
+ V (X(m) + αm)

]
dm

(38)=
∫ 1

0

[
1

2
log μ(X(m)) + V (TμX(m))

]
dm

(20)=
∫

Rx

μ(x)

[
1

2
log μ(x) + V (Tμx)

]
dx.

Writing

ẼntV (μ) :=
⎧⎨
⎩

∫

Rx

μ(x)

[
1

2
log μ(x) + V (Tμx)

]
dy if μ is Lebesgue-a.c. ,

∞ otherwise,

we therefore have proved

EntV (μ) < ∞ =⇒ ẼntV (μ) < ∞ and ÊntV (μ) = ẼntV (μ).

By reversing the argument we similarly show that

ẼntV (μ) < ∞ =⇒ EntV (μ) < ∞ and ÊntV (μ) = ẼntV (μ), (54)

which concludes the proof of Eq. 49.
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Turning to the characterization (51), assume that EntV (μ) < ∞, which implies by part 1
that μ is absolutely continuous and x �→ 1

2 log μ(x) + V (Tμx) = 1
2 log

[
μ(x)/Qμ(x)

] −
1
2 logZQ,μ is an element of L1(μ). Therefore

1

2
H(μ|Qμ) = 1

2

∫

Rx

μ(dx) log
μ(x)

Qμ(x)
=
∫

Rx

μ(dx)

[
1

2
log μ(x)+V (Tμx)

]
−1

2
logZQ,μ,

which proves the formula (51) for the case EntV (μ) < ∞. On the other hand, if H(μ|Qμ) <

∞, then we can reverse the argument above and obtain EntV (μ) < ∞ and equality. This
proves part 2.

To prove part 3, note that the lower semicontinuity in P2(R) of ÊntV is a consequence
of its convexity, and the lower semicontinuity of ÊW follows from the boundedness and
continuity of W . The isometries A and A−1 then transfer the same properties to EntV and
EW . The λ-convexity of F̂ also is a standard result for functionals of this type; see e.g. [28,
Sec. 5].

We next turn to the calculation of the element of minimal norm in the subdifferential
ofF , evaluated at a μ ∈ P(Rx) with the properties that μ is Lebesgue absolutely continuous
and ∂xμ = wμ with w ∈ L2(μ).

Take φ ∈ C∞
c (R) and set rε(x) := x + εφ(x); note that for small ε, rε is strictly

increasing. Set με := (rε)#μ, and note that με also is absolutely continuous. From [3,
Theorems 10.4.4 and 10.4.6] (or an explicit calculation) we deduce that

d

dε

1

2

∫

R

με(x) log με(x) dx

∣∣∣
ε=0

= −1

2

∫

R

μ∂xφ. (55)

Setting

EV (ν) :=
∫

R

V (Tνx) ν(dx),

we calculate

EV ((rε)#μ) =
∫

R

V (T(rε)#μ(x)) ((rε)#μ)(dx) =
∫

R

V
(
T(rε)#μ

(
rε(x)

))
μ(dx)

=
∫

R

V
(
rε(x) + α (rε)#μ

(
(−∞, rε(x)

))
μ(dx)

=
∫

R

V
(
rε(x) + αμ

(
(−∞, x)

))
μ(dx).

Therefore
d

dε
EV (με)

∣∣∣
ε=0

=
∫

R

V ′(x + αμ
([0, x)

))
φ(x)μ(dx) =

∫

R

V ′(Tμx) φ(x) μ(dx).

Combining these expressions with a similar one for EW , and using
∫
Rx

|∂xμ|2/μ < ∞, we
find

d

dε
F(με)

∣∣∣
ε=0

= −
∫

R

[1

2
∂xφ(x) + b(x, μ)φ(x)

]
μ(dx)

=
∫

R

[∂xμ(x)

2μ(x)
− b(x, μ)

]
φ(x)μ(dx).

By an argument as in the proof of [3, Th. 10.4.13] it follows that ∂xμ/2μ − b(·, μ) is the
element of minimal norm in the subdifferential ∂F(μ).

Finally, the proof of part 5 follows along very similar lines as the previous part, and we
omit it.
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6 Pathwise Large Deviations for Xn with i.i.d. Initial Data

The aim of this section is to prove the following large-deviations principle for the com-
pressed particle system Xn. In this theorem we start the evolution with i.i.d. initial data,
which is different from the situation of Theorem 1.4; we use the name Zn in order to
distinguish this case from the case we study in the proof of Theorem 1.4.

Theorem 6.1 Let ξ ∈ P(R), and for each n ∈ N let Zn be the particle system defined
in Definition 4.5(4.5), with initial data Zn(0) drawn from ξ⊗n.

The random variable t �→ ηn(Z
n(t)) satisfies a large-deviation principle on

C([0, T ];P(Rx)) with good rate function

Iξ (μ) := inf
{
H(P |WP

ξ ) : Pt = μt for all t andH(P |Wξ ) < ∞
}

. (56)

HereWξ ∈ P
(
C([0, T ];R)

)
is the law of a Brownian particle with initial position drawn

from ξ , and for any P ∈ P(C([0, T ];R)), the measure WP
ξ ∈ P

(
C([0, T ];R)

)
is the law

of the process ZP satisfying the SDE in R,

dZP (t) = b
(
ZP (t), Pt

)
dt + dBt , ZP (0) ∼ ξ . (57)

The notation Pt ∈ P(R) represents the time-slice marginal of the measure P at time t .

Proof The assertion is a direct translation of the following theorem from [57]:

Theorem 6.2 ([57, Prop. 4.16 and Rem. 4.17]) Let � : R
4 → R and ϕ1 : R

2 → R

be bounded and globally Lipschitz continuous, and let ϕ2 ∈ Lp(R). Set ϕ(x1, x2) :=
ϕ1(x1, x2) + ϕ2(x1 − x2). Let ξ ∈ P(R).

Let Zn = (Zn
1 , . . . , Zn

n) solve the system of interacting SDEs in R
n

dZn
i (t)= 1

n

n∑
j=1

�

⎛
⎜⎜⎝Zn

i (t), Zn
j (t),

1

n

n∑
�=1
� �=i

ϕ(Zn
i (t), Zn

� (t)),
1

n

n∑
�=1
��=j

ϕ(Zn
j (t), Zn

� (t))

⎞
⎟⎟⎠ dt+dBi,

Zn
i (0) ∼ ξ i.i.d., (58)

where Bi are independent standard Brownian motions. Let P̂ n be the corresponding
empirical process

P̂ n := 1

n

n∑
i=1

δZn
i

∈ P(C([0, T ];R)).

Then P̂ n satisfies a large-deviation principle on P(C([0, T ];R)), with good rate function

J (P ) :=
{
H(P |WP

ξ ) ifH(P |Wξ ) < ∞,

+∞ otherwise.
(59)
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To prove Theorem 6.1, we apply Theorem 6.2 to the particle system Zn of Theorem 6.1.
Let H := χ(0,∞) be the lower semicontinuous Heaviside function; define ϕ1 and ϕ2 by

ϕ1(x1, x2) := H(x1−x2)−ϕ2(x1−x2), ϕ2(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 s ≤ 0,

1 0 < s ≤ 1,

smooth interpolation 1 ≤ s ≤ 2,

0 s ≥ 2,

.

