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Abstract
In this paper, we obtain some interesting reproducing kernel estimates and some Car-
leson properties that play an important role. We characterize the bounded and compact
Toeplitz operators on the weighted Bergman spaces with Békollé-Bonami weights in terms
of Berezin transforms. Moreover, we estimate the essential norm of them assuming that they
are bounded.
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1 Introduction and Results

Let C be the complex plane and D(0, r) := {z ∈ C : |z| < r} for r > 0 the Euclidean
open disc with center 0 and radius r . We denote by the unit disc D := D(0, 1) for short. If
μ is a positive measure on D and p > 0, we denote Lp(μ) the Lebesgue space over D with
respect to μ. That is, Lp(μ) consists of all functions f defined on D for which

f Lp(μ) :=
D

|f (z)|pdμ(z)

1/p

< ∞.

When p ≥ 1, · Lp(μ) defines a norm and Lp(μ) becomes a Banach space.
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Let dA denote the Lebesgue area measure on D. If u is a positive locally integrable func-
tion on D, i.e. positive u ∈ L1

loc(dA), let Lp(u) denote the space of measurable functions
on D that are pth power integrable with respect to udA. That is

f Lp(u) :=
D

|f (z)|pu(z)dA(z)

1/p

< ∞.

The Bergman space Ap(u) is defined to be a subspace of analytic functions in Lp(u)

with Lp(u)-norm. We write Ap = Ap(1) for short. The most common reproducing kernel
for the unit disc has the form

Kw(z) = 1

(1 − w̄z)2
,

for w, z ∈ D, and it corresponds to the space A2.
The following notations will be used throughout the paper. For a weight u and E ⊂ D,

we set u(E) =
E

udA, A(E) =
E
dA. We denote by

f
dμ
E := E

f (z)dμ(z)

μ(E)

for integrable f and measure μ.
If we define P by

Pf (z) =
D

f (w)

(1 − w̄z)2
dA(w).

The problem of characterizing the weights for which the Bergman projection P is a
bounded orthogonal projection from Lp(u) to Ap(u) was solved by Békollé and Bonami
[1, 2]. They found that these weights are precisely u ∈ Bp .

Bp condition Let S(a) be the set

S(a) = a − z

1 − āz
: Re (āz) ≤ 0 .

We say u satisfies Bp condition, or u ∈ Bp , if

[u]Bp := sup
a∈D

u dA
S(a) u−p /p

dA

S(a)

p−1

1

where 1/p + 1/p = 1. Recently, the sharp estimates for the Lp-continuity of the Bergman
projection are investigated in [9] and [10] respectively.

The inner product of the Hilbert space A2(u) is given by

f, g A2(u) =
D

f (w)g(w)u(w)dA(w),

where f, g ∈ A2(u). The reproducing kernel of A2(u) will be denoted by K(z,w). It is well
known that K(z,w) = K(w, z). If Lz is the point evaluation at z ∈ D, that is Lzf = f (z)

for every f ∈ A2(u). It follows by the Riesz representation that

K(z, z) = K(., z),K(., z) A2(u) = K(., z) 2
A2(u)

= Lz
2
A2(u)→C

.

Given a positive Borel measure μ on D, the Toeplitz operator Tμ associated with μ on
A2(u) is the linear transformation defined by

Tμf (z) :=
D

f (w)K(z,w)dμ(w), z ∈ D.
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Let μ be a finite positive Borel measure on D that satisfies the condition

D

|K(ξ, z)|2dμ(ξ) < ∞.

Then the Toeplitz operator Tμ is well-defined on A2(u).
Recall that the pseudohyperbolic metric d : D × D → [0, 1) is defined by

d(z,w) = z − w

1 − w̄z
.

Denote by

(z, r) := {w ∈ D : d(z,w) < r}
the pseudohyperbolic disk centered at z with radius r . For a finite positive Borel measure μ

on D and r > 0, the average function μr is defined as

μr(z) = μ( (z, r))

u( (z, r))
, z ∈ D.

It is well known that the Berezin trasform plays a role in the theory of Toeplitz operator.
The Berezin transform of the Toeplitz operator Tμ is given by

μ̃(z) := Tμkz, kz A2(u), z ∈ D,

where kz(w) := K(w, z)/ K(·, z) A2(u) is the normalized reproducing kernel of A2(u). By
a straightforward computation one has

Tμf, g A2(u) = f, g L2(dμ). (1.1)

It follows that the Berezin transform μ̃ can be formulated by

μ̃(z) =
D

|kz(w)|2dμ(w), z ∈ D.

Constantin [5] characterized the Toeplitz operator on A2(u) in terms of the Carleson
measure. The motivation of this paper is to characterize the Toeplitz operator in terms of its
Berezin transform. Now we are in the position to state our main theorems.

Theorem 1.1 Let p0 > 1 and u ∈ Bp0 . Suppose that δ ∈ (0, 1) is the one in Theorem 2.7
and 0 < r ≤ δ. The following assertion are equivalent:

(i) The Toeplitz operator Tμ is bounded on A2(u).
(ii) μ̃ is bounded on D.
(iii) μr is bounded on D.

