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Abstract
In this paper we use potential theoretic arguments to establish new results concerning the
overconvergence of Dirichlet series. Let

∑∞
j=0 aj e

−λj s converge on the half-plane {Re(s) >

0} to a holomorphic function f . Our first result gives sufficient conditions for a subsequence
of partial sums of the series to converge at every regular point of f . The second result shows,
in particular, that if a subsequence of the partial sums of the series is uniformly bounded on
a nonpolar compact set K ⊂ {Re(s) < 0} and ξ ∈ {Re(s) = 0} is a regular point of f, then
this subsequence converges on a neighbourhood of ξ .
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1 Introduction

Recently, potential theoretic techniques have been applied to obtain new results regarding
convergence of sequences of polynomials in C (for a survey, see Gardiner [4]). In particular,
the following theorem of Müller and Yavrian (Theorem 1 of [5]) describes properties of a
convergent sequence of polynomials given its behaviour on a non-thin set at ∞. We recall
that a set E is non-thin at a point ζ ∈ C if

lim sup
s→ζ,s∈E

u(s) = u(ζ )

for each function u that is subharmonic on a neighbourhood of ζ . Further, a set is said to be
non-thin at infinity if its image under inversion in the unit circle is non-thin at 0. We write
|| · ||K for the supremum norm over a compact set K .

Theorem A Let � be a continuum in C, and let E ⊂ C be a closed set which is non-thin
at ∞. Suppose that (Pn) is a sequence of polynomials with deg(Pn) ≤ dn, where (dn) is
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increasing, that

lim sup
n→∞

||f − Pn||1/dn

� < 1,

for some analytic function f : � → C, and that

lim sup
n→∞

|Pn(z)|1/dn ≤ 1 (z ∈ E).

(i) Then the function f extends holomorphically to a function that has a simply connected
domain of existence Gf ⊂ C, and (Pn) converges locally uniformly to f there.

(ii) If, in addition, (dn+1/dn) is bounded, then f extends to an entire function.

This result has found particular application to the study of Taylor expansions of
holomorphic functions. It is thus natural to consider its analogue for Dirichlet series.

We consider a general Dirichlet series of the form

∞∑
j=1

aj e
−λj s , (1)

where aj ∈ C, λj > 0, the sequence (λj ) is strictly increasing and λj → ∞. We write
Sq for the sum of its first q terms. The abscissa of convergence and the abscissa of absolute
convergence of the series are defined respectively by

σc = inf{Re(s) :
∞∑

j=1
aj e

−λj s is convergent},

σa = inf{Re(s) :
∞∑

j=1
aj e

−λj s is absolutely convergent}.

Then the Dirichlet series converges for s ∈ C
+
σc

and converges uniformly absolutely on C
+
α

for α > σa, where C+
a = {Re(s) > a}. (We also write C−

a = {Re(s) < a}.) The abscissae
assume values in [−∞, +∞], and their difference, where defined, satisfies the inequality

0 ≤ σa − σc ≤ lim sup
j→∞

log j

λj

.

The first aim of this paper is to establish an analogue of Theorem A for partial sums
of Dirichlet series. In this case a new phenomenon is that the notion of minimal thinness
replaces thinness. We will say that a set E ⊂ C

−
0 is minimally thin at −∞ as a subset of

C
−
0 if there is a positive superharmonic function u on C−

0 such that

lim inf|s|→∞,s∈E

u(s)

−Re(s)
> inf

s∈C−
0

u(s)

−Re(s)
. (2)

By considering the case where u ≡ 1, it is easy to see that any strip of the form S = {a <

Re(s) < 0} is minimally thin at −∞ as a subset of C−
0 . On the other hand, the half-line

{Re(s) < t, Im(s) = 0} is not minimally thin at −∞ as a subset of C−
0 for any t < 0

(see Section 9.7 of [1]). We will discuss the concept of minimal thinness in more detail in
Section 2. We can now formulate our first result.