We also set

�(x, y, s, t) := −V ′(x + αs) − W ′(x − y + α(s − t)).

Then the functions ϕ(x1, x2) := ϕ1(x1, x2) + ϕ2(x1 − x2) = H(x1 − x2) and � satisfy the
conditions of Theorem 6.2. For these choices of ϕ and �, we have

�

(
Zn

i , Zn
j ,

1

n

n∑
�=1
� �=i

ϕ(Zn
i , Zn

� ),
1

n

n∑
�=1
� �=j

ϕ(Zn
j , Zn

� )

)

= �

(
Zn

i , Zn
j ,

1

n

n∑
�=1
��=i

H(Zn
i − Zn

� ),
1

n

n∑
�=1
� �=j

H(Zn
j − Zn

� )

)

= �

(
Zn

i , Zn
j ,

1

n
#{Zn

� < Zn
i ),

1

n
#{Zn

� < Zn
j )

)

= −V ′(Zn
i + α

n
#{Zn

� < Zn
i }
)

− W ′(Zn
i − Zn

j + α

n
#{Zn

� < Zn
i } − α

n
#{Zn

� < Zn
j }
)
,

which equals b in Eq. 43. Therefore the particle system Zi is a weak solution of Eq. 58.
Theorem 6.2 then implies that the empirical process P̂ n = n−1 ∑n

i=1 δZn
i

satisfies a large-
deviation principle with rate function Eq. 59.

Since the mapping T : P(C([0, T ];R)) → C([0, T ];P(R)) given by

〈(T P)t , φ〉 :=
∫

C([0,T ];R)

φ(x(t)) P (dx), for P ∈ P(C([0, T ];R)) and φ ∈ Cb(R),

is continuous, the contraction principle (e.g. [41, Sec. 4.2.1]) implies that μn = T P̂ n

satisfies a large-deviation principle on C([0, T ];P(Rx)) with good rate function (56).

7 Preliminary Estimates for the Pathwise Large Deviations

In the previous section we established a large-deviation principle for the particle system Zn,
which starts at initial positions Zn(0) drawn i.i.d. from some distribution ν ∈ P(Rx).
The particle system Zn is situated in the compressed (‘X’) setup. After mapping to the
expanded setup, the evolutions t �→ Zn(t) are solutions of the ‘correct’ SDE (2) (or
Definition 4.5(4.5)). However, the expansion causes the initial data to be distributed in a
convoluted and unnatural way.

In this section and the following two ones we therefore adapt the large-deviation principle
for Zn of Theorem 6.1 to the more natural initial distribution of Theorem 1.4. In this section
we establish a number of estimates.
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In the proof of Theorem 8.1 below of the large-deviation principle for Yn, the initial data
Yn(0) will be distributed according to a version of the invariant measure P

inv
n with W = 0:

P
inv,W=0
n (dy) := 1

ZW=0
n

exp

(
−2

n∑
i=1

V (yi)

)
L n

∣∣∣
�n

(dy).

The compressed version of this measure is (see Lemma 4.8)

P̃n(dx) := 1

ZW=0
n

exp

(
−2

n∑
i=1

V (Tηn(x)xi)

)
L n(dx). (60)

On the other hand, in the auxiliary particle system Zn the initial positions Zn
i (0) will

be i.i.d. distributed with common law ξ := Q
ν ; recall from Lemma 5.1 that for given

ν ∈ P(Rx) the single-particle measure Q
ν ∈ P(Rx) is defined as

Q
ν(dx) := 1

ZQ,ν
exp

[−2V (Tνx)
]
dx, where ZQ,ν :=

∫

Rx

exp
[−2V (Tνx)

]
dx.

Therefore the vector Zn(0) has as law the n-particle tensor product Qν
n ∈ P(Rn

x),

Q
ν
n(dx1 · · · dxn) := (Qν)⊗n = 1

(ZQ,ν)n
exp

[
−2

n∑
i=1

V (Tνxi)

]
dx1 · · · dxn. (61)

The following lemma is the main result of this section, and establishes some estimates
that connect these two particle systems; recall that the metric dBL on P(R), appearing in
part 3 of the lemma is defined in duality with bounded Lipschitz functions (see Section 2.2).

Lemma 7.1 (Basic estimates) For ν ∈ P(Rx), let Qν
n ∈ P(Rn

x) and P̃n be defined as
above in Eqs. 60 and 61. Recall that the function γ and the constant Cγ were defined in
Lemma 5.1.

(1) We have

rn :=
∣∣∣∣
1

n
logZW=0

n − Cγ

∣∣∣∣ satisfies rn
n→∞−→ 0. (62)

(2) For any ν ∈ P(R),

sup
n≥1

∥∥∥∥∥
1

n
log

dP̃n

dQν
n

∥∥∥∥∥
L∞(Rn

x)

< ∞. (63)

(3) There exists a function R : [0,∞) × P(Rx) → [0,∞) such that for any δ > 0 and
ν ∈ P(Rx), ∥∥∥∥∥

1

n
log

dP̃n

dQν
n

+ γ (ν)

∥∥∥∥∥
L∞(Bn,δ(ν))

≤ rn + R(δ, ν). (64)

Here

Bn,δ(ν) :=
{
x ∈ R

n : dBL(ηn(x), ν) < δ
}
,

and for all ν ∈ P(Rx),R(·, ν) : [0,∞) → [0,∞) is non-decreasing. If ν is Lebesgue-
absolutely-continuous, then limδ↓0 R(δ, ν) = 0.
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Proof We first show that rn is bounded as n → ∞ for any ν. Fix ν ∈ P(Rx). By the
estimate (40) there exists C > 0 such that

1

n
log

(
ZW=0

n

) = 1

n
log

∫

Rn

exp

[
−2

n∑
i=1

V (Tηn(x)xi)

]
dx

≤ 1

n
log

∫

Rn

exp

[
−2

n∑
i=1

V (xi)

]
dx + 2C ≤ logZQ,ν + 4C.

In combination with the analogous estimate from the other side,

1

n
log

(
ZW=0

n

) ≥ logZQ,ν − 4C,

this proves that rn is bounded. It also follows that there exists a subsequence (nk)k and a
constant c ∈ R such that

r̃nk
:=

∣∣∣∣
1

nk

log
(
ZW=0

nk

)− c

∣∣∣∣
k→∞−→ 0. (65)

At the end of this proof we will show that c = Cγ , and therefore rn = r̃n, and that the whole
sequence converges.

