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Abstract
Using an operator approach, we discuss stationary solutions to Fokker-Planck equations
and systems with nonlinear reaction terms. The existence of solutions is obtained by using
Banach, Schauder and Schaefer fixed point theorems, and for systems by means of Perov’s
fixed point theorem. Using the Ekeland variational principle, it is proved that the unique
solution of the problem minimizes the energy functional, and in case of a system that it is
the Nash equilibrium of the energy functionals associated to the component equations.

Keywords Elliptic equation · Reaction-diffusion equation · Semi-linear Fokker-Planck
equation · Fixed point · Variational method · Nash type equilibrium

Mathematics Subject Classification (2010) 35J60 · 47H30 · 47J05

1 Introduction

The Fokker-Planck equation arises as a mathematical model in many areas of physics and
biology, mostly connected with the analysis of random phenomena (see, e.g., [1, 2, 4, 15,
19, 20]). It has the form

wt − div (D∇w + wF) = h,

where D = D (x) is a symmetric (diffusion) matrix, F = F (x) is a given vector field,
h = h (t, x) is the source term, and w = w (t, x) is a probability distribution. It is the
continuity equation

wt + div J = h,

for the flux density J = −D∇w − wF involving both diffusion, by the term D∇w, and
drift, by wF. In case that D = DI, where I is the identity matrix and D is a constant, the
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equation reads
wt − D w − div (wF) = h.

We consider the semi-linear case, where the source term h is a reaction term h (w)

depending on the state, namely equations of the form

wt − D w − div (wF) = h (w) .

The reaction term h(w) can be very general and nonlocal both in time and space. In par-
ticular, the cases of the equations with memory and of integral-differential equations are
included. The reaction term can involve power-type nonlinearities, or rational functions
simulating the saturation effect and making the equation a self-limiting model (see [2]).

In this paper, we consider only the stationary equation in a smooth bounded domain
⊂ R

d , with a potential flow F = −εD∇H, where ε > 0 and H is a sufficiently smooth
function, let it be in C1 ( ), having a number of properties as shown below, but which could
be very irregular near the boundary. Thus we consider the following semi-linear problem

− w + ε div (w∇H) = (w) in
w = 1.

(1.1)

Assuming that expH ∈ L∞ ( ) and making the substitution

w = (u + 1) ρ,

with
ρ := exp (εH) / |exp (εH)|L1( ) ,

we replace the average condition w = 1 by the equality ρu = 0, and the above
problem becomes

− u − ε∇u · ∇H = (u) in
ρu = 0,

(1.2)

where

(u) = 1

ρ
(ρ (u + 1)) ,

leading to the study of renormalized solutions u in a special weighted space.
We also consider systems of such equations modeling the evolution of many randomly

diffusing particles. This is the case of chemical reactions involving several reagents that
react and diffuse simultaneously.

Compared to other approaches in the literature (see [4, 7, 9, 11, 13, 19] ), our approach
is essentially based on the theory of nonlinear operators and by this, the specificity of the
subject is brought inside the unifying nonlinear functional analysis. We first consider the
solution operator associated to the non-homogeneous problem, which is defined by using
the general theory of positive-define self-adjoint linear operators, and next its composi-
tion with the nonlinear mapping giving the right-hand side (nonlinearity) of the semi-linear
problem. Then, joint suitable properties of the solution operator and nonlinearity allow us to
make use of several fixed point principles: Banach’s fixed point theorem, which guarantees
the existence and uniqueness of the solution, and its property of being a global minimum
of the energy functional; Schauder’s and Schaefer’s fixed point theorems, which not only
guarantee the existence of a solution, but also give its localization in terms of the energetic
norm.

Our approach to reaction-diffusion systems of Fokker-Planck equations is based on the
vector method that uses matrices instead of constants, vector-valued norms and Perov’s
fixed point theorem (for the vector approach to nonlinear systems, see [5, 6, 16, 18]). In this
case, the obtained solution is a Nash equilibrium of the energy functionals associated to the
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equations of the system. The variational properties of solutions are obtained by means of
Ekeland’s principle.

2 Preliminaries. Linear Fokker-Planck Equations

Our approach to linear Fokker-Planck equations makes use of the variational theory of
positive-define symmetric linear operators (see [14, Ch. 4], or [21, Ch. 5]). The application
of this theory to linear Fokker-Planck equations is detailed in this section.

2.1 The Fokker-Planck Operator

Consider the Banach normalized weighted spaces

Lq
ρ = u : ρ1/qu ∈ Lq ( ) , ρu = 0 (1 ≤ q < +∞)

with norm

|u|q
L

q
ρ

= ρ |u|q .
For q = 2, we endow L2

ρ with the inner product and norm

(u, v)ρ = ρuv, |u|ρ = ρu2
1
2

.

Consider the linear operator in L2
ρ, defined by

Lu = − u − ε∇u · ∇H

with the domain

D (L) = {u ∈ C2
0 ( ) : ρu = 0},

where C2
0 ( ) is the space of all functions in C2( ) with compact support included in .

For any u ∈ C2
0 ( ) , u ∈ C0 ( ) , and since H ∈ C1 ( ) , one has ∇H ∈ C ,Rd .

Hence Lu ∈ C0 ( ) ⊂ L2
ρ, that is L is well-defined. Also D (L) is dense in L2

ρ . Indeed, if
u ∈ L2

ρ, then v := √
ρu ∈ L2 ( ) and in view of the density of C∞

0 ( ) into L2 ( ) , there
exists in C∞

0 ( ) a sequence (vk) with vk → v in L2 ( ) . Let ϕk ∈ C∞
0 ( ) be such that

ϕk → 1 in L2 ( ) , and let

uk := 1√
ρ

(vk − ckϕk) ,

where ck = √
ρvk/

√
ρϕk . Clearly uk ∈ D (L) . Also

|uk − u|ρ = |vk − ckϕk − v|L2( ) ≤ |vk − v|L2( ) + ck |ϕk|L2( ) . (2.1)

Hence uk → u in L2
ρ if ck → 0. To show this, first note that

0 <
√

ρ ≤ √
ρ |1 − ϕk| + √

ρϕk ≤ |ρ|L1( ) |1 − ϕk|L2( ) + √
ρϕk

whence we have that the sequence
√

ρϕk is bounded from below by a positive number
C. Then ck ≤ (1/C)

√
ρvk . Next, in view of

√
ρv = 0, one has

√
ρvk = √

ρ (vk − v) ≤ |ρ|L1( ) |vk − v|L2( ) → 0.
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Hence ck → 0 and from (2.1) it follows that uk → u in L2
ρ . Therefore L is densely defined

on L2
ρ .