The following theorem charaterizes the compact Toeplitz operators on A2(u) with
Békollé-Bonami weights

Theorem 1.2 Let p0 > 1 and u ∈ Bp0 . Suppose that δ ∈ (0, 1) is the one in Theorem 2.7
and 0 < r ≤ δ. The following assertions are equivalent:

(i) The Toeplitz operator Tμ is compact on A2(u).
(ii) lim|z|→1

μ̃(z) = 0.

(iii) lim|z|→1
μr(z) = 0.
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Next, we will study the Schatten class of Toeplitz operators Tμ ∈ Sp A2(u) in terms
of the Berezin transform. Recall that if T is a compact operator on a Hilbert space H , then
there are orthonormal sets {en} and {σn} in H such that

T x =
∞

n=1

sn x, en H σn, x ∈ H,

where sn = sn(T ) is the nth singular value of T . The Schatten class Sp = Sp(H) consists
of those compact operators T on H for which the singular numbers sequence {sn} of T

belongs to p , that is n |sn|p < ∞.

Theorem 1.3 Let p > 1, p0 > 1 and u ∈ Bp0 . Suppose that μ is a positive Borel measure
on D such that the Toeplitz operator Tμ is compact on A2(u). Then Tμ ∈ Sp A2(u) if and
only if μ̃ ∈ Lp(dλu) where dλu = Kz

2u(z)dA.

Let K be the set of all compact operators on a Banach space B. For any bounded linear
operator T : B → B, the essential norm of T is defined by

T e = inf{ T − K : K ∈ K}.
It is clear that T e = 0 if and only if T ∈ K. Finally, we show the conditions for

Toeplitz operators to be compact, see the above theorem, in term of the essential norm
estimates because essential norm estimates give us a further information. The essential norm
of a bounded operator is the distance from the operator to the space of the compact operators.

Theorem 1.4 Let μ be a finite positive Borel measure on D. Suppose that Tμ is a bounded
operator on A2(u). Then, one has,

Tμ e lim sup
|z|→1

μ̃(z) lim sup
|z|→1

μr(z).

Throughout the paper, we use the following notations:

• Q1 Q2 means that there is a constant C > 0 (independent of the key variable(s))
such that Q1 ≤ CQ2;

• Q1 Q2 if both Q1 Q2 and Q2 Q1.

2 Preliminaries and Basic Properties

The pseudohyperbolic metric obeys the following so-called strong triangle inequality:

ρ(z, w) ≤ ρ(z, ζ ) + ρ(ζ, w)

1 + ρ(z, ζ )ρ(ζ, w)

for all z, w, ζ ∈ D. Furthermore, if 0 < r < 1, then whenever z,w ∈ D with ρ(z, w) < r ,

1 − |z| 1 − |w| |1 − w̄z| (2.1)

and for all ζ ∈ D

1 − ζ̄ z

1 − ζ̄w
1

where the constants involved depend only on r . We will denote by

(z, r) := {w ∈ D : ρ(z, w) < r}
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the pseudohyperbolic disk centered at z with radius r .
We will also use the following class of weights which is denoted by Cp . For p > 1, a

positive locally integrable weights u belongs to Cp , or say u satisfies Cp condition if

[u]Cp := sup
z∈D

u dA
(z,r) u−p /p

dA

(z,r)

p−1

1

where 1/p+1/p = 1. Condition Cp seems to depend on a choice of r < 1, but it is known
that the same class of weights is obtained for any r ∈ (0, 1) and Bp ⊂ Cp . To see this,
we note that for a given r , there is a a ∈ D such that (a, r) ⊂ S a with comparable
volumes, for more details see [7].

It is not hard to see that S(a) is “equivalent” to the set S(ζ, h) for ζ = a/|a| ∈ ∂D and
h = 1 − |a| in the sense that S(ζ, h) ⊂ S(a) ⊂ S(ζ, 2h), where

S(ζ, h) = {z ∈ D : |1 − zζ̄ | < h}.
See more details in [7].
The point evaluations on Ap(u) are bounded linear functionals for p > 0. To be precise,

we have the following estimate.

Lemma 2.1 (Lemma 3.1 in [7]) If p0 > 1, p > 0, 0 < r < 1 and a weight u ∈ Cp0 , we
have

|f (z)|p ≤ Cu( (z, r))−1

(z,r)

|f (w)|pu(w)dA(w),

where the constant C > 0 depends on r, p and the Cp0 constant [u]Cp0
.

In the Békollé setting, Bergman metric balls have comparable weighted areas when their
centers are close.

Lemma 2.2 (Lemma 2.2 in [5]) Suppose u ∈ Cp for some p > 1. Let t, s ∈ (0, 1), and
z, w ∈ D with ρ(z, w) < r for some r > 0. Then we have

u( (z, t)) u( (w, s)),

where the constant is independent of z and w.

Similarly, if u ∈ Bp0 , it is worthy to be noted that

u( (a, r)) u S a (2.2)

whenever (a, r) ⊂ S a with comparable volumes. To interested readers we can refer
[7] and Lemma 5.23 in [13] for more details.

For s > 0 and 0 < r < 1, we denote by

Gs
w(z) = 1

(1 − zw̄)s
.