Part 2 will follow from part 3, since we are able to take the function R to be bounded. To
show part 3, take ν ∈ P(R) and estimate for x ∈ R

n

∣∣∣∣∣
1

nk

log
dP̃nk

dQν
nk

(x) + c − logZQ,ν

∣∣∣∣∣ =
∣∣∣∣∣−

1

nk

logZW=0
nk

+ c + 2

nk

nk∑
i=1

(
V (Tνxi) − V (Tηnk

(x)xi )
)∣∣∣∣∣

≤ r̃nk
+ 2

nk

Lip(V )

nk∑
i=1

|Tνxi − Tηnk
(x)xi |

≤ r̃nk
+ 2 Lip(V ) sup

ξ∈R

∣∣ν((−∞, ξ)) − (ηnk
(x))((−∞, ξ))

∣∣. (66)

If ν is not absolutely continuous, then we simply take R(δ, ν) := 2 Lip(V ), by which we
satisfy the assertion of the Lemma. If ν is absolutely continuous, then by Lemma 7.2 below
we can further estimate the right-hand side above by

≤ r̃nk
+ 2 Lip(V ) ων(dBL(ν, ηnk

(x))).

Setting R(δ, ν) := 2 Lip(V ) ων(δ), we now have proved the slightly modified version
of Eq. 64, ∥∥∥∥∥

1

nk

log
dP̃nk

dQν
nk

+ c − logZQ,ν

∥∥∥∥∥
L∞(Bn,δ(ν))

≤ r̃nk
+ R(δ, ν). (67)

We now come back to the property c = Cγ , which we prove using Lemma 3.5. We set
X := P(Rx) with the bounded-Lipschitz metric and Pk := (ηnk

)#P̃nk
. For ν ∈ P(Rx) we

set Qν
k := (ηnk

)#Q
ν
nk

; by Sanov’s theorem Qν
k satisfies a (strong) large-deviation principle

with good rate function μ �→ H(μ|Qν).
From Eq. 67 we deduce that for any ν ∈ P(Rx), writing Bδ(μ) for the dBL-ball in P(X ),
∣∣∣∣

1

nk

log Pk(Bδ(ν)) − 1

nk

log Qν
k(Bδ(ν)) + [

γ (ν) − Cγ + c
]∣∣∣∣ =

=
∣∣∣∣

1

nk

log P̃nk
(Bnk,δ(ν)) − 1

nk

logQν
nk

(Bnk,δ(ν)) + [
γ (ν) − Cγ + c

]∣∣∣∣ ≤ r̃nk
+ R(δ, ν). (68)

Note that if ν is such that H(ν|Qν) < ∞, then ν is Lebesgue absolutely continuous, and the
right-hand side of Eq. 68 vanishes as k → ∞ and then δ → 0; and if H(ν|Qν) = ∞, then
the right-hand side of Eq. 68 is bounded. Therefore the two conditions of Lemma 3.5 are
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satisfied, and it follows that Pk satisfies a weak large-deviation principle with rate function
ν �→ H(ν|Qν) + γ (ν) − Cγ + c. Since the infimum of this is zero, we find c = Cγ .

The lemma below gives a quantitative version of a well-known result attributed to Polyā
(see e.g. [4, Th. 9.1.4]).

Lemma 7.2 (Quantitative Polyā Lemma) Let ν ∈ P(R) be Lebesgue-absolutely continu-
ous. There exists a non-decreasing function ων : [0,∞) → [0,∞) with lims↓0 ων(s) = 0
such that

∀ν ∈ P(R) : sup
x∈R

|ν((−∞, x)
)− ν

(
(−∞, x)

)| ≤ ων

(
dBL(ν, ν)

)
,

where dBL is again the dual bounded-Lipschitz metric.

Proof Write F(x) := ν
(
(−∞, x)

)
and F(x) := ν

(
(−∞, x)

)
. Since F is bounded and non-

decreasing, it is uniformly continuous on R; we write α for the modulus of continuity of F ,
and we assume without loss of generality that α is non-decreasing.

Fix x0 and set ε := F(x0) − F(x0); for definiteness we assume that ε > 0. Since F is
non-decreasing and F has modulus of continuity α, we estimate for x ≥ x0 that

F(x) − F(x) ≥ F(x0) − (F (x0) + α(x − x0)) = ε − α(x − x0).

Let δε := sup{0 < δ ≤ 1 : α(δ) ≤ ε}, and define ϕε : R → R by

ϕε(x) :=

⎧⎪⎨
⎪⎩

0 x ≤ x0

x − x0 x0 ≤ x ≤ x0 + δε

δε x0 + δε ≤ x.

We then calculate

−
∫

R

ϕε(x)(ν − ν)(dx) =
∫

R

ϕ′
ε(x)(F (x) − F(x)) dx =

∫ x0+δε

x0

(F (x) − F(x)) dx

≥
∫ δε

0
(ε − α(y)) dy =: α̂(ε),

from which we deduce that

dBL(ν, ν) = sup
ϕ∈BL(R)

‖ϕ‖−1
BL

∫

R

ϕ(ν − ν) ≥ α̂(ε)

δε + 1
≥ 1

2
α̂(ε).

Taking the supremum over x0 ∈ R and inverting the relationship above we find

‖F − F‖L∞(R) ≤ ων(dBL(ν, ν)) for ων(d) := sup{ε : α̂(ε) ≤ 2d}.
Since α̂(ε) is strictly positive for ε > 0, limd↓0 ων(d) = 0, implying that ων is a bona fides
modulus of continuity.

8 Pathwise Large Deviations for Yn with Special Initial Data

In this section we prove Theorem 8.1 below, which is a slightly weaker version of The-
orem 1.4. The difference lies in the initial data Yn(0), which are not distributed by the
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measure P
inv,f
n as in Theorem 1.4, but according to the “(W = 0)–version” of the invariant

measure P
inv
n that we introduced in the previous section:

P
inv,W=0
n := 1

ZW=0
n

exp

(
−2

n∑
i=1

V (yi)

)
L n

∣∣∣
�n

.

Theorem 8.1 Assume that V, W satisfy Assumption 4.4.
For each n, let the particle system t �→ Yn(t) be given by Definition 4.5(4.5), with initial

positions Yn(0) drawn from the W = 0 invariant measure Pinv,W=0
n .

The random evolutions t �→ ρn(t) = ηn(Y
n(t)) then satisfy a large-deviation principle

in C
([0, T ];P(R)

)
with good rate function Î . If in addition ρ(0) ∈ P2(R) and ρ satisfies

F̂(ρ(0)) + Î (ρ) < ∞, then ρ ∈ AC2([0, T ];P2(R)) and the functional Î (ρ) can be
characterized as

Î (ρ) := 2 ÊntV (ρ(0)) + F̂(ρ(T )) − F̂(ρ(0)) + 1

2

∫ T

0
|ρ̇|2(t) dt + 1

2

∫ T

0
|∂F̂ |2(ρ(t)) dt .

(69)

Note that although the initial data Yn(0) are drawn from P
inv,W=0
n , the processes Yn

evolve under the dynamics that includes W .