The operator L is symmetric. Indeed, since ∇ρ = ερ∇H, we have

(Lu, v)ρ = − ρv ( u + ε∇u · ∇H) = ∇ (ρv) · ∇u − v∇u · ∇ρ

= ρ∇u · ∇v = (u,Lv)ρ .

Finally note that

(Lu, u)ρ = ρ |∇u|2 > 0

for every u ∈ D (L) \ {0} , that is the operator L is strictly positive.

2.2 The Energetic Space

We may endow D (L) with two inner products

u, v = (u, v)ρ + (Lu, v)ρ , [u, v] = (Lu, v)ρ

and the corresponding norms

u 2 = |u|2ρ + (Lu, u)ρ , [u]2 = (Lu, u)ρ .

Let EL (called the energetic space of L) be the completion of the prehilbertian space
(D (L) , · ) and let us use the same notations ·, · , [·, ·] , · and [·] for the corresponding
maps extended by density to EL. Since |u|ρ ≤ u for all u ∈ D (L) , we have D (L) ⊂
EL ⊂ L2

ρ with dense and continuous embeddings. Recall that, from the construction of the
completion, any element u of EL can be seen as the limit in L2

ρ of a sequence of functions
from D (L) which is fundamental with respect the norm · , and that this limit is common
for all such sequences (uk) , (vk) which are equivalent in the sense that uk − vk → 0. If
(uk) is a fundamental sequence in D (L) , then there exist v, vi ∈ L2 ( ) , i = 1, ··, d such
that

√
ρuk → v,

√
ρ

∂uk

∂xi

→ vi (i = 1, ··, d) in L2 ( ) .

Thus, if we denote

u := v√
ρ

,
∂u

∂xi

:= vi√
ρ

(i = 1, ··, d) ,

then we may say that for every u, v ∈ EL,

u, v = ρ (uv + ∇u · ∇v) , [u, v] = ρ∇u · ∇v, (2.2)

u 2 = ρ u2 + |∇u|2 , [u]2 = ρ |∇u|2 . (2.3)

Notice that the functional [·] is only a semi-norm on EL. To make it a norm, equivalent to
the norm · on EL, we need a compactness assumption. To this aim, we state the following
condition:

(Cq ) The embedding D (L) ⊂ L
q
ρ is compact, i.e., any sequence of functions in D (L)

which is bounded with respect to the norm · has a subsequence that converges in L
q
ρ .

Clearly condition (Cq ) implies that the embedding EL ⊂ L
q
ρ is also compact.
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The next condition (H) gives an exact representation of the space EL, and consequently,
it is sufficient for (Cq ) to hold for some values of q.

(H) There exists a constant c > 0 such that

|∇H | δ ≤ c in ,

where δ gives the distance to the boundary ∂ , i.e.

δ (x) = min
y∈∂

|x − y| (x ∈ ) .

Proposition 2.1 If condition (H) is satisfied for a constant c sufficiently small, then

EL = 1√
ρ

H 1
0,ρ ( ) (2.4)

where H 1
0,ρ ( ) = {v ∈ H 1

0 ( ) : √
ρv = 0}, and [u] ,

√
ρu

H 1
0 ( )

and u are

equivalent norms on EL.

Proof For any u ∈ D (L) , one has

∇ √
ρu = √

ρ∇u + 1

2
√

ρ
u∇ρ = √

ρ∇u + 1

2
√

ρu
∇ρ

ρ
.

Since ρ−1∇ρ = ε∇H , from (H) and Hardy’s inequality [3], we can estimate the last
addendum of the previous identity as follows

1

2
√

ρuε∇H
L2( )

≤ ε
c

2

√
ρu

δ L2( )

≤ ε
c

2
∇ √

ρu
L2( )

.

Consequently

∇ √
ρu

2
1
2 ≤ ρ |∇u|2

1
2 + ε

c

2
∇ √

ρu
2

1
2

,

ρ |∇u|2
1
2 ≤ ∇ √

ρu
2

1
2 + ε

c

2
∇ √

ρu
2

1
2

,

whence, if c > 0 is small enough that 1 − εc/2 > 0, we obtain
√

ρu
H 1
0 ( )

≤ c0 [u] , [u] ≤ c1
√

ρu
H 1
0 ( )

, (2.5)

where c0 = 1/ (1 − εc/2) and c1 = 1 + εc/2. As a result, for any sequence of functions
uk ∈ D (L) which is fundamental with respect to the norm · , the sequence

√
ρuk is

fundamental with respect to the norm |·|H 1
0 ( ) , and conversely, if vk is fundamental with

respect to the norm |·|H 1
0 ( ) , then the sequence uk = vk/

√
ρ is fundamental with respect

to the norm · . This proves (2.4), while (2.5) together with the continuous embedding
1/

√
ρ H 1

0,ρ ( ) ⊂ L2
ρ shows that [u] ,

√
ρu

H 1
0 ( )

and u are equivalent norms on

EL.

