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Abstract
In this paper, we deal with superharmonically weighted Dirichlet spaces Dω. First, we prove
that the classical Dirichlet space is the largest, among all these spaces, which contains no
infinite Blaschke product. Next, we give new sufficient conditions on a Blaschke sequence
to be a zero set for Dω. Our conditions improve Shapiro-Shields condition for Dα , when
α ∈ (0, 1).
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1 Introduction

Let D be the unit disc of the complex plane C and let T := ∂D be the unit circle. Let dA

(resp. dm) be the normalized Lebesgue measure on D (resp. T). The Hardy space H 2 is the
space of analytic functions f on D such that

‖f ‖2
H 2 := |f (0)|2 +

∫
D

|f ′(z)|2 log(1/|z|)dA(z) < ∞.

A weight ω is a function ω : D → (0,+∞] which is integrable on D with respect to dA.
The weighted Dirichlet space Dω associated with ω is defined by

Dω :=
{
f ∈ H 2 : Dω(f ) :=

∫
D

|f ′(z)|2ω(z)dA(z) < ∞
}

.
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The space Dω will be endowed by the hilbertian norm ‖f ‖2
ω := ‖f ‖2

H 2 + Dω(f ). Let
0 ≤ α < 1 and denote by Dα the standard Dirichlet space which corresponds to the weight
ωα(z) = (1 + α)(1 − |z|2)α . The classical Dirichlet space is D0 and will be denoted by D.

In this paper, we are mainly interested in superhamonically weighted Dirichlet spaces.
Several results on these spaces can be found in [3, 6, 15–17, 32]. In general the description of
zero sets remains an open problem, even for the standard Dirichlet spaces Dα for α ∈ [0, 1).
Recall that a sequence Z = (zn)n≥1 ⊂ D is a zero set for Dω if there is a function in Dω

that vanishes on Z and nowhere else in D.
We say that Z = (zn)n≥1 ⊂ D is a Blaschke sequence if

∑
n≥1

(1 − |zn|) < ∞. The

associated Blaschke product B is given by

B(z) =
∏
n≥1

|zn|
zn

zn − z

1 − znz
,

with the convention |zn|/zn = −1, if zn = 0. It is known [12] that zero sets for H 2 are the
Blaschke sequences and that every Blaschke product is bounded, so it belongs in H 2. For
the classical Dirichlet space, L. Carleson [10] proved that if Z satisfies

∑
n≥1

1

log1−ε 1/(1 − |zn|)
< ∞

for some ε ∈ (0, 1), then Z is a zero set for D. In [31], H.S. Shapiro and A.L. Shields
improve this result by proving that if

∑
n≥1

1

log 1/(1 − |zn|) < ∞,

then Z is a zero set for D. This last result is sharp in the following sense, if (rn)n ⊂ (0, 1)

such that
∑

1/| log(1 − rn)| = ∞, then there exists a sequence (θn)n such that (rne
iθn)n is

not a zero set for D (see [24]). Similar results are obtained for all standard Dirichlet spaces
Dα (see for instance [25]).

D. Marshall and C. Sundberg [23] observed that the argument used by Shapiro-Shields
works for all Hilbert spaces of analytic functions on D that enjoy Pick property (see also
[1, 30]). Note that S. Shimorin [32] proved that every superharmonically weighted Dirich-
let space Dω possesses Pick property. So, if Z = (zn)n≥1 satisfies the Shapiro-Shields
condition, namely

∑
n≥1

1

Kω(zn, zn)
< ∞, (1)

where Kω is the reproducing kernel of Dω, then Z is a zero set for Dω. For α ∈ (0, 1),
it is known that the reproducing kernel of Dα is given by Kα(z,w) = 1

(1−zw̄)α
and the

Shapiro-Shields condition for Dα becomes
∑
n≥1

(
1 − |zn|2

)α

< ∞. (2)

In fact, condition (2) implies that B ∈ Dα [9]. Moreover, if Z is uniformly separated then
condition (2) is also necessary [13, 34]. It is worth mentioning that this result remains true
if Z is only separated [4, 26].
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For the classical Dirichlet space the situation is quite different. L. Carleson proved in
[11] (see also [17] ) the following formula

D(Bf ) = D(f ) +
∑
n≥1

∫
T

1 − |zn|2
|1 − znζ |2 |f (ζ )|2dm(ζ ) (f ∈ H 2). (3)

As a consequence, the only Blaschke products in D are finite Blaschke products.
Our first goal in this paper is to determine all superharmonically weighted Dirichlet

spaces which contain no infinite Blaschke product. We prove that D is the largest space
among all superharmonically weighted Dirichlet spaces which contains no infinite Blaschke
product. To state our result let us denote by Pν the Poisson transform of the positive measure
ν on T.

Theorem 1.1 Let ω be a superharmonic weight and let Pν be the harmonic part of ω. Let
h be the derivative of ν with respect to m. The following are equivalent.

i) Dω contains no infinite Blaschke product.
ii) There exists c > 0, such that h ≥ c a.e. on T .

iii) lim inf
|z|→1− ω(z) > 0.

iv) Dω ⊂ D.

The second goal in this paper is to give some sufficient conditions which ensure that a
sequence Z is a zero set for Dω. Observe that since Dω ⊂ H 2, then each zero set for Dω

satisfies the Blaschke condition. The converse is in general not true (see Section 6). For
the standard Dirichlet spaces there are several papers that deal with this problem (see for
instance [10, 22, 25, 31]). In Section 4, we give two ways to construct functions f ∈ Dω

such that f B ∈ Dω. The first one is the classical Carleson’s construction of smooth outer
functions (see Theorem 4.1). While the second construction is based on potential theory
induced by Dω. We will construct outer functions in Dω with large real part on a given
sequence of closed subsets of T. Namely, if cω denotes the capacity associated with Dω (see
Section 4.2), we have the following result which is in the spirit of Theorem 5.1 of [18] (see
also [14, 29]).