Test functions play a crucial role in our proofs. Constantin [4] gives an estimate of the
the norm of Gs

w in terms of the weighted area of Euclidean disks inside D. We can adopt
an alternative method to estimate the norm of Gs

w in terms of the weighted area of S(a) (or
S(ζ, h) equivalently). Our method relies on a popular decomposition of D which is used
repeatedly in many papers. See Theorem 1 in [12] for instance. The first two authors obtain
the same estimate on the unit ball by an analogue method, see [11]. For the sake of clarity,
we reprove it here.
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Lemma 2.3 Let p > 0, p0 > 1 and the weight u ∈ Bp0 . We have

u(S(w))
1
p

(1 − |w|)s Gs
w Lp(u)

u(S(w))
1
p

(1 − |w|)max{2p0/p,s} (2.3)

where the constant involved is independent of w ∈ D.

Proof If z ∈ S(w) ⊂ S(w/|w|, 2(1 − |w|)) then
2(1 − |w|) ≥ 1 − z

w̄

|w| ≥ |1 − zw̄| − z w̄ − w̄

|w| ≥ |1 − zw̄| − (1 − |w|).
Rearranging this inequality, we have 1 − |w| ≥ |1 − zw̄|/3, and it follows immediately

that
u(S(w))

(1 − |w|)ps
S(w)

1

|1 − zw̄|ps
u(z)dA(z) ≤ Gs

w
p

Lp(u).

To prove the rest conclusions of the lemma, we firstly consider the case when s > 2p0/p.
We denote by

Ek = S
w

|w| , 2
k(1 − |w|) , k = 0, 1, 2, . . . ,

and Ẽ0 = E0, Ẽk = Ek \ Ek−1, (k = 1, 2, . . . ). It is easy to see that

Ek

dA(z) 2k(1 − |w|) 2
.

Then we can obtain the following estimate under this decomposition of D.

• If z ∈ Ẽ0, |1 − zw̄| ≥ 1 − |w|, and
• if z ∈ Ẽk for k ≥ 1,

|1 − zw̄| ≥ 1 − z
w̄

|w| − (1 − |w|) 2k(1 − |w|).

Since u ∈ Bp0 , for every positive integer k, we have

Ek

u(z)dA(z)
A(Ek)

p0

u−p0/p0 (Ek)p0−1
≤ A(Ek)

p0

u−p0/p0 (E0)p0−1

≤ A(Ek)

A(E0)

p0

u(E0)
2k(1 − |w|) 2

(1 − |w|)2
p0

u(E0) = 22kp0u(E0).

Noting that s > 2p0/p, we can estimate the norm Gs
w Lp(u) as follows,

Gs
w

p

Lp(u) =
D

1

|1 − zw̄|ps
u(z)dA(z)

=
∞

k=0 Ẽk

1

|1 − zw̄|ps
u(z)dA(z)

∞

k=0

1

2kps(1 − |w|)ps
Ek

u(z)dA(z)

u(E0)

(1 − |w|)ps

∞

k=0

1

2k(ps−2p0)

u(E0)

(1 − |w|)ps
.
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Now we have proved that (2.3) holds for s > 2p0/p. The case s = 2p0/p follows from
Lemma 3.1 in [4] and also Lemma 2.1 in [5]. So we have

G2p0/p
w Ap(u)

u(S(w))
1
p

(1 − |w|)2p0/p
.

When s < 2p0/p, we can see

Gs
w Ap(u) ≤ 22p0/p−s G2p0/p

w Ap(u)

u(S(w))
1
p

(1 − |w|)2p0/p
.

That completes the proof.

The following covering lemma will play a role.

Lemma 2.4 (Theorem 2.23 in [13]) There exists a positive N such that for any 0 < r ≤ 1
we can find a sequence {ak} in D with the following properties.

(1) D = ∪k (ak, r);
(2) The set (ak, r/4) are mutually disjoint;
(3) Each point z ∈ D belongs to at most N of the sets (ak, 2r).

Any sequence satisfying the conditions in Lemma 2.4 will be called an r-lattice. Note
that |ak| → 1−as k → ∞. In what follows, the sequence {ak} will always refer to the
sequence chosen in Lemma 2.4.

2.1 CarlesonMeasures

Let 0 < p ≤ q < ∞. A positive Borel measure μ onD is called to be a q-Carleson measure
for Ap(u) if the embedding I : Ap(u) → Lq(dμ) is bounded. We have the following
Carleson embedding theorem.

Lemma 2.5 Suppose q ≥ p > 0, p0 > 1 and 0 < r < 1. Let u ∈ Bp0 be a weight and μ is
a positive Borel measure on D. Then the following conditions are equivalent.

(a) The embedding I : Ap(u) → Lq(dμ) is bounded, that is

D

|f (z)|qdμ(z)

1/q

D

|f (z)|pu(z)dA(z)

1/p

for every analytic function f on D.
(b) μ(S(a)) u(S(a))q/p for every a ∈ D.
(c) There is an r > 0 such that μ( (a, r)) u( (a, r))q/p for every a ∈ D.
(d) There is an r > 0 such that μ( (ak, r)) u( (ak, r))

q/p for the sequence {ak}
described in Lemma 2.4.

(e) Denote by

gs
w(z) = 1

u( (w, r))q/p

1 − |w|2
1 − zw̄

s

.