8.1 First Part of the Proof of Theorem 8.1

As in the statement of the theorem, consider for each n initial data Yn(0) drawn from
P

inv,W=0
n . We transform these positions to initial data for the Xn-process, through

ηn(X
n(0)) = A−1

n ηn(Y
n(0)). (70)

This identity only fixes the positions Xn
i (0) up to permutation of i; this arbitrariness has no

impact, however, since all our results only depend on ηn(X
n), which is invariant under such

permutations.
By Lemma 4.8 the transformed initial data Xn(0) have law

Pn(dx) := 1

ZW=0
n

exp

[
−2

n∑
i=1

V (Tηn(x)xi)

]
dx.

Let t �→ Xn(t) solve the system of Definition 4.5(4.5) with initial data Xn(0).
The following lemma uses the result of Section 6 to give a large-deviation principle for

this particle system Xn.

Lemma 8.2 Define the random time-dependent measures μn ∈ C([0, T ];P(Rx)) by
μn(t) = ηn(X

n(t)). The sequence μn satisfies a large-deviation principle in the space
C([0, T ];P(Rx)) with good rate function

I (μ) := IQμ0 (μ) + γ (μ0), (71)

where Iν(·) is defined in Eq. 56, Qν in Eq. 50, and γ in Eq. 52.

Proof of Lemma 8.2 We use Lemma 3.5 to prove that the random measures μn satisfy a
weak large-deviation principle; subsequently we upgrade this into a strong large-deviation
principle by showing exponential tightness.
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We write Pn for the law of Xn on C([0, T ];Rn
x). Set X = C([0, T ];P(Rx)) and define

the modified push-forward

Pn := (ηn)#Pn ∈ P(X ) by Pn(A) := Pn

{(
ηn(X

n(t))
)
t∈[0,T ] ∈ A

}
.

We construct the measure Qn as follows. Fix some ν ∈ X . Let the curves Zn solve
the same equation in Definition 4.5(4.5) as Xn, but with initial data Zn(0) drawn from the
independent measure Q

ν0
n = (Qν0)⊗n (see Eq. 61). We write Q

ν0
n

for the law of Zn on
C([0, T ];Rn

x), and we set Qν
n := (ηn)#Q

ν0
n

∈ P(X ). By Theorem 6.1, the sequence of
measures Qν

n satisfies a strong large-deviation principle with the good rate function IQν0 .
Since the laws of Xn and Zn are the same after conditioning on the initial positions, we

have for each x ∈ C([0, T ];Rn
x) that

dPn

dQν0
n

(x) = dPn

dQν0
(x(0)). (72)

We now estimate

1

n
log Pn(Bδ(μ)) = 1

n
logEPn

[
1
{(

ηn(x(t))
)
t∈[0,T ] ∈ Bδ(μ)

}]

= 1

n
logEQ

μ0
n

[ dPn

dQμ0
n

1
{(

ηn(x(t))
)
t∈[0,T ] ∈ Bδ(μ)

}]

(72)≤ 1

n
logEQ

μ0
n

[
1
{(

ηn(x(t))
)
t∈[0,T ] ∈ Bδ(μ)

}]
− γ (μ0) + sup

η−1
n (Bδ(μ0))

[
1

n
log

dPn

dQ
μ0
n

+ γ (μ0)

]
(73)

(64)≤ 1

n
log Qμ

n (Bδ(μ)) − γ (μ0) + rn + R(δ, μ0).

By combining with the opposite inequality we find
∣∣∣∣
1

n
log Pn(Bδ(μ)) − 1

n
log Qμ

n (Bδ(μ)) + γ (μ0)

∣∣∣∣ ≤ rn + R(δ, μ0).

The properties of rn and R now imply that the conditions of Lemma 3.5 are satisfied, and
it follows that Pn satisfies a weak large-deviation principle with good rate function μ �→
IQμ0 (μ) + γ (μ0).

Finally, to show that the weak large-deviation principle is in fact a strong principle, take
an arbitrary ν ∈ C([0, T ];P(Rx)) and construct the particle system Zn as above. By The-
orem 6.1 the random variables t �→ ηn(Z

n(t)) are exponentially tight in C([0, T ];P(Rx));
by Eq. 72 and the bound (63) the same follows for t �→ ηn(X

n(t)).

8.2 Characterization of the Rate Function

Lemma 8.3 Let ν ∈ P(Rx) and let μ ∈ C([0, T ];P(Rx)) satisfy Iν(μ) < ∞. Then there
exists a measurable function u : [0, T ] × Rx → R, such that

Iν(μ) = H(μ0|ν) + 1

2

∫ T

0

∫

Rx

u2(t, x) μt (dx)dt, (74)

and μ is a distributional solution of

∂tμt = 1

2
∂xxμt − ∂x

[
(b(·, μt ) + u(t, ·))μt

]
. (75)

The function u is unique in L2(0, T ;L2
μt

(Rx)).

107



M. Peletier et al.

Proof We begin by showing existence and uniqueness in law of weak solutions to the SDE

dXt = b(Xt , μt )dt + dBt , (76)

with initial positions distributed according to ν. That is, we establish existence and unique-
ness of the measure Wμ

ν such that under Wμ
ν , and with respect to some filtration {Ft }t∈[0,T ],

{BT }t∈[0,T ] is a Brownian motion and W
μ
ν is the probability law of the solution {Xt }t∈[0,T ]

of the SDE. To show this we first prove that b satisfies, for any x ∈ R and ρ, η ∈ P(R),

|b(x, ρ) − b(x, η)| ≤ CdT V (ρ, η),

where dT V (·, ·) is the total variation distance, and

|b(x, ρ)| ≤ C̃(1 + |x|).
With these estimates the assumptions of [35] are fulfilled and existence and uniqueness of
weak solutions to the SDE hold.

From the inequality

|Tρ(x) − Tη(x)| = ∣∣x + αρ((−∞, x)) − x − αη((−∞, x))
∣∣ ≤ αdT V (ρ, η) for all x,

we obtain with the assumption that V ′ is Lipschitz the estimate

|V ′(Tρ(x)) − V ′(Tη(x))| ≤ αCV ′dT V (ρ, η).

For W we split the difference as follows:∫

Rx

W ′ (Tρ(x) − Tρ(x̃)
)
ρ(dx̃) −

∫

Rx

W ′ (Tη(x) − Tη(x̃)
)
η(dx̃)

=
∫

Rx

[
W ′ (Tρ(x) − Tρ(x̃)

)− W ′ (Tη(x) − Tη(x̃)
)]

ρ(dx̃)

+
∫

Rx

W ′ (Tη(x) − Tη(x̃)
)
(ρ(dx̃) − η(dx̃)) .

Because W ′ is Lipschitz, the first term on the right-hand side can similarly be bounded:∫

Rx

|W ′ (Tρ(x) − Tρ(x̃)
)− W ′ (Tη(x) − Tη(x̃)

) |ρ(dx̃)

≤
∫

Rx

CW ′ |Tρ(x) − Tρ(x̃) − Tη(x) + Tη(x̃)|ρ(dx̃)

≤
∫

Rx

CW ′
(|Tρ(x) − Tη(x)| + |Tρ(x̃) − Tη(x̃)|) ρ(dx̃)

≤ αCW ′2dT V (ρ, η).

