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Abstract
This note studies the asymptotic behavior of global solutions to the fourth-order Schrodinger
equation

iL'L+A2u—F(x,u) =0.
Indeed, for both cases, local and non-local source term, the scattering is obtained in the
defocusing mass super-critical and energy sub-critical regimes, with radial setting.
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1 Introduction

This note is concerned with the energy scattering theory of the Cauchy problem for the
following inhomogeneous defocusing Schrodinger equation

i+ A%+ x| |u?9 Dy = 0; (D)
u(0,.) = uo, ’
and the inhomogeneous defocusing Choquard equation
i+ A%+ (T |- P ulP) x| P2 = 0;
1.2)
u(0,.) = uop.

Here and hereafter u : R x RN — C, for some N > 1. The unbounded inhomogeneous
term is | - |2, for some b # 0. The source terms satisfy ¢ > 1 and p > 2. The Riesz-potential
is defined on RV by

F(Nz—ot)

[ (§)m % 2% x|V

Iy - x —> , O<a<N.
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The homogeneous case corresponding to b = 0 was considered first in [6, 7] to take into
account the role of small fourth-order dispersion terms in the propagation of intense laser
beams in a bulk medium with a Kerr non-linearity.

The Eq. 1.1 is invariant under the scaling
4
uy, =ritu(A.,A), Ar>0.

This gives the critical Sobolev index
N 2+0b

Se = — — ——

2 g-1
Similarly, the Eq. 1.2 satisfies the scaling invariance
44+2b+a 4
uy = A20-by(A7., 1), A>0.

This gives the critical Sobolev index

, N 4+42b+a
SC = B 2(1) — 1) .

In this note, one focus on the mass super-critical and energy sub-critical regimes 0 <
Se, Sk < 2.

In the context of scattering of non-linear Schrédinger equations, [8] is a fundamen-
tal paper where a new point of view is introduced to the scattering problems via the
concentration-compactness/rigidity argument. This paper is devoted to the homogeneous
case but it is challenging to see how far it can be pushed in the inhomogeneous setting. Some
progress in this direction have been obtained in several papers, in between we mention some
of them [1, 3, 9].

To the author knowledge, few works dealing with inhomogeneous fourth-order
Schrodinger equations exist in the literature. Indeed, in the mass-critical case, the exis-
tence of non-global solutions with negative energy was investigated in [2]. Moreover, the
local well-posedness in the energy space was treated recently in [5]. The inhomogeneous
bi-harmonic Choquard problem was considered in the submitted paper [17].

It is the aim of this note, to investigate the asymptotic behavior of global solutions to
both inhomogeneous fourth-order Schrodinger and Choquard equations. Indeed, by use of
Morawetz estimates and some decay results, in the spirit of [19], one obtains the scattering
in the energy space. Note that it is unclear how to get the decay of solutions in the L?
sub-critical setting, established in this work, using the [8] technique.

The rest of this paper is organized as follows. In Section 3, one proves the scatter-
ing of global solutions to the inhomogeneous fourth-order Schrodinger (1.1). In the last
section, one establishes the scattering of global solutions to the inhomogeneous fourth-order
Choquard (1.2).

Here and hereafter, C denotes a constant which may vary from line to another. Denote
the Lebesgue space L” := L (R") with the usual norm || - ||, := || - lz- and || - || :== || - ||2.
The inhomogeneous Sobolev space H? := H?(RV) is endowed with the norm

1
Il = (I 12+ 0A - 12)

Let us denote also C7(X) := C([0,T], X) and X,, the set of radial elements in X.
Moreover, for an eventual solution to Eq. 1.1 or Eq. 1.2, T* > 0 denotes it’s lifespan.
Finally, x* are two real numbers near to x satisfying x* > x and x~ < x.
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2 Background and Main Results

This section contains the statements of the main results of this paper and some standard
estimates needed in the sequel.

2.1 Preliminary

The mass-critical and energy-critical exponents for the Schrodinger problem (1.1) are

4+ 2b 1+ 420 i N >5;
::1 *:: N—4’ - )
=14 g and ¢ {oo, if 1<N<4

The mass-critical and energy-critical exponents for the Choquard problem (1.2) are

a+4+2b

ps =1+ ———— and p*'—{l—’_‘HN%ﬂ" it N=5;
* = =

1

N oo, if 1<N <4

Let us recall some local well-posedness results [5, 17] about the above inhomogeneous
fourth-order Schrodinger problems.