Theorem 1 Let E ⊂ C
−
0 be a set which is not minimally thin at −∞ as a subset of C−

0 .
Suppose that

∑∞
j=1 aj e

−λj s converges to a holomorphic function f on the half-plane C+
0 ,
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that the abscissa of absolute convergence is less than +∞, and that a subsequence (Sqn) of
the partial sums satisfies

lim sup
n→∞

1

λqn

log |Sqn(s)| ≤ 0 (s ∈ E).

(i) If � is a domain containing C
+
0 and f has a holomorphic extension to �, then the

subsequence (Sqn) converges locally uniformly on � to f .
(ii) If (λqn/λqn−1) is bounded, then the function f is entire.

It follows that, under the hypotheses of Theorem 1(i), there is a largest domain � to
which f has a holomorphic extension, and � is simply connected.

In the next theorem we show, in particular, that if a subsequence of partial sums is
bounded on a nonpolar compact set lying outside the half-plane of convergence, then it is
convergent on a neighbourhood of any point ξ on the line of convergence provided that ξ is
a regular point of f . In fact, it is enough to require that f has a holomorphic extension to
some domain � such that C\� is thin (in the ordinary sense) at ξ . This result is inspired by
Theorem 1 of [3].

Theorem 2 Suppose that
∑∞

j=1 aj e
−λj s is convergent on C

+
0 to a holomorphic function f

and the abscissa of absolute convergence is less than +∞. Let � be a domain containing
C

+
0 such that C\� is thin at a point ξ ∈ ∂� ∩ {Re(s) = 0}, and suppose that f has a

holomorphic extension to�. If a subsequence (Sqn) of the partial sums is uniformly bounded
on a nonpolar compact set K ⊂ C

−
0 , then (Sqn) converges uniformly on a neighbourhood

of ξ ; in particular, f has a holomorphic extension to a neighbourhood of ξ .

2 Potential Theoretical Background

We write U+(�) for the set of positive superharmonic functions on �. A positive harmonic
function h on a domain � is called minimal if any other harmonic function h′ on � that
satisfies 0 ≤ h′ ≤ h is a constant multiple of h. We make use of the Martin boundary of a
domain �, which we denote by 
 (or 
�). There is a Martin kernel M�(·, ·), defined on
� × 
, which plays a role analogous to the Poisson kernel for a disc. When a point y ∈ 


is fixed, M�(·, y) is called a Martin function. An account of the Martin boundary may be
found in Chapter 8 of [1].

If � = C
+
0 , the Martin boundary has a one-to-one correspondence with ∂∞

C
+
0 , which

is the boundary of C+
0 in the one-point compactification of the complex plane. We use +∞

to denote the point of the Martin boundary of C+
0 that is associated with infinity. We can

normalize the kernel so that M
C

+
0
(s, +∞) = Re(s).

Given u ∈ U+(�) and E ⊂ C, we define the reduced function of u relative to E in � by

RE
u (s) = inf{v(s) : v ∈ U+(�) and v ≥ u on E ∩ �} (s ∈ �).

Its lower semicontinuous regularization R̂E
u is a superharmonic function on �. Reduction

in a different domain will result in a different function even when the set E and the function
u stay unchanged. Each time we use reduction we will state the domain explicitly. We
note that modifying the set E by a polar set does not affect the regularized reduction; see
Theorem 5.3.4 (iv) of [1].
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Let�c denoteC\�. If a domain� satisfiesC+
b ⊂ � ⊂ C

+
a ,where a < b, then Theorem

9.5.5 of [1] shows that the function

h(s) = Re(s − a) − R̂�c

Re(·−a)(s), (3)

where the reduction is in C
+
a , is a minimal harmonic function on �, and so is a multiple

of a Martin function. We denote the Martin boundary point of � associated with h by +∞,

and normalize the Martin kernel so that M�(·,+∞) = h. We note that

Re(s − b) ≤ M�(s, +∞) ≤ Re(s − a). (4)

We say that E is minimally thin at +∞ with respect to �, for � as above, if there exists
u ∈ U+(�) such that

lim inf
s∈E,|s|→∞

u(s)

M�(s, +∞)
> inf

s∈�

u(s)

M�(s, +∞)
. (5)

Clearly, a subset of a minimally thin set is minimally thin. Modifying a set by a polar set
does not affect whether it is minimally thin. By Theorem 9.5.5 (iii), the half-line {Re(s) >

b, Im(s) = 0} is not minimally thin at +∞ as a subset of �.
A similar construction applies whenC−

a ⊂ � ⊂ C
−
b , and we can define minimal thinness

at −∞ in this case as well.