Remark 2.1 The behavior on the boundary ∂ and the regularity of the solution w =
(u + 1) ρ with u ∈ EL strongly depend on the behavior and regularity of H . Thus, under
assumption (H), if H ∈ H 1 ( ) , then w ∈ W 1,1 ( ) . Indeed, from (H) (cf. Proposition
2.1) one has w = ρ + uρ = ρ + √

ρv, where v ∈ H 1
0 ( ) . Now, since ρ was assumed in

L∞ ( ) ,

∂xi
ρ = ερ∂xi

H ∈ L2 ( ) ,
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hence ρ ∈ H 1 ( ) . Furthermore,

∂xi

√
ρv = √

ρ∂xi
v + ε

2
√

ρv∂xi
H ∈ L1 ( ) .

Therefore w ∈ W 1,1 ( ) . For an exhaustive discussion of regularity of solutions we refer
the reader to [4, Chapter 1].

2.3 The Poincaré Inequality

Assume that condition (C2) holds. The space EL being reflexive (as a Hilbert space), one
deduces from a result in paper [12] that

μ := inf
u∈EL, u=0

[u]2

|u|2ρ
> 0

and the infimum is reached. From this, we have the Poincaré inequality

μ |u|2ρ ≤ [u]2 for u ∈ EL

which ensures that [·] is a norm on EL, equivalent to the norm · . Let EL be the dual of
(EL, [·]) . If we identify L2

ρ to its dual, then we have

D (L) ⊂ EL ⊂ L2
ρ ⊂ EL (2.6)

where the last embedding is compact too. For f ∈ EL and u ∈ EL, let (f, u) be the value
of the linear functional f at u. In case that f ∈ L2

ρ, one has (f, u) = (f, u)ρ .
Throughout the paper we assume that condition (C2) holds.

2.4 The Solution Operator

Returning to the operator L, for a fixed f ∈ EL, we define the weak solution of the
stationary problem

Lu = f in
ρu = 0

(2.7)

as being a function u ∈ EL such that for every v ∈ EL, one has that [u, v] = (f, v) . In
particular, if f ∈ L2

ρ, this identity becomes

ρ∇u · ∇v = ρf v for v ∈ EL.

From Riesz’s representation theorem, since (f, ·) is a continuous linear functional on
(EL, [·]) , it follows that problem (2.7) has a unique weak solution uf . Thus we may define
the solution operator

L−1 : EL → EL, L−1f := uf .

Recall that under condition (C2), the operator L has a sequence of eigenvalues (λk) with
0 < λ1 = μ ≤ ·· ≤ λk ≤ ··, λk → +∞, and correspondingly a sequence (φk) of
eigenfunctions, which is orthonormal and complete in L2

L. Also the sequence φk/
√

λk is
orthonormal and complete in (EL, [·]) . This yields the Fourier representation of the solution
operator:

L−1f = uf ,
φk√
λk

φk√
λk

= (f, φk)

λk

φk,

where the series converges in EL and L2
ρ .
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Also note that L−1 is an isometry between EL and EL, i.e., L−1f = |f |EL
for every

f ∈ EL, and that the exact Poincaré inequality

λ1 |u|2ρ ≤ [u]2 for u ∈ EL (2.8)

is accompanied by the Poincaré inequality for the dual, namely

λ1 |f |2
EL

≤ |f |2ρ for f ∈ L2
ρ . (2.9)

Indeed, if f ∈ L2
ρ, then using (2.8) we have

|f |EL
= sup

u∈EL, u=0

|(f, u)|
[u]

= sup
u∈EL, u=0

(f, u)ρ

[u]

≤ sup
u∈EL, u=0

|f |ρ |u|ρ
[u]

≤ sup
u∈EL, u=0

1√
λ1

|f |ρ [u]
[u]

= |f |ρ√
λ1

,

that is (2.9).

2.5 The Energy Functional

According to the variational theory of positive-define symmetric linear operators, for each
fixed f ∈ EL, the functional J : EL → R,

Ju = 1

2
[u]2 − (f, u)

is C1 and J u = Lu − f, more exactly

J u, v = [u, v] − (f, v) for all u, v ∈ EL.

Therefore the weak solution of problem (2.7) is the critical point of the energy functional J .

3 Semilinear Fokker-Planck Equations

We now turn back to the semi-linear problems (1.1) and (1.2).

3.1 Existence and Uniqueness via Banach’s Fixed Point Theorem

Our first result is about the existence and uniqueness of the solution to the semilinear
problem (1.2) and consequently to (1.1).

Let j0 and j be the canonical injections of the embeddings EL ⊂ L2
ρ and L2

ρ ⊂ EL,

respectively.
Notice that problem (1.2) is equivalent with the fixed point equation u = L−1 (u) in

EL. In view of embeddings (2.6), we may discuss three cases:

• maps EL into EL;
• maps EL into L2

ρ ; here by the composition L−1 we mean L−1j ;
• maps L2

ρ into L2
ρ ; here by L−1 we mean L−1j j0.

Our first results are existence and uniqueness theorems, the first in terms of and the
second in terms of .
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Theorem 3.1 Problems (1.2) and (1.1) have unique weak solution u ∈ EL and w =
(u + 1) ρ ∈ L2 ( ) , respectively, if one of the following conditions holds:

(a) : EL → EL and there is a constant 0 ≤ a0 < 1 such that

| (u) − (v)|EL
≤ a0 [u − v] for u, v ∈ EL.

(b) : EL → L2
ρ and there is a constant 0 ≤ a1 <

√
λ1 such that

| (u) − (v)|ρ ≤ a1 [u − v] for u, v ∈ EL.

(c) : L2
ρ → L2

ρ and there is a constant 0 ≤ a2 < λ1 such that

| (u) − (v)|ρ ≤ a2 |u − v|ρ for u, v ∈ L2
ρ .

Proof (a) Under condition (a), for any u, v ∈ EL, one has

L−1 u − L−1 v = | u − v|EL
≤ a0 [u − v] , (3.1)

and the conclusion follows from Banach’s contraction principle.
(b) In case that takes values in L2

ρ, using the Poincaré inequality (2.9), we have

| u − v|EL
≤ 1√

λ1
| u − v|ρ ≤ a1√

λ1
[u − v]

and the result follows from case (a) where a0 = a1/
√

λ1.
(c) This case reduces to (b) with a1 = a2/

√
λ1 since in virtue of (2.8), one has

| (u) − (v)|ρ ≤ a2 |u − v|ρ ≤ a2√
λ1

[u − v] .