The second term, involving the integral with respect to the difference ρ −η, can be bounded
from above using the characterization of the total variation distance in terms of Borel
measurable functions f ∈ B(Rx):∣∣∣

∫

Rx

W ′ (Tρ(x) − Tη(x̃)
)
(ρ(dx̃) − η(dx̃))

∣∣∣

= ‖W ′‖∞
∣∣∣
∫

Rx

1

‖W ′‖∞
W ′ (Tη(x) − Tη(x̃)

)
(ρ(dx̃) − η(dx̃))

∣∣∣

≤ ‖W ′‖∞ sup
f∈B(Rx ),‖f ‖∞≤1

∣∣∣
∫

R

f (x̃) (ρ(dx̃) − η(dx̃))

∣∣∣

= ‖W ′‖∞ dT V (ρ, η).

108



Large Deviations and Gradient Flows...

Together the two upper bounds yield
∣∣∣ ∫

Rx
W ′ (Tρ(x) − Tρ(x̃)

)
ρ(dx̃) − ∫

Rx
W ′ (Tη(x) − Tη(x̃)

)
η(dx̃)

∣∣∣ ≤ C̃W ′dT V (ρ, η).

Combining this with the upper bound for the difference of V ′-terms, we have

|b(x, ρ) − b(x, η)| =
∣∣∣∣V ′(Tρ(x)) +

∫

Rx

W ′ (Tρ(x) − Tρ(x̃)
)
ρ(dx̃)

− V ′(Tη(x)) −
∫

Rx

W ′ (Tη(x) − Tη(x̃)
)
η(dx̃)

∣∣∣∣
≤ CdT V (ρ, η),

for some constant C.
The linear growth condition follows from the assumption that V ′ and W ′ are Lipschitz

and bounded, respectively.
With these estimates, the conditions of [35] are satisfied, implying that weak existence

and uniqueness of solutions holds for the SDE (76); therefore the measure W
μ
ν is well-

defined.
Define the set

Aμ
ν = {P ∈ P(R) : H(P |Wμ

ν ) < ∞, Pt = μt ∀t},
so that

Iν(μ) = inf
A

μ
ν

H(P |Wμ
ν ).

Since by assumption Iν(μ) < ∞, the set Aμ
ν is non-empty. By Theorem 3.1 of [27], in

the definition of Jν(μ) it is sufficient to minimize over (strongly) Markovian P such that
P ∈ Aμ

ν .
Uniqueness in law corresponds to the uniqueness condition ‘U’ in [66] and by Theo-

rems 1 and 2 therein, for each Markovian P ∈ Aμ
ν there exists a process {βt }t∈[0,T ] adapted

to the (augmented version of the) filtration {Ft }t∈[0,T ] of the weak solution such that
∫ T

0 βt dt

and
∫ T

0 β2
t dt are both finite P -a.s. and under P there is a P -Brownian motion BP such that

the process {Xt }t∈[0,T ] solves, under P ,

dXt = (b(Xt , μt ) + βt )dt + dBP
t .

By [27, Thm 3.60] there is a u : [0, T ] ×Rx → R such that
∫ T

0

∫
Rx

u2(t, x)μt (dx)dt <

∞ and the process β can be expressed as βt = u(t, Xt ); the function u can be obtained
via the Riesz representation theorem, see [27] for details. The Radon-Nikodym derivative
between P and W

μ
ν satisfies

dP

dW
μ
ν

= dμ0

dν
exp

{∫ T

0
u(t,Xt )dBP

t + 1

2

∫ T

0
|u(t, Xt )|2dt

}
,

and it follows that

H(P |Wμ
ν ) = H(μ0|ν) + 1

2
EP

∫ T

0
|u(t, Xt )|2dt .

This is precisely (74).
Replacing β with u in the SDE, we find that under P the process X solves

dXt = (b(Xt , μt ) + u(t, Xt ))dt + dBP
t .
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The Forward-Kolmogorov equation of this SDE for the single-time marginals Pt = μt

is equal to Eq. 75. The uniqueness of u is a direct consequence of the strict convexity of∫∫
u2μ and the linear constraint (75).

Lemma 8.4 Let ν ∈ P(Rx) and let μ ∈ C([0, T ];P(Rx)) satisfy μ0 ∈ P2(Rx) and
F(μ0) + Iν(μ) < ∞. Then

(1) μ ∈ AC2([0, T ];P2(Rx)).
(2) For almost all t ∈ [0, T ], μt is Lebesgue-absolutely-continuous, ∂xμt ∈ L1(Rx), and

∫ T

0

∫

Rx

|∂xμt (x)|2
μt(x)

dxdt < ∞.

(3) The functional Iν can be written as

Iν(μ) = H(μ0|ν) + 1

2

∫ T

0

∫

Rx

μt (x)
(
vt (x) + ∂xμt

2μt

(x) − b(x, μt )
)2

dxdt, (77)

where vt is the velocity field associated with ∂tμt (see Lemma 2.7).

Proof We first show that
∫
R

x2μt(dx) is bounded uniformly in t . Formally this follows
from multiplying (75) by x2 and integrating, giving

d

dt

1

2

∫

R

x2μt(dx) =
∫

R

μt

[
1 + x(bt + ut )

]

≤ 1 +
∫

R

x2μt(dx) + 1

2

∫

R

b2
t μt (dx) + 1

2

∫

R

u2
t μt (dx)

≤ 1 +
∫

R

x2μt(dx) + 1

2

∫

R

C(1 + x2)μt (dx) + Iν(μ).

The second inequality follows from the assumptions (39) on V . Gronwall’s Lemma then
yields boundedness of

∫
x2μt(dx) for finite time. This argument can be made rigorous by

approximating x2 by smooth compactly supported functions.
We next prove part 8.4. Fix a function ϕ ∈ C

0,1
c ([0, T ]×R), and let g ∈ C1,2([0, T ]×R)

be a solution of the linear backward-parabolic equation

∂tgt + 1

2
∂xxgt + bt∂xgt = 1

8
gt

(1

2
ϕ2

t − ∂xϕt

)
, (x, t) ∈ R × (0, T ],

gT = 1, x ∈ R,

g is bounded,

where we use the shorthand notation bt (x) := b(x, μt ). Existence of such a solution follows
from standard linear parabolic theory; see e.g. [47, Th. 1.12]. The constant initial datum and
the compact support of the right-hand side imply that g(x, t) → 1 for x → ±∞ and for
all t , and that all derivatives converge to zero as x → ±∞; this can be recognized in the
representation formula [47, (1.7.6)].
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Note that by the coerciveness bound (39) on V we have
∫
Rx

g2
T (x)e−2V (x) dx =∫

Rx
e−2V (x) dx < ∞. To obtain bounds on the same expression at earlier times t we

calculate, briefly suppressing the subscript t ,

d

dt

∫

Rx

g2
t (x)e−2V (x) dx =

∫
ge−2V

(
−∂xxg − 2b∂xg + 1

4
g
( 1

2
ϕ2 − ∂xϕ

))