Proposition 2.1 Let N > 3, max{—4, —%} < 2b < 0, max{1, 1 + %} <q < q*and
ug € HZ2. Then, there exists T* = T*(luo|l gr2) such that Eq. 1.1 admits a unique maximal
solution

u € Cr+(H?).
Moreover,

1. the solution satisfies the mass and energy conservation laws

Mass := M[u(t)] := /RN Iu(t,x)lzdx = Mlug]l;
Energy i= Elu(O] = 18u) P + - [ eP (0P ds = Eful,
2. ue quoc(R, W?2") for any admissible pair (q, r) in the meaning of definition 2.13.
Proposition 2.2 Let N > 3,0 < @ < N and max{—(N +a), —4(1 + §), N =8 —a} <
2b < 0.

Assume that N > 50r3 < N <4and2a +4b+ N > 0. Ifug € H> and2 < p < p*.
Then, there exists T* = T*(|luo|| i2) such that Eq. 1.2 admits a unique maximal solution

u € Crs(H?).
Moreover,

1. the solutions satisfies the mass and the following energy

1
Elu(®)] = | Au()|* + - /N X 1°(Iy % | - 1°1u(@)P)|u(0)]” dx = Eluo].
R
2. ue L;’OC((O, T%), Wz")for any admissible pair (q, r).

Remark 2.3 The regularity condition p > 2, gives the restriction N — 8 — a < 2b. This
seems to be technical, because it don’t appear in the energy.
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2.2 Main Results

This sub-section contains the contribution of this note.

2.2.1 Results about the Schrodinger problem (1.1)

The first main goal of this manuscript is to prove the following scattering result.

Theorem 2.4 Take N > 5, max{—4, =5} <2b <0, ¢, < q < q* andu € C(R, H%)) be
a global solution to Eq. 1.1. Then, there exists u+ € H? such that

. P A2
Jdim () — " w2 = 0.

In order to prove the scattering, one needs the following result about the decay of global
solutions to the Schrédinger (1.1).

Proposition 2.5 Take N > 5, max{—4, —%} < 2b < 0, max{1, 1+ %} <q <q*and
u € C(R, Hrzd) be a global solution to Eq. 1.1. Then,

2N
N —4

lim |u()||, =0, forall 2<r < 2.1)
t—=Fo00

The following Morawetz estimate is a standard tools to prove the previous decay result.

Proposition 2.6 Take N > 5, max{—4, —§} < 2b < 0, max{1, 1 + &2} < ¢ < ¢* and
u e C(R, Hrzd) be a global solution to Eq. 1.1. Then,

—1+2b 2.
//N|x| T22u* dx dt < uoll e
RJR

Remark 2.7 The condition N > 5 is required because of Morawetz estimate. Moreover, the
radial assumption is needed is order to guarantee that if by the absurd there is no decay of
the Lebesgue norm of the solution, then it has to concentrate in suitable ball of uniform size
centered in the origin, and it is in contradiction with the Morawetz estimate.

Remark 2.8 the decay of solutions (2.1) is weaker than the scattering, but it is available in
the mass-sub-critical case.

2.2.2 Results about the Choquard problem (1.2)
The second main goal of this manuscript is to prove the following scattering result.

Theorem 2.9 Let N > 5,0 < o < N, max{—4(1 + %),N —8—a} < 2b < 0and
P« < p < p* suchthat p > 2. Take u € C(R, Hrzd) be a global solution to Eq. 1.2. Then,
there exists ux € H? such that

. it A2
im lu(r) — " utll 2 = 0.

In order to prove the scattering, one needs the following result about the decay of global
solutions to the Choquard (1.2).
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Proposition 2.10 Take N > 5,0 < a < N, max{—4(1 + %), N — 8 —a} < 2b < 0,
2<p<pandu e CR, Hrzd) be a global solution to Eq. 1.2. Then,

2N
N—4

lim Ju(®)||, =0, forall 2<r <
t—=+o00

The following Morawetz estimates stand for some standard tools to prove the previous
decay result.

Proposition 2.11 Take N > 5,0 < o < N and max{—4(1 + %), N—-8—a} <2b<0,
2<p<prandu e CR, Hrzd) be a global solution to Eq. 1.2. Then,

—142b
//N el =120 U JulP) || P dox dt S luoll g2
R JR

Remark 2.12 Tt seems that the local and non-local source terms in the above Schrodinger
problems have a similar asymptotic behavior.