3 Preliminary Results

In this section we make several observations regarding sequences of the form
((1/λqn) log |Sqn |). These will be used in the proofs of Theorem 1 and Theorem 2. We recall
that λj > 0, the sequence (λj ) is strictly increasing and λj → ∞. We need the following
lemma.

Lemma 3 Let a ∈ R and P(s) = ∑n
j=1 aj e

−λj s be a Dirichlet polynomial. Then

1

λn

log |P(s)| ≤ −Re(s − a) + 1

λn

log

(
sup
s∈C+

a

|P(s)|
)

(s ∈ C
−
a ).

Proof Without loss of generality we can suppose that a = 0, and we dismiss the trivial case
where P ≡ 0. The function

u(s) = 1

λn

log
|P(s)|

sups∈C+
0

|P(s)|

is subharmonic on C and non-positive on C
+
0 . When s ∈ C

−
0 we have

u(s) = 1

λn

log

⎛⎝|e−λns | ·
∣∣∣∣∣∣

n∑
j=1

aj

sups∈C+
0

|P(s)|e
(λn−λj )s

∣∣∣∣∣∣
⎞⎠ ≤ −Re(s) + c,

where

c = 1

λn

log

⎛⎝ n∑
j=1

|aj |
sups∈C+

0
|P(s)|

⎞⎠ .
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Since u is bounded above on every vertical strip {σ1 ≤ Re(s) ≤ σ2}, we can apply Theo-
rem 3.5.9 in [1] to conclude that the function σ �→ sup{u(σ + it) : t ∈ R} is convex on
[σ1, σ2]. Choosing σ1 < 0 and σ2 = 0 we have

sup
t∈R

u(σ + it) ≤ σ

σ1
sup
t∈R

u(σ1 + it) − σ − σ1

σ1
sup
t∈R

u(it)

≤ σ

σ1
(−σ1 + c) = −σ + σc

σ1
.

Since σ1 can be arbitrarily large, we conclude that u(s) ≤ −Re(s), as required.

We now suppose that the series
∑∞

j=1 aj e
−λj s converges on C

+
0 to a function f, that

the abscissa of absolute convergence is less than +∞, and that (qn) is a strictly increasing
sequence of positive integers.

The sequence ((1/λqn) log |Sqn |) is locally uniformly convergent on C
+
0 , and so locally

uniformly bounded there. Let the number α > 0 be greater than the abscissa of absolute
convergence. By Lemma 3,

1

λqn

log |Sqn(s)| ≤ −Re(s − α) + 1

λqn

log

(
sup
s∈C+

α

|Sqn(s)|
)

(s ∈ C
−
α ). (6)

Hence, the sequence ((1/λqn) log |Sqn |) is locally uniformly bounded above on C. There-
fore, the upper-semicontinuous regularization w∗ of the function

w = lim sup
n→∞

1

λqn

log |Sqn |

is subharmonic on C by Theorem 5.7.1 of [1], and differs from w on a polar set. Passing to
the limit in Eq. 6, we have

w∗(s) ≤ −Re(s − α) (s ∈ C
−
α ).

Moreover, w∗ ≤ 0 on C+
0 , so

lim sup
s→y

w∗(s) + Re(s)

−Re(s − α)
≤ 0 (y ∈ ∂∞

C
−
0 ).

