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Abstract
In this paper, we establish C1,α regularity up to the boundary for a class of degenerate fully
nonlinear elliptic equations with Neumann boundary conditions. Our main result Theorem
2.1 constitutes the boundary analogue of the interior C1,α regularity result established in
Imbert and Silvestre (Adv. Math. 233: 196–206, 2013) for equations with similar structural
assumptions. The proof of our main result is achieved via compactness arguments combined
with new boundary Hölder estimates for equations which are uniformly elliptic when the
gradient is either small or large.
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1 Introduction

In this paper, we are concerned with the regularity up to the boundary for solutions to fully
nonlinear equations of the type

|Du|βF
(
D2u, x

)
= f, (1.1)

with Neumann boundary conditions, where β ≥ 0, F is uniformly elliptic and F(0, x) = 0.
Equation 1.1 constitutes a subfamily of a class of nonlinear elliptic equations studied in a
series of papers by Birindelli and Demengel starting with [11]. We note that such equations
are not uniformly elliptic, they are either degenerate or singular depending on whether β >

0 or β < 0. In the singular case (i.e. when β < 0), the authors in [11] proved many important
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results like comparison principles and Liouville type properties. See also [12] for regularity
results in this case.

In the degenerate case (i.e. when β > 0), the first breakthrough was made by Imbert
and Silvestre in [22] where the authors proved the interior C1,α regularity for solutions to
such equations as in Eq. 1.1. A fairly simple example as in [22] shows that solutions to such
equations cannot be more regular than C1,α even when F(D2u) = �u. Subsequently, opti-
mal C1,α regularity results in case of concave F have been obtained in the recent interesting
work [5]. We note that the proof of the C1,α result in [22] is based on successful adaptation
of compactness arguments inspired by the ideas as in the fundamental work of Caffarelli
in [16] (see also [15]). We also refer the reader to the paper [13] for C1,α results in case
Dirichlet boundary conditions. Our main result Theorem 2.1 below thus complements the
regularity results previously obtained in [22] and [13].

Now, in order to put things in the right perspective, we note that getting a C1,α regularity
result in general amounts to show that the graph of the solution u can be touched by an affine
function so that the error is of order r1+α in a ball of radius r for every r small enough. The
proof of this is based on iterative argument where one ensures improvement of flatness at
every successive scale. At each step, via rescaling, it reduces to show that if < p, x > +u

solves Eq. 1.1 in B1, then the oscillation of u is strictly smaller in a smaller ball up to a linear
function. This is accomplished via compactness arguments which crucially relies on apriori
estimates. Now for a u which solves Eq. 1.1, we have that u− < p, x > is a solution to

|Dv + p|βF (D2v, x) = f . (1.2)

Therefore, in order to make such a compactness argument work for β > 0, it is important
to get equicontinuous estimates for equations of the type (1.2) independent of |p|. This
is precisely done in [22] using Hölder estimates for small slopes (i.e. when |p| is small)
established by the same authors in their previous work [23] (see also [25]) combined with
a new Lipschitz estimate for large slopes which they obtain by adapting the Ishii-Lion’s
approach as in [20] to their setting.

In this paper, we follow a strategy similar to that in [22] with appropriate adaptations.
For small slopes, we establish analogous boundary Hölder estimates as in [23] for Neumann
conditions by the method of sliding cusps introduced in the same paper [23]. However for
large slopes, we could not find a suitable adaptation of the Ishii-Lion’s approach in our
setting for getting equicontinuous estimates. We note that although such an approach has
been implemented for global oblique derivative problems by Barles in [7], nevertheless a
suitable localization of such an approach in case of non-homogeneous boundary conditions
is not clear to us. Therefore, in order to overcome such an obstruction, we employ the
method of Savin as in [30] based on sliding paraboloids in order to obtain equicontinuity
estimates for large slopes. More precisely, we adapt a certain quantitative version of Savin’s
method due to Colombo and Figalli in [18]. We also note that such oscillation estimates are
in fact established for more general fully nonlinear operators (with structural assumptions as
in SC1)-SC3) in Section 4) and we believe that this aspect could possibly be of independent
interest and may find other applications. Finally for a historical account, we note that the
method of sliding paraboloids seems to have originated first in a slightly different context
in the work of Cabre in [14].

As the reader will observe, the implementation of either of these approaches for Neu-
mann boundary conditions is somewhat delicate. For instance in the case of small slopes,
because of certain technical obstructions, our proof of the Lε estimate as in Theorem 3.6 is
based on the Calderon-Zygmund decomposition instead of the growing ink spot lemma as
used in [23]. Moreover for large slopes, unlike that in [22], since our oscillation estimate as

A. Banerjee, R.B. Verma328



stated in Theorem 4.9 below only holds at large enough scales, therefore the compactness
arguments in our setting required some appropriate modifications.

The paper is organized as follows. In Section 2, we introduce basic notations and then
state our main result. In Section 3, we establish uniform boundary Hölder estimates for
small slopes by the method of sliding cusps. In Section 4, we obtain analogous equicontin-
uous estimates for large slopes via sliding paraboloids. In Section 5, we finally prove our
main result Theorem 2.1 using the compactness method which crucially relies on the regu-
larity estimates proved in Sections 3 and 4. Finally we refer the reader to [28] for Lipschitz
regularity results for equations of the type (1.1) in the singular case with homogeneous
Neumann conditions.

In closing, we would like to mention that it remains to be seen whether similar regularity
results can be obtained for more general oblique derivative conditions. This is an interesting
aspect to which we would like to come back in a future study. Finally we would like the
reader to note that Neumann regularity results are also useful in the context of Signorini type
obstacle problems. See for instance [2, 6, 17, 27] and [31] to name a few. We would also like
to refer to the recent interesting paper [29] where subsequent to our work, the optimal C1,α

regularity result for the Neumann boundary value problem (2.4) has been obtained in the
case when F is concave. It is to be noted that the compactness arguments in [29] crucially
uses the estimates in the present work.

2 Notations and the Statement of theMain Result

For a given r > 0 and x ∈ R
n, we denote by Br(x) the ball of radius r centered at x =

(x′, xn) and the set Br(x) ∩ {y : yn > 0} by B+
r (x). When x = 0, we will occasionally

denote such sets by Br and B+
r respectively. Also the set {xn = 0} ∩ Br will be denoted by

B0
r . Likewise Qr(x) will denote a cube of length r centered at x. In particular, if x = 0, we

will use the simpler notation Qr for such a set. Q0
r will refer to the set Qr ∩ {yn = 0}. For

x0 ∈ {yn = 0}, we also define the upper half cube of side length r as follows:

Q+
r (x0) =

{
x ∈ R

n | |x′ − x′
0|∞ <

r

2
and 0 < xn < r

}
,

Finally S(n) will denote the set of all n × n real symmetric matrices. The norm of a
matrix M ∈ S(n) is defined as

||M|| def=
n∑

i=1

|λi | (2.1)

where λ′
is are the eigenvalues of M counted with multiplicity. up to

Now we list our basic structural assumptions. We will assume that F as in Eq. 1.1 is
uniformly elliptic with ellipticity bounds λ and �, i.e.

λ||N+|| − �||N−|| + F(M, x) ≤ F(M + N, x) ≤ F(M, x) + �||N+|| − λ||N−||, (2.2)

where N+ and N− denote the positive and negative parts of a symmetric matrix N

respectively. Moreover, we will also assume that

|F(M, x) − F(M, y)| ≤ ω(|x − y|)‖M‖, (2.3)

for some modulus of continuity ω. We now state our main result.
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2.1 Statement of theMain Result

Theorem 2.1 Let u be a viscosity solution to the following Neumann problem
{

|Du|βF
(
D2u, x

) = f, in 	 ∩ B1(0), 0 ∈ ∂	, β ≥ 0,

uν = g, on ∂	 ∩ B1(0),
(2.4)

where F satisfies the structural assumptions in Eqs. 2.2 and 2.3, 	 is a C2 domain, f ∈
C(	) and g ∈ Cα0(∂	) for some α0 > 0. Then we have that u ∈ C1,α(	 ∩ B1/2(0)) for
some α > 0 depending on n, λ, �, ω, β, α0 and the C2 character of 	. Here ν denotes the
outward unit normal to 	.

Remark 2.2 For the precise notion of viscosity solutions to fully nonlinear Neumann prob-
lems, we refer the reader to [24]. The Neumann condition in Eq. 2.4 similar to that in [26] is
to be interpreted in the following sense: If a smooth function φ locally touches u from above
(or below) at x0 ∈ ∂	( i.e. in 	 ∩ Br(x0) for some r > 0), then φν(x0) ≤ (or ≥) g(x0).

From Theorem 2.1, the following corollary can be deduced.

Corollary 2.3 Let u be a viscosity solution to the following Robin boundary problem{
|Du|βF

(
D2u, x

) = f, in 	 ∩ B1(0), 0 ∈ ∂	, β ≥ 0,

uν + h(x)u = g, on ∂	 ∩ B1(0),
(2.5)

where F satisfies the assumptions in Eqs. 2.2 and 2.3, 	 ∈ C2, f ∈ C(	) and h, g ∈
Cα0(∂	) for some α0 > 0. Then u ∈ C1,α(B1/2 ∩ 	) for some α > 0 depending on
n, λ, �,ω, β, α0 and the C2 character of 	.

3 Hölder Estimates up to the Boundary for Equations which are
Uniformly Elliptic when the Gradient is Large

In this section we establish uniform non-perturbative Hölder estimates for equations of the
type (1.2) for small |p|′s (say when |p| ≤ a0 for some a0 > 0). We first note that this in turn
is equivalent to getting similar estimates for small |p| (say |p| ≤ a0) up to the boundary for
equations of the type

F
(
D2u, x

)
= f

|Du + p|β
which lends itself a uniformly elliptic structure when say |Du| satisfies |Du| > 2a0 +
1 in the viscosity sense. Therefore, this reduces to getting uniform Hölder estimates for
equations which are uniformly elliptic when the gradient is large. We thus introduce the
relevant framework similar to that in [23].

For a given γ > 0 and 0 < λ < �, let P±
λ,�,γ be defined by

P+
λ,�,γ

(
D2v, Dv

)
=
{

�trD2v+ − λtrD2v− + �|Dv|, if |Dv| ≥ γ

+∞, otherwise
(3.1)

and

P−
λ,�,γ

(
D2v, Dv

)
=
{

λtrD2v+ − �trD2v− − �|Dv|, if |Dv| ≥ γ

−∞, otherwise.
(3.2)
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When the context is clear, we will frequently denote P±
λ,�,γ simply by P±. We first

recall the interior Cα estimate as established in Theorem 1.1 in [23].

Theorem 3.1 For any continuous function u : B1 −→ R, satisfying in the viscosity sense,
⎧⎨
⎩
P−(D2u,Du) ≤ C0 in B1,

P+(D2u,Du) ≥ −C0 in B1,

‖u‖L∞(B1) ≤ C0,

(3.3)

we have that u ∈ Cα
(
B 1

2
(0)

)
for some α depending on λ, � and the dimension n.

Furthermore, the following estimate holds,

‖u‖
Cα

(
B 1

2
(0)

) ≤ C(n, λ, �, γ, C0). (3.4)

Remark 3.2 It is clear from the definition of P±(M, p) that if u satisfies P+ (
D2u,Du

) ≥
L

(
resp.,P− (

D2u,Du
) ≤ L

)
in 	, then the rescaled function v(x) = Mu(x0 + rx)

satisfies

P+
r,M

(
D2v, Dv

)
≥ Mr2L

(
resp. P−

r,M

(
D2v, Dv

)
≤ MLr2

)
in

1

r
	 − x0,

where

P+
r,M

(
D2v, Dv

)
=
{

�trD2v+ − λtrD2v− + r�|Dv|, if |Dv| ≥ rMγ

+∞, otherwise.

Similarly, P−
r,M

(
D2v,Dv

)
is also defined.

We now proceed with our proof of analogous boundary estimates. In Sections 3 and 4,
we only restrict to the case when ∂	 = {xn = 0}. In Section 5, we then show how to reduce
to flat boundary conditions. The following result is the measure to uniform estimate at the
boundary, which is analogue to Lemma 3.1 in [23].

Theorem 3.3 There exist two small constants ε0 > 0 and δ > 0, and a large constant

K > 0, such that if γ ≤ ε0, then for any lower semicontinuous function u : Q+
1 −→ R

satisfying ⎧⎪⎪⎨
⎪⎪⎩

u ≥ 0in Q+
1 ,

P− (
D2u,Du

) ≤ 1 in Q+
1 ,

uxn ≤ 0 on Q0
1,|{u > K} ∩ Q+

1 | ≥ (1 − δ)|Q+
1 |,

(3.5)

we have that u > 1 in Q+
1

16
√

n

.

Proof The proof is divided into three steps.