=
∫

e−2V

(
|∂xg|2 − 2g∂xgV ′ − 2bg∂xg + 1

8
g2ϕ2 + 1

2
g∂xgϕ − 1

2
g2ϕV ′

)

=
∫

e−2V

(
1

2
|∂xg − gV ′ + 1

2
gϕ|2 + 1

2

∣∣∂xg − 2gb − gV ′∣∣2 − g2(2b2 + 2bV ′ + V ′2)
)

≥ −3(‖b‖2∞ + ‖V ′‖2∞)

∫
g2

t e−2V ,

after which Gronwall’s Lemma implies that
∫

g2
0e−2V ≤ C, with a constant C > 0 that

does not depend on ϕ.
The function f := 2 log g then satisfies

∂tft + 1

2
∂xxft + bt∂xft + 1

4
|∂xft |2 = 1

4

(1

2
ϕ2

t − ∂xϕt

)
,

with final value fT = 0. Multiplying (75) with f and integrating we find

0 =
∫

Rx

[
fT μT − f0μ0

]
−
∫ T

0

∫

Rx

μt

[
∂tft + 1

2
∂xxft + bt∂xft

]

= −
∫

Rx

f0μ0 +
∫ T

0

∫

Rx

μt

(
ut∂xft − 1

4
|∂xft |2 − 1

4
∂xϕt + 1

8
ϕ2

t

)
.

Briefly writing μV (dx) := Z−1
V e−2V dx, for which we have the estimate H(μ0|μV ) ≤

2F(μ0) + C, we then apply the entropy inequality to find

1

4

∫ T

0

∫

Rx

μt

(
∂xϕt − 1

2
ϕ2

t

)
≤
∫ T

0

∫

Rx

μt

(
ut∂xft − 1

4
|∂xft |2

)
−
∫

Rx

f0μ0

≤
∫ T

0

∫

Rx

μt |ut |2 +H(μ0|μV ) + 1

ZV

∫

Rx

ef0−2V

≤ 2I (μ) + 2F(μ0) + C + 1

ZV

∫

Rx

g2
0e−2V .

The right-hand side of this expression is bounded from above independently of ϕ, and by
the dual characterization of Fisher Information (see e.g. [46, Lemma D.44]) it follows that

1

2

∫ T

0

∫

Rx

|∂xμt (x)|2
μt(x)

dxdt =
∫ T

0
sup

ψ∈C1
c (R)

∫

Rx

μt

(
∂xψ − 1

2
ψ2
)

= sup
ϕ∈C

0,1
c ([0,T ]×R)

∫ T

0

∫

Rx

μt

(
∂xϕt − 1

2
ϕ2

t

)

< ∞,

where the second identity follows from a standard argument involving the separability in
Cb(R) of the subspace C1

c (R). This proves part 2.
To prove part 1, i.e. to show that μ ∈ AC2([0, T ];P2), we write (75) as

∂tμt = −∂x(μtvt ) with vt = −1

2

∂xμt

μt

+ bt + ut . (78)
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The function vt satisfies
∫ T

0

∫
Rx

μtv
2
t < ∞ because each of the three terms in Eq. 78

satisfies a similar bound: u satisfies this property by Eq. 74, b is uniformly bounded
by Assumption 4.4, and for ∂xμ/μ this follows from part 2. By the characterization of
Lemma 2.7 it follows that μ ∈ AC2([0, T ];P2).

Finally, to show part 3 it suffices to substitute (78) in Eq. 74.

8.3 End of Proof of Theorem 8.1

We now have constructed two particle systems as follows:

• The particle system Yn of Definition 4.5(4.5) is started at initial positions drawn from
P

inv,W=0
n ;

• The particle system Xn of Definition 4.5(4.5) is started from the transformed initial
positions Xn

i (0), as described in Eq. 70.

By Lemma 8.2, the random time-dependent measures μn(t) = ηn(X
n(t)) satisfy a large-

deviation principle in C([0, T ];P(Rx)) with rate function I (μ) = IQμ0 (μ) + γ (μ0).
By Lemma 4.7 the random measures ρn(t) = ηn(Y

n(t)) have the same distribution
as Anμn(t). We deduce the LDP for ρn by applying a generalization of the contraction
principle to n-dependent maps in the form of [41, Corollary 4.2.21]. In the case at hand these
maps will be the maps A−1

n and A−1, which extend A and An to time-dependent measures:

An : C([0, T ];Pn(Rx)) → C([0, T ];Pn(Ry)), (Anμ)(t) := An(μ(t)),

A : C([0, T ];P(Rx)) → C([0, T ];P(Ry)), (Aμ)(t) := A(μ(t)).

The only non-trivial condition to check for [41, Corollary 4.2.21] is a convergence prop-
erty of the maps An to A. We temporarily write Pμn for the law of μn on P(C([0, T ];Rx)).
Define for n ∈ N and δ > 0

�n,δ := {ν ∈ suppPμn : dBL(Aν,Anν) > δ},
where we also write dBL for the metric on C([0, T ];P(Ry)) generated by the metric dBL

on Ry . Corollary 4.2.21 of [41] requires that this set has super-exponentially small Pμn -
probability. In fact, for every δ > 0 the set is empty for sufficiently large n, since by part 3
of Lemma 4.2 we have for any νn = 1

n

∑n
i=1 δxi

∈ Rx that

W2(Aνn, Anνn)
2 = W2

( n∑
i=1

δ
α,n
xi+α(i−1)/n,

1

n

n∑
i=1

δxi+α(i−1)/n

)2

=
n∑

i=1

W2

(
δ
α,n
xi+α(i−1)/n,

1

n
δxi+α(i−1)/n

)2

=
n∑

i=1

1

2

α2

n2
= 1

2

α2

n
.

Since dBL(μ, ν) ≤ W2(μ, ν) by Lemma 2.5, the set �n,δ is empty for n ≥ α2/2δ2.
Applying [41, Corollary 4.2.21] we find that Anμn satisfies a large-deviation principle in
C([0, T ];P(Ry)) with good rate function

Î (ρ) :=
{

I (μ), if Aμ(t) = ρ(t) for all t ∈ [0, T ],
+∞ otherwise,

for ρ ∈ C
([0, T ];P(Ry)

)
. (79)
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It remains to prove the form Eq. 69 of Î ; this is the content of the next lemma.

Lemma 8.5 Let ρ ∈ C([0, T ];P(Ry)) satisfy ρ0 ∈ P2(Ry) and F̂(ρ0) + Î (ρ) < ∞.
Define μ ∈ C([0, T ];P(Rx)) by ρt := Aμt for all t (such μ exists by Eq. 79). We then
have ρ ∈ AC2([0, T ];P2(Ry)) and μ ∈ AC2([0, T ];P2(Rx)), and

Î (ρ)
(a)= I (μ)

(b)= 2 EntV (μ0) + 1

2

∫ T

0
|μ̇|2(t) dt + 1

2

∫ T

0
|∂F |2(μt ) dt +F(μT ) −F(μ0)

(c)= 2 ÊntV (ρ0) + 1

2

∫ T

0
|ρ̇|2(t) dt + 1

2

∫ T

0
|∂F̂ |2(ρt ) dt + F̂(ρT ) − F̂(ρ0).