2.3 Useful Estimates
Let us gather some classical tools needed in the sequel.

Definition 2.13 A couple of real numbers (g, r) is said to be admissible if

11 4
and N<f—f):f,
2 r q

2<r<

where % = o00if 1 < N < 4. Denote the set of admissible pairs by " and (g, r) € I if

(¢',r") € T and the Strichartz spaces
SU) :=Nggrer LI, L) and  S'(I) := Ny per LI, LT).
Recall the Strichartz estimates [4, 14].

Proposition 2.14 Let N > 1 and ty € I C R an interval. Then,
sup llullzorery S luGo)ll + inf i+ A%l gy o
(q.r)el’ (g,r)er ’

sup [Aullzaq,rry S 1Auto)ll + llin + A2u|| SO TV VN > 3.
(q.r)er LELWT2HN)

Let us recall a Hardy-Littlewood-Sobolev inequality [11].

Lemma2.15 Let N >1,0< A < Nandl < s,r <oobesuchthat%+%+%=2. Then,

/R TOBY) geay < CN.s. I lgls. YF €L, Vg e L,

N xRN |x_y|)‘

The next consequence [15], is adapted to the Choquard problem.
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Corollary 2.16 Let N > 1,0 < A < Nand 1 < s,r,q < oobesuchthat%%—%—l—% =
1—}—%. Then,

I(Ia x gl < C(N, s, ) flsligllg, Vf €L’ ¥ge L.
Sobolev injections [12] give a meaning to several computations done in this note.

Lemma 2.17 Let N > 2, then

1. H2~'—>qu0ranyqe[2,%]ifN25andany2§q<ooifN§4;
2. the following injection Hrzd —<> L9 is compact for any q € (2, %) if N >5and
any2 <q <o if N <4.

Finally, let us give an abstract result.
Lemma 2.18 Let T > O and X € C([0, T], Ry) such that
X <a+bx%on[0,T],

wherea, b > 0,0 >1,a < (1 — %)(91))771 and X(0) < (Gb)%. Then

X <

0
la on [0, T].

Proof The function f(x) := bx? — x + a is decreasing on [0, (bé)ﬁ] and increasing
on [(bO)ﬁ, 00). The assumptions imply that f((b@)ﬁ) < 0 and f(eeja) < 0. As
f(X(@) =0, f(0O) > 0and X(0) < (b@)ﬁ, we conclude the proof by a continuity

argument. O
3 The Schrodinger Problem (1.1)

3.1 Morawetz Identity

In this sub-section, one proves Proposition 2.6 about a classical Morawetz estimate satis-
fied by the energy global solutions to the inhomogeneous Schrodinger problem (1.1). One

adopts the convention that repeated indices are summed. Also, if f, g are two differentiable
functions, one defines the momentum brackets by

{f.8)p :=N(VE—gV )

Let us start with an auxiliary result.

Lemma 3.1 Take N > 5, max{—%, —4} < 2b < 0, max{1l,1 + #} < q < q*and
u € Cp(H?) be a local solution to Eq. 1.1. Let a : RN — R be a convex smooth function
and the real function defined on [0, T), by

M:t— 2/ Va(x)I(Vu(t, x)u(t, x)) dx.
RN
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Then, the following equality holds on [0, T),
M = 2/RN (2ajkAaajuakﬁ — %(ASa)lulz —40kad;gud;;u
+ A2|Vul? = 3ja{x|?|u2¢ D, u}{,) dx
= 2/RN <2ajkAaajuakﬁ - %(A3a)|u|2 — 49 rad;ud;ji

—1 1
+ A%a|Vul? — "T(Aa>|x|2b|u|2‘f + awwuﬂb)wf) dx

Proof Denote the source term A := |x |22 |u|*@=Dy and compute

3 I(Opuit) = I(Bpuit) + I(Opun)

R(i1deit) — R(i dyitin)

RO (—A%u — N)) — R(@aog (—A%u — N))
R(iop A%u — 03 A%u) + R@AHRN — aN).

Thus,

<
I

2/ aR (@ A%u — i A>u)dx — 2/ allx | |u*Vu, u)l dx
RN RN
= —2/ Aah(iA%u) dx —4/ N (Opadpi A%u) dx

RN RN

—2/ allx ||~ Vu, u)l dx
]RN

The first equality in the above Lemma follows as in Proposition 3.1 in [13]. For the second
equality, it is sufficient to use the identity

q

_ —1 1
(21?9 D, uy, = — 21—V (|x 2 |ul??) - ;w|x|2’])|u|2‘1.