Step 1: Similar to that in [23], we first assume that u is a classical solution of Eq. 3.5, i.e.

let u ∈ C2(Q+
1 ) ∩ C

(
Q+

1

)
and satisfies the Neumann condition in the viscosity

sense. Suppose on the contrary that for all ε0, δ and K such that for which Eq. 3.5
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holds, there exists x0 ∈ Q+
1

16
√

n

such that u(x0) ≤ 1. Let us consider the following

set G = {u > K} ∩ Q+
1

16
√

n

. Given x ∈ G, let y ∈ Q+
1 be a point such that

u(y) + 10|y − x|1/2 = min
Q+

1

{
u(z) + 10|z − x|1/2

}
(3.6)

i.e. we slide the cusp with vertex at x till touches the graph of u for the first time. Now on

one hand, since u ≥ 0 in Q+
1 and x ∈ G ⊂ B+

1/8, therefore we have

u(ξ) + 10|ξ − x| 12 ≥ 10|ξ − x| 12 (3.7)

> 5

√
7

2
, (3.8)

for any ξ ∈ ∂Q+
1 ∩ {xn > 0}. On the other hand,

u(x0) + 10|x0 − x| 12 ≤ 1 + 10 ×
(
1

4

) 1
2

(3.9)

= 6 < 5

√
7

2
. (3.10)

This shows that y /∈ ∂Q+
1 ∩ {xn > 0}. We now show that y �∈ Q0

1. If that is not the case,
then since uxn ≤ 0 in the viscosity sense, therefore necessarily we must have

lim sup
h→0

[
φ
(
y′, hen

) − φ
(
y′, 0

)

h

]
≤ 0 (3.11)

where φ(·) = −10| ·−x| 12 . However a direct calculation shows that the quantity in Eq. 3.11
equals

−5
(y − x)

|y − x| 32
· en = 5xn

|y − x| 32
> 0 (since yn = 0),

which is a contradiction to Eq. 3.11. Therefore, the minimum will never be achieved on
the boundary and thus y ∈ Q+

1 . At this point, the rest of the proof is similar to that in the
in interior case (see Proposition 3.3 in [23]) but we nevertheless provide the details for the
sake of completeness.

Let K = 1 + 5
√

7
2 . In this way, we can ensure that u(y) < K . In particular x �= y

and therefore |z − x| 12 is differentiable at z = y. Note that for one value of x, there can
be more than one y where the minimum is achieved. However, the value of y determines x

completely since we must have

Du(y) = 5(x − y)|y − x|− 3
2 .

Let us now set ψ(ξ) = −10|ξ | 12 . Then from the extrema conditions, we have

Du(y) = Dψ(y − x), (3.12)

D2u(y) ≥ D2ψ(y − x). (3.13)

The relations (3.12) and (3.13), together with P− (
D2u,Du

) ≤ 1, imply that

|D2u(y)| ≤ C
(
1 + |D2ψ(y − x)| + |Dψ(y − x)|

)
, (3.14)
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as long as ε0 ≤ minB√
n
|Dψ |. Note that over here, C only depends on the ellipticity con-

stants and the dimension. Since for each value of y, there is only one value of x, so we can
define a map τ(y) := x. Let U be the domain of τ . It is clear that U ⊂ {z : u(z) < K} and
τ(U) = G.

By putting x = τ(y) in Eq. 3.12 and employing the chain rule, we get

D2u(y) = D2ψ(y − τ(y))(I − Dτ(y)).

Solving for Dτ and using the estimate (3.14), we get

|Dτ(y)| ≤ 1 + C
1 + |D2ψ(y − x)| + |Dψ(y − x)|

|D2ψ(y − x)| ≤ C̃. (3.15)

The reader should note over here in Eq. 3.15, we crucially used the fact that all the
eigenvalues of D2ψ are comparable. Now, since∣∣∣∣Q+

1
16

√
n

∣∣∣∣
|Q+

1 | ≥ c(n),

therefore in view of the last condition in Eq. 3.5 and the fact that U ⊂ {z | u(z) < K}, we
obtain

(1 − cδ)|Q+
1

16
√

n

| ≤ |G| =
∫

U

|Det τ(y)|dy ≤ C|U | ≤ Cδ|Q+
1 |.

This is a contradiction if δ is small enough. This completes the proof of Step 1.

Step 2: Assuming that the Theorem 3.3 holds for semiconcave supersolutions, we now
show that this in turn implies that the conclusion remains true for lower semi-
continuous supersolution u.

Let u be a merely lower semi continuous supersolution defined in Q+
1 . Let v :=

min{u, 2K}, where K is as in Step 1. Note that v is still a supersolution because it is the
minimum of two supersolutions. Indeed, suppose that v − φ has minimum at x0. There are
two possibilities: {

1) x0 ∈ Q+
1 or

2) x0 ∈ Q0
1.

(3.16)

We first note that there two possible subcases under the Case 1).

(1a) If v(x0) = u(x0), then we have

u(x0) − φ(x0) = v(x0) − φ(x0) ≤ v(x) − φ(x) ≤ u(x) − φ(x).
In this case, the desired differential inequality is seen to be valid for φ because u satisfies

such an inequality in the viscosity sense.

(1b) Suppose instead that v(x0) = 2K , then we have

2K − φ(x0) = v(x0) − φ(x0) ≤ v(x) − φ(x) ≤ 2K − φ(x)

and conclusion in this case follows from the extrema conditions for φ. Similarly the
Neumann condition when Case 2) holds is seen to be satisfied.

As in [23], for a given δ > 0, we now consider the inf-convolution of v defined as
follows:

vε(x) = inf
y∈ Q+

1−δ̃

(
v(y) + 1

2ε
|y − x|2

)
,
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where δ̃ = δ/2. For any x ∈ Q+
1 , using the fact that vxn ≤ 0, it follows in a standard way

that the infimum above will be achieved at any point y0 ∈ Q+
1−δ̃

\ Q0
1. See for instance the

proof of Lemma 5.2 in [26].
We now make the following claim.

Claim For any ε > 0 satisfying 2
√
2Kε < δ/4, vε is supersolution to the following

problem {P−(D2vε,Dvε) ≤ 1 in Q+
1−δ,

(vε)xn ≤ 0 on Q0
1−δ .

(3.17)

The proof of this claim follows exactly the same way as that of Lemma 5.3 in [26] and
so we skip the details. Then by noting that vε is semiconcave and satisfies (3.17), we can
now apply the conclusion of Step 1 to vε and then by a limiting argument as in the proof of
Proposition 3.4 in [23], we thus conclude that the assertion in Step 2 holds.

Step 3: Finally the fact that the conclusion of Theorem 3.3 holds when u is a semiconcave
viscosity supersolution of Eq. 3.5 follows by repeating the interior arguments as
in the proof of Proposition 3.5 in [23]. Note that the Neumann condition uxn ≤
0 ensures that as in Step 1 that the minimum in Eq. 3.6 is attained on the set
Q+

1 \ {xn = 0}. This finishes the proof.

3.1 Barrier Function and Doubling Type Lemma

As mentioned in the introduction, since our proof of the Lε estimate relies on Calderon-
Zygmund decomposition instead of the growing Ink-spot lemma as employed in [23]
because of certain technical obstructions, therefore we need a somewhat adjusted doubling
type lemma as stated in Theorem 3.4 below.

Similar to [23], we consider the function

V (x) = |x|−σ + εn,σ xn = h(x) + εn,σ xn,

where εn,σ > 0 is a positive constant depending on σ and n and will be subsequently chosen.
We let r = |x|. As the reader will see, unlike the interior case as in [23], this additional term
εn,σ xn accounts for the adjustment required due to the presence of the Neumann condition.
Using D2V = D2h and also the fact that h is radial, we can assert that the eigenvalues
of D2h(x), for x �= 0, are −σr−σ−2 with multiplicity n − 1 and σ(σ + 1)r−σ−2 with
multiplicity 1. Therefore, for x �= 0, we have

P− (
D2V (x), DV (x)

)
= λσ(σ +1)r−σ−2 −�(n−1)σ r−σ−2 −�|εn,σ en −σr−σ−2x|, (3.18)

as long as |DV (x)| ≥ γ . A standard calculation shows

P− (
D2V (x),DV (x)

)
= λσ(σ + 1)r−σ−2 − �(n − 1)σ r−σ−2 − �|εσ en − σr−σ−2x|
= σr−σ−2

(
λ(σ + 1) − �(n − 1) − �|

( εn,σ

σ

)
rσ+2en − x|

)
(3.19)

≥ σr−σ−2
(

λ(σ + 1) − �(n − 1) − �εn,σ rσ+2

σ
− �r

)
.
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The next lemma corresponds to the spread of the positivity set needed to apply the
Calderon-Zygmund type lemma in the upper half space.

Theorem 3.4 There exists an ε0 > 0 depending on the ellipticity and dimension such that
if γ ≤ ε0, u : Q+

8n −→ R, satisfies
⎧⎨
⎩

u ≥ 0 inQ+
8n,

P−
λ,�,γ

(
D2u,Du

) ≤ 1 in Q+
8n,

uxn ≤ 0 on Q0
8n,

(3.20)

and u > K onQ+
1

16
√

n

for a sufficiently largeK (depending on�, λ, n, γ ), then u > 1 inQ+
3 .

Proof We first observe that

B+
1

32
√

n

⊂ Q+
1

16
√

n

and Q+
3 ⊂ B+

3
√

n
⊂ B+

4n ⊂ Q+
8n.

Then we consider the following barrier function:

B(x) = K

2[32√n]σ
[|x|−σ − (4n)−σ + εn,σ

(
xn − 8n

√
n
)]

, (3.21)

with εn,σ = (128n)−8(σ+2).
For any value of K ≥ 1, we note that B has the following properties:

(1) B(x) ≤ 0 for any |x| ≥ 4n.
(2) B(x) ≤ K

2 < K for any x ∈ ∂B 1
32

√
n

. In particular for any x ∈ ∂B 1
32

√
n

∩ {xn > 0} ,

B(x) < K .
(3) For any x �= 0 such that xn = 0, we have that ∂B

∂xn
(x) = εn,σ K

2[32√n]σ . In particular,

∂B

∂xn

(x) > 0 (3.22)

for x �= 0.

We now choose σ sufficiently large such that the following holds:

λ(σ + 1) − �(n − 1) − �
(
8n

√
n
)σ+2

σ(128n)8(σ+2)
− �

(
8n

√
n
) ≥ 2. (3.23)

Having chosen σ, it is always possible to choose K ≥ 1 (sufficiently large), such that
following inequalities hold:

(1) |DB(x)| ≥ γ in Q+
8n,

(2) |B(x)| > 1 in B+
3
√

n
,

(3) P− (
D2B,DB

) ≥ 2 in Q+
8n.

Now, we claim that u ≥ B in

(
B4n \ B 1

32
√

n

)
∩ {xn ≥ 0}. If not, then there exists an

z0 ∈
(

B4n \ B 1
32

√
n

)
∩{xn ≥ 0} which corresponds to a negative minimum of u−B in that

same set. Then there are two possibilities:

(1) (z0)n = 0. In this case, we must have ∂B
∂xn

≤ 0 due to Eq. 3.20 which in view of
Eq. 3.22 above is not possible.
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(2) z0 is an interior point. In this case, we again have a contradiction to Eq. 3.20 since
P− (

D2B,DB
) ≥ 2 in Q+

8n.

This proves the claim. Therefore for ε = minB+
1

32
√

n

(u/K−1),we obtain u ≥ (1+ε)K >

1 in B+
3
√

n
.

As a consequence, we have the following corollary which is the key ingredient in our
proof of Lε estimate.

Corollary 3.5 There exist small constants ε0 > 0 and δ > 0 and a large constant K > 0,

such that if γ ≤ ε0, then for any lower semicontinuous function u : Q+
8n −→ R, satisfying

⎧⎪⎪⎨
⎪⎪⎩

u ≥ 0 in Q+
8n,

P− (
D2u,Du

) ≤ 1 in Q+
8n,

uxn ≤ 0 on Q0
8n,|{u > K} ∩ Q+

1 | > (1 − δ)|Q+
1 |,

(3.24)

we have u > 1 in Q+
3 .

Proof Let K1 and K2 be the (renamed) constants from Theorems 3.3 and 3.4 respectively.
We claim that K can be taken to be K1K2. With such a choice of K , we note that the
function v = u/K2 satisfies the assumption of Theorem 3.3. From there we conclude that
v > 1 in Q+

1
16

√
n

, i.e, u > K2 in Q+
1

16
√

n

. Now we can apply the doubling result Theorem 3.4

to finally obtain that u > 1 in Q+
3 .

We now state and prove the boundary version of the Lε estimate.

Theorem 3.6 There exists a small enough ε, ε0 > 0 such that if γ ≤ ε0, then for any u

satisfying ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u ≥ 0 in Q+
8n,

P− (
D2u,Du

) ≤ 1 in Q+
8n,

uxn ≤ 0 on Q0
8n,

inf
Q+

3

u ≤ 1,

(3.25)

we have
|{u > t} ∩ Q+

1 | ≤ C̃t−ε, t > 0. (3.26)

Proof In order to prove (3.26), note that it suffices to show that for δ > 0 as in Corollary
3.5,

| {u > (C0K)m
} ∩ Q+

1 | ≤ (1 − δ/2)m|Q+
1 | (3.27)

for K as in Corollary 3.5 and C0 sufficiently large which will be chosen below. For m = 1,
since inf

Q+
3

u ≤ 1 so by Corollary 3.5 we find

|{u > K} ∩ Q+
1 | ≤ (1 − δ)|Q+

1 |.
Now assume that the result is true for m − 1, that is,

|
{
u > (C0K)m−1

}
∩ Q+

1 | ≤
(
1 − δ

2

)m−1

|Q+
1 |. (3.28)
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Let us set

Am = {
u > (C0K)m

} ∩ Q+
1 and Am−1 =

{
u > (C0K)m−1

}
∩ Q+

1 .