Theorem 3.2 Problems (1.2) and (1.1) have a unique weak solution u ∈ EL and w =
(u + 1) ρ ∈ L2 ( ) , respectively, if one of the following conditions holds:

(d) : L2 ( ) → L2 ( ) , (ρ) ∈ L2
ρ−1 ( ) , and there is a constant 0 ≤ a < λ1 such

that

| (u) (x) − (v) (x)| ≤ a |u (x) − v (x)| for u, v ∈ L2 ( ) and a.a. x ∈ . (3.2)

(e) (u) (x) = f (x, u (x)) , where f : × R → R satisfies the Carathéodory con-
ditions, f (·, 0) ∈ L2 ( ) , f (·, ρ (·)) ∈ L2

ρ−1 , and there exists 0 ≤ a < λ1 such
that

|f (x, u) − f (x, v)| ≤ a |u − v| for all u, v ∈ R and a.a. x ∈ . (3.3)

Proof (d) First, if u ∈ L2
ρ, then

√
ρu ∈ L2 ( ) and

√
ρ (u)

L2( )
= 1√

ρ
((u + 1) ρ)

L2( )

≤ 1√
ρ

( ((u + 1) ρ) − (ρ))
L2( )

+ 1√
ρ

(ρ)
L2( )

≤ a
√

ρu
L2( )

+ 1√
ρ

(ρ)
L2( )

= a |u|ρ + 1√
ρ

(ρ)
L2( )

< +∞.
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Hence (u) ∈ L2
ρ . Also, for any u, v ∈ L2

ρ, we have

| (u) − (v)|ρ = 1

ρ
( ((u + 1) ρ) − ((v + 1) ρ))

ρ

= 1√
ρ

( ((u + 1) ρ) − ((v + 1) ρ))
L2( )

≤ a
√

ρ (u − v)
L2( )

= a |u − v|ρ .
Thus we are in case (c) of Theorem 3.1.
(e) Under the assumptions of f, the Nemytskii operator maps L2 ( ) into itself. In
addition (3.3) immediately yields (3.2). Hence we are in case (d).

3.2 Variational Characterization of the Solution

The next result gives a variational characterization of the solution guaranteed by the
previous theorems.

Theorem 3.3 (j) Assume that is in case (a) of Theorem 3.1 and there is a C1-functional
: EL → R bounded from above on bounded sets and such that = . Then the unique

solution u of problem (1.2) is the unique minimum point of the energy functional

Jv = 1

2
[v]2 − (v) . (3.4)

(jj) Assume that is in case (d) of Theorem 3.2 and there is a C1-functional θ :
L2 ( ) → R bounded from above on bounded sets and such that (v) = ρθ (v − ρ) for
v ∈ L2 ( ) . Then the unique solution u of problem (1.2) is the unique minimum point of the
energy functional (3.4) for (v) = θ (ρv) , v ∈ EL.

(jjj) Assume that f is in case (e) of Theorem 3.2 and in addition that there exists h ∈
L2( ) and a small enough c ≥ 0 such that

|f (x, s)| ≤ ρ (x) (c |s| + h (x)) for s ∈ R and a.a. x ∈ . (3.5)

Then the unique solution u of problem (1.2) is the unique minimum point of the energy
functional (3.4) for

(v) =
ρv

0

1

ρ
f (x, τ + ρ) dτ .

Proof (j) Since J = L − , one has that the unique solution of (1.2) is the unique critical
point of J . Let B be a closed ball of the space EL with center at the origin and positive
radius R ≥ | (0)|EL

/(1 − a0). Then, by (3.1) we immediately see that

L−1 (B) ⊂ B. (3.6)

To prove that the solution u minimizes J we use the weak form of Ekeland’s variational
principle [8, 10]. Note that the boundedness of guarantees the functional J to be bounded
from below on B. Indeed, for any v ∈ B, one has Jv ≥ − (v) ≥ −c > −∞, where

(v) ≤ c for every v ∈ B. Then, using the weak form of Ekeland’s variational principle,
there is a minimizing sequence (uk) of elements in B such that

Juk ≤ inf
B

J + 1

k
(3.7)
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and

Juk ≤ Jv + 1

k
[v − vk] (3.8)

for all v ∈ B. For any fixed index k, choose

vt = uk − tL−1J uk, 0 < t < 1.

Using L−1 uk = uk − L−1J uk, one has

vt = (1 − t) uk + tL−1 uk .

Here, one has uk ∈ B, and by the invariance property (3.6), L−1 uk also belongs to B.
Since B is convex, it follows that vt ∈ B for every t ∈ (0, 1) . Replacing v by vt into (3.15)
and then dividing by t, yields

t−1 Juk − J uk − tL−1J uk ≤ 1

k
L−1J uk ,

whence letting t go to zero, one finds

J uk,L−1J uk ≤ 1

k
L−1J uk ,

that is

L−1J uk ≤ 1

k
.

Hence
Juk → inf

B
J and L−1J uk → 0 in EL. (3.9)

Let vk := L−1J uk . From

uk+p − uk ≤ vk+p − vk + L−1 uk+p − L−1 uk

and the contraction condition (3.1), we obtain

uk+p − uk ≤ (1 − a0)
−1 vk+p − vk .

The sequence (vk) is a Cauchy sequence (as a convergent sequence). Consequently (uk) is a
Cauchy sequence, hence convergent to some u ∈ B. Now passing to the limit in (3.9) gives

Ju = inf
B

J and J u = 0.