Proof The W2 absolute continuity of μ is given by Lemma 8.4, and the corresponding
property of ρ follows from the W2-isometry of A.

Identity (a) above follows from the definition (79). Identity (c) is a direct consequence
of the isometry of the mapping A: under this isometry, all metric-space objects on P2(Rx)

are mapped one-to-one to corresponding objects on P2(Ry), and this holds in particular for

EntV and ÊntV , F and F̂ , |∂F | and |∂F̂ |, and |μ̇| and |ρ̇|.
To show identity (b), note that since F(μ0) + IQμ0 (μ) + γ (μ0) = F̂(ρ0) + Î (ρ) < ∞

we have by Lemma 8.4

I (μ) = IQμ0 (μ) + γ (μ0)

= H(μ0|Qμ0) + γ (μ0) + 1

2

∫ T

0

∫

Rx

μt (x)
(
vt (x) + ∂xμt

2μt

(x) − b(x, μt )
)2

dxdt .

The first two terms are equal to 2EntV (μ0); we rewrite the remainder as

I (μ) = 2 EntV (μ0)+1

2

∫ T

0

∫

Rx

v2
t μt+1

2

∫ T

0

∫

Rx

(∂xμt

2μt

−bt

)2
μt+

∫ T

0

∫

Rx

vt

(∂xμt

2μt

−bt

)
μt .

The first integral equals 1
2

∫ T

0 |μ̇|2(t) dt by the characterization (26) of the velocity of
absolutely-continuous curves. By the characterizations (53) and (27) of the element of min-
imal norm in the subdifferential, the second integral equals 1

2

∫ T

0 |∂F |2(μt ) dt , and by the
chain rule (28) the third integral equals F(μT ) −F(μ0).

9 Proofs of Theorems 1.1 and 1.4

9.1 Proof of Theorem 1.4

In this section we finalize the proofs of the two main theorems. We first prove a version of
Theorem 1.4 that allows a little more freedom in the initial data.

Let G : P(R) → R be continuous and bounded, and set

P
inv,G
n (dy) := 1

ZG
n

exp

[
−nG

(1

n

n∑
i=1

δyi

)
− 2

n∑
i=1

V (yi)

]
L n

∣∣∣
�n

(dy).

We also define the modified free energy

F̂G(ρ) := ÊntV (ρ) + 1

2
G(ρ) + CG, (80)
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where the constant CG is such that inf F̂G = 0.
Then

• For G = 0 the distribution P
inv,G
n coincides with P

inv,W=0
n ;

• For G(ρ) = ∫
fρ the distribution P

inv,G
n coincides with P

inv,f
n and F̂G with F̂f ;

• For G(ρ) = ∫∫
W(x − y)ρ(dx)ρ(dy) the distribution P

inv,G
n coincides with P

inv
n and

F̂G with F̂ .

Theorem 9.1 (Large-deviation principle on path space, version with general initial dis-
tribution) Assume that V,W satisfy Assumption 4.4. For each n, let the particle system
t �→ Yn(t) ∈ R

n be given by Eq. 2, with initial positions drawn from the modified invariant
measure Pinv,G

n .
The random evolving empirical measures ρn(t) = 1

n

∑n
i=1 δYn

i (t) then satisfy a large-

deviation principle on C
([0, T ];P(R)

)
with good rate function ÎG . If in addition ρ satisfies

ρ(0) ∈ P2(R) and F̂(ρ(0)) + ÎG(ρ) < ∞, then we have ρ ∈ C([0, T ];P2(R)) and ÎG(ρ)

can be characterized as

ÎG(ρ) := 2 F̂G(ρ(0)) + F̂(ρ(T )) − F̂(ρ(0)) + 1

2

∫ T

0
|ρ̇|2(t) dt + 1

2

∫ T

0
|∂F̂ |2(ρ(t)) dt .

(81)
Here |ρ̇| and |∂F̂ | are the metric derivative and the local slope defined in Definition 1.3,
for the Wasserstein metric space X = P2(R).

Theorem 1.4 is Theorem 9.1 for the special case G(ρ) = ∫
fρ.

Proof of Theorem 9.1 As in the theorem, let Yn be solutions of Eq. 2 (or equivalently of
Definition 4.5(4.5)) with initial data drawn from P

inv,G
n . Let Ỹ n be solutions of the same

system, but with initial data Ỹ n(0) drawn from P
inv,W=0
n . Let ρn, ρ̃n ∈ C([0, T ];P(Ry))

be the corresponding empirical measures, and write Pρn and Pρ̃n for their laws. By Theo-
rem 8.1, ρ̃n satisfies a large-deviation principle in C([0, T ];P(Ry)) with the rate function
Î defined in Eq. 79.

Since the evolution of the two particle systems is the same, conditioned on their initial
positions, we have as in the proof of Theorem 6.1 that for any ρ ∈ C([0, T ];P(Ry))

dPρn

dPρ̃n

(ρ) = d(ηn)#P
inv,G
n

d(ηn)#P
inv,W=0
n

(ρ0) = Cn exp
(−nG(ρ0)

)

for some normalization constants Cn > 0. Since the exponent is a bounded and narrowly
continuous function of ρ0, Varadhan’s Lemma (e.g. [41, Th. 4.3.1]) implies that ρn satisfies
a large-deviation principle in C([0, T ];P(Ry)) with rate function

ÎG(ρ) := Î (ρ) + G(ρ0) + C,

where the constant C is chosen such that inf ÎG = 0.
We now show the formula (81). Set

FG(ν) := inf
{
ÎG(ρ) : ρ0 = ν

}
.
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We prove that FG = 2F̂G . Taking any μ with I (μ) < ∞, by Lemma 8.3 there exists a
unique function u such that

I (μ) = IQμ0 (μ) + γ (μ0) = H(μ0|Qμ0) + γ (μ0) + 1

2

∫ T

0

∫

Rx

u2(t, x) μt (dx)dt .

By repeating this identity for a sequence T ↓ 0 and using the uniqueness of u we find that
inf{I (μ) : μ0 = ξ} = H(ξ |Qξ ) + γ (ξ) = 2EntV (ξ). We then observe that

FG(ν) = inf
{
Î (ρ) + G(ρ0) + C : ρ0 = ν

}

= inf
{
I (μ) : Aμ0 = ν

}
+ G(ν) + C

= 2ÊntV (ν) + G(ν) + C

(80)= 2F̂G(ν) + C − 2CG .

Since both FG and 2F̂G have zero infimum, C = 2CG . It follows that

ÎG(ρ) = Î (ρ) + G(ρ0) + 2CG = Î (ρ) − 2ÊntV (ρ0) + 2F̂G(ρ0),

and Eq. 69 then implies the characterization (81).