We claim that
|Am| ≤ (1 − δ/2)|Am−1|. (3.29)

If not, then by the Calderon-Zygmund lemma applied to cubes in the upper half space,
we have that there exists a dyadic cube Q such that

|Am ∩ Q| > (1 − δ/2)|Q| (3.30)

and 2Q = Q̃ �⊂ Am−1, i.e. there is a point x1 ∈ Q̃ such that u(x1) ≤ (C0K)m−1. Let us
consider the following cases:
Case 1 Suppose Q = Q 1

2i
(x0) such that |(x′

0, (x0)n) − (x′
0, 0)| ≥ 4n

2i . In this case, it is easy

to observe that Q 8n
2i

(x0) ⊂ Q+
8n. Therefore, the rescaled function ũ : Q8n −→ R, defined

by ũ(y) = 1
(C0K)m−1 u

(
x0 + en

2i+1 + y

2i

)
satisfies the following differential inequality

⎧
⎪⎪⎨
⎪⎪⎩

ũ ≥ 0 in Q8n,

P− (
D2ũ, Dũ

)
≤ 1 in Q8n,

ũ(y1) ≤ 1 for some y1 ∈ Q3,

(3.31)

for a smaller γ in view of the discussion in Remark 3.2. Therefore, we can employ the
interior version of Corollary 3.5 to conclude that

|{ũ > K} ∩Q1| ≤ (1 − δ/2)|Q1|, (3.32)

which in particular implies

|Am ∩ Q| = | {u > (C0K)m
} ∩Q| ≤ (1 − δ/2)|Q|. (3.33)

This contradicts (3.30).
Case 2 Now suppose instead that either Q = Q 1

2i
(x0) or Q = Q+

1
2i

(x0) with

|(x′
0, (x0)n) − (x′

0, 0)| ≤ 4n

2i
.

In this case, due to the nature of the Calderon-Zygmund decomposition for cubes in the
upper half space, there are two possibilities

[i] (x0)n = 0 or

[ii] (x0)n ≥ 1

2i
.

In Case 2 [i], we again consider the rescaled function ũ : Q+
8n −→ R defined by

ũ(y) = 1

(C0K)m−1
u
(
x0 + y

2i

)
, (3.34)

which satisfies the following differential inequality
⎧⎪⎪⎨
⎪⎪⎩

ũ ≥ 0 in Q+
8n,

P− (
D2ũ, Dũ

) ≤ 1 in Q+
8n,

ũxn ≤ 0 on Q0
8n,

and ũ(z1) ≤ 1 for some z1 ∈ Q+
3

(3.35)
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Therefore by Corollary 3.5 we note that the following holds,

| {ũ > K} ∩Q+
1 | ≤ (1 − δ/2)|Q+

1 |. (3.36)

This implies that

| {u > (C0K)m
} ∩Q| ≤ (1 − δ/2)|Q|, (3.37)

which then contradicts (3.30) as before.
Instead if Case 2 [(ii)] happens, i.e. say (x0)n ≥ 1

2i . Now since we also have that (x0)n ≤
4n/2i , therefore, given δ0 such that 0 < δ0 < 1, there exists a cube Qδ0 ⊂ Q+

1 of size
comparable to Q which contains Q such that dist(Qδ0 , {xn = 0}) = δ0/2i . We now make
the following claim.
Claim If C0 is large enough, then the function

v(y) = u(y)

(C0K)m−1
> K in Qδ0 .

Proof of the claim: Suppose on the contrary that there exists a point y0 ∈ Qδ0 such that

v(y0) ≤ K .

Then the function defined by w(z) = v(z)
K

, satisfies w(y0) ≤ 1. So by the interior Lε

estimate we have
| {w > t} ∩ Qδ0 | ≤ C(ε, δ0)t

−ε |Qδ0 |.
Note that such an estimate is a consequence of the interior Lε estimate in [23] followed

by a standard covering argument. We also note that the constantC = C(ε, δ0) can be chosen
to be independent of i in view of scale invariance of the estimates (note that the size of
both Qδ0 as well as Q are comparable to 1

2i ) , see for instance Remark 3.2. Therefore, in
particular,

|{w > C0} ∩ Qδ0 | ≤ C(ε, δ0)C
−ε
0 |Qδ0 |. (3.38)

Now we note that since

{w > C0} = {v > C0K} = {
u > (C0K)m

}
,

therefore this implies that the following holds,

| {u > (C0K)m
} ∩ Qδ0 | ≤ C(ε, δ0)C

−ε
0 |Qδ0 |.

Then using (3.30), we have

|{w > C0} ∩ Q| = | {u > (C0K)m
} ∩ Q| > (1 − δ/2)|Q|. (3.39)

Now, we choose the smallest cube Q̂+ with base at {xn = 0} which contains Qδ0 and

we also set C̃(δ0) = |Qδ0 |
|Q̂+| . Note that we have that C̃(δ0) → 1 as δ0 → 0. Thus we can

choose δ0 sufficiently small such that C̃(δ0) > (1 − δ), where δ is from Corollary 3.5. We
then let C(δ0) = |Q|/|Qδ0 |. It is easy to see that C(δ0) is bounded from below uniformly
as δ0 → 0. Therefore we have from Eq. 2

|{w > C0} ∩ Qδ0 | > (1 − δ/2)|Q| = (1 − δ/2)C(δ0)|Qδ0 |. (3.40)

At this point, if we choose C0 sufficiently large such that 2C(ε, δ0)C
−ε
0 < (1 −

δ/2)C(δ0), then from Eq. 3.38 we obtain

|{w > C0} ∩ Qδ0 | < (1 − δ/2)C(δ0)|Qδ0 |
which contradicts (3.40). This proves the claim.
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Consequently, we have

|{v > K} ∩ Q̂+| ≥ |{v > K} ∩ Qδ0 |
(
since Qδ0 ⊂ Q̂+) (3.41)

= |Qδ0 | (
since v > K in Qδ0

)

= C̃(δ0)|Q̂+|
> (1 − δ)|Q̂+|.

Therefore by invoking Corollary 3.5, we conclude that v > 1 in 3Q̂+ and hence v > 1
in Q̃ since Q̃ ⊂ 3Q̂+. Now given that Am−1 = {u > (C0K)m−1} ∩ Q+

1 = {v > 1} ∩ Q+
1 ,

therefore this contradicts the fact that Q̃ �⊂ Am−1. The conclusion of the Theorem thus
follows.

We also need the following uniform estimate as in Theorem 3.8 below which is a con-
sequence of a scaled version of the above Lε estimate. Such an estimate plays a crucial
role in the proof of Hölder regularity of the solutions up to the boundary similar to that in
the interior case as in [23]. Before stating such a result, we make the following important
remark.

Remark 3.7 Given ε0 > 0 as in Theorem 3.6, we will choose C1 large enough in the
hypothesis of Theorem 3.8 below such that ε0 > 2

C1�
where� is the ellipticity upper bound.

Theorem 3.8 There exist small constants ε̃0, c0 > 0 and α, r0 ∈ (0, 1) such that if γ ≤ ε̃0,
then for any lower semicontinuous function u : B+

(4n)r :−→ R satisfying the following
differential inequalities for r ≤ r0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ≥ 0 in B+
(4n)r ,

P− (
D2u,Du

) ≤ ε1/2 in B+
(4n)r ,

uxn ≤ g on B0
(4n)r ,

‖g‖L∞(
B0
4n

) ≤ ε1
C1�

and |{u > rα} ∩ Q+
r | ≥ 1

2 |Q+
r |,

(3.42)

we have,

u > c0r
α (3.43)

in Q+
3r . In particular, u > c0r

α in B+
r .

Proof Let τ > 1 be such that

Cτ−ε <
|Q+

1 |
2

(3.44)

where C and ε > 0 are the constants from the Lε estimate as in Theorem 3.6 above. Now,
consider the following function

ũ : B+
4n −→ R,

defined by

ũ(x) = τr−αu(rx) + τε1

�C1
r1−α(4n − xn). (3.45)
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where ε1 will be chosen later. Then we have that ũ satisfies

⎧⎪⎨
⎪⎩

ũ ≥ 0 in B+
(4n),

P−
λ,�,γ̃

(
D2ũ, Dũ

) ≤
[

ε1τ
C1

+ ε1τ
2

]
r2−α in B+

(4n),

ũxn ≤ 0 on B0
4n,

(3.46)

with γ̃ =
(
γ τ + 2ε1τ

�C1

)
r1−α . Furthermore, we have

| {ũ > τ } ∩ Q+
1 | ≥ 1

2
|Q+

1 | ≥ Cτ−ε . (3.47)

Now let us choose ε1 = τ−1. Then we have that γ̃ =
(
γ τ + 2

�C1

)
r1−α . We now fix

α ∈ (0, 1/2). Then by choosing r0 small enough we can ensure that

P−
λ,�,γ̃

(
D2ũ, Dũ

)
≤ 1 (3.48)

Moreover with ε0 as in Theorem 3.6, we note that in view of our choice of C1 in Remark
3.7, if we have

γ ≤ ε̃0
def=
(

ε0ε1 − 2ε1
�C1

)
,

then we can ensure that γ̃ ≤ ε0.
In such a case, necessarily we must have

ũ > 1 in Q+
3 , (3.49)

otherwise by applying the Lε estimate in Theorem 3.6, we will obtain a contradiction to Eq.
3.47. We thus obtain from Eq. 3.49 that

u > ε1r
α − C2ε1r (3.50)

in Q+
3r . The desired estimate (3.43) now follows from Eq. 3.50 in a standard way provided

r0 is adjusted further depending also on C2.

With Theorem 3.8 in hand, we can now repeat the arguments in [23] to conclude the
Hölder decay of u at a boundary point. The Hölder regularity up to the boundary conse-
quently follows by a standard real analysis argument by combining the boundary estimate
with the interior estimate in [23]. We close this section by stating such a result.

Theorem 3.9 For any continuous function u : B+
1 −→ R, such that

⎧⎪⎪⎨
⎪⎪⎩

P− (
D2u,Du

) ≤ C0 in B+
1 ,

P+ (
D2u,Du

) ≥ −C0 in B+
1 ,

uxn = g on B0
1 ,‖g‖L∞(

B0
1

) ≤ C0,

we have u ∈ Cα

(
B+

1
2

)
for some α > 0 depending on λ, � and the dimension.

4 Equicontinuous Estimates up to the Boundary for Equations which
are Uniformly Elliptic when the Gradient is Small

In this section we obtain equicontinuous estimates for equations of the type (1.2) for large
slopes, i.e. when |p| is large. As we have already mentioned in the introduction, since an

A. Banerjee, R.B. Verma340



appropriate generalization of the doubling variable argument of Ishii and Lions to our Neu-
mann problem is not clear to us, therefore we instead adapt the method of Savin as in [30]
based on sliding paraboloids.

Now in order to see that the method of sliding paraboloids can be applied in this situation
(which is tailor-made for equations which are uniformly elliptic when the gradient is small),
we note that (1.2) can be rewritten as

∣∣∣∣
Du

|p| + p

|p|
∣∣∣∣
β

F (D2u) = f

|p|β .
Therefore, for large enough |p|, getting equicontinuity estimates for Eq. 1.2 reduces to

getting such estimates for equations of the following type

{ |e + σDu|βF (D2u, x) = f in B+
1 ,

uxn = g on B0
1 ,

(4.1)

where |e| = 1, 0 < σ ≤ 1 and F : S(n) × R
n −→ R, is a uniformly elliptic operator, i.e.

λ‖Y‖ ≤ F(X + Y, x) − F(X, x) ≤ �‖Y‖, (4.2)

for all X, Y ∈ S(n) with Y ≥ 0. Note that the equation in Eq. 4.1 has a uniformly ellip-
tic structure when |Du| is small. More precisely when |Du| ≤ 1

2σ , it follows by triangle
inequality using |e| = 1 that

1

2
≤ |e + σDu| ≤ 3

2
and thus from Eq. 4.2 it follows that the operator

F̃ (M, q, x) = |e + qσ |βF (M, x)

satisfies (
1

2

)β

λ‖Y‖ ≤ F̃ (X + Y, q, x) − F̃ (X, q, x) ≤
(
3

2

)β

�‖Y‖ (4.3)

for all Y ≥ 0 and |q| ≤ 1
2σ . Since 0 < σ ≤ 1, we thus see that F̃ is uniformly elliptic at

least for (q,M) ∈ B1/2(0) × S(n) which is independent of σ ∈ (0, 1).
In our discussion, we will however be considering slightly more general degenerate ellip-

tic operators as in [30]. More precisely, we consider fully nonlinear operators of the type
F̃ : S(n) × R

n × R
n −→ R, which satisfies the following structural conditions

SC1) F̃ is degenerate elliptic, that is,

F̃ (X + Y, q, x) ≥ F̃ (X, q, x) for all X, Y ∈ S(n), Y ≥ 0 and (q, x) ∈ R
n × R

n.

SC2) F̃ (0, q, x) = 0 for all (q, x) ∈ R
n × R

n.
SC3) F̃ is uniformly elliptic in a small neighbourhood of 0, that is, there is a δ > 0 such

that
λ‖Y‖ ≤ F̃ (X + Y, q, x) − F̃ (X, q, x) ≤ �‖Y‖,

for some 0 < λ < �, q ∈ Bδ , X, Y ∈ S(n) and Y ≥ 0 and x ∈ R
n.

Note that it is clear that the operator F̃ (X, q, x) = |e + σq|βF (X, x) satisfies the

structural conditions SC1), SC2) and SC3) with ellipticity bounds
(
1
2

)β

λ and
(
3
2

)β

� for

δ = 1
2σ .

Let us now consider the following problem:
{

F̃ (D2u,Du, x) ≤ f in B+
1 ,

uxn ≤ 0 on B0
1 ,

(4.4)
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where F̃ satisfies SC1)-SC3). The following lemma is a boundary version of Lemma 2.3 in
[18] which in turn is inspired by the ideas in the proof of Lemma 2.1 in [30].