Now, one proves the Morawetz estimate.

Proof of Proposition 2.6 For a vector e € RY, denote
(ﬁ Vu)ﬁ and Viu:=Vu—Vu.

Compute, taking account of [10],
N -1
20, Aadjudiii = (| . )(2|ve E |vju|);

) 1 N-1
dyuaiyiat = o 3 (|va,-u|2 - |veaiu|2) > T Vul?.
i
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Thus, if one assumes that A%a < 0, one gets
1
M = 2/ (2ajkAaajuakﬁ - 5(A3a)|u|2 — 49 kadixud;ji
RN

—1 1
+ A2a|Vul? — "Tma>|x|2”|u|2q + 5VaV<|x|2”>|u|ZQ) dx

2N — 1 N—1
2/ (¥<2|Veu|2 - |vju|) 4" Vu)?
RN lx|3 |x|3

1 —1 1
E(A3a)|u|2 + A2 Vul — L2 (Aa)x P + fVaV(IxIZb)|u|2q) dx
q q

IA

1 —1 1
/ (— (APl — L= (Aa) x| u) + fVaV(|x|2b)|u|2q> dx.
RN 2 q q

This gives

T
1 —1 1
[ [, G alul + 2 @i = 2vay Pl dx < sup (M1
0 Jryv\2 q q

[0,T]
Take the choice a := | - | and compute for N > 5, the derivatives
. N —1
VesT AeE T
N-D(N-3
pao W DW=
[
Moreover,

5 Cdy, if N=S5;
Aa = 3(N—1)(1|\{|;3)(N—5)7 it N>6.
Finally,
luoll 2 2 sup M|
[0,T]
T
2 [0 [ (@@= D@l - 9avi)ue) ds
0 RN
T
> (g — DN - 1)—2b>/ / 2 ™ dx
0 RN
T
z f / 2~ ] dx.
0 RN
This ends the proof. O

3.2 Decay of Global Solutions

The goal of this subsection is to prove the long time decay of the energy global solutions
to the inhomogeneous Schrodinger problem (1.1). Let us give an intermediate result in the
spirit of [18, 19].

Lemma 3.2 Take N > 3, max{—4, =5} < 2b < 0 and max{1,1 + 22} < ¢ < ¢*.

Let x € Cgo(RN ) to be a cut-off function and (¢,) be a sequence in H? satisfying
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sup |lgnll g2 < 00 and ¢, — @ in H?. Let u, (respectively u) be the solution in C (R, H?)

n
to Eq. 1.1 with initial data ¢, (respectively ). Then, for every ¢ > 0, there exist T, > 0
and ny € N such that

Ix un — ”)”L‘;j(ﬁ) <e, Vn>n,.
Proof The proof follows by arguing like [16] via Lemma 3.2 in [5]. O
Now, let us prove the long time decay for global solutions to Eq. 1.2.

Proof of Proposition 2.5 By an interpolation argument, it is sufficient to establish the
equality

lim [lu(®)lly 5 =0.

Recall the localized Gagliardo-Nirenberg inequality [16],
4
2y o ( )1+N
u sup |lu ull 2.
I ||2+% ~ XERPN lullz2c0, ) lletll g2

Here Q,(x) denotes the cubic in R" with center x and radius r > 0.
One proceeds by contradiction. Assume that there exist a sequence (f,) of positive real
numbers and ¢ > 0 such that lim 7, = oo and
n— 00

@)l sq > 6 Vo e,

Thanks to the conservation laws and the localized Gagliardo-Nirenberg inequality above,
there exist a sequence (x,,) in RY and a positive real number denoted also by & > 0 such that

”u(ln)”LZ(Q](X,,)) >¢e VYnelN. (31)

Following the paper [16], via the previous Lemma, there exist T, ne > 0 such that #,,41 —
t, > T forn > n, and

e
lu@ 2005000 = 7 Vt € [tn, tn +T1, Vn=ne.