Due to the fact that R was taken arbitrary bigger than | (0)|EL
/(1− a0) and to the unique-

ness of the critical point of J , we may conclude that u minimizes J on the whole space EL,

that is Ju = infEL J .
(jj) For u, v ∈ EL, we have ρu, ρv ∈ L2 ( ) and

(u + tv) − (u) = θ (ρ (u + tv)) − θ (ρu)

= t θ (ρu) , ρv
L2( )

+ o (|t |)

= t
1

ρ
(ρ (u + 1)) , ρv

L2( )

+ o (|t |)

= t
1

ρ
(ρ (u + 1)) , v

ρ

+ o (|t |)
= t ( (u) , v)ρ + o (|t |) .

It follows that (u) = (u) . Hence we are in case (j).
(jjj) Under the assumptions on f, the function g (x, s) = ρ (x)−1 f (x, s + ρ (x)) satis-

fies the Carathéodory conditions and the growth inequality |g (x, s)| ≤ c |s| + h (x) , with
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h (x) = h (x) + cρ (x) , which makes the Nemytskii operator Ng associated to g to act in
L2 ( ) . In addition the functional

θ (v) =
v

0
g (x, τ ) dτ

is C1 on L2 ( ) and θ (v) = Ng (v) for v ∈ L2 ( ) . On the other hand, (v) = f (·, v) .
Now it is easy to check the equality (v) = ρθ (v − ρ) . Further, the functional J is
bounded from below on B (where B is like in case (j)) provided c is small enough. In fact,
thanks to (3.5), after some computations including the use of Poincaré’s inequality leading
a constant c1, we obtain an estimate of the type

Jv ≥ 1

2
− cc1 [v]2 + c2[v] + c3.

This shows that J is bounded from below if c < 1/(2c1). Therefore Ekeland’s principle
applies as well in this case.

The next theorem gives the variational characterization of the solution of problem (1.1)
and it is a direct consequence of the previous result just by making the change of variable
w = (u + 1)ρ.

Theorem 3.4 (k) Under the assumptions of Theorem 3.1, if in addition (v) =
ρ v

ρ
− 1 , where : EL → R is aC1-functional, then the unique solutionw of problem

(1.1) is the unique minimum point of the energy functional

J0v = 1

2

v

ρ

2

− 0 (v) , (3.10)

where 0(v) = v
ρ

− 1 .

(kk) Assume that is in case (d) of Theorem 3.2 and there is a C1-functional θ :
L2 ( ) → R such that (v) = ρθ (v − ρ) for v ∈ L2 ( ) . Then the unique solu-
tion w of problem (1.1) is the unique minimum point of the energy functional (3.10) for

0 (v) = θ (v − ρ) , v ∈ EL.
(kkk) Under the assumptions of case (e) of Theorem 3.2 the unique solution w of problem

(1.1) is the unique minimum point of the functional

J0 (v) = 1

2
ρ ∇ v

ρ

2

−
v−ρ

0

1

ρ
f (s, τ + ρ) dτ . (3.11)

Remark 3.1 In particular, in the absence of drift, that is when H = 0, one has ρ = ρ0 :=
1/meas( ) and the functional (3.11) reduces to

J0 (v) = 1

ρ0

1

2
|∇v|2 −

v−ρ0

0
f (s, τ + ρ0) dτ

= 1

ρ0

1

2
|∇v|2 −

v

ρ0

f (x, ξ)dξ

= 1

ρ0

1

2
|∇v|2 −

v

0
f (x, ξ)dξ + 1

ρ0

ρ0

0
f (x, ξ)dξ .
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Since the last term is a constant, we may say that in this case, the solution w of problem
(1.1) minimizes the functional

1

2
|∇v|2 −

v

0
f (x, ξ)dξ ,

which is the energy functional of the Dirichlet problem for the equation − w = f (x,w).

3.3 Existence via Schauder’s Fixed Point Theorem

If instead of Lipschitz continuity, we only assume a linear growth condition, and we add
compactness, then the existence of solutions still holds based on Schauder’s fixed point
theorem.

As in the case of Section 3.1, we give results first in terms of and next in terms of .

Theorem 3.5 The problems (1.2) and (1.1) have at least one weak solution u ∈ EL and
w = (u + 1) ρ ∈ L2 ( ) , respectively, if one of the following conditions holds:

(a) : EL → EL is completely continuous and there are constants 0 ≤ a0 < 1 and
b0 ≥ 0 such that

| (u)|EL
≤ a0 [u] + b0 for u ∈ EL. (3.12)

(b) : EL → L2
ρ is continuous, and there are constants 0 ≤ a1 <

√
λ1 and b1 ≥ 0 such

that
| (u)|ρ ≤ a1 [u] + b1 for u ∈ EL. (3.13)

(c) : L2
ρ → L2

ρ is continuous, and there are constants 0 ≤ a2 < λ1 and b2 ≥ 0 such
that

| (u)|ρ ≤ a2 |u|ρ + b2 for u ∈ L2
ρ . (3.14)

Proof (a) The operator L−1 is completely continuous. In addition if R ≥ b0/ (1 − a0) ,

then for every u ∈ EL with [u] ≤ R, one has

L−1 u = | u|EL
≤ a0 [u] + b0 ≤ a0R + b0 ≤ R.

Hence the operator L−1 maps the closed ball of EL with center at the origin and radius R

into itself. The conclusion follows now from Schauder’s fixed point theorem.
(b) The condition (C2) implies that the embedding L2

ρ ⊂ EL is compact, i.e. the injection
j : L2

ρ → EL is completely continuous. Also (3.13) shows that is bounded (maps
bounded sets into bounded sets). Hence the operator j is completely continuous as a
composition of two bounded and continuous operators where one of them, namely j, is
completely continuous. In addition, from Poincaré’s inequality and (3.13),

| (u)|EL
≤ 1√

λ1
| (u)|ρ ≤ 1√

λ1
(a1 [u] + b1) .