Lemma 4.1 Let u be a viscosity solution to Eq. 4.4. Fix a ∈ (0, δ/2), let B ⊂ B+
1 be a

compact set, and define A ⊂ B+
1 to be the set of contact points of paraboloid with vertices

in B and opening −a, namely the set of points x ∈ B+
1 such that there exists y ∈ B which

satisfies

inf
ξ∈B+

1

{a

2
|y − ξ |2 + u(ξ)

}
= a

2
|y − x|2 + u(x). (4.5)

Then there exists universal constant c1 > 0 such that

c1|B| ≤ |A| +
∫

A

|f (x)|n
an

dx (4.6)

Proof Since B is compact subset of B+
1 , therefore for any y ∈ B, yn > 0. Therefore the

contact point x �∈ B0
1 . For if x ∈ A ∩ B0

1 , then the paraboloid

P y(ξ) = u(x) + a

2
|x − y|2 − a

2
|ξ − y|2

touches u at x ∈ B0
1 from below and also (P y)ξn

(x) = ayn > 0, which contradicts the
Neumann condition in the viscosity formulation as in Eq. 4.4 above. At this point, we can
essentially repeat the arguments as in Lemma 2.3 in [18]. Note that although Lemma 2.3 in
[18] deals with C2 solutions, but nevertheless the proof can be generalized to semiconcave
solutions using Alexandrov’s theorem and then to arbitrary viscosity solutions using inf
convolution. See for instance the proof of Lemma 2.1 in [30].

We now let Aa be the set of all x ∈ B+
1 such that u(x) ≤ a and the function u can be

touched from below at x with a paraboloid of opening −a with vertex in B+
1 , namely there

exists y ∈ B+
1 such that

inf
z∈B+

1

[
u(z) + a

2
|y − z|2

]
= u(x) + a

2
|y − x|2 (4.7)

The next result is the boundary version of the Lemma 2.4 in [18] . See also the
corresponding Lemma 2.2 in [30].

Lemma 4.2 Let u be as in Eq. 4.4. Also let a > 0 and x0 ∈ B0
1 such that B+

4r (x0) ⊂ B+
1 .

Then there exist universal constants Cb and cb and μb, such that if a ≤ δ
Cb

, ‖f ‖L∞(
B+
1

) ≤
μba and

B+
r (x0) ∩ Aa �= ∅, (4.8)

then
cb

∣∣B+
r (x0)

∣∣ ≤
∣∣∣B+

r
16

(x0) ∩ AaCb

∣∣∣ . (4.9)

Proof By Eq. 4.8, there exists x1 ∈ B+
r (x0) ∩ Aa . So by the definition of Aa , there exists

y1 ∈ B+
1 such that the paraboloid

Qy1(ξ) = u(x1) + a

2
|x1 − y1|2 − a

2
|ξ − y1|2, (4.10)
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satisfies {
Qy1(ξ) ≤ u(ξ) ∀ ξ ∈ B+

1 ,

Qy1(x1) = u(x1).
(4.11)

We now make the following claim.
Claim There exists z ∈ B+

r
32

(x0) such that

u(z) ≤ Qy1(z) + C1ar2. (4.12)

In order to prove the claim, let us consider the function φ : Rn −→ R, defined by

φ(x) =

⎧⎪⎨
⎪⎩

1
α
(32α − 1), if |x| < 1

32
1
α
(|x|−α − 1), if 1

32 ≤ |x| ≤ 1

0, if |x| > 1

(4.13)

where α is to be chosen later. In terms of φ, we then define ψ : B+
r (x0) −→ R in the

following way,

ψ(x) = Qy1(x) + ar2φ

(
x − x0

r

)
− εar2(r − xn), (4.14)

where ε is a sufficiently small number which will be chosen below. We note that for x

satisfying r
32 < |x − x0| < r , the function ψ is smooth. Moreover, for any x in the above

set we have

Dψ(x) = −a(x − y1) + arDφ

(
x − x0

r

)
+ εar2en. (4.15)

Thus it follows that

|Dψ(x)| ≤ 4a + a
r1+α

|x − x0|α
≤ a

(
4 + 321+α

)
< δ,

(4.16)

provided Cb ≥ (
4 + 321+α

)
and consequently F is uniformly elliptic in the above region.

In view of SC3) we have

F̃
(
D2ψ(x), Dψ(x), x

)
− f (x) ≥ λ

∣∣∣∣
∣∣∣∣
(
D2ψ(x)

)+∣∣∣∣
∣∣∣∣ − �

∥∥∥∥
(
D2ψ(x)

)−∥∥∥∥ − ‖f ‖L∞(
B+
1

) (4.17)

≥ a

[(
λ(1 + α) − √

n − 1�
) rα+2

|x − x0|α − λ − √
n − 1� − μb

]
.

Consequently, if we choose α sufficiently large, then we obtain

F̃
(
D2ψ(x), Dψ(x), x

)
− f (x) > 0 in B+

r (x0) ∩ {xn > 0} ∩
{ r

32
< |x − x0| < r

}
. (4.18)

Also for x̄ ∈ B0
1 , we observe that

∂xnψ(x̄) = a(y1)n + aεr2 > 0. (4.19)

We denote by z the point where min
x∈B+

r (x0)
(u − ψ) is achieved. We now choose ε > 0

sufficiently small such that

− ar2φ

(
x1 − x0

r

)
+ ar2(r − (x1)n)ε < 0. (4.20)
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Note that although the choice of ε depends on x1 but as we will see, it doesn’t affect the
final conclusion. Equation 4.20 implies

u(x1) − ψ(x1) = Qy1(x1) − ψ(x1) = −ar2φ

(
x1 − x0

r

)
+ ar2(r − (x1)n)ε < 0. (4.21)

Moreover on ∂Br(x0) ∩ {xn > 0}, we have
u(x) ≥ Qy1(x)

≥ Qy1(x) − εar2(r − xn)
(
since (ar2(r − xn) ≥ 0)

)

= ψ(x).

Now we note that since uxn ≤ 0 on B0
1 (in the viscosity sense), so in view of Eq. 4.19,

we can deduce that u − ψ cannot attain minimum on
{

r
32 < |x − x0| < r

} ∩ {
xn =

0
} ∪ ∂Br(x0) ∩ {xn > 0}. Therefore there exists z ∈ B+

r
32

(x0) such that

u(z) < ψ(z), (thanks to (4.21))

≤ Qy1(z) + ar2φ

(
z − x0

r

)
− εar2(r − zn)

≤ Qy1(z) + ar2φ

(
z − x0

r

) (
since

(
ar2(r − zn) ≥ 0

))

≤ Qy1(z) + C1ar2.

For a given L > 0 and y ∈ B r
128

(z) ∩ {yn > zn}, we consider the paraboloid
Py(x) = Qy1(x) − L

a

2
|x − y|2. (4.22)

It is easy to check that for each y, Py is a paraboloid with opening −(L+ 1)a and vertex
y1+Ly
1+L

. We slide it from below till it touches the graph of u for the first time. We claim that

the contact point x̄ ∈ B+
r
32

(z) provided L is large enough. In order to prove such a claim, we

make the following observations.

(i) Suppose x̄ ∈ B0
1 , then

∂xn(Py)(x̄) = a(y1)n + Layn > La(zn) > 0. (4.23)

Now since ∂xnu ≤ 0 on B0
1 (in the viscosity sense), therefore Py cannot touch u from

below at points in B0
1 .

(ii) Suppose instead x̄ satisfies |x̄ − z| ≥ r
32 , then using u ≥ Qy1 on B+

1 , we find that
the following holds,

u(x̄) − Qy1(x̄) + La

2
|x̄ − y|2 ≥ La

2

( r

32

)2
. (4.24)

On the other hand since

min
B+
1

{
u(x) − Qy1(x) + La

2
|x − y|2

}

≤ u(z) − Qy1(z) + La

2
|y − z|2 (4.25)

≤ C1ar2 + La

2

( r

128

)2
,
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thus by choosing L large enough and by taking into account (4.24) and (4.25), we find that
the contact point x̄ ∈ B+

r
32

(z) ⊂ B+
r
16

(x0).

We now show that at the contact point x̄, we have u(x̄) ≤ La provided L is further
adjusted. Indeed, since

Qy1(x1) = u(x1) ≤ a

and also
Qy1(x̄) = u(x1) + a

2
|x1 − y1|2 − a

2
|x̄ − y1|2

≤ a + 4a = 5a,

hence from Eq. 4.25 (since x̄ is the point where the minimum in Eq. 4.25 is achieved), we
find

u(x̄) ≤ Qy1(x̄) − L
a

2
|x̄ − y|2 + C1ar2 + La

2

( r

128

)2

≤ 5a + Car2 + La

2

( r

128

)2 ≤ La,

provided L is sufficiently large. Now as y varies in B r
128

(z) ∩ {yn ≥ zn} , the set of vertices
of the paraboloids as in Eq. 4.22 falls in the region

R̃
def=

[
B

(
y1 + Lz

1 + L
,

Lr

128(1 + L)

)⋂{
ξn ≥ (y1)n + Lzn

1 + L

}]
, (4.26)

therefore by applying Lemma 4.1, we get

c0|R̃| ≤ |B+
r
16 (x0)

∩ Aa(L+1)| +
(‖f ‖n

L∞(
B+
1

)

an

)
|B+

r
16 (x0)

|

≤ |B+
r
16 (x0)

∩ Aa(L+1)| +
(μb

16

)n |B+
r (x0)|. (4.27)

Then we observe that
|R̃| = C|B+

r (x0)| (4.28)

for some constant C independent of r . From (4.27) and (4.28) we finally obtain
[
c0C −

(μb

16

)n] |B+
r (x0)| ≤ |B+

r
16 (x0)

∩ AaL|.
and thus the conclusion of the lemma follows.

We note that the interior analogue of the lemma above is crucially needed to apply the
measure decay estimate in [18] and [30] which is the key ingredient needed to obtain quan-
titative oscillation decay estimates. In our situation, in order to combine the boundary and
interior estimate, we also need the following additional lemma.

Lemma 4.3 Let a > 0, and suppose that B+
4r (x0) ⊂ B+

1 and (x0)n ≥ r
16 . Suppose that u is

a viscosity solution of Eq. 4.4. Then there exists universal constants Cib, cib and μib > 0
such that if ⎧⎪⎨

⎪⎩

‖f ‖L∞(
B+
1

) ≤ aμib,

a ≤ δ
Cib

and
B+

r (x0) ∩ Aa �= ∅,

then ∣∣∣B+
r
16

(x0) ∩ AaCib
| ≥ cib|B+

r (x0)

∣∣∣ . (4.29)
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Proof The proof of this Lemma is similar to that of Lemma 4.2. We nevertheless give a
sketch of it for the sake of completeness.

By our assumption, there exists x1 ∈ (
Br(x0) ∩ R

n+
)∩Aa . So from the definition of Aa,

for some y1 ∈ B+
1 , we have that the paraboloid

Qy1(ξ) = u(x1) + a

2
|y1 − x1|2 − a

2
|y1 − ξ |2, (4.30)

satisfies {
u(ξ) ≥ Qy1(ξ) ∀ ξ ∈ B+

1 ,

u(x1) = Qy1(x1).

We now claim that there exists z ∈ B r
16

(x0) ⊂ B+
1 (since (x0)n ≥ r

16 ) such that

u(z) ≤ Qy1 + C2ar2. (4.31)

for some universal C2. In order to prove the claim, we consider the following function
� : Br(x0) −→ R, defined by

�(x) = Qy1(x) + ar2φ

(
x − x0

r

)
, (4.32)

with φ as in Eq. 4.13. Again we can choose α large enough so that the following differential
inequality is ensured

⎧⎪⎨
⎪⎩

F(D2�,D�, x) > f (x) in
{
x | r

32
< |x − x0| < r

}
∩ {xn > 0},

�xn > 0 on
{
x | r

32
< |x − x0| < r

}
∩ {xn = 0}.

(4.33)

We only check the second condition since the first one is as in the previous lemma.
Suppose that r

32 < |x̄ − x0| < r and also that x̄n = 0. Then we have that

∂xn�(x̄) = a(y1)n +
( r

|x̄ − x0|
)α+2 (x0)n

r
> 0. (4.34)

At this point, by arguing as in the proof of the previous lemma, we conclude that the
point of minimum in

min
Br (x0)∩{x | xn≥0}

{u − �} (4.35)

is realized in Br/32(x0). The rest of the arguments can then be repeated and the conclusion
of the lemma follows similarly.

Finally, we state the interior version of the above measure estimate. (see Lemma 2.4 in
[18]).

Lemma 4.4 Let u be a solution to the second order differential inequality in Eq. 4.4. Let
a > 0, and B4r (x0) ⊂ B+

1 . Then there exist universal constants Ci and ci and μi, such that
if a ≤ δ

Ci
, ‖f ‖L∞(

B+
1

) ≤ μia and

Br(x0) ∩ Aa �= ∅, (4.36)

then

ci |Br(x0)| ≤ |B r
16

(x0) ∩ ACia |. (4.37)
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4.1 Boundary Version of Measure Decay

We now prove a boundary version of the covering lemma that corresponds to lemma 2.3 in
[30]. Similar to the interior case, such a covering lemma is one of the crucial ingredients in
our proof of the oscillation decay estimate as in Theorem 4.9 below.

Lemma 4.5 Let D0, D1 be two closed sets satisfying

∅ �= D0 ⊂ D1 ⊂ B+
r0 .

and σ1, σ2, σ3 ∈ (0, 1) be such that for r0 ≤ 1
14 , the following hypotheses are satisfied,

H(I)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Whenever x ∈ B0
r0
and for some r > 0, one has

(i) B+
4r (x) ⊂ B+

1 ,

(ii) B+
r
16

(x) ⊂ B+
r0

,

(iii) B+
r (x) ∩ D0 �= ∅,

then,∣∣∣B+
r
16

(x) ∩ D1

∣∣∣ ≥ σ1
∣∣B+

r (x)
∣∣ .