Consequently, by Theorem 3.1.6 of [1],

w∗(s) ≤ −Re(s) (s ∈ C
−
0 ). (7)

Let � be a domain containing C+
0 , and suppose the function f has a holomorphic exten-

sion to �. The sequence ((1/λqn) log |Sqn − f |) is locally uniformly bounded above on �

since
1

λqn

log |Sqn(s) − f (s)| ≤ 1

λqn

log(2max{|Sqn(s)|, |f (s)|}) (s ∈ �). (8)

Thus, the upper-semicontinuous regularization u∗ of the function

u(s) = lim sup
n→∞

1

λqn

log |Sqn(s) − f (s)|

is subharmonic on � by Theorem 5.7.1 of [1]. The estimate (8) implies that

u∗(s) ≤ max{w∗(s), 0} (s ∈ �). (9)
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On C
+
α we have

1

λqn

log

∣∣∣∣∣∣
∞∑

j=qn+1

aj e
−λj s

∣∣∣∣∣∣ = 1

λqn

log

∣∣∣∣∣∣
∞∑

j=qn+1

aj e
−λj (s−α)e−λj α

∣∣∣∣∣∣
≤ −Re(s − α) + 1

λqn

log

⎛⎝ ∞∑
j=qn+1

|aj |e−λj αe(λqn−λj )Re(s−α)

⎞⎠
≤ −Re(s − α) + 1

λqn

log

⎛⎝ ∞∑
j=qn+1

|aj |e−λj α

⎞⎠ .

The series in the last line converges. Hence

u∗(s) ≤ −Re(s − α) (s ∈ C
+
α ). (10)

4 Proof of Theorem 1

Let the functions w∗ and u∗, and the number α, be as defined in Section 3. The hypothesis
of the theorem implies that w∗ ≤ 0 on a set Ẽ, which differs from E by at most a polar
set. So Ẽ is also not minimally thin at −∞ as a subset of C−

0 . From Eq. 7, the function
−Re(s) − w∗(s) is a positive superharmonic function on C

−
0 . Therefore, by the definition

of minimal thinness,

inf
C

−
0

−Re(s) − w∗(s)
−Re(s)

= lim inf
s→∞,s∈Ẽ

−Re(s) − w∗(s)
−Re(s)

≥ lim inf
s→∞,s∈Ẽ

−Re(s)

−Re(s)
= 1,

and so w∗ ≤ 0 on C−
0 . Hence w∗ ≤ 0 on C.

Proof of part (i) From Eq. 9, we see that u∗ ≤ 0 on �. Further, Eq. 10 implies that u∗ < 0
on C

+
α . Thus, by the maximum principle, u∗ < 0 on �. For any bounded subdomain W of

� such that W ⊂ �, there exists ε > 0 such that u < −ε on W . By Corollary 5.7.2 of [1],
for any compact subset K of W there exists n0 such that

1

λqn

log |f (s) − Sqn(s)| < −ε/2 (s ∈ K, n > n0).

Thus |f (s) − Sqn(s)| < (e−ε/2)λqn on K, whence ||f − Sqn ||K → 0 as n → ∞. Hence
(Sqn) converges locally uniformly to f on W and, consequently, on �.

Proof of part (ii) Since there exists c > 1 such that supn λqn/λqn−1 < c, we can pass to a
subsequence of (Sqn) to ensure that λqn ∈ [cn, cn+1] for all large enough n. Then the series∑∞

n=1 e−λqn converges, and (λqn/λqn−1) is bounded. We consider the function v∗, which is
the upper-semicontinuous regularization of

v(s) = lim sup
n→∞

1

λqn

log |Sqn(s) − Sqn−1(s)|.
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We note that

lim sup
n→∞

1

λqn

log |Sqn − Sqn−1 | ≤ lim sup
n→∞

1

λqn

log(2max{|Sqn |, |Sqn−1 |})

≤ max

{
lim sup
n→∞

1

λqn

log |Sqn |, lim sup
n→∞

1

λqn

log+ |Sqn−1 |
}

≤ max

{
w, lim sup

n→∞
1

λqn−1

log+ |Sqn−1 |
}

≤ max{w,max{w, 0}}
= max{w, 0}.