Moreover, the radial setting via (3.1) implies that (x,) is bounded. So, thanks to
Morawetz estimate in Proposition 2.6, one gets

luoll gz = / / 1122~ Nu(e, x) [ dx dt
R JRN
I,1+T
Z Z/ / 1122~ (e, x) %9 dx di
Q2 (xn)
}:/ 17 g, 0 491
2 )T = .
NZ;%>

This contradiction achieves the proof. O
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3.3 Scattering

This subsection is concerned with the proof of the main result of this paper about scatter-
ing of energy global solutions to the inhomogeneous Schrodinger problem (1.2). Take the
quantities
I lso,r) = sup Il-llpg @y and ()= (1+A):
(g,r)el’
Let us give an intermediate result.

Lemma 3.3 Take N > 3, max{—4, —%} <2b<0,gs<q<qg*andu € C(R, H?) be a
global solution to Eq. 1.1. Then, there exist 2 < q1, q>» < % and 0 < 01,0, <2(g — 1)
such that

i.A2 6 2g—1-6 2 2g—1-6,
I = €20} ls0.7) S Nty I a0 Wt 1™+ el Py ) 0 1

Proof With Duhamel formula and Strichartz estimates, one writes
i.A2 2b,12(g—1 2b,12(g—1
I e = e o) lsory S I P19l sy oty + 15PNl sy oo,

+ VAP Puy) oy
L7 (LZHN (Jx|<1))
+ VAP P Pwy)
L7 (LZHN (Jx|>1))
(A) + (B) + (C) + (D).

Now, let us deal with the quantity (C).

(©) == |V(x*Pu? @ D))

2N
LL(L2HN (Jx|<1))

< MxPPla®Ovu) o 15 e 71 e Y
LA(L2HN (1x|<1)) LZ(L2HN (|x|<1))

S (C) + (Cy).
Thanks to Holder and Sobolev inequalities, one has

(C1) = PPl DVul
L7(L2HN (Jx|<1))

2(g—1
S Pl 7P 1Vl W 20,7y
0 2(g—1)—6
S S [ sl P P PR
0 2g—1-6
S Nl oy Ml ™ 2,y
0 2g—1-6
S Ml oy ey o
Here g1 :==2Q2q — 1 —61), (q1,r1) €T, i = % - % and
44+N 2g-1 1  =2b
_ = — > .
2N r I N
Thus,
291 _4+4b4N - 2NQg-De
" 2N T 4+4b+ N ’
1 1 4 2
N -_———) = a—_—=——
(2 "1) q  2g-1-6
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A computation gives that the condition 8; € (0, 2(¢ — 1)) is equivalent to
82¢ — 1)
2 < <
NQq—1)— 4+ N +4b)

This is satisfied because g, < g < g*. Now, one estimates the second term by use of Holder
estimate ans Sobolev injections.

(C2) < M 2@ Dy

202g — 1).

2N_
L2(L2HN (|x|<1))

2b—1 2(g—-1
SOl g Il Maella 20,7
% 2(q—1)—0
< IIMIILZ%O(LQ)IIIIMIIQ NAaulin 2o,
9 2g—1-6,
S Ml o el 2207y
2 2g—1-6.
< 2 q 2
~ ”u”L?O(L’Z)”u”L‘;Z(WNz)'

Here (¢2,72) € T and
2+ N 1 2(g — 1 1
24N _ 1 2g-D) 1

)

2N %) ) ar
1 2
=T n W
N .
M2 < 1 —2b

q2:=2Q2¢q — 1 —6).

Thus,
2NQ2q — 1)
> .
4+4b+ N’
4 2

N(l 1)_ _ )
2 rz_q2_2q—1—02’

2 <qy<2QR2qg—1).

These are the same conditions above. Thus, one takes (g2, r2) := (g1, r1). The estimate of
(A) follows as (C1). Moreover, the control of the same terms on the the complementary of
the ball follows similarly. This finishes the proof. O

Now, let us prove the main result of this section.

Proof of Theorem 2.4 Taking account of Lemma 4.3 via the decay of solutions and the
absorption Lemma 2.18, one gets

(u) € S(R) == Nggner L4 (R, L' (RY)).
This implies that, via Strichartz estimate via the proof of the previous Lemma, that when
s, 1 — 00,

2

L2((t,5),W"Z+N )

0 2g-1-6 0 2-1-6
S ”””LIOC(R’qu)” (u) ”S(s,t) 1+||u||[‘2x(R,Lq2)“ (u) ”5(5,,) g

—itA? —isA? 2b, 12(g—1
le 2 u(t) — e 2 u)ll 2 < Mxl? ful@ V||

— 0.
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. it A2 .
Take w4 := limy_ 400 e 727 1(#) in H2. Thus,
. P A2
Jim () — " w2 = 0.
The scattering is proved. O

4 The Choquad Problem (1.2)
4.1 Morawetz Identity

In this subsection, one proves Proposition 2.11 about a classical Morawetz estimate satisfied
by the energy global solutions to the inhomogeneous Choquard problem (1.2). Let us start
with an auxiliary result.