H(II)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Whenever x ∈ B+
r0
and for some r > 0, one has

(i) xn ≥ r

16
,

(ii) B+
4r (x) ⊂ B+

1 ,

(iii) B r
16

(x) ⊂ B+
r0

,

(iv) B+
r (x) ∩ D0 �= ∅,

then,

|(B r
16

(x) ∩ D1| =
∣∣∣B+

r
16

(x) ∩ D1

∣∣∣ ≥ σ2
∣∣B+

r (x)
∣∣ .

H(III)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Whenever x ∈ B+
r0
and for some r > 0, one has

(i) B4r (x) ⊂ B+
1 ,

(ii) B r
16

(x) ⊂ B+
r0

,

(iii) Br(x) ∩ D0 �= ∅,

then,∣∣∣(B r
16

(x) ∩ D1

∣∣∣ ≥ σ3|Br(x)|.
In that case, we have that the following estimate holds,∣∣B+

r0
\ D1

∣∣ ≤ (1 − σ)
∣∣B+

r0
\ D0

∣∣ , (4.38)

for some σ ∈ (0, 1).

Proof Given x0 ∈ B+
r0

\ D0, set r̄ = dist{x0,D0} ≤ 2r0. Let us also define r = 8
7 r̄ . We will

first show that for some σ > 0, the following estimate holds,∣∣∣B r
4
(x0) ∩ B+

r0
∩ D1

∣∣∣ ≥ σ
∣∣Br(x0) ∩ B+

r0
(x0)

∣∣ . (4.39)
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The proof of Eq. 4.39 is based on a case by case argument depending on the distance of
x0 from {xn = 0}. Note that there are 4 possibilities.

Case (i) x0 ∈ B0
r0
.

Case (ii) 0 < (x0)n < r
16 = r̄

14 .
Case (iii) r

16 ≤ (x0)n < r0 − r
16 .

Case (iv) r0 − r
16 ≤ (x0)n ≤ r0.

Case-(i) In this case let us define

x1 = x0 − r

16

x0

|x0| ∈ B0
r0
.

when |x0| > 0. Otherwise, we take x1 = x0. Then it is easy to observe that the following
hold:

(a) B+
r
16

(x1) ⊂ B+
r0

,

(b) B+
r
16

(x1) ⊂ B+
r
8
(x0).

(c) B+
r (x1) ∩ D0 �= ∅.

(a) and (b) are easy consequences of triangle inequality. (c) can be seen as follows. Since
r̄ = dist{x0, D0}, therefore there exists z0 ∈ D0 such that |x0 − z0| = r̄ . Thus

|z0 − x1| ≤ |z0 − x0| + |x0 − x1|
< r̄ + r̄

14
= 15r̄

14
<

16r̄

14
= r .

This implies that z0 ∈ B+
r (x1) and hence z0 ∈ B+

r (x1) ∩ D0. Then we observe that the
following holds,

(d) B+
4r (x1) ⊂ B+

1 .

In fact, since (x1)n = 0, |x1| ≤ r0, and r ≤ 3r0, therefore if x ∈ B+
4r (x1), then

|x| ≤ |x − x1| + |x1| < 4r + r0 ≤ 13r0 < 1.

Therefore in this situation we see that the conditions in H(I) are satisfied and conse-
quently we have

∣∣∣B+
r
16

(x1) ∩ D1

∣∣∣ ≥ σ1
∣∣B+

r (x1)
∣∣ . (4.40)

Thus from Eq. 4.40, we find

σ1|Br(x0) ∩ B+
r0

| ≤ σ1|B+
r (x0)|

= σ1|B+
r (x1)| (since the measure is translation invariant)

≤ |B+
r
16

(x1) ∩ D1| (by Eq. 4.40) (4.41)

≤ |B+
r
8
(x0) ∩ B+

r0
∩ D1| (by observation (a), (b))

≤ |B r
8
(x0) ∩ B+

r0
∩ D1|

≤ |B r
4
(x0) ∩ B+

r0
∩ D1|.

Equation 4.39 thus follows in this case. We now consider Case (ii).
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In this case we have 0 < (x0)n < r̄
14 = r

16 . Let us consider the following shifted point
corresponding to x0.

x1 =
{

P(x0) − r̄
14

P(x0)|P(x0)| , if P(x0) �= 0

0, if P(x0) = 0
(4.42)

where P(x0) is the projection of x0 on {x ∈ R
n | xn = 0}. We first note that (x1)n = 0.

Moreover we easily observe that the following hold,

(a’) B+
r
16

(x1) ⊂ B+
r0
.

(b’) B+
r (x1) ∩ D0 �= ∅.

(c’) B+
r
16

(x1) ⊂ B+
r
4
(x0) ⊂ B r

4
(x0).

(d’) B+
4r (x1) ⊂ B+

14r0
⊂ B+

1 since r0 ≤ 1
14 .

(a’), (c’) and (d’) follow easily from triangle inequality. (b’) can be seen as follows. As in
Case i), let z0 ∈ D0 be such that |x0 − z0| = r̄ . Then

|x1 − z0| ≤ |x1 − P(x0)| + |P(x0) − x0| + |x0 − z0| <
r̄

14
+ r̄

14
+ r̄ = 8r̄

7
= r,

(b’) thus follows.
In view of the observations (a’),(b’) and (d’) and (HI), we get

∣∣∣B+
r
16

(x1) ∩ D1

∣∣∣ ≥ σ1
∣∣B+

r (x1)
∣∣ . (4.43)

We then note that

(a”)
∣∣B+

r (x1)
∣∣ = ∣∣B+

r (P (x0))
∣∣ (because (x1)n = (P (x0))n = 0).

(b”) |B+
r (P (x0))| = |B+

r (x0) ∩ {x | xn ≥ (x0)n}| (because the measure is translation
invariant).

(c”) |B+
r (x0) ∩ {x | xn ≥ (x0)n}| = 1

2 |Br(x0)|.
Thus ∣∣∣B r

4
(x0) ∩ B+

r0
∩ D1

∣∣∣ ≥
∣∣∣B+

r
16

(x1) ∩ D1|
(
by

(
c′))

≥ σ1
∣∣B+

r (x1)
∣∣ (by Eq. 4.43)

= σ1
∣∣B+

r (P (x0))
∣∣ (by (a”)) (4.44)

= σ1

2
|Br(x0)| (by (b”) and (c”))

≥ σ1

2
|Br(x0) ∩ B+

r0
(0)|.

Equation 4.39 thus follows in this case as well.
We now look at Case (iii). In this case similar to that of Case (ii), we consider the

following shifted point corresponding to x0,

x1 =
{

x0 − r̄
14

P(x0)|P(x0)| , if P(x0) �= 0

x0, if P(x0) = 0.

We then make the following observations.

(e’) From the choice of x1 and the fact r
16 < (x0)n = (x1)n < r0 − r

16 , we find that

B r
16

(x1) ⊂ B+
r0

and B r
16

(x1) ⊂ B r
4
(x0).
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(f’) By arguing as in the previous case, we also have

B+
r (x1) ∩ D0 �= ∅.

(h’) Likewise we have B+
4r (x1) ⊂ B+

14r0
⊂ B+

1 (0).

So in view of above observations (e’), (f’) and (h’), we find that the conditions in H(II)
are satisfied and consequently we have

|B r
16

(x1) ∩ D1| ≥ σ2|B+
r (x1)|. (4.45)

Now in order to get appropriate measure estimate in terms of ball centered at x0 instead
of x1, let us also observe that

(d”) Since (x0)n = (x1)n, hence

|B+
r (x1)| = |B+

r (x0)|.
Therefore, we have∣∣∣(B r

4
(x0) ∩ B+

r0

) ∩ D1

∣∣∣ ≥
∣∣∣B r

16
(x1) ∩ D1

∣∣∣ (
by (e′)

)

≥ σ2
∣∣B+

r (x1)
∣∣ (

by Eq. 4.45
)

(4.46)

= σ2
∣∣B+

r (x0)
∣∣ (by (d”))

≥ σ2|Br(x0) ∩ B+
r0

|
We finally note that Case (iv) corresponds to the interior case and therefore by repeating

the arguments as in [18] ( given that H(III) holds) we will have
∣∣∣B r

4
(x0) ∩ B+

r0
∩ D1

∣∣∣ ≥ σ3
∣∣Br(x0) ∩ B+

r0
(x0)

∣∣ . (4.47)

Thus in view of Eqs .4.41, 4.44, 4.46 and 4.47, it is clear that the estimate in Eq. 4.39
follows by letting σ = min{σ1/2, σ2, σ3}.

Now, for every x ∈ B+
r0

\ D0, we consider the ball centered at x of radius r :=
dist{x, D0}. Then by applying Vitali covering’s Lemma to this family, we can extract a sub-

family {Brj (xj )} such that the balls
{
Brj

3
(xj )

}
are disjoint. In particular,

{
Brj

4
(xj )

}′
s are

disjoint. Hence,
∣∣B+

r0
\ D0

∣∣ ≤
∑
j

∣∣∣
(
Brj (xj ) ∩ B+

r0

)
\ D0

∣∣∣

≤ σ−1
∑
j

∣∣∣
(
Brj

4
(xj ) ∩ B+

r0

)
∩ (D1 \ D0)

∣∣∣ (4.48)

≤ σ−1
∣∣B+

r0
∩ (D1 \ D0)

∣∣ .
From Eq. 4.48 it follows that,

∣∣B+
r0

\ D1
∣∣ = ∣∣B+

r0
\ D0

∣∣ − ∣∣B+
r0

∩ (D1 \ D0)
∣∣

≤ (1 − σ)
∣∣B+

r0
\ D0

∣∣ . (4.49)

This finishes the proof.

Now, we are ready to prove the main oscillation decay result in this section. Before
stating such a result, we make the following remarks.
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Remark 4.6 From now on, we let C = max{Ci, Cib, Cb}, c = min{ci, cib, cb} and μ =
min{μi, μib, μb}, where triplet (Cb, cb, μb), (Cib, cib, μib) and (Ci, ci , μi) are respec-
tively from the Lemmas 4.2, 4.3 and 4.4. It is clear from the proofs that if we replace
such triplets in the hypothesis of the respective Lemmas by (C, c, μ) then we get that the
concluding inequality holds in all lemmas with ACa instead of ACba, ACiba and ACia .

Remark 4.7 We would also like to remark that from here onwards, we would deal with the
following non-homogeneous Neumann boundary value problem,{

F̃ (D2u,Du, x) = f in B+
1 ,

uxn = g on B0
1 .

(4.50)

Theorem 4.8 Let u ∈ C(B+
1 ∪ B0

1 ) be a viscosity solution (4.50) where F̃ satisfies the

structure conditions SC1)-SC3) and f ∈ C(B+
1 ). Let λ,� and δ be as in SC1)- SC3). Then

there exist universal constants ν, ε, ρ, θ ∈ (0, 1) such that if for some δ′ satisfying δ′ ≤ θδ

the following hold, ⎧⎪⎪⎨
⎪⎪⎩

‖f ‖L∞(
B+
1

) ≤ εδ′,

‖g‖L∞(
B0
1

) ≤ εδ′,

oscB+
1
u ≤ δ′

(4.51)

then
oscB+

ρ
u ≤ (1 − ν)δ′. (4.52)

Proof We closely follow the ideas as in the proof of Proposition 2.2 in [18] with suitable
modifications in our situation. Let c1 be the constant from Lemma 4.1, when the fully non-
linear operator F̃ under consideration is uniformly elliptic with ellipticity constants λ, � in
the region p ∈ B δ

2
instead of Bδ . Also we fix r0 sufficiently small so that Lemma 4.5 holds

and then let r1 = r0
16 . Let ν < 1

6 and N be universal constants to be chosen later such that
additionally the following is satisfied,

Nν << 1. (4.53)

Let us set
a = Nνδ′ and m = inf

B+
1

u. (4.54)

Suppose that there exists x0 ∈ B+
r0
2
such that

Assertion A:

u(x0) + ‖g‖L∞(
B0
1

) − m <
3

2
νδ′ (4.55)

as well as

sup
B+

r1

u − ‖g‖L∞(
B0
1

) − m >
δ′

2
. (4.56)

We now make the following claim.
Claim The Assertion A is false, i.e. both the inequalities (4.55), (4.56) cannot hold at the
same time.

Subsequently we show that this leads to the validity of the oscillation decay as asserted
in Eq. 4.52 above.
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In order to prove the claim we assume on the contrary that both the inequalities are
correct and then derive a contradiction.

Let us consider the following function

w = u − ‖g‖L∞(
B0
1

)xn. (4.57)

Then we note that w satisfies the following differential inequality in the viscosity sense
{

F1(D
2w,Dw, x) ≤ f in B+

1 ,

wxn ≤ 0 on B0
1 ,

(4.58)

where F1(M, p, x) = F̃ (M, p + ‖g‖L∞(
B0
1

)en, x) and en = (0, 0, ..., 1). We have assumed

that ‖g‖L∞(
B0
1

) ≤ εδ′ so that if we choose ε < ν
2 ≤ 1

2 , then we have that

‖g‖L∞(
B0
1

) ≤ δ′

2
≤ θδ

2
≤ δ

2

(
since θ ∈ (0, 1)

)
.

Consequently, F1 is uniformly elliptic with the same ellipticity constant provided p ∈
B δ

2
.
Let us then consider the non-negative function

v = u − m + (1 − xn)‖g‖L∞(
B0
1

). (4.59)

It is easy to observe that v satisfies (4.58) in the viscosity sense because it differs from
w by a constant. We now let Ãa to be the set of points in B+

1 , where v is bounded above by
a and can be touched by a paraboloid of opening −a with vertex in B+

1 .
Step 1: We first show that given any η > 0 sufficiently small depending on r1, the

following estimate holds ∣∣∣B+
r0

∩ Ãa

∣∣∣ >
c0

2

∣∣B+
r1

∩ {y | yn > η}∣∣ , (4.60)

with c0 being independent of η.
In order to prove the claim, for every y ∈ B+

r1
∩ {y | yn > η} let us consider the following

paraboloid

Py(x) = a

2

[
(r0 − r1)

2 − |x − y|2
]
.