Hence (3.12) holds with a0 = a1/
√

λ1 and b0 = b1/
√

λ1. Thus we are in case (a).
(c) In this case, the operator j0 is continuous from EL to L2

ρ . In addition

| (u)|ρ ≤ a2 |u|ρ + b2 ≤ a2√
λ1

[u] + b2 for u ∈ EL.

Hence we are in case (b) with a1 = a2/
√

λ1 and b1 = b2.
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Theorem 3.6 The problems (1.2) and (1.1) have at least one weak solution u ∈ EL and
w = (u + 1) ρ ∈ L2 ( ) , respectively, if one of the following conditions holds:

(d) : L2 ( ) → L2 ( ) is continuous from L2
ρ−1 to L2

ρ−1 , and there are constants

0 ≤ a < λ1 and h ∈ L2
ρ−1 such that

| (u) (x)| ≤ a |u (x)| + h (x) for u ∈ L2 ( ) and a.a. x ∈ . (3.15)

(e) (u) (x) = f (x, u (x)) , where f : × R → R satisfies the Carathéodory
conditions, and there exist 0 ≤ a < λ1 and h ∈ L2

ρ−1 such that

|f (x, s)| ≤ a |s| + h (x) for every s ∈ R and a.a. x ∈ . (3.16)

Proof (d) The case reduces to case (c) in Theorem 3.5. As in the proof of Theorem 3.2,
we can show that maps L2

ρ into itself and that (3.14) holds. Next we prove that is
continuous from L2

ρ to itself. Indeed, if uk → u in L2
ρ, the

√
ρuk → √

ρu in L2 ( ) ,

so ρuk → ρu in L2
ρ−1 . Consequently, ((uk + 1) ρ) → ((u + 1) ρ) in L2

ρ−1 , that is

(uk) → (u) in L2
ρ, as wished.

(e) We reduce this case to (d). Under the above conditions on f, the Nemytskii operator
associated to f maps continuously L2 ( ) into L2 ( ) and |f (x, v)|L2( ) ≤ a |v|L2( ) +
|h|L2( ) . The same is true for the function

g (x, s) = 1√
ρ (x)

f x, s ρ (x)

which also satisfies the Carathéodory conditions and the growth condition

|g (x, s)| ≤ a |s| + h (x) for every s ∈ R and a.a. x ∈ .

Thus the Nemytskii operator associated to g is continuous from L2 ( ) to L2 ( ) . This
implies that is continuous from L2

ρ−1 to L2
ρ−1 . Indeed, if uk → u in L2

ρ−1 , then

uk/
√

ρ → u/
√

ρ in L2 ( ) , whence g ·, uk/
√

ρ → g ·, u/
√

ρ in L2 ( ) .

Hence f (·, uk) /
√

ρ → f (·, u) /
√

ρ in L2 ( ) , that is f (·, uk) = (uk) → f (·, u) =
(u) in L2

ρ−1 . Also (3.16) clearly gives (3.15). Hence we are in case (d).

3.4 Existence via Schaefer’s Fixed Point Theorem

In the next result, the linear growth of the nonlinear reaction term is relaxed in case that in
compensation, a sign condition holds for a part of the reaction term.

Let = 0 + 1 and correspondingly = 0 + 1 and f = f0 + f1.
We first state a general existence principle.

Theorem 3.7 Let 0 be as in Theorem 3.5 (a). If in addition 1 : EL → EL is completely
continuous and

( 1 (u) , u) ≤ 0 for u ∈ EL,

then the problems (1.2) and (1.1) have at least one weak solution u ∈ EL and w =
(u + 1) ρ ∈ L2 ( ) , respectively. In addition [u] ≤ b0/ (1 − a0) .
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Proof The operator L−1 is completely continuous and for every solution u ∈ EL \ {0} of
the equation u = λL−1 (u) and any λ ∈ (0, 1) , one has

[u] = λ
( (u) , u)

[u]
= λ

( 0 (u) , u)

[u]
+ λ

( 1 (u) , u)

[u]

≤ λ
( 0 (u) , u)

[u]
≤ λ | 0 (u)|EL

< a0 [u] + b0.

Here we have assumed without loss of generality that b0 > 0. Hence [u] < b0/ (1 − a0) ,

that is, the set of all solutions of the equations u = λL−1 (u) for λ ∈ (0, 1) , is bounded
in EL. Now Schaefer’s fixed point theorem guarantees the existence of a fixed point u ∈
EL of L−1 with [u] ≤ b0/ (1 − a0).

The next theorem gives us some sufficient conditions for the complete continuity of 1.

Theorem 3.8 The operator 1 is completely continuous from EL to EL if the compactness
condition (Cq ) holds for some q ≥ 2, and one of the following conditions is satisfied:

(i) 1 : EL → L
p
ρ is continuous and bounded for some p ≥ q/ (q − 1);

(ii) 1 : L
q
ρ → L

p
ρ is continuous and bounded for some p ≥ q/ (q − 1);

(iii) 1 : L
q

ρ1−q → L
p

ρ1−p is continuous and bounded for some p ≥ q/ (q − 1);
(iv) 1 (u) (x) = f1 (x, u (x)) , where f1 : × R → R satisfies the Carathéodory

conditions, and there exist a ∈ R+ and h ∈ L
p

ρ1−p such that

|f1 (x, s)| ≤ aρ
p−q

p |s| q
p + h (x) for every s ∈ R and a.a. x ∈ . (3.17)

Proof (i) From (Cq ), the embedding EL ⊆ L
q
ρ is compact, and so is the embedding L

q
ρ ⊆

EL. For p ≥ q/ (q − 1) = q , since ρ ∈ L∞ ( ) , one has L
p
ρ ⊆ L

q
ρ , whence the compact

inclusion L
p
ρ ⊆ EL.

(ii) Use the embedding EL ⊆ L
q
ρ to reduce the case to (i).

(iii) Let uk → u in L
q
ρ . Then ρuk → ρu in L

q

ρ1−q . Then, ρ (uk + 1) → ρ (u + 1) in

L
q

ρ1−q , and by the assumption, 1 (ρ (uk + 1)) → 1 (ρ (u + 1)) in L
p

ρ1−p . This yields

1 (uk) = ρ−1
1 (ρ (uk + 1)) → 1 (u) in L

p
ρ . Thus we are in case (ii).