For any s ≥ 2p0/p

gs
w

q

Lq(dμ) =
D

1 − |w|2
1 − zw̄

qs

u( (w, r))−q/pdμ(z) 1. (2.4)
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Furthermore, the “geometric norm” of the measure μ, the Lq(dμ) norm of gs
w and the

operator norm of the embedding are comparable:

sup
z∈D

μr(z) := sup
z∈D

μ( (z, r))

u( (z, r))q/p
sup
w∈D

gs
w

q

Lq(dμ) I
q

Ap(u)→Lq(dμ).

Proof The equivalence (a) and (c) was proved by Constantin in [5]. We are going to prove
(a)⇒(b)⇒(c)⇒(d)⇒(a)⇒(e)⇒(c).

First we prove (a)⇒(b). By choosing a s ≥ 2p0/p we get

μ(S(a))

(1 − |a|)qs
S(a)

1

|1 − zā|qs
dμ(z) Gs

a
q

Ap(u)

u(S(a))q/p

(1 − |a|)qs
,

where we use condition (a) in the second inequality and Lemma 2.3 in the third inequality.
To prove (b)⇒(c), we let r be sufficiently small and fixed. It will be done to prove

μ( (a, r)) u( (a, r))q/p for each |a| ≥ tanh(2r). As we state before Lemma 2.1, there
is a a ∈ D such that (a, r) ⊂ S a with comparable areas. By Eq. 2.2, we have

μ( (a, r)) ≤ μ S a u S a
q/p

u( (a, r))q/p.

The proof of (c) ⇒ (d) is obvious.
We next prove (d) ⇒ (a). If f is holomorphic in D, then by Lemma 2.1 we have

D

|f (z)|qdμ(z)

k (ak,r)

1

u( (ak, r)) (ak,r)

|f (w)|qu(w)dA(w) dμ(z)

k (ak,r)

1

u( (ak, r)) (ak,2r)
|f (w)|qu(w)dA(w) dμ(z)

=
k

μ( (ak, r)

u( (ak, r)) u( (ak,2r))
|f (w)|qu(w)dA(w)

k (ak,2r)
u( (ak, 2r))

q−p
p |f (w)|q−p|f (w)|pu(w)dA(w)

f
q−p

Ap(u)

k (ak,2r)
|f (w)|pu(w)dA(w)

f
q

Ap(u)

where the last inequality is deduced by Lemma 2.4.
Now we prove (a)⇒(e). Assume that the identity I : Ap(u) → Lq(dμ) is bounded. By

Lemma 2.3, we have

gs
w

q

Lq(dμ) =
D

1 − |w|2
1 − zw̄

qs

u( (w, r))−q/pdμ(z) gs
w

q

Ap(u) 1.

To see (e)⇒(c), we assume that (2.4) holds. Then

(w,r)

1 − |w|2
|1 − zw̄|

qs

u( (w, r))−q/pdμ(z) 1.
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Considering that 1−|w|2
|1−zw̄| 1 when ρ(z, w) < r , we find that the left hand side is

equivalent to
μ( (w, r))

u( (w, r))q/p
.

That completes the proof.

2.2 Reproducing Kernels

The key point to prove the main theorems is to estimate the normalized reproducing kernel
functions kz(w) from below.We start our discussion by the following lemma which estimate
the reproducing kernel functions on the diagonal.

Lemma 2.6 (Lemma 4.1 in [5]) Suppose p0 > 1 and u ∈ Bp0 . Let K(z,w) be the Bergman
kernel in A2(u) and r ∈ (0, 1). Then we have the following estimate

K(z, z) u( (z, r))−1, z ∈ D,

where the constant involved is independent of z ∈ D.

Now we can estimate the normalized reproducing kernel |kw(z)| when z and w are close
enough. Our strategy is to update the method of Lemma 3.6 in [8] to our setting.

Theorem 2.7 Suppose p0 > 1 and u ∈ Bp0 . There is a sufficient small δ ∈ (0, 1), such that

|kw(z)|2 K(z, z)

whenever z ∈ (w, δ).

Proof For any fixed w0 ∈ D, consider the subspace A2(u,w0) of A2(u), which is defined
by

A2(u,w0) := f ∈ A2(u) : f (w0) = 0 .

We have the decomposition

A2(u) = A2(u,w0) ⊕ Lw0

where Lw0 is the one-dimensional subspace spanned by the function kw0(z). If we denote
by Kw0(·, ·) the reproducing kernel of A2(u,w0), it is easy to see that

K(z, z) = Kw0(z, z) + |kw0(z)|2.
Hence we have |kw0(z)|2 ≤ K(z, z). To prove the reverse inequality, we only need to

show that there exist constants 0 < C < 1 and 0 < δ < 1, such that

Kw0(z, z) ≤ CK(z, z) (2.5)

whenever z ∈ (w0, δ). Let us consider the operator

Sw0f (z) = f (z)

z − w0
.