Proposition 4.1 Take N > 5,0 < o < N, max{—4(1 + %),N —8—a} <2b <0,
2<p< p*andu € Cr(H?) be a local solution to Eq. 1.1. Let a : RN — R be a convex
smooth function and the real function defined on [0, T), by

M:t— 2/ Va(x)I(Vu(t, x)u(t,x))dx.
RN
Then, the following equality holds on [0, T),

1 _
M = szN (2ajkAaajuaku - 5(A3a)|u|2 — 49 jkadiud;ji
+ A%alVul® = djal(lo % |- PlulP)lxl )"~ 2u, up} ) dx
_ A U — S(ASDul? — 40 adudnii + AlalVul
=2 20xAad;judyi (A a)|u| 40 adixud;ju + A~a|Vu|
RN 2
2
— 21+ —)/ Aa(ly x| - *lul”)|x|"lul? dx
p Jry

2
2 [ 8uad el x| Pl Dlul? d).
P JRN

Proof Denote the source term N := (I * | - 11u|P)|x|? )P~ 2u. By previous computation,
one gets

M = —2/ Aa (it A%u) dx —4/ N(Oadpit A%u) dx —2/ walN, uly dx
RN RN RN
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On the other hand
() := / RaR@HN — 8N dx
RN

=/ NaR O [aN] — 20 aN) dx

RN

- _/ (Aaﬁ/\/+2m(akaakﬁ/\/)) dx
RN

= —/ (Aa(la |- 1P ulP) x| ul? +2m<akaakﬁ/v)) dx
RN

2
=—/ Aa(la*|-|”|u|P>|x|”|u|"dx—f/ adi(JulP)(Iy * | - |P|u|?))x|? dx.
RN P JRN
Moreover,

)= [ ePorad )L i) do
= — [ divtel’dat -l dx
RN

= —/ Aa(la*|-|”|u|")|x|”|u|"dx—/ dade(x|P[Ty * | - 1P|ulP])lul? dx.
RN RN

Then,

05 —/ Aa(ly # |- PlulP)xlul? dx — =(A)
RN 14

—/ Aaly %1 - PlulP)x P lul? dx
RN

2
- —(—/ Aa(la*|-|b|u|”>|x|”|u|de—/ Aead (1x1° [y * | - 1°|ulP1)|ul” dx)
P RN RN

2
(—1+7>/ Aa(ly |- Pul?)|x|°|ul? d
P JRN

2
;2 / Bt (3P | - 1PlulPDIul? dx.
P JRN
This closes the proof. O
Now, one proves the Morawetz estimate.

Proof of Proposition 2.11 Arguing as in the proof of Proposition 2.6, if one assumes that
A2%q < 0and A3a > 0, one gets

1
M = 2/ (ZBjkAaBjuakﬁ - E(A3cz)|u|2 — 49 ad;ud;ji + A2a|Vu|2) dx
RN
2
—2(—1+—>/ Aa(ly % |- Pl xPlul? d
P JRN
4
- —/ deade(x" Ll | - 1PlulP])ul? dx
P JRN

2 4
sf (—2<—1 + )Aally # |12 1ul?) |x )P |u)? — = eady (|1x|P [Ty * |-|”|u|”1>|u|l’) dx
RN )4 )4
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This gives

T 2 4
[ [, (0= 2)aat s 1 Pttt - % aade x|l D) dx S sup 11,
0 RN p p [0.T]

Take the choice a := | - |.
Taking account of previous computations, since b < 0, one gets

luoll 2 2 sup M|
[0,T]

T
2 f /N (At |- PPl lul? = dgath (x| U 5 |- PlulPDlul? ) dx de
0 JR

T
2 f /N (et 1 Pl e l? = e L |- Pl P ]
0 JR

+ (V=) o | Pl Pl ) dx
NEE
T
2 [ (e POl 4 Lt Pl Plal?) dx
0o Jr¥ [ -1
Now, write
(D) 1= fNﬁ |[| |2 o] Ll () P dx
= [ [, b T e = Dl @ ) P dx dz
RN JRV |x| Z|
f / fll 21(x—z)Izll’lu(z)l”lu(X)I”dxdz
RN JRN |Z] z|

_ Iy (x by _1b <
-5 L ANWIM Al x =) (7 = ) dx .