9.2 Proof of Theorem 1.1

We deduce the large-deviation principle for the invariant measures Pinv
n from Theorem 9.1

by applying the contraction principle. Let Yn(0) be drawn from P
inv
n , and let Yn be solutions

of Definition 4.5(4.5) over a time interval [0, T ]. Applying Theorem 9.1 with G(ρ) :=∫∫
W(x − y)ρ(dx)ρ(dy) we find that ρn = ηn(Y

n) satisfies a large-deviation principle on
C([0, T ];P(Ry)) with good rate function ÎG given by Eq. 69. Since the evaluation map

C([0, T ];P(Ry)) → P(Ry), μ �→ μ(0)

is continuous, the contraction principle (see e.g. [41, Th. 4.21]) implies that ρn(0) satisfies
a large-deviation principle with good rate function

FG(ν) := inf
{
ÎG(ρ) : ρ0 = ν

}
.

In the proof of Theorem 9.1 above we showed that FG equals 2F̂G , which coincides with
2F̂ for this choice of G; the characterization of Lemma 5.1 then concludes the proof.

Appendix A: Proof of Lemma 4.6

The existence and uniqueness of weak solutions Xn follows from arguments similar to the
proof of Lemma 8.3, and we omit this proof.

For the stochastic process Yn we prove the existence and uniqueness as follows. The
main step is to show the unique existence of a fundamental solution of the parabolic partial
differential equation ∂tρ − L∗

Y ρ = 0 on �n:
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Lemma A.1 Fix T > 0. For each y0 ∈ �n there exists a unique fundamental solution
(t, y) �→ p(t, y; y0) of the equation ∂t−L∗

Y = 0 on�n with Neumann boundary conditions,
i.e., a function p = py0 ∈ L1((0, T ) × �n) satisfying

0 =
∫ T

0

∫

�n

p(t, y)
[
∂tϕ(t, y) + (LY ϕ)(t, y)

]
dydt + ϕ(y0) (82)

for all ϕ ∈ C
1,2
b ([0, T ] × �n). In addition, for each t > 0 the function y �→ p(t, ·; y0) is

non-negative and continuous, and satisfies
∫
�n

p(t, y; y0) dy = 1.

Informally, the fundamental solution p satisfies

∂tp = L∗
Y p, on (0, T ) × �n, (83)

∂np = 0 on (0, T ) × ∂�n, (84)

p(t = 0, ·) = δy0 . (85)

Given this fundamental solution, the proof of Lemma 4.6 proceeds along classical lines.
We construct a consistent family of finite-dimensional distributions Pt1,...,tk ∈ P((�n)

k)

in the usual way, by daisy-chaining copies of the fundamental solution p(tk − tk−1, · ; · )
(see e.g. [96, Th. 2.2.2]). By applying the maximum-principle method of [96, Cor. 3.1.3]
we show that this consistent family satisfies the conditions of Kolmogorov’s continuity
theorem, and Theorem 2.1.6 of [96] then implies that Pt1,...,tk is generated by a unique
probability measure P on the space C([0,∞);�n). This concludes the argument.

The main step therefore is the proof of Lemma A.1, which we now give.

Proof Define for L > α the truncated state space

�L
n := {

y ∈ [−L, L]n : |yi − yj | ≥ α/n for all i �= j
}

.

Fix an initial datum φ ∈ Cb(�
L
n ), φ ≥ 0; by classical methods there exists a non-negative

C
1,2
b solution u of the equation ∂tu−L∗

Y u = 0 on (0, T )×�L
n , ∂nu = 0 on (0,∞)× ∂�L

n ,
and u(t = 0) = φ. By integrating the equation over [0, t] × �L

n we find
∫

�L
n

u(t, y) dy =
∫

�L
n

φ(y) dy.

We now take a sequence L → ∞ and choose φL ≥ 0 with
∫

φL = 1 such that φL

converges narrowly on �n to δy0 . For each T > 0, the corresponding solution (t, y) �→
uL(t, y) is non-negative and has integral over [0, T ] × �n equal to T (where we extend uL

on �n \ �L
n by zero); by taking a subsequence we can therefore assume that uL converges

weakly, in duality with Cc([0, T ]×�n), to a non-negative limit measure p with p([0, T ]×
�n) ≤ T . By e.g. [18, Th. 6.4.1] the measure p has a continuous Lebesgue density on
(0, T ) × �n, implying that for 0 < t < T we can write it as p(dtdt) = p(t, y)dtdy.

By e.g. [18, Th. 6.4.1] the measure p has a continuous Lebesgue density on (0, T )×�n,
implying that for 0 < t < T we can write it as p(dtdt) = p(t, y)dtdy. Since∫
�n

uL(t, y) dy = 1 for all t , and since narrow convergence implies narrow convergence of
marginals, the measure p(·, �n) on [0, T ] coincides with Lebesgue measure on [0, T ], and
therefore

∫
�n

p(t, y)dy = 1 for all t ∈ (0, T ).
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We now show that the function p satisfies (82). Take a function ϕ ∈ C
1,2
c ([0, T ) × �n)

satisfying ∂nϕ = 0 on ∂�n. Then ϕ ∈ C
1,2
c ([0, T )×�L

n ) for sufficiently large L, and in the
weak form of the equation ∂tu

L − LY uL = 0 with initial datum φ,

0 =
∫ T

0

∫

�L
n

uL(t, y)
[
∂tϕ(t, y) + (LY ϕ)(t, y)

]
dydt +

∫

�L
n

φL(y)ϕ(y) dy,

we can replace the domain of integration �L
n by �n. By taking the limit L → ∞ we find

for all such ϕ the property

0 =
∫ T

0

∫

�n

p(t, y)
[
∂tϕ(t, y) + (LY ϕ)(t, y)

]
dydt + ϕ(y0).

By a standard approximation argument, using the fact that the total mass of p is finite, this
identity can be shown to hold for all ϕ ∈ C

1,2
b ([0, T ] × �n) with ϕ(t = T ) = 0. This

proves (82). By taking ϕ in Eq. 82 to be a function only of t , we also find ∂t

∫
�n

p(t, y) dy =
0 in distributional sense, and therefore p(t, ·) has unit mass for all time t .

Finally, we prove the uniqueness of p, which also implies that the final time T can be
taken equal to ∞. Let p be a finite measure on [0, T ]×�n that satisfies the weak (82) with
initial datum equal to zero, i.e. assume that for all ϕ ∈ C1,2([0, T ]×�n) with ϕ(t = T ) = 0,

0 =
∫ T

0

∫

�n

p(t, y)
[
∂tϕ(t, y) + (LY ϕ)(t, y)

]
dydt . (86)

Fix χ ∈ Cb([0, T ] × �n). By arguments very similar to those above we can find a solution
ϕ ∈ C1,2([0, T ] × �n) of the equation

∂tϕ + LY ϕ = χ, on (0,∞) × �n,

∂nϕ = 0 on (0,∞) × ∂�n,

ϕ(t = T ) = 0.

By substituting this ϕ in Eq. 86 we find

∫ T

0

∫

�n

p(t, y)χ(t, y) dydt = 0 for all χ ∈ Cb([0, T ] × �n).

This implies that p is the zero measure on [0, T ] × �n, and proves the uniqueness of
solutions of Eq. 82.
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