We claim that Sw0 is a bounded mapping from A2(u,w0) into A2(u). Let us see the
proof. For every f ∈ A2(u,w0), we have f (z) = (z − w0)f̃ (z) when z ∈ D(w0, ) for
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some > 0 small enough and holomorphic f̃ on D(w0, ). It is clear that Sw0f (z) = f̃ (z)

whenever z ∈ D(w0, ) and hence it is bounded on D(w0, ). Then we have

Sw0f
2
A2(u)

=
D\D(w0, )

f (z)

z − w0

2

u(z)dA(z) +
D(w0, )

|f̃ (z)|2u(z)dA(z)

D\D(w0, )

|f (z)|2
2

u(z)dA(z) + π 2

≤ 1
2

f 2
A2(u)

+ π 2 < ∞.

That means Sw0f ∈ A2(u) for every f ∈ A2(u,w0).
Define the V z

w0
: C → C by V z

w0
(ξ) = (z − w0)ξ . Then the point evaluation Uz

w0
f =

f (z) on A2(u,w0) can be represented as

Uz
w0

= V z
w0

LzSw0

where Lz is the point evaluation on A2(u). Hence

Uz
w0 A2(u,w0)→C ≤ V z

w0 C→C Lz A2(u)→C Sw0 A2(u,w0)→A2(u).

Note that V z
w0 C→C = |z − w0|. To estimate the norm of Sw0 for any f ∈ A2(u,w0),

let g(z) = f (z)(z − w0)
−1 = (Sw0f )(z). Then g ∈ A2(u), since Sw0 maps A2(u,w0)

into A2(u). According to Lemma 2.6, we fix a r ∈ (0, 1) so that there is a constant C

independent on the choice of z ∈ D with K(z, z) ≤ Cu( (z, r))−1. Hence we have

g 2
A2(u)

=
D

|g|2udA =
⎛
⎜⎝

Δ(w0,
r
k )

+
D\ (w0,

r
k )

⎞
⎟⎠ |g|2udA = Ik + IIk,

where k is an integer. By the reproducing property we have

g(z) =
D

K(z, w)g(w)u(w)dA(w)

It follows that

Ik =
(w0,r/k)

|g(z)|2u(z)dA(z)

≤
(w0,r/k)

K(·, z) 2
A2(u)

g 2
A2(u)

u(z)dA(z)

=
(w0,r/k)

K(z, z)u(z)dA(z) · g 2
A2(u)

.

By Lemma 2.6, we obtain

(w0,r/k)

K(z, z)u(z)dA(z) ≤ C
(w0,r/k)

u( (z, r))−1u(z)dA(z)

≤ C
1

u( (w0, r)) (w0,
r
k )

u(z)dA(z)

= C
u w0,

r
k

u( (w0, r))
,
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which converges to 0 as k goes to infinity. Combining this fact with

g 2
A2(u)

= Ik + IIk,

now we can choose a k large enough such that

g 2
A2(u)

≤ C
D\ (w0,

r
k )

|g(z)|2u(z)dA(z)

= C
D\ (w0,

r
k )

f (z)

z − w0

2

u(z)dA(z)

= C
D\ (w0,

r
k )

1 − w0z

z − w0

2 1

|1 − w0z|2 |f (z)|2u(z)dA(z)

≤ k

r

2
C

(1 − |w0|)2 D\ (w0,
r
k )

|f (z)|2u(z)dA(z)

≤ C (k/r)2

(1 − |w0|)2 f 2
A2(u)

.

It then follows that

Sw0 A2(u,w0)→A2(u) ≤
√

C (k/r)

1 − |w0| ,

where C is independent on w0, k is an integer and r ∈ (0, 1) is fixed. Hence

Uz
w0 A2(u,w0)→C ≤ V z

w0 C→C Lz A2(u)→C Sw0 A2(u,w0)→A2(u)

≤
√

C (k/r)|z − w0|
1 − |w0| Lz A2(u)→C

Since Uz
w0

and Lz are point evaluations on A2(u,w0) and A2(u) respectively, by the
Riesz representation we have

Uz
w0

2
A2(u,w0)→C

= Kw0(z, z) and Lz
2
A2(u)→C

= K(z, z).

We let ρ(z, w0) < δ where δ ∈ (0, r) will be specified later. We obtain that

Kw0(z, z) ≤ k
√

C

r

|1 − w0z|
1 − |w0| ρ(z, w0)K(z, z)

≤ δ
k
√

C

r
· |1 − w0z|
1 − |w0| K(z, z) ≤ δ

C k

r
K(z, z)

where C is independent on w0 and z by Eq. 2.1. We now choose δ > 0 such that C k/r ·
δ < 1, and this completes the proof of (2.5) and of the theorem.

The following proposition is proved by Chacón in [3] which is going to be employed in
the proof of the compactness.

Proposition 2.8 Let p0 > 1. If u ∈ Bp0 , then the normalized kernel function kw converges
to zero weakly in A2(u).

The next Proposition is a classical result, its proof is similar to that one given by K. Zhu
in [14, Theorem1.14].
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Proposition 2.9 Let p0 > 1 and u ∈ Bp0 . A linear operator T on A2(u) is compact if and
only if Tfn A2(u) −→ 0 whenever fn → 0 weakly in A2(u).