Since given x for which |x| ≥ r0, we have that |x − y| ≥ |x| − |y| ≥ r0 − r1, therefore
Py(x) ≤ 0 ≤ v for all x ∈ {z : 1 > |z| ≥ r0} ∩ {zn > 0}.

On the other hand, for all x ∈ B+
r0
2
, we find that |x − y| ≤ |x| + |y| ≤ r0

2 + r1. Thus

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Py(x) ≥ a

2

[
(r0 − r1)

2 −
( r0

2
+ r1

)2]

= Nνδ′r20
2

[(
15

16

)2

−
(

9

16

)2
]

>
3νδ′

2
≥ u(x0) − m + (1 − (x0)n)‖g‖L∞(

B0
1

) = v(x0) (by Eq. 4.55),

(4.61)

where in the second line above, we have chosenN sufficiently large so that the third step in
Eq. 4.61 above follows. Since (4.61) holds for x ∈ B+

r0
2
, therefore, in particular, Py(x0) >

3νδ′
2 .
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Note also that Py(x) ≤ a for all x, y ∈ B+
1 . Let us now slide the paraboloids Py from

below till it touches the function v for the first time. Let Ã denotes the set of contact points
as y varies in B+

r1
∩ {yn > η}. Since the function v satisfies (4.58), therefore Py will not

touch the function at any x̃ ∈ B0
1 . Otherwise by our choice of y, we would get

⎧⎪⎨
⎪⎩

0 ≥ ∂xn(Py)(x̃) (because v satisfies Eq. 4.58)

= a(y − x̃)n

= ayn ≥ aη > 0
(
by the choice of y

)
,

(4.62)

which is a contradiction. Therefore, in view of the above observations, we can infer that all
contact points {x̃}′s lie inside B+

r0
. Moreover thanks to Eq. 4.61, the following holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 > v(x0) − 3

2
νδ′

≥ v(x0) − Py(x0) (by Eq. 4.61)

≥ min
z∈B+

1

{v(z) − Py(z)}

= v(x̃) − Py(x̃) (for a contact point x̃)

≥ v(x̃) − a
(
since (Py(x) ≤ a)

)
.

(4.63)

This implies that Ã ⊂ Ãa ∩B+
r0
. Thus by applying Lemma 4.1 with B = B+

r1 ∩{zn ≥ η},
we obtain⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣B+
r0

∩ Ãa

∣∣∣ ≥ |Ã|

≥ c1
∣∣B+

r1
∩ {yn > η}∣∣ −

‖f ‖n

L∞(
B+
1

)

an
|Ã|

≥ c1
∣∣B+

r1
∩ {yn > η}∣∣ − εn

Nnνn
|Ã| (using Eqs 4.51 and 4.54)

≥ c1
∣∣B+

r1
∩ {yn > η}∣∣ − εn

Nnνn
|B+

r0
∩ Ãa |.

(4.64)

Now, by choosing ε > 0 sufficiently small such that

εn

Nnνn
<

1

2
, (4.65)

we obtain (4.60) with c0 = c1
2 . This finishes the proof of Step 1.

Step 2: We now show that there exists σ̃ ∈ (0, 1) and C̃ > 0 such that the following
estimate holds ∣∣∣B+

r0
\ Ã

aC̃k0

∣∣∣ ≤ (1 − σ̃ )k0
∣∣B+

r0

∣∣ , (4.66)

provided C̃k0+1a ≤ δ
2 . From Eq. 4.60, we find that

B+
r0

∩ Ãa �= ∅. (4.67)

It is also clear that since the sets Ã
aC̃k are increasing with respect to k, therefore,

B+
r0

∩ Ã
aC̃k �= ∅ for all k ∈ N, (4.68)

where C̃ is the constant as in Remark 4.6 corresponding to δ/2 instead of δ. Note that the
hypothesis of the Lemmas 4.2, 4.3 and 4.4 are satisfied with C̃ka instead of a as long as
aC̃k+1 ≤ δ

2 .
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Thus that for every k ∈ N, satisfying aC̃k+1 ≤ δ/2 we can apply Lemma 4.5 to the
closed sets

D0 = B+
r0 ∩ Ã

aC̃k and D1 = B+
r0 ∩ Ã

aC̃k+1 , (4.69)

to assert that ∣∣∣B+
r0

\ Ã
aC̃k+1

∣∣∣ ≤ (1 − σ̃ )

∣∣∣B+
r0

\ Ã
aC̃k

∣∣∣ . (4.70)

Proceeding inductively, we obtain∣∣∣B+
r0

\ Ã
aC̃k

∣∣∣ ≤ (1 − σ̃ )k
∣∣B+

r0

∣∣ , (4.71)

which completes the proof of Step 2.
Step 3:We now define the following set

E =
{
x ∈ B+

r0
| u(x) − m + (xn − 1)‖g‖L∞(

B0
1

) >
δ′

4

}
. (4.72)

Then we claim that the following estimate holds for any η > 0 sufficiently small,

|E| ≥ c1

2

∣∣B+
r1

∩ {yn > η}∣∣ , (4.73)

where c1 is the constant from Lemma 4.1, when the operator under consideration is
uniformly elliptic for |p| < δ/2.

In order to prove (4.73), for each y ∈ B+
r1

∩ {yn > η}, we consider the following
paraboloid

Sy(x) = δ′

(r0 − r1)2
|x − y|2 + δ′

4
. (4.74)

By using the fact that r1 = r0/16, it is easy to observe that for all x, y ∈ B+
r1

, we have

Sy(x) ≤ δ′

2
. (4.75)

Now using (4.56), we find

sup
B+

r1

Sy(x) ≤ δ′

2
< sup

B+
r1

u − ‖g‖L∞(
B0
1

) − m ≤ sup
B+

r1

(
u + xn‖g‖L∞(

B0
1

)
)

− ‖g‖L∞(
B0
1

) − m. (4.76)

On the other hand for x ∈ {x | |x| ≥ r0} ∩ {xn > 0} since Sy(x) > δ′, therefore by Eq.
4.51, we have⎧
⎨
⎩

Sy(x) > δ′ ≥ u(x) − m (by 4.51 and from the definition of m as in 4.54)

≥ u(x) − m + (xn − 1)‖g‖L∞(
B0
1

)
(
since (xn − 1)‖g‖L∞(

B0
1

) ≤ 0
)
.

(4.77)

Also for any x̄ ∈ B0
1 and y ∈ B+

r1
∩ {yn > η}, we observe that

∂xn(Sy)(x̄) = −2δ′yn

(r0 − r1)2
< 0. (4.78)

We now let
ṽ = u + (xn − 1)‖g‖L∞(

B0
1

) − m. (4.79)

Then we observe that ṽ satisfies the following differential inequalities in the viscosity
sense ⎧

⎨
⎩

F2

(
D2ṽ, Dṽ, x

)
≥ f in B+

1 ,

ṽxn ≥ 0 on B0
1 ,

(4.80)
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where F2(X, p, x) = F̃ (X, p − ‖g‖L∞(
B0
1

)en, x), which is again uniformly elliptic as long
as p ∈ B δ

2
.

Now we slide the paraboloids Sy from above until it touches the graph of ṽ. In view of
Eqs. 4.75, 4.76, 4.77 and 4.80, all contact points lie inside B+

r0
. We denote by K the set of

all contact points as y varies inside B+
r1

∩{yn > η}. We now apply Lemma 4.1 from “above”
to ṽ, i.e. more precisely, we apply that lemma to the function −ṽ which is touched from
below by −Sy(x). Note that in this case we have that a = 2δ′

(r0−r1)
2 ≤ 2θδ

(r0−r1)
2 since δ′ ≤ θδ.

Therefore, if θ is chosen sufficiently small then we can ensure that 0 < a < δ
4 . We then

observe that −ṽ satisfies the following inequalities
{

G(D2(−ṽ),D(−ṽ), x) ≤ −f in B+
1 ,

(−ṽ)xn ≤ 0 on B0
1 ,

(4.81)

in the viscosity sense, where G(X,p, x) = −F2(−X,−p) = −F̃ (−X, −p −
‖g‖L∞(

B0
1

)en, x), which is again uniformly elliptic for p ∈ B δ
2
. Therefore by applying

Lemma 4.1, we get
⎧⎪⎪⎨
⎪⎪⎩

|K| ≥ c1|B+
r1

∩ {yn > η}| −
‖f ‖n

L∞(
B+
1

)

an
|K|

≥ c1|B+
r1

∩ {yn > η}| − |K| εn

Nnνn
.

(4.82)

At this point by using (4.65) we obtain the following estimate

|K| ≥ c1

2
|B+

r1
∩ {yn > η}|. (4.83)

Now we note that because of Eq. 4.76, at any contact point x ∈ K, we have ṽ ≥ δ′
4 and

therefore K ⊂ E. Consequently, we can assert that Eq. 4.73 holds. This completes the proof
of Step 3.

Step 4: (Conclusion.)
Let k0 ∈ N be the largest integer such that C̃k0+1a ≤ δ′

4 . Now since δ′ ≤ δ, so by using
the estimate (4.66) in Step 2 we have

|B+
r0

\ Ã
aC̃k0 | ≤ (1 − σ̃ )k0 |B+

r0
|. (4.84)

Now for x ∈ B+
1 , we make the crucial observation that the following inclusion holds:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E =
{
x ∈ B+

r0
|ṽ(x) >

δ′

4

}

⊂
{
x ∈ B+

r0
| v(x) >

δ′

4

}
(since v ≥ ṽ)

⊂
{
x ∈ B+

r0
| v(x) > aC̃k0

} (
since aC̃k0 <

δ′

4

)

⊂ B+
r0

\ Ã
aC̃k0

(
by definition of Ã

aC̃k0

)
.

(4.85)

Using Eqs. 4.73, 4.84 and 4.85, we have

c1

2
|B+

r1
∩ {yn > η}| ≤ |E| ≤ (1 − σ̃ )k0 |B+

r0
|. (4.86)
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Now letting η → 0, we obtain

c1

2
|B+

r1
| ≤ |E| ≤ (1 − σ̃ )k0 |B+

r0
|. (4.87)

Now note that using a = Nνδ′, we have that

k0 ∼ | log
C̃
(Nν)|. (4.88)

At this point we first let N large enough so that all previous arguments apply. Subse-
quently if ν is chosen small enough, then thanks to Eq. 4.88, we have that k0 becomes too
large so that Eq. 4.87 is violated (note that r1 = r0

16 ). This leads to a contradiction.
Note that we can accordingly choose ε sufficiently small such that Eq. 4.65 holds as well.
Therefore, we finally obtain that for appropriately chosen N, ν, ε as above, either

Eqs. 4.55 or 4.56 fails. Suppose first that Eq. 4.55 fails. Then since ‖g‖L∞(
B0
1

) ≤ δ′ε < δ′ν
2

(by our choice of ε), therefore we have;

u(x) − m ≥ νδ′ for all x ∈ B+
r1

,

where we also use the fact that r1 < r0/2. Consequently, Eq. 4.52 follows with ρ = r1.
Now, suppose instead that Eq. 4.56 fails. Then in this case we have that

sup
B+

r1

u − ‖g‖L∞(
B0
1

) − m ≤ δ′

2
,

that is,

sup
B+

r1

u − m ≤ 2δ′

3
,

since ‖g‖L∞(
B0
1

)) < νδ′
2 and ν < 1/3. Thus, Eq. 4.52 again follows in view of the fact that

2
3 < (1 − ν). This finishes the proof of the theorem.

As a consequence of Theorem 4.8, we also have the following rescaled boundary
oscillation estimate whose proof is identical to that of Theorem 2.1 in [18].

Theorem 4.9 With F̃ , u, f, g as in Theorem 4.8, we have that there exists universal
ν, κ, ε, ρ ∈ (0, 1) such that if δ′ > 0 and k ∈ N satisfy

⎧
⎪⎪⎨
⎪⎪⎩

oscB+
1
u ≤ δ′ ≤ ρkκδ,

||f ||L∞(B+
1 ) ≤ εδ′,

||g||L∞(
B0
1

) ≤ εδ′,
(4.89)

then

oscB+
ρs

u ≤ (1 − ν)sδ′, for s = 0, ..., k + 1. (4.90)

5 Improvement of Flatness and the Proof of our Main Result

We now establish our main result Theorem 2.1 using the non perturbative Hölder estimates
proved in Sections 3 and 4. We first show how to reduce the considerations to flat boundary
conditions.
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5.1 Reduction to Flat Boundary Conditions

Since 	 ∈ C2, we can flatten the boundary using coordinates which employs the distance
function to the boundary ∂	. See for instance Lemma 14.16 in [19] or the Appendix in
[9]. We crucially note that such coordinates preserve the Neumann boundary conditions
unlike standard flattening which changes Neumann conditions to oblique derivative condi-
tions in general. Consequently, without loss of generality, we may consider the following
flat boundary value problem

{
〈A(x)Du,Du〉β/2F

(
D2u,Du, x

) = f in B+
1 ,

uxn = g on B0
1 ,

(5.1)

where A is a uniformly elliptic positive definite matrix with Lipschitz coefficients. More-
over such a transformation ensures that the resulting F is uniformly elliptic in D2u and
Lipschitz in Du. Without loss of generality, we will also assume that β > 0 since the case
β = 0 is classical.