Then, (D) > 0 because

X Z\ _ |x| + |z|
(x—z)<m—m) = (x|lz] “)<T||z| )=z0

The proof is closed. O
4.2 Decay of Global Solutions

The goal of this subsection is to prove the long time decay of the energy global solutions to
the inhomogeneous Choquard problem (1.1). Let us give an intermediate result.

Lemma 4.2 Take N > 5,0 < a < N, max{—4(1 + %), N —=8 —a} < 2b < 0,2 <

p < p* Letxy € C° (RN) to be a cut-off function and (¢,) be a sequence in H? satisfying

sup ||gnll g2 < 0o and ¢, — @ in H?. Let u, (respectively u) be the solution in C (R, H?)
n

to Eq. 1.1 with initial data ¢, (respectively ¢). Then, for every ¢ > 0, there exist T, > 0
and ng € N such that
X (e — M)”Lﬁ;j(LZ) <e¢&, Vn>ng.

Proof Let v, := xu, and v := xu.
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Denote w,, := vy — v and Ny, 1= (I * [u|?)|x|?|u|?2u.
Using Strichartz estimate and Corollary 2.16, assuming that supp(x) C {|x| < 1}, one
has

Ix Ny = Nllsiory S e %1 1lunl? = |- 11l PYUx I L7 0,

b by, P2 by, P2
+ 1 |- 1Pl P) (x P N |7~ %00 = [x 17 [u P~ =0) |

S H+UD,

L9 (L7 (|x|<1))

LY (L7 (x| <1))

where (g, r) € T'. Take u _( 5) andr = Then, 1 4+ £ N=u z 4 2P and using

74_/\, N n

Holder and Hardy-Littlewood-Sobolev inequalities, one gets

_ LI by 1p=20 51y 1P2 ,
(1) = N |- Pl Paen P20 = 1Pl 200 g

N

by, P b p—2 p—2 ,
Il 1 1l el G P2 Yl

2 1 1
< M gy N 1277 02 0l .7

2 1 2 1
S Ml 12l Nl 0.7

Because 2 < p < p*, there exists § > 0 such that L - Ly % and2 <r < %. Then,

taking account of Sobolev embeddings and Holder inequality, one obtains

1 2(p—1 2(p—
D S 7% (a2 + 13202 Y lwallso.r

A

1 2(p-1) 2(p—1)
T3 ( Un |l oo + |u]l; o ) w
” ””LT (HZ) ” ”LT (HZ) || l’l”S(O,T)
1
S T lwallso,7)-

Similarly, one estimates (/). Now, taking account of computation done in the proof follows
like the proof of Lemma 2.2 in [16], one gets

1
lwallso, 1) S I1x(@n — @)+ T + T3 lwalls0,7)-
The proof is achieved via Rellich Theorem. O
Now, let us prove the long time decay for global solutions to Eq. 1.2.

Proof of Proposition 2.10 The proof follows like the proof of Proposition 2.5. One gives
only the last lines. Thanks to Morawetz estimate, one gets

lluoll 12 z[/ (I * |- Plu@P)1x 1P u(e, x)|P dx de

et l x [P~y
/ / / = lu@ NI, x)|P dy dx dt.
02(x) J 02(x) |x— [N
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Now, with the radial assumption via the Eq. 3.1, the sequence (x,) is bounded. Thus,

tntT 5
luoll gz 2 Z/ (/Q ( )Iu(t,x)|de) dt
2(Xp

ln+T
Z / IO 00 @
> Z(Z)ZPT = o0.
n

This contradiction achieves the proof. O
4.3 Scattering

This subsection is concerned with the proof of the scattering of energy global solutions to
the inhomogeneous Choquard problem (1.1).
Let us give an intermediate result.