lHence v∗ ≤ max{w∗, 0} = 0. Let d > 1 be such that λqn/λqn−1 ≤ d for all n. Then, on C+
α ,

v = lim sup
n→∞

1

λqn

log |(Sqn − f ) + (f − Sqn−1)|

≤ lim sup
n→∞

1

λqn

max{log(2|Sqn − f |), log(2|f − Sqn−1 |)}

≤ lim sup
n→∞

max

{
1

λqn

log(|Sqn − f |), 1
d

1

λqn−1

log(|f − Sqn−1 |)
}

≤ 1

d
u,

where the final step holds because

1

λqn

log |f (s) − Sqn(s)| < 0 for large n and s ∈ C
+
α ,

by Eq. 10. Therefore, v∗(s) ≤ d−1u∗(s) ≤ −d−1Re(s − α) for s ∈ C
+
α . The function

σ �→ supt∈R v∗(σ + it) is convex and less than min{0, d−1(α − σ)}. Hence, v∗ ≡ −∞.
By Corollary 5.7.2 of [1], for any compact set K ⊂ C and number M > 0 there exists

N > 0 such that for n > N we have
1

λqn

log |Sqn(s) − Sqn−1(s)| ≤ −M (s ∈ K).

Therefore,
|Sqn(s) − Sqn−1(s)| ≤ e−Mλqn (s ∈ K).

Writing Sqn = SqN
+∑n

j=N+1(Sqj
−Sqj−1), for n > N, we see that (Sqn) converges on K .

Since K is arbitrary, it converges on the whole plane and the function f is entire.

5 Proof of Theorem 2

The functions w∗, u∗ and the number α are as defined in Section 3. Without loss of gen-
erality we suppose that ξ = 0, and by the maximum principle we may suppose that the
complement of K has no bounded components. Let U be the largest domain containing C+

0
on which the sequence (Sqn) converges. Then U is simply connected and consequently non-
thin at every point of ∂U . Clearly, f has extension to U, so we can suppose that U ⊂ �,

by enlarging � if necessary. Then the function u∗ is defined and negative on U . We see that
u∗(s) ≤ 0 for s ∈ � ∩ ∂U since U is non-thin at s. Moreover, if u∗(s) < 0, the argument
used to prove Theorem 1 (i) would show that s ∈ U, so

u∗(s) = 0 (s ∈ � ∩ ∂U). (11)
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We fix a > 0 small enough so that K ∩D(0, a) = ∅. Let Ua be the component of U ∩(C+
0 ∪

D(0, a)) that contains C+
0 . Since U is simply connected, so is Ua . We define the closed set

L = Ua ∪ K .
By Eq. 7, −Re(·) − w∗ is a positive superharmonic function on C

−
0 . The inequality

w∗ ≤ 0 and, consequently, −Re(·)−w∗ ≥ −Re(·) holds on L with the exception of at most
a polar set. Hence, for s ∈ C\L,

−Re(s) − w∗(s) ≥ R̂L
−Re(·)(s),

where the reduction is in C−
0 , and so

w∗(s) ≤ −Re(s) − R̂L
−Re(·)(s) = MC\L(s, −∞),

and, by Eq. 9,
u∗(s) ≤ MC\L(s, −∞) (s ∈ �\L). (12)

The estimate (9) also provides that

u∗(s) ≤ 0 (s ∈ � ∩ L), (13)

and we will now further estimate u∗ onUa . Since−u∗ ∈ U+(Ua) and the half-line {Re(s) >

α, Im(s) = 0} is not minimally thin at +∞ as a subset of Ua, and taking into account (10)
and (4), we have

inf
s∈Ua

−u∗(s)
MUa (s, +∞)

= lim inf
t→+∞,t∈R

−u∗(t)
MUa (t, +∞)

≥ lim inf
t→+∞,t∈R

t − α

t + a
= 1,

whence
u∗(s) ≤ −MUa(s, +∞) (s ∈ Ua). (14)

We define the function v∗, which is the upper-semicontinuous regularization of

v(s) =
⎧⎨⎩

MC\L(s,−∞) (s ∈ C\L),

−MUa(s, +∞) (s ∈ Ua),

0 (elsewhere on C).