3 Proof of Theorem 1.1

Proof The equivalence (i)⇔(iii) was proved by Constantin in [5] Theorem 4.1.
We prove “(ii)⇒(iii)” first. Since 0 < r ≤ δ, we use Theorem 2.7, Lemmas 2.6 and 2.2

to see that

μ̃(z) ≥
(z,r)

|kz(ζ )|2dμ(ζ )
(z,r)

K(ζ, ζ )dμ(ζ )

(z,r)

1

u( (ζ, r))
dμ(ζ )

1

u( (z, r)) (z,r)

dμ(ζ ) = μr(z). (3.1)

To prove “(iii)⇒(ii), by Lemma 2.1 one has that

|kz(w)|2 1

u( (w, r)) (w,r)

|kz(ζ )|2u(ζ )dA(ζ ),

where z ∈ D and r > 0. Let {aj } and r > 0 be chosen as in Lemma 2.4. We can use Lemma
2.2, Fubini’s Theorem and Lemma 2.4 to conduct the following computation

μ̃(z) ≤
∞

j=1 (aj ,r)

|kz(w)|2dμ(w)

∞

j=1 (aj ,r)

1

u( (w, r)) (w,r)

|kz(ζ )|2u(ζ )dA(ζ )dμ(w)

sup
j

μ( (aj , r))

u( (aj , r))

∞

j=1 (aj ,2r)
|kz(ζ )|2u(ζ )dA(ζ )

sup
z∈D

μr(z),

where the last inequality follows the fact that (3) in Lemma 2.4. That completes the proof.

4 Proof of Theorem 1.2

Proof Let I : A2
b(u) → L2(dμ) be the identity. According to the observation

Tμ = I ∗I

and the vanishing Carleson embedding theorem (Theorem 3.3 in [5]), we have that Tμ

is compact on A2(u) if and only if lim|z|→1
μr(z) = 0. Hence we have the equivalence

“(i)⇔(iii)”. “(ii)⇒(iii)” is an obvious consequence of the inequality (3.1).
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To prove “(iii)⇒(ii)”, assume that lim|z|→1
μr(z) = 0. Let {an} and r ∈ (0, δ] be chosen as

in Lemma 2.4. For any > 0, let N be the integer that μr(an) < whenever n ≥ N . We
can find a compact subset K ⊂ D such that K ⊃ ∪N

j=1 aj , r . Then we have that

μ̃(z) ≤
K

|kz(w)|2dμ(w) +
j>N (aj ,r)

|kz(w)|2dμ(w) := I(z) + II(z).

Since (iii) means that Tμ is compact, Proposition 2.8 implies that lim|z|→1
I(z) = 0. To

complete the proof, we estimate II(z) as follows: by Lemmas 2.1 and 2.4, we have

II(z)
j>N (aj ,r)

1

u( (w, r)) (w,r)

|kz(ζ )|2u(ζ )dA(ζ )dμ(w)

sup
j>N

μ( (aj , r))

u( (aj , r))
j>N (aj ,2r)

|kz(ζ )|2u(ζ )dA(ζ )

sup
j>N

μr(aj ) < ,

which gives the desired result.

5 Proof of Theorem 1.3

Let T be a compact operator and h : R
+ → R

+ a continuous increasing function. The
authors of [6] introduce the following class of operators on a Hilbert space H . Say that
T ∈ Sh(H) if there is a positive constant c > 0 such that

∞

n=1

h(csn(T )) < ∞

where sn(T ) is the nth singular value of T .
To study the Schatten class of the Toeplitz operators on the Bergman spaces with Békollé-

Bonami weights, we follows the strategy of [6]. The following Lemma is the generalized
version of Theorem 6.2 in [6].

Lemma 5.1 Let p0 > 1, u ∈ Bp0 and h : R
+ → R

+ an increasing convex function.
Let μ be a positive Borel measure on D such that the Toeplitz operator Tμ is compact
on A2(u). Then Tμ ∈ Sh A2(u) if and only if there is a constant C > 0 such that

D
h (Cμ̃(z)) dλu(z) < ∞ where dλu(z) = Kz

2u(z)dA(z).

Proof Assume that Tμ ∈ Sh A2(u) . That is n h(Csn) < ∞ for some positive constant

C. Let {en} be an orthonormal set in A2(u) and Tμ =
∞

n=1
sn ·, en en the canonical decom-

position of the positive operator Tμ where sn are also the eigenvalues of Tμ. Note that kz is
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the normalized reproducing kernel functions in A2(u). We have n | kz, en |2 = 1 by the
Parseval formula. Then it follows by the convexity of h and Jensen’s inequality that

D

h (Cμ̃(z)) dλu(z) =
D

h C Tμkz, kz A2(u) dλu(z)

=
D

h

∞

n=1

Csn| kz, en A2(u)|2 dλu(z)

≤
D n

h(Csn)| kz, en A2(u)|2dλu(z)

=
D n

h(Csn) K(·, z) −2|en(z)|2dλu(z)

=
n

h(Csn)
D

|en(z)|2u(z)dA(z) =
n

h(Csn) < ∞.