Lemma4.3 Take N > 50 <a <N, max{—4(1+%),N—8—a} <2b<0,2<p<p*

and u € Cr(H?) be a local solution to Eq. 1.1. Then, there exist2 < py, py < % and
0 < 61,0, <2(p — 1) such that

i A2 0 2p—1-0 2p—1-0
I{u— e uo) lso,7) S Nullyoo g oy |l (1) ||SPOT '+ ||M|| oo ooy Il (22) ||SPOT ?
L(LP1) ©.7) L3P (LP2) ©.7)

Proof With Duhamel formula and Strichartz estimates, one writes

A.Az
[ <M —é u0> ls0,7)
b by p—2 b by p—2
S e [ Plul®) x| ulP ™ ullsy ey <1y + 1 e D Pl )1 ulP=ull gy gx-1)

<

V(U * | - 12u?)|x | u|?2u
+ V(e * |- 7] P) x| |ul )||L%(L%(IXI<1))
+

V(U * | - 12ul?) x| u|?2u
IV (g * |- 7 |l P)]x]|” )||L2T(L22+7NN(|x|>l))

(A) +(B) + (C) + (D).
Now, let us deal with the quantity (C).

C) := |IV((Uy * -bup xbup—Zu
(©) = IV Uack |- Pl Pl 20l o2

< Ny |- Pl ?)|x )P |ulP 2 Vu N
SO * 1 17 1ul?)|x]7 ] ||L%(LW(|x|<1))

b b—1 -1
(e - 1P )1l P20 o
L3 (LTHN (1x|<1)

b—1 b
Lo |- 177 D) X2l 21 an
LE(LZN (1x|<1))

+

+

+ 1y % |- Plul?~ V) x (b |u|P~!
| (Lo |- 17 M |”ul ||L§(L%(|x\<l))

S

(C1) + (C2) + (C3) + (Cy).
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Thanks to Holder, Hardy-Littlewood-Sobolev and Sobolev inequalities, one has

(€)= U # |- Pl xPulP2Vull | ax
L2(LZHN (x| <1))
1
< WP, el 1Vl 20,7
1)—6
S Ml oo oy Il N Al 20,7y
2p—1—
5 ”u”LOO(Lr])“”u”“i)Z,rl llle(O,T)
2p—1—01
< ||u||L;O(U1)||u||L;. L
Here g1 :==2Q2p —1—61), (q1,r1) €T, - a = % - ﬁ and
44+2a0+N 2p-—1 2 —2b
— = —_— —
2N r "1 N
Thus,
2p—1<4+2a+4b—|—N — 2NQ2p — Do _ 1+
" 2N N T A 2atab N T
1 1 4 2
NG-—)=— =
2 n q1 2p—1—-06;

A computation gives that the condition 8; € (0, 2(p — 1)) is equivalent to

82p—1)

< <2Q2p-—1).
NQ2p—-1)— @ +2a+ N+4b)

This is satisfied because p, < p < p*. Now, one estimates the second term by use of
Holder and Hardy-Littlewood-Sobolev estimates via Sobolev injections.

(€2) S Mg |- PP ulP M oy
L7 (L2HN (Jx|<1))

b 2(p—1)
S s NP e "™ Nty N 20,7
2(p—1)—0
S ||”||L°°(L'1)||” ullr NAawlinll2o.r)
2p—1-0;
S ||M||LOO(L?2)||||M||W2,r2 2||L2(0,T)
2p—1—6,
S ”””waz)”“”Lqu(Wz,rz)'

Here (g2, 72) € I" and

2420+ N 1 1 20p-1D 1
= +—4+—4+—
2N K2 U3 r a
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Thus,
2NQ2p—-1)
4420 +4b+ N’
1 1 4 2
NG——)=—=37"—"—17:
2 r q2 2])—1—92
2<qgy<2@2p-—1).

rp >

These are the same conditions above. Thus, one takes (g2, r2) := (g1, r1). The estimate of
(A) follows as (C1). Moreover, the control of the same terms on the the complementary of
the ball follows similarly. This finishes the proof. O

Now, let us prove the main result of this section.
Proof of Theorem 2.4 Taking account of Lemma 4.3 via the decay of solutions and the
absorption Lemma 2.18, one gets
(u) € S(R) == Nggner L4 (R, L' (RY)).

This implies that, via Strichartz estimate via the proof of the previous Lemma, that when
§,t — 00,

—itA? —isA? b by, p—2
e u(t) —e w2 SNy * |- 17 ul?) x| |ulP~u N
I Wz S Ie * |- 7 [ulP)|x]|” |ul ||L2((t.x),W1’2+N)

Sl o gy I 400) Wy ™ A el P . I 0e) gt
— 0.
Take w4 = lim,_, +o0 e~ "2’ u(t) in H2. Thus,
i (@) = " w2 = 0.
The scattering is proved. O

Data availability statement The data that supports the findings of this study are available within the article.
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