We note that v∗(s) is negative if and only if s ∈ Ua, so to prove the theorem we only need
to show that v∗(0) < 0. We borrow arguments from the proofs of Theorems 1 and 3 in
[3]. The first step is to show that v∗ is subharmonic on � ∩ D(0, a). Then we construct a
harmonic majorant for v∗ on a subdomain of � and show that this majorant is negative on a
circle centered at 0.

The estimates (12), (13) and (14) show that u∗ ≤ v∗ on �. The function v∗ is subhar-
monic on D(0, a)\∂Ua by construction. Let s ∈ ∂Ua ∩ � ∩ D(0, a). Then s ∈ ∂U since it
lies inside D(0, a), and so u∗(s) = 0 by Eq. 11. For small r the disc D(s, r) ⊂ �, so

v∗(s) = 0 = u∗(s) ≤ A(u∗; s, r) ≤ A(v∗; s, r),

whereA(g; s, r) denotes the area mean value of a function g overD(s, r). Hence v∗ satisfies
the mean value inequality and, consequently, it is subharmonic on � ∩ D(0, a).

When s ∈ C
+
0 ,

v∗(s) = −MUa(s, +∞) ≤ −M
C

+
0
(s, +∞) = −Re(s).

Further, since L ∩ C
−
0 contains a nonpolar set K, we see that

MC\L(s, −∞) < M
C

−
0
(s, −∞) = −Re(s) (s ∈ C

−
0 \L).

Hence
v∗(s) < −Re(s) (s ∈ C

−
0 ),

8 M. Golitsyna



as v∗ is non-positive on L. Let �0 be the component of � ∩ D(0, a/2) that meets C+
0 , and

let H�0
v∗ denote the solution to the Dirichlet problem on �0 with boundary data v∗. Since the

set ∂�0 ∩C
−
0 has positive harmonic measure for �0, we obtain a strictly positive harmonic

function on �0 by defining

g(s) = −Re(s) − H
�0
v∗ (s) (s ∈ �0).

The thinness of C\� at 0 tells us that 0 is an irregular boundary point for the Dirichlet
problem on �0, so, by Theorem 7.5.5 of [1], there exists a set A, thin at 0, and a number
l ≥ 0, such that

g(s) → l (s → 0, s /∈ A).

Further, by the continuity of g on �0, we may assume that the set A is closed. We must have
l > 0, for otherwise g would be a barrier for the open set �0\A at the irregular boundary
point 0, which is impossible. By Theorem 7.3.9 of [1], we can choose r0 ∈ (0, l/2) such
that ∂D(0, r0) ⊂ �0\A and g > l/2 on ∂D(0, r0). We now use the subharmonicity of v∗
on � to see that

v∗(s) ≤ H
�0
v∗ (s) = −Re(s) − g(s) < l/2 − l/2 = 0 (s ∈ ∂D(0, r0)),

whence ∂D(0, r0) ⊂ Ua . Since Ua is simply connected, we conclude that (Sqn) converges
uniformly on D(0, r0) as required.

Definition 1 Let (qn) be an increasing sequence of integers, where qn → ∞ as n → ∞.
We say that a Dirichlet series

∑∞
j=1 aj e

−λj s has Hadamard-Ostrowski gaps (qn) if there
exists θ > 0 such that

λqn+1

λqn

≥ 1 + θ (n ∈ N).

Corollary 1 Let
∑∞

j=1 aj e
−λj s be a Dirichlet series that converges on C

+
0 and is analyti-

cally continuable to a domain � strictly larger than C
+
0 , but not to a neighbourhood of a

given point ξ ∈ {Re(s) = 0}. If C\� is thin at ξ, then the series cannot possess Hadamard
Ostrowski gaps.

Proof We argue by contradiction. Suppose the series has Hadamard-Ostrowski gaps. Since
� is strictly larger than C

+
0 , it contains a full neighbourhood of a point ζ on the imaginary

axis. Theorem 1 of [2] implies that the sequence (Sqn) converges on a, possibly smaller,
neighbourhood of ζ, and, in particular, on some disc lying entirely in C

−
0 . A disc has a

non-zero capacity, so by Theorem 2, f has analytic extension to a neighbourhood of ξ,

contradicting the hypothesis.
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