5.2 Improvement of Flatness

We first state and prove a compactness result for a perturbed variant of Eq. 5.1. This can be
regarded as the boundary analogue of Lemma 4.2 in [18].

Lemma 5.1 Let u be such that |u| ≤ 1 and is a viscosity solution to the following Neumann
problem,

{
〈A(x)(Du + p), (Du + p)〉β/2F

(
D2u,Du, x

) = f in B+
1 ,

uxn = g on B0
1 ,

(5.2)

where p ∈ R
n, A is Lipschitz and uniformly elliptic and F is uniformly elliptic in M with

ellipticity bounds λ and �, Lipschitz in the gradient variable q and continuous in x with
a modulus of continuity ω. Also suppose |F(0, 0, 0)| ≤ 1. Furthermore, assume that f ∈
C(B+

1 ), ||f ||L∞(B+
1 ) ≤ 1 and g ∈ Cα0

(
B0
1

)
with ||g||Cα0 ≤ 1. Then given ε′ > 0, there

exists L = L(ε′) > 0, such that if |p| > L, |DqF | ≤ 1
L
, then there exists v ∈ C1,α′ (

B+
1/2

)

for some α′ universal (with a universal C1,α′
estimate) such that

||u − v||
L∞

(
B+
1/2

) ≤ ε′. (5.3)

Proof We first note that the Eq. 5.29 can be rewritten as

{
〈A(x)

(
Du
|p| + e

)
, Du

|p| + e〉β/2F
(
D2u,Du, x

) = f

|p|β in B+
1 ,

uxn = g on B0
1 ,

(5.4)

where e = p
|p| . Therefore, we see that u satisfies a uniformly elliptic PDE when |Du| ≤ |p|

2 .
Suppose on the contrary, the assertion is not true. Then there exist an ε0 > 0 and a sequence
of u′

ks, p
′
ks, F

′
ks, f

′
ks, g

′
ks with |uk| ≤ 1, |fk| ≤ 1, ||gk||Cα0 ≤ 1, |DqFk| ≤ 1

k
, |pk| > k,
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such that F ′
ks have the same ellipticity bounds λ, �, are equicontinuous in x with modulus

ω and uk solves the following problem:
{

〈A(x)
(

Duk|pk | + ek

)
,

Duk|pk | + ek〉β/2Fk

(
D2uk,Duk, x

) = fk

|pk |β in B+
1 , ek = pk

|pk |
(uk)xn = gk on B0

1
(5.5)

and such that uk’s are not ε0 close to any v ∈ C1,α′
(B+

1/2). We now rewrite the first equation
in Eq. 5.5 as follows:

〈A(x)

(
Duk

|pk | + ek

)
,
Duk

|pk | + ek〉β/2
(
Fk

(
D2uk, Duk, x

)
− Fk(0, Duk, x)

)
= fk

|pk |β (5.6)

−〈A(x)

(
Duk

|pk | + ek

)
,
Duk

|pk | + ek〉β/2Fk(0, Duk, x) in B+
1 .

Now, notice that the operators in Eq. 5.6 above satisfy the structural assumptions SC1)-
SC3) as in Section 4 and are uniformly elliptic for |Duk| ≤ |pk |

2 . Before proceeding further,
we make the following important discursive remark.

Remark 5.2 Over here, the reader should note that the reason as to why we subtract off
Fk(0,Duk, x) is to ensure that SC2) holds. Note that even if we start with F satisfying
SC2), after flattening such a condition is not necessarily preserved.

Now similar to the proof of Lemma 4.2 in [18], we look at the following rescaled
functions

wk(x) = θk(uk(x) − u(0)), (5.7)

where

θk = max

{
1

|pk| , ||DqFk||
}
. (5.8)

Then, it follows that wk solves:

〈A(x)

(
Dwk

θk |pk | + ek

)
,

Dwk

θk |pk | + ek〉β/2θk(Fk

(
D2wk/θk, Dwk/θk, x

)
− Fk(0, Dwk/θk, x))

= θk

fk

|pk |β − θk〈A(x)

(
Dwk

θk |pk | + ek

)
,

Dwk

θk |pk | + ek〉β/2Fk(0, Dwk/θk, x) in B+
1 . (5.9)

Moreover, wk satisfies in the viscosity sense the Neumann condition (wk)xn = θkgk .
Also from Eq. 5.9 it follows that wk solves a degenerate elliptic problem which is uniformly
elliptic independent of k when |Dwk| ≤ 1/2 = δ. Now let ρ, κ, ε, ν be as in Theorem 4.9
corresponding to δ = 1

2 . In the region of uniform ellipticity it is easily seen that the scalar
term

f̃k = θk

fk

|pk|β

−θk〈A(x)

(
Dwk

θk|pk| + ek

)
,

Dwk

θk|pk| + ek〉β/2Fk(0,Dwk/θk, x) (5.10)

satisfies |f̃k| ≤ C0θk . This follows from the expression of θk as in Eq. 5.8. Likewise, we
have that |θkgk| ≤ θk . We now let δ′ = C0θk

ε
. For a given k, let mk be the largest integer

such that
C0θk

ε
≤ ρmkκδ.
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Note that mk → ∞ as k → ∞. Then it follows from the estimate in Theorem 4.9 that

oscB+
ρs

wk ≤ C(1 − ν)sθk, s = 1, ...,mk .

Scaling back to uk we obtain

|uk(x) − uk(0)| ≤ C|x|α as long as |x| ≥ ρmk ,

where α = −logρ(1 − ν). Likewise one has a similar Hölder estimate at every boundary

point in B0
3/4. The interior version of such estimates follows from [18]. This is enough

to show that {uk};s are equicontinuous up to {xn = 0} and consequently Arzela-Ascoli
can be applied. Therefore, there exists a subsequence which we still denote by {uk} which
converges in B+

3/4 to some v0. By passing to another subsequence, we can also assume that
Fk → F0 which has the same ellipticity bounds and is independent of q (since DqFk → 0),
ek → e0 with |e0| = 1 and also gk → g0 in Cα0 . In a standard way, one can show that since

fk

|pk |β → 0, therefore v0 is a viscosity solution to

{
〈A(x)e0, e0〉β/2F0

(
D2v0, x

) = 0 in B+
3/4,

(v0)xn = g0 on B0
3/4.

(5.11)

For relevant stability results, we refer to Proposition 2.1 in [24]. Now since
〈A(x)e0, e0〉β/2 > 0, therefore, we can conclude that v0 is a solution to{

F0
(
D2v0, x

) = 0 in B+
3/4,

(v0)xn = g0 on B0
3/4.

(5.12)

Now, from the regularity results in [26], it follows that v0 ∈ C1,α′ (
B+
1/2

)
for some

α′ > 0 with universal bounds which immediately leads to a contradiction for large enough
k′s.

Before we state and prove the improvement of flatness result for the perturbed equations
as in Lemma 5.1, we first introduce a few universal parameters. Let

F(M, q, x) : S(n) × R
n × R

n −→ R,

such that F is uniformly elliptic in M with ellipticity constants λ, �, Lipschitz in q with
Lipschitz bound say 1 and continuous in x with some modulus of continuity ω. Also assume
that |F(0, 0, 0)| ≤ 1. Let α′, C > 0 be universal constants such that the following estimate
holds

||w||
C1,α′(

B+
1/2

) ≤ C, (5.13)

for any w which is a viscosity solution to the following problem:
⎧
⎪⎨
⎪⎩

F
(
D2w,Dw, x

) = 0 in B+
3/4,

|w| ≤ 1,

wxn = g on B0
3/4 and ||g||Cα0 ≤ 1 for some fixed α0 > 0.

(5.14)

The existence of such α′, C follows from the regularity results in [26]. We also note that
from Eq. 5.13, the following estimate can be deduced,

|w(x) − L̃(x)| ≤ C|x|1+α′
, (5.15)

where L̃ is the affine approximation of w at 0. We now state the relevant improvement of
flatness result when |p| is large.
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Lemma 5.3 With u,A, f, g, p, F as in Lemma 5.1, there exist universal ε0 > 0, r ∈ (0, 1)
and α > 0 such that if |p| > L(ε0), |DqF | ≤ 1

L(ε0)
, then there exists an affine function L̃

with universal bounds as in Eq. 5.13 such that

||u − L̃||L∞(B+
r ) ≤ r1+α . (5.16)

Proof From Lemma 5.1, we have that given ε′ > 0, there exists L(ε′) > 0 such that if
|p| > L(ε′), |DqF | ≤ 1

L(ε′) , then there exists v which is a solution to an equation of the
type (5.14) such that

||u − v||
L∞

(
B+
1/2

) ≤ ε′. (5.17)

Now from Eq. 5.15, we have

|v(x) − L̃(x)| ≤ C|x|1+α′
. (5.18)

where L̃ is the affine approximation of v at 0. We first choose

α < min

{
α0, α

′, 1

1 + β

}
. (5.19)

Subsequently we choose r small enough such that

Cr1+α′ ≤ rα+1

2
, (5.20)

where C, α′ are as in Eq. 5.15. Finally we let ε0 = ε′ = rα+1

2 . Therefore, the desired
estimate in Eq. 5.16 follows from Eqs. 5.17-5.20 by an application of triangle inequality
provided |p| > L(ε0) and |DqF | ≤ 1

L(ε0)
.

Before, proceeding further, we make the following important remark.

Remark 5.4 We note that although in the proof of Lemma 5.3, one only needs to take
α < α′, however for subsequent iterative arguments which involves rescaling, we have to

additionally ensure that α < min
{
α0,

1
1+β

}
.

We now have the analogous improvement of flatness result when |p| ≤ L(ε0).

Lemma 5.5 Let u such that |u| ≤ 1 be a viscosity solution to Eq. 5.29 where |p| ≤ L(ε0)

with ε0 as in Lemma 5.3. Then there exists η > 0 such that if ||f ||L∞ , ||g||Cα0 ≤ η, then

there exists an affine function L̃ = ã+ < b̃, x >
(
, ã ∈ R, b̃ ∈ R

n
)
with universal bounds

such that
||u − L̃||L∞(B+

r ) ≤ r1+α, (5.21)

where r, α are as in Lemma 5.3. Moreover we also additionally have that

< b̃, en >= 0 (5.22)

Proof Step 1:. We first show that given ε > 0, there exists η = η(ε) > 0, such that if
||f ||L∞ , ||g||Cα ≤ η, then there exists a function v which solves{

F
(
D2v, Dv, x

) = 0 in B+
3/4,

vxn = 0 on B0
3/4,

(5.23)
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and
||v − u||

L∞
(
B+
1/2

) ≤ ε.

If not, then there exists ε > 0 for which the assertion is violated for a sequence
uk, fk, gk, pk such that fk, gk → 0, |pk| ≤ L(ε0) and where uk solves the following
problem

{
〈A(x)(Duk + pk),Duk + pk〉β/2F

(
D2uk,Duk, x

) = fk in B+
1 ,

(uk)xn = gk on B0
1 .

(5.24)

Now, since |pk| ≤ L(ε0), we find that the equation is uniformly elliptic when |Duk| >

2L(ε0) (say in the viscosity sense). We also note that Eq. 5.24 can be rewritten as:
{

F
(
D2uk,Duk, x

) = fk

〈A(x)(Duk+pk),Duk+pk〉β/2 in B+
1 ,

(uk)xn = gk on B0
1 ,

(5.25)

where for |Duk| > 2L(ε0), one has

|fk|
〈A(x)(Duk + pk),Duk + pk〉β/2

≤ |fk|
〈A(x)L(ε0), L(ε0)〉β/2

→ 0 as k → ∞.

Consequently, from the uniform boundary Hölder estimates as in Theorem 3.9, we have

that up to a subsequence, uk → v0 in B+
3/4, pk → p0 such that v0 is a viscosity solution to

{
〈A(x)(Dv0 + p0),Dv0 + p0〉β/2F

(
D2v0,Dv0, x

) = 0 in B+
3/4,

(v0)xn = 0 on B0
3/4.

(5.26)

Such a stability result follows from an argument as in Proposition 2.1 in [24]. Now, by
arguing as in the proof of Lemma 6 in [22], we can assert that v0 in fact solves

{
F
(
D2v0, Dv0, x

) = 0 in B+
3/4,

(v0)xn = 0 on B0
3/4.

(5.27)

This leads to a contradiction for large k′s.

Step 2: (Conclusion)

Now, we take η corresponding to ε = ε0, where ε0 is as in Lemma 5.3. The rest of the
arguments are the same as in Lemma 5.3 because the universal estimate in Eq. 5.15 also
holds for v0. Also (5.22) follows because L̃ corresponds to the affine approximation of v0
at 0 which satisfies homogeneous Neumann condition as in Eq. 5.27.

Now, we let
η0 = min {η, 1/L(ε0)} , (5.28)

where η, ε0 are as in Lemma 5.5 and L(ε0) is as in Lemma 5.3 corresponding to ε0. Finally
as a consequence of Lemmas 5.3 and 5.5, we obtain that the following uniform improvement
of flatness which doesn’t take into account the size of |p|.

Lemma 5.6 Let u be such that |u| ≤ 1 and is a viscosity solution to the following Neumann
problem,

{
〈A(x)(Du + p), (Du + p)〉β/2F

(
D2u,Du, x

) = f in B+
1 ,

uxn = g on B0
1 ,

(5.29)
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where p ∈ R
n, A is Lipschitz and uniformly elliptic and F is uniformly elliptic in M with

ellipticity bounds λ and �, Lipschitz in the gradient variable q and continuous in x with
a modulus of continuity ω. Also suppose |F(0, 0, 0)| ≤ 1. Then with η0 as in Eq. 5.28
above, we have that if ||f ||L∞ , ||g||Cα0 , |DqF | ≤ η0, then there exists an affine function
L̃ = ã+ < b̃, x > with universal bounds such that{

||u − L̃||L∞(B+
r ) ≤ r1+α,

< b̃, en >= 0
(5.30)

where r, α ∈ (0, 1) are universal constants. Furthermore, we can additionally ensure that
α satisfies (5.19).