(iv) We are in case (iii). First observe that 1 (u) (x) = ρ (x)1−1/p Ng (v) (x) , where for
each u ∈ L

q

ρ1−q , v := ρ1/q−1u ∈ Lq ( ) , and

g (x, s) = ρ (x)
1
p

−1
f1 x, ρ (x)

1− 1
q s .

The problem reduces to show that the Nemytskii operator Ng is well-defined from Lq ( )

to Lp ( ) . Indeed, using (3.17) we have

|g (x, s)| = ρ (x)
1
p

−1
f1 x, ρ (x)

1− 1
q s ≤ a |s| q

p + h0 (x) ,

where h0 = ρ
1−p
p h ∈ Lp ( ).

Remark 3.2 (Positive solutions) As it is well-known, the existence of nonnegative solutions
of boundary values problems is closely connected with maximum principles (see [4, Chap-
ter 2]). For our elliptic operator Lu = − u − ε∇u · ∇H, the maximum principle holds,
more exactly, if u ∈ C2 ( ) , Lu ≥ 0 and there is x0 ∈ with u (x0) = inf u, then u is
constant on the connected component of that contains x0. Consequently, assuming that
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(v) ≥ 0 for every function v, and that a solution u of problem (1.2) is regular belonging
to D (L) , then u ≥ −1. Indeed, otherwise, we would have u = 0 around ∂ , u = 0 on
a compact subset of and u (x0) = min u < −1 for some x0 ∈ . This implies that u

is constant u (x0) on the connected component of that contains x0. But this is impossible
since u is zero on ∂ . The case of generalized solutions can be discussed similarly using
the maximum principle for weak solutions.

4 Fokker-Planck Reaction-Diffusion Systems

Under the assumptions of Theorem 3.3, the unique stationary solution of a single equation is
a global minimum of the associated energy function. We now prove that in case of a system
of equations and under suitable conditions, the stationary solution is a Nash type equilibrium
with respect to the couple of energy functionals associated to the component equations.

For simplicity, we shall consider only systems of two equations, that is⎧⎨
⎩

− w1 + ε1div (w1∇H1) = 1 (w1, w2)

− w2 + ε2div (w2∇H2) = 2 (w1, w2)

w1 = 1 , w2 = 1.
(4.1)

In this case, denoting by

ρi = eεiHi /|eεiHi |L1( )

and making the substitution

wi = (ui + 1)ρi,

for i = 1, 2, we arrive to the system⎧⎨
⎩

− u1 − ε1∇u1 · ∇H1 = 1 (u1, u2)

− u2 − ε2∇u2 · ∇H2 = 2 (u1, u2)

ρ1u1 = 0 , ρ2u2 = 0
(4.2)

where

i (u1, u2) = 1

ρi
i((w1 + 1)ρ1, (w2 + 1)ρ2), i = 1, 2.

All the elements defined in Section 2 for one equation, L, EL, J and the scalar products
and norms given by (2.2), are now duplicated for the two equations of the system, and we
show it by an index i, i = 1, 2. We point out that we do not assume a variational structure
on the whole system, but only for each component equation; thus, more exactly, we assume
that there exist functions i : EL1 × EL2 → R, i = 1, 2, bounded from above on bounded
sets and such that for each i, i is the Fréchet derivative of i (u1, u2) with respect to the
variable ui . Hence, the energy functionals are

Ji(u1, u2) = 1

2
[ui]2i − i (u1, u2), i = 1, 2.

The analogue for systems of Theorem 3.1 case (a) is the following result. The reader can
easily obtain the analogues for the cases (b)-(e).

Theorem 4.1 Assume that i : EL1 × EL2 → EL1
× EL2

and there are nonnegative
constants aij , i, j = 1, 2, such that

| i (u1, u2) − i (v1, v2)|ELi

≤ ai1 [u1 − v1]1 + ai2 [u2 − v2]2 , i = 1, 2, (4.3)
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for all u1, v1 ∈ EL1 and u2, v2 ∈ EL2 , and the spectral radius of the matrix M =
(aij )i,j=1,2 is strictly less than 1. Then, problems (4.2) and (4.1) have unique weak solu-
tions (u1, u2) ∈ EL1 ×EL2 and (w1, w2) ∈ L2 ( )×L2 ( ) , wi = (ui +1)ρi (i = 1, 2) ,

respectively, and (u1, u2) is a Nash equilibrium of the pair of functionals (J1, J2), namely

J1(u1, u2) = min
EL1

J1(·, u2), J2(u1, u2) = min
EL2

J2(u1, ·). (4.4)

Proof First we prove the existence and the uniqueness of the solution to problem (4.2).
Using (4.3) and the same arguments as in the proof of Theorem 3.1(a), we arrive to

L−1
i i (u1, u2) − L−1

i i (v1, v2)
i
≤ ai1 [u1 − v1]1 + ai2 [u2 − v2]2 , i = 1, 2, (4.5)

which, using the matrix M, can be written in the matrix form⎛
⎝ L−1

1 1(u1, u2) − L−1
1 1(v1, v2)

1

L−1
2 2(u1, u2) − L−1

2 2(v1, v2)
2

⎞
⎠ ≤ M

[u1 − v1]1
[u2 − v2]2

.

Now, since the spectral radius of matrix M is strictly less than 1, the existence and unique-
ness of the solution (u1, u2) follow from Perov’s fixed point theorem (see [18, Theorem
1]).