Conversely, we assume that
D

h(Cμ̃(z))dλu(z) < ∞ for some C > 0. By Lemmas 2.1,
2.4, 2.6 and Theorem 2.7, we obtain

Tμen, en =
D

|en(z)|2dμ(z)

D

(u( (z, r))−1

(z,δ)

|en(ξ)|2u(ξ)dA(ξ)dμ(z)

D

K(·, z) 2

(z,δ)

|en(ξ)|2u(ξ)dA(ξ)dμ(z)

By Fubini’s theorem, Lemma 2.2 and Theorem 2.7, we get

Tμen, en =
D (ξ,δ)

K(z, z)dμ(z) |en(ξ)|2u(ξ)dA(ξ)

D (ξ,δ)

|kξ (z)|2dμ(z)| en(ξ)|2u(ξ)dA(ξ)

≤
D

μ̃(ξ)|en(ξ)|2u(ξ)dA(ξ).

It then follows by Jensen’s formula that

∞

n=1

h(C1 Tμen, en )
D

h(C1μ̃(ξ))

⎛
⎝

n≥1

|en(ξ)|2
⎞
⎠ u(ξ)dA(ξ)

=
D

h(C1μ̃(ξ)) K(·, ξ) 2u(ξ)dA(ξ)

=
D

h(C1μ̃(ξ))dλu(ξ) < ∞.

Therefore Tμ ∈ Sh(A
2(u)).

As a direct consequence of Lemma 5.1, we give the proof of Theorem 1.3 which is the
Schatten class of the Toeplitz operators on A2(u).

Proof of Theorem 1.3 Let h(t) = tp where p > 1 and use Lemma 5.1.
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Another application of Lemma 5.1 is on the decay of the eigenvalue of Tμ which is
regarded as a generalization of Theorem 6.4 in [6].

Corollary 5.2 Let p0 > 1 and u ∈ Bp0 . A continuous decreasing function η : R+ → R
+

satisfies η(t) → 0 and η(t) η(t log t) as t → ∞. Let hη be the function that hη(η(t)) =
1/t . Then sn(Tμ) = O(η(n)) if and only if

D

hη(Cμ̃(z))dλu(z) < ∞
for some positive constant C.

Proof Use Lemma 6.1 in [6] and Theorem 5.1.

6 Proof of Theorem 1.4

In the proof of Theorem 1.1 we obtain μr(z) ≤ μ̃(z), for z ∈ D and r ∈ (0, δ). Therefore,
it is enough to prove

lim sup
|z|→1−

μ̃(z) Tμ e lim sup
|z|→1−

μr(z).

Firstly, we start with the lower estimate. We take an arbitrary compact operator K on A2(u).
By Proposition 2.8, the normalized reproducing kernel {kz} converges to 0 weakly in A2(u).
Then, Kkz A2(u) → 0 as |z| → 1−, by Proposition 2.9. Therefore,

Tμ − K ≥ lim sup
|z|→1−

(Tμ − K)kz A2(u) ≥ lim sup
|z|→1−

Tμkz A2(u). (6.1)

Since (6.1) holds for any compact operator K, it follows that

Tμ e ≥ lim sup
|z|→1−

Tμkz A2(u). (6.2)

On the other hand, since Tμ is bounded, we have

μ̃(z) = | Tμkz, kz A2(u)| ≤ Tμkz A2(u).

Combining this with (6.2), we get the lower estimate.

Now we prove the upper estimate for the essential norm of Toeplitz operators Tμ. Sup-
pose {en} is a complete orthonormal system of A2(u). For n ∈ N, we define an operator Qn

by

Qnf :=
n

j=1

f, ej A2(u)ej , for any f ∈ A2(u).

The operators Qn is compact on A2(u). Let Rn = I −Qn. It is easy to see that R∗
n = Rn

and R2
n = Rn. Furthermore, we have

lim
n→+∞ Rnf A2(u) = 0, for any f ∈ A2(u).

For ρ > 0, let Dρ = D \ D(0, ρ) and dμρ(z) = χDρ (z)dμ(z), where χDρ is the
characteristic function on Dρ . By the definition of the average function of μρ, we can see

μρ r
(z) = 1

u( (z, r)) (z,r)∩Dρ

dμ(ξ) = 1

u( (z, r)) (z,r)∩Dρ

dμ(ξ).
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To finish this proof we need two following lemmas that we are going to prove later at the
end of this paper. The first lemma is the identity (1.1) that we mentioned in the beginning.

Lemma 6.1 Let μ be a positive measure on D and u ∈ Bp0 , with p0 > 1. Suppose Tμ is
bounded on A2(u). Then

Tμf, g A2(u) =
D

f (ξ) g(ξ) dμ(ξ), f, g ∈ A2(u).

Proof Fubini’s theorem and reproducing kernel formula give

Tμf, g A2(u) =
D D

f (ξ)Kz(ξ) dμ(ξ) g(z) u(z) dA(z)

=
D

f (ξ)
D

g(z) Kξ (z) u(z) dA(z) dμ(ξ)

=
D

f (ξ) g(z),Kξ A2(u) dμ(ξ)

=
D

f (ξ) g(ξ) dμ(ξ).

This finishes the proof.