With Lemma 5.6 in hand, we now prove our main result Theorem 2.1.

5.3 Proof of Theorem 2.1

Proof Step 1: (Basic reductions) In view of our discussion in Section 5.1, we may first
assume that ∂	 = {xn = 0} and u solves an equation of the type (5.1). Then, by letting

us(x) = u(sx)

s
,

we have that us solves{
〈A(sx)Dus(x),Dus(x)〉β/2sF

(
D2us

s
,Dus, sx

)
= sf (sx).

(us)xn(x) = g(sx) on {xn = 0}.
(5.31)

Now, by choosing s sufficiently small, we can ensure that the operator

Fs(M, q, x) = sF

(
M

s
, q, sx

)

satisfies |DqFs | ≤ η0 and also that

|Fs(0, 0, 0)| ≤ 1

2
. (5.32)

Subsequently we let us as our new u and Fs as our new F which now additionally
satisfies |DqF | ≤ η0. Then by letting v = u − g(0)xn − u(0), we have that v(0) = 0 and it
solves{

〈A(x)(Dv + g(0)en),Dv + g(0)en)〉β/2F(D2v,Dv + g(0)en, x) = f in B+
1 ,

vxn = g − g(0) on B0
1 ,

(5.33)
We now define

ṽ = v

κ
where

κ =
(
1 + ||v||L∞ +

( ||f ||L∞

2η0

) 1
1+β + ||g||Cα0

2η0

)

with η0 as in Lemma 5.6. Then we observe that ṽ solves
{

〈A(x)(Dṽ + g(0)
κ

en), Dṽ + g(0)
κ

en〉β/2κ−1F(κD2ṽ, κDṽ, x) = κ−(1+β)f (x) = f̃ in B+
1 ,

(ṽ)xn = g̃ = g
κ
on B0

1 .
(5.34)

A. Banerjee, R.B. Verma362



Now since κ > 1, we find that the new operator in Eq. 5.34 satisfies similar structural
conditions as F . Moreover, we additionally have that ‖ṽ‖ ≤ 1, ||f̃ ||L∞ ≤ η0, ||g̃||Cα0 ≤ η0.
Thus by letting ṽ as our new v, g̃ as our new g and so on, we may assume without loss of
generality that v satisfies an equation of the type (5.29) such that the following holds,

||DqF ||, ‖f ‖L∞ , ||g||Cα0 ≤ η0.

Moreover, we also have that for our new g that g(0) = 0 holds.
Step 2: We now show that for all r, α as in Lemma 5.6, we have that for every k =

0, 1, 2..., there exists Lk = 〈bk, x〉 such that
⎧⎪⎨
⎪⎩

||v − Lk||L∞(B+
rk

) ≤ rk(1+α),

〈bk, en〉 = 0,

|bk − bk+1| ≤ Crkα .

(5.35)

We prove the claim in Eq. 5.35 by induction. For k = 1, it follows from Lemma 5.6 in
view of our reductions as in Step 1. Also note that since v(0) = 0, by keeping track of the
arguments that leads to Lemma 5.6, we can additionally ensure that L1(0) = 0. We now
assume that the assertion in Eq. 5.35 holds up to some k. For such a k, we let

w = (v − Lk)
(
rkx

)

rk(1+α)
.

Then, we have that |w| ≤ 1 in B+
1 and it satisfies the following inequalities in the

viscosity sense
{
〈A (

rkx
)
(Dw+pk),Dw+pk〉β/2rk(1−α)F (rk(α−1)D2w, rkαDw+bk, r

kx)=fk(x) in B+
1

(w)xn = gk(x) on T1,

(5.36)
where pk = r−kαp+r−kαbk , fk(x) = rk(1−α(1+β))f

(
rkx

)
and gk(x) = r−kαg

(
rkx

)
. Now,

since ||g||Cα0 ≤ η0, g(0) = 0 and α0 > α, therefore, one can deduce easily that ||gk||Cα0 ≤
η0. Also since α < 1

1+β
and ||f ||L∞ ≤ η0, therefore we can infer that ||fk||L∞ ≤ η0.

Moreover, it also follows that the operator Fr,k in Eq. 5.36 defined as

Fr,k(M, q, x) = rk(1−α)F (rk(α−1)M, rkαq + bk, r
kx),

has the same ellipticity bounds as F . Moreover, ||DqFr,k|| ≤ rk||DqF || ≤ η0 since r < 1.
Also using Eq. 5.32 we have that

|Fr,k(0, 0, 0)| ≤ rk(1−α)|F(0, 0, 0)| + η0r
k(1−α)|bk| ≤ 1

2
+ Cη0 ≤ 1 (5.37)

provided η0 is further adjusted in the beginning.
Therefore, we can again apply Lemma 5.6 to obain for some L̃(x) =< b̃, x > satisfying

< b̃, en >= 0 that the following inequality holds,

||w− < b̃, x > ||L∞(B+
r ) ≤ r1+α

Over here, we crucially used the fact that since w(0) = 0, therefore as for k = 1,
we also additionally obtain that L̃(0) = ã = 0 by applying Lemma 5.6 in this specific
situation. Scaling back to v, we deduce that Eq. 5.35 holds for k + 1 with Lk+1(x) =
Lk(x) + rk(1+α)L̃(r−kx). This verifies the induction step and finishes the proof of Step 2.

Step 3 (Conclusion)
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It follows from Eq. 5.35 by a standard analysis argument that L0 = limk→∞ Lk is the affine
approximation of order 1 + α at 0 for v and consequently L0 + g(0)xn is the 1 + α order
affine approximation for u at 0. Likewise we have an affine approximation of order 1 + α

at all boundary points. Now going back to the original domain 	, we can assert that there
exists an affine approximation for u of order 1+α at all points of ∂	∩B1. At this point, by a
standard argument as in [26], one can combine the boundary C1,α estimate with the interior
ones as in [22] to conclude that u ∈ C1,α(	 ∩ B1/2). Over here we note that although the
interior regularity result in [22] is stated for

|Du|βF (D2u) = f

nevertheless, the proof works exactly the same way for equations of the type

|Du + L|βF
(
D2u, x

)
= f,

when F depends continuously on x. This finishes the proof of the theorem.

Proof of Corollary 2.3 We first rewrite the boundary condition in Corollary 2.3 as follows
{

|Du|βF
(
D2u, x

) = f, in 	 ∩ B1(0), 0 ∈ ∂	, β ≥ 0,

uν = g̃, on ∂	 ∩ B1(0),
(5.38)

where g̃ = g − h(x)u. Then by flattening and by applying the Hölder regularity result
Theorem 3.9, we obtain that u is Cα up to the boundary. This in turn implies that g̃ is Hölder
continuous and consequently the conclusion follows from Theorem 2.1.

In closing, we make the following remark.

Remark 5.7 It seems plausible that the techniques in this paper can be modified to yield
C1,α regularity results for Neumann boundary problems of the type

{
|Du|β(�u + (p − 2)�N∞u) = f, in 	 ∩ B1(0), 0 ∈ ∂	, β ≥ 0,

uν = g̃, on ∂	 ∩ B1(0),
(5.39)

where �N∞u is the normalized infinity laplacian operator. The case when β = 0 corresponds
to the Poisson problem for the normalized p−laplacian operator and this has been studied
in various contexts in a number of papers. See for instance [4, 8, 10] and one can find the
references therein. For general β > 0, we refer to [3] for the interior C1,α regularity result
for such equations and also to [21] and [1] for the parabolic counterpart of such results.

References

1. Attouchi, A.: Local regularity for quasi-linear parabolic equations in non-divergence form.
arXiv:1809.03241

2. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional
obstacle problems. Amer. J. Math. 130(2), 485–498 (2008)

3. Attouchi, A., Ruosteenoja, E.: Remarks on regularity for p-Laplacian type equations in non-divergence
form. (English summary) J. Differ. Equ. 265(5), 1922–1961 (2018)

4. Attouchi, A., Parviainen, M., Ruosteenoja, E.: C1,α regularity for the normalized p-Poisson problem. J.
Math. Pures Appl. (9) 108(4), 553–591 (2017)

5. Araujo, D., Ricarte, G., Teixeira, E.: Geometric gradient estimates for solutions to degenerate elliptic
equations. Calc. Var. Partial Differ. Equ. 53(3-4), 605–625 (2015)

A. Banerjee, R.B. Verma364

http://arxiv.org/abs/1809.03241


6. Arkhipova, A.A., Uraltseva, N.N.: Regularity of the solution of a problem with a two-sided limit on a
boundary for elliptic and parabolic equations. Trudy Mat. Inst. Steklov. 179, 5–22 (1988). 241 (Russian).
Translated in Proc. Steklov Inst. Math. 1989, no. 2, 1–19; Boundary value problems of mathematical
physics, 13

7. Barles, G.: Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic
equations. J. Differ. Equ. 106(1), 90–106 (1993)

8. Banerjee, A., Kawohl, B.: Overdetermined problems for the normalized p-Laplacian. (English summary)
Proc. Amer. Math. Soc. Ser. B 5, 18–24 (2018)

9. Banerjee, A., Lewis, J.: Gradient bounds for p-harmonic systems with vanishing Neumann(Dirichlet)
data in a convex domain. Nonlinear Anal. 100, 78–85 (2014)

10. Berti, D.: Asymptotic analysis of solutions related to the game-theoretic p-laplacian. arXiv:1902.10346
11. Birindelli, I., Demengel, F.: Comparison principle and Liouville type results for singular fully nonlinear

operators. Ann. Fac. Sci. Toulouse Math. series 6(13), 261–287 (2004)
12. Birindelli, I., Demengel, F.: Regularity and uniqueness of the first eigenfunction for singular fully

nonlinear operators. J. Differ. Equ. 249, 1089–1110 (2010)
13. Birindelli, I., Demengel, F.: C1,β regularity for Dirichlet problems associated to fully nonlinear

degenerate elliptic equations. ESAIM Control Optim. Calc. Var. 20, 1009–1024 (2014)
14. Cabre, X.: Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl.

Math. 50, 623–665 (1997)
15. Cabre, X., Caffarelli, L.: Fully nonlinear elliptic equations, vol. 43. Amer Mathematical Society,

Providence (1995)
16. Caffarelli, L.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(1),

189–213 (1989)
17. Caffarelli, L.: Further regulrity for the Signorini problem. Comm. Partial Differ. Equ. 4(9), 1067–1075

(1979)
18. Colombo, M., Figalli, A.: Regularity results for very degenerate elliptic equations. J. Math. Pures. Appl.

111(1), 94–117 (2014)
19. Gilbarg, D., Trudinger, N. Elliptic partial differential equations of second order, 2nd edn., pp. 1–513.

Springer, Berlin (1983)
20. Ishii, H., Lions, P.: Viscosity solutions of fully nonlinear second-order elliptic partial differential

equations. J. Differ. Equ. 83, 26–78 (1990)
21. Imbert, C., Jin, T., Silvestre, L.: Holder gradient estimates for a class of singular or degenerate parabolic

equations. arXiv:1609.01123
22. Imbert, C., Silvestre, L.: C1,α regularity of solutions of some degenerate fully nonlinear elliptic

equations. Adv. Math. 233, 196–206 (2013)
23. Imbert, C., Silvestre, L.: Estimates on elliptic equations that hold only where the gradient is large. J. Eur.

Math. Soc. 18, 1321–1338 (2016)
24. Li, D., Zhang, K.: Regularity for fully nonlinear elliptic equations with oblique boundary conditions.

Arch. Rational Mech. Anal. 228, 923–967 (2018)
25. Mooney, C.: Harnack inequality for degenerate and singular elliptic equations with unbounded drift. J.

Differ. Equ. 258(5), 1577–1591 (2015). 35J70 (35B45 35B65 35J75)
26. Milakis, E., Silvestre, L.E.: Regularity for fully nonlinear elliptic equations with Neumann boundary

data. Commun. Partial Differ. Equ. 31, 1227–1252 (2006)
27. Milakis, E., Silvestre, L.E.: Regularity for the nonlinear Signorini problem. Adv. Math. 217(3), 1301–

1312 (2008)
28. Patrizi, S.: The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90, 286–

311 (2008)
29. Ricarte, G.: Optimal C1,α regularity for degenerate fully nonlinear elliptic equations with Neumann

boundary condition. Nonlinear Anal. 198(111867), 13 (2020)
30. Savin, O.: Small perturbation solutions for elliptic equations. Commun. Partial Differ. Equ. 32(4), 557–

578 (2007)
31. Uraltseva, N.: Holder continuity of gradients of solutions of parabolic equations with boundary

conditions of Signorini type. Dokl. Akad. Nauk SSSR 280(3), 563–565 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

C1,α Regularity for Degenerate Fully Nonlinear Elliptic... 365

http://arxiv.org/abs/1902.10346
http://arxiv.org/abs/1609.01123

	C1,  Regularity for Degenerate Fully Nonlinear Elliptic...
	Abstract
	Introduction
	Notations and the Statement of the Main Result
	Statement of the Main Result

	Hölder Estimates up to the Boundary for Equations which are Uniformly Elliptic when the Gradient is Large
	Barrier Function and Doubling Type Lemma

	Equicontinuous Estimates up to the Boundary for Equations which are Uniformly Elliptic when the Gradient is Small
	Boundary Version of Measure Decay

	Improvement of Flatness and the Proof of our Main Result
	Reduction to Flat Boundary Conditions
	Improvement of Flatness
	Proof of Theorem 2.1

	References