In order to use the weak form of Ekeland’s principle, we look for two balls Bi ⊂ ELi
of

positive radius Ri, i = 1, 2, with the property that

L−1
i i (B1 × B2) ⊂ Bi for i = 1, 2. (4.6)

Taking v1 = v2 = 0 in (4.5) and assuming that [ui]i ≤ Ri, i = 1, 2, we obtain

L−1
i i (u1, u2)

i
≤ γi + ai1R1 + ai2R2, i = 1, 2,

where γi = L−1
i i (0, 0)

i
. Hence, in order to obtain the desired inclusions (4.6), it is

enough to have γi + ai1R1 + ai2R2 ≤ Ri, i = 1, 2, or in the matrix form

(I − M)
R1
R2

≥ γ1
γ2

.

Multiplying on the left by (I − M)−1 (which is a positive matrix since the spectral radius
of M is less than 1, see [18]) yields

R1
R2

≥ (I − M)−1 γ1
γ2

,

which shows that the desired numbers R1, R2 exist.
Next, we prove that the solution (u1, u2) is the Nash equilibrium of the pair of functionals

(J1, J2). To this aim, we use an iterative procedure. Denote by Jii the Fréchet derivative
of the functional Ji(u1, u2) with respect to ui . To begin the iterative procedure, we fix an
arbitrary element u2,0 ∈ B2. At each step k ≥ 1, u2,k−1 ∈ B2 been found at the previous
step k − 1, first as in the proof of Theorem 3.3, we apply Ekeland’s principle in B1 to the
functional J1 ·, u2,k−1 and find an element u1,k ∈ B1 such that

J1 u1,k, u2,k−1 ≤ inf
B1

J1(·, u2,k−1) + 1

k
, L−1

1 J11(u1,k, u2,k−1)
1

≤ 1

k
. (4.7)
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Next, we apply Ekeland’s principle in B2 to the functional J2(u1,k, ·) and obtain an element
u2,k ∈ B2 with

J2 u1,k, u2,k ≤ inf
B2

J2(u1,k, ·) + 1

k
, L−1

2 J22(u1,k, u2,k)
2

≤ 1

k
. (4.8)

Our aim now is to prove that the two sequences ui,k k
, i = 1, 2 are Cauchy and so

convergent. Let

αk = L−1
1 J11(u1,k, u2,k−1) and βk = L−1

2 J22(u1,k, u2,k).

Clearly αk → 0 and βk → 0 in EL1 and EL2 , respectively. As in the case of only one
equation, we have

u1,k − L−1
1 1(u1,k, u2,k−1) = αk, (4.9)

u2,k − L−1
2 2(u1,k, u2,k) = βk . (4.10)

By (4.9), we deduce

u1,k+p − u1,k 1 ≤ L−1
1 1(u1,k+p, u2,k+p−1) − L−1

1 1(u1,k, u2,k−1)
1
+ [αk+p − αk]1

≤ a11 u1,k+p − u1,k 1 + a12 u2,k+p−1 − u2,k−1 2 + [αk+p − αk]1 (4.11)

≤ a11 u1,k+p − u1,k 1 + a12 u2,k+p − u2,k 2

+a12 u2,k+p−1 − u2,k−1 2 − u2,k+p − u2,k 2 + [αk+p − αk]1.

By (4.10) we have

u2,k+p − u2,k 2 ≤ a21 u1,k+p − u1,k 1 + a22 u2,k+p − u2,k 2 + [βk+p − βk]2. (4.12)

Denote
δk,p = u1,k+p − u1,k 1 , ηk,p = u2,k+p − u2,k 2 ,

ξk,p = [αk+p − αk]1, χk,p = [βk+p − βk]2.
Obviously, ξk,p → 0 and χk,p → 0 as k → ∞, uniformly with respect to p. Using the
above notations, the inequalities (4.11) and (4.12) become

δk,p ≤ a11δk,p + a12ηk,p + ξk,p + a12 ηk−1,p − ηk,p ,

ηk,p ≤ a21δk,p + a22ηk,p + χk,p.

These can be put under the following matrix form

δk,p

ηk,p
≤ M

δk,p

ηk,p
+ ξk,p + a12 ηk−1,p − ηk,p

χk,p
.

Hence
δk,p

ηk,p
≤ (I − M)−1 ξk,p + a12 ηk−1,p − ηk,p

χk,p
.

Let (I − M)−1 = (μij ). Then

δk,p ≤ μ11 ξk,p + a12 ηk−1,p − ηk,p + μ12χk,p,

ηk,p ≤ μ21 ξk,p + a12 ηk−1,p − ηk,p + μ22χk,p.

The second inequality yields

ηk,p ≤ μ21a12

1 + μ21a12
ηk−1,p + μ21ξk,p + μ22χk,p

1 + μ21a12
. (4.13)
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Note that the sequence (uk,p)k is bounded uniformly with respect to p as follows from
(4.10) (recall that u1,k ∈ B1 and u2,k ∈ B2). Consequently, by its definition, the sequence
(ηk,p)k is also bounded uniformly with respect to p. Thus we can apply to it the following
lemma proved in [16, Lemma 3.2].

Lemma 4.1 Let (xk,p)k and (yk,p)k be two sequences of real numbers depending on a
parameter p such that the sequence (xk,p)k is bounded uniformly with respect to p, and

0 ≤ xk,p ≤ λxk−1,p + yk,p (4.14)

for all k, p and some λ ∈ [0, 1[. If yk,p → 0 as k → ∞ uniformly with respect to p, then
xk,p → 0 uniformly with respect to p.

Indeed, (4.13) reads as (4.14). Therefore ηk,p → 0 uniformly with respect to p, which
proves that the sequence (u2,k)k is Cauchy. Next, inequality (4.11) together with a11 < 1
(which is a consequence of the fact that the spectral radius of matrix M is less that 1)
implies that (u1,k)k is Cauchy too. Let v1, v2 be the limits of the sequences (u1,k)k and
(u2,k)k, respectively. Passing to the limit in (4.7) and (4.8), we obtain that (v1, v2) solves
system (4.2). The uniqueness of the solution and the arbitrariness of R1, R2 imply that
(v1, v2) = (u1, u2) and that (u1, u2) satisfies (4.4).
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