Lemma 6.2 Suppose Tμ is bounded on A2(u). For any ρ > 0 and r ∈ (0, δ), one has

lim
n→+∞ sup

f
A2(u)

=1
TμRnf L2(dμ) sup

z∈D
μρ r

(z) (6.3)

and

lim
n→+∞ sup

f
A2(u)

=1
Rnf L2(dμ) sup

z∈D
μρ r

(z). (6.4)

Lemma 6.3 Suppose Tμ is bounded on A2(u). For any r ∈ (0, δ) and ρ > r, one has

sup
z∈D

μρ r
(z) sup

z∈Dρ−r

μr (z).

Assume that all results given by Lemmas 6.2 and 6.3 are true. Since Qn is compact,
TμQn is also compact. Therefore, we have

Tμ e ≤ Tμ − TμQn = TμRn .

It is easy to see that

TμRnf
2
A2(u)

≤ Rnf L2(dμ) TμRnf L2(dμ).

Moreover, we have

Tμ
2
e ≤ TμRn

2 ≤ sup
f

A2(u)
=1

Rnf L2(dμ) sup
f

A2(u)
=1

TμRnf L2(dμ).

Taking n → ∞, by Lemmas 6.2 and 6.3, we have

Tμ
2
e ≤ sup

z∈D
μρ r

(z)

2

sup
z∈Dρ−r

μr (z)

2

.
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Letting ρ → r + 1, we obtain

Tμ e lim sup
|z|→1−

μr(z).

This completes the proof.

6.1 Proof of Lemma 6.2

Since the proofs of (6.3) and (6.4) are almost the same, we only prove (6.3). First, we show

lim
n→+∞ sup

f
A2(u)

=1 D(0,ρ)

|TμRnf (z)|2 dμ(z) = 0. (6.5)

Since TμRnf ∈ A2(u), we obtain

|TμRnf (z)| = | TμRnf, Kz A2(u)| = | f,RnT
∗
μKz A2(u)| ≤ f A2(u) RnT

∗
μKz A2(u),

where the first equality follows from the reproducing property. Then, we get

sup
f

A2(u)
=1 D(0,ρ)

|TμRnf (z)|2 dμ(z) ≤
D(0,ρ)

RnT
∗
μKz

2
A2(u)

dμ(z).

Therefore, it is enough to prove

lim
n→∞ D(0,ρ)

RnT
∗
μKz

2
A2(u)

dμ(z) = 0.

This follows from Lebesgue’s dominated convergence theorem because of

RnT
∗
μKz

2 ≤ Tμ
2
A2(u)

Kz
2
A2(u)

= Tμ
2
A2(u)

K(z, z)

and K(z, z) ∈ L∞(D(0, ρ), dμ).
Next, we prove

sup
f

A2(u)
=1 Dρ

|TμRnf (z)|2 dμ(z) sup
z∈D

μρ r
(z). (6.6)

This comes from

Dρ

|TμRnf (z)|2 dμ(z) =
D

|TμRnf (z)|2 dμρ(z)

D

[μρ]r (z) |TμRnf (z)|2u(z) dA(z)

sup
z∈D

[μρ]r (z) TμRnf
2
A2(u)

Tμ
2
A2(u)

f 2
A2(u)

sup
z∈D

[μρ]r (z).

From Eqs. 6.6 and 6.5 we obtain 6.3 and complete the proof.
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6.2 Proof of Lemma 6.3

By definition of the averaging,

μρ r
(z) = 1

u( (z, r)) (z,r)

dμρ(ξ)

= 1

u( (z, r)) (z,r)∩Dρ

dμ(ξ)

By Theorem 2.7, we obtain

μρ r
(z)

(z,r)∩Dρ

|kz(ξ)|2 dμ(ξ). (6.7)

By Lemma 2.1, we have

|kz(ξ)|2 1

u( (ξ, r)) (ξ,r)

|kz(s)|2 u(s) dA(s),

for any ξ ∈ (z, r). Plugging this into Eq. 6.7, by Lemma 2.2 and Fubini’s theorem, we
have

[μρ]r (z)
(z,r)∩Dρ D

χ (ξ,r)(s) |kz(s)|2 u(s) dA(s) dμ(ξ)

D (z,r)∩Dρ

χ (s,r)(ξ)

u( (ξ, r))
dμ(ξ) |kz(s)|2 u(s) dA(s)

≤ sup
s∈D (z,r)∩Dρ

χ (s,r)(ξ)

u( (ξ, r))
dμ(ξ)

D

|kz(s)|2 u(s) dA(s)

= sup
s∈D (z,r)∩ (s,r)∩Dρ

1

u( (ξ, r))
dμ(ξ) .

Now we show that (z, r) ∩ (s, r) ∩ Dρ = ∅, for any s ∈ D(0, ρ − r). Indeed, if
ξ ∈ (z, r) ∩ (s, r) ∩ Dρ, we have d(ξ, s) ≤ r and d(0, ξ) ≥ ρ, so that

d(0, s) ≥ d(0, ξ) − d(ξ, s) ≥ ρ − r,

which means that s /∈ D(0, ρ − r). Therefore,

[μρ]r (z) sup
s /∈D(0,ρ−r) (z,r)∩ (s,r)∩Dρ

1

u( (ξ, r))
dμ(ξ)

sup
s∈Dρ−r

1

u( (s, r)) (z,r)∩ (s,r)∩Dρ

dμ(ξ)

sup
s∈Dρ−r

μr (s),

which completes the proof.
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