Theorem 1.2 Let ω be a superharmonic weight. Let (Fn)n be a family of closed subsets of
T and let En = ∪k≥nFk . There exists a function f ∈ Dω such that Ref ≥ 0 on D and

Ref ≥ log
1

cω(En)
cω − q.e. on Fn for all n ≥ 1.

Our main result on zero sets deals with general superharmonic weights ω (radial or non-
radial). To state our theorem let us introduce some notations. Let 	ω be the function given
by

	ω(w) = (1 − |w|2)
∫
D

1 − |z|2
|1 − wz|2 dμ(z) + Pν(w),

where μ = −
ω and Pν is the harmonic part of ω. Let γ > 0 and let z ∈ D \ {0}. The
closed arc of T centered at z/|z| and of length ( 1 − |z|)γ will be denoted by I (z, γ ). We
also write I (0, γ ) = T.
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Theorem 1.3 Let ω be a superharmonic weight on D. Suppose that there exists α ∈ [0, 1)

such that ω(z) = O((1 − |z|2)α). Let Z = (zn)n≥1 be a sequence of D such that
∑
n≥1

(1 −

|zn|2)1−ε < ∞, for some ε ∈ (0, 1). Let γ = ε
1−α

and let En = ∪k≥nI (zk, γ ). If there
exists A > 0 such that ∑

n≥1

	ω(zn)c
A
ω(En) < ∞,

then Z is a zero set for Dω.

Note that this result allows to give new examples of zero sets for Dω, even for the
standard spaces Dα . For α ∈ (0, 1), one can see easily that 	ωα � ωα . By Theorem 1.3, if∑

n≥1

(1 − |zn|)αcA
α (En) < ∞,

then Z is a zero set for Dα . So, our condition improves Shapiro-Shields condition and takes
into account Arg zn. A more general result for Dα is obtained in Theorem 4.6.

The paper is organized as follows. In Section 2, we give an upper estimate of ‖Bf ‖ω,
where f ∈ H 2 and B is a general Blaschke product. Section 3 is devoted to Blaschke
products in Dω. We also give in this section the proof of Theorem 1.1. In Section 4, we
state and prove our main theorems on zero sets for Dω. In Section 5, we consider general
weighted Dirichlet spaces and give extensions of some previous results. The last section
contains some remarks and two problems.

Throughout the paper, we use the following notations

• A � B means that there is a constant C such that A ≤ CB.
• A � B if both A � B and B � A.

2 Norm Estimates

In this section we give an upper estimate of ‖Bf ‖ω which will be useful in the proofs of our
main results.

Let ω be a superharmonic weight on D. By Jensen-Riesz representation theorem (see for
instance [5, 27]), there exist a positive Borel measure μ on D and a finite positive Borel
measure ν on T such that

ω(z) = Uμ(z) + Pν(z) (z ∈ D), (4)

where Uμ is the Green potential of μ defined by

Uμ(z) =
∫
D

log

∣∣∣∣1 − wz

w − z

∣∣∣∣ dμ(w)

and Pν is the Poisson transform of ν defined by

Pν(z) =
∫
T

1 − |z|2
|1 − ζz|2 dν(ζ ).

Recall that μ = −
ω where 
 is the distributional laplacian operator. It is known [5] that
Uμ is not identically infinite if and only if∫

D

(1 − |z|)dμ(z) < ∞. (5)
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So, in the sequel we suppose that Eq. 5 is satisfied. Note that Uμ (resp. Pν) is called the
pure superharmonic (resp. the harmonic) part of ω. We say that ω is purely superharmonic
if ω = Uμ.

S. Richter and C. Sundberg extended Carleson’s formula (3) to all harmonically weighted
Dirichlet spaces [17, 28]. In particular, we have

DPν (Bf ) = DPν (f ) +
∑
n≥1

(1 − |zn|2)
∫
T

|f (ζ )|2
|1 − znζ |2 dν(ζ ), (6)

where B is the Blaschke product associated with (zn)n≥1 and f ∈ H 2. On the other hand,
using Green’s formula [20], it is clear that

∫
D

|f ′(w)|2 log

∣∣∣∣1 − zw

z − w

∣∣∣∣ dA(w) = P(|f |2)(z) − |f (z)|2 (z ∈ D).

So, if ω = Uμ is a purely superharmonic weight then we have the following formula

Dω(f )=
∫
D

∫
D

|f ′(w)|2 log

∣∣∣∣1 − zw

z − w

∣∣∣∣ dA(w)dμ(z)=
∫
D

(
P(|f |2)(z)−|f (z)|2

)
dμ(z)(7)

In particular, f ∈ Dω if and only if Eq. 7 is finite. The latter result was obtained by A.
Aleman [2, 3]. See also [6].

Let Z = (zn)n≥1 be a Blaschke sequence of D and let μ be a positive Borel measure on
D. Let Zμ be the function defined by

Zμ(ζ ) =
∑
n≥1

(1 − |zn|2)
∫
D

(1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z) (ζ ∈ T).

The following estimate will be useful in the sequel.

Theorem 2.1 Let ω = Uμ be a purely superharmonic weight. Let f ∈ Dω and let B be the
Blaschke product associated with the sequence Z = (zn)n≥1 of D. Then

‖Bf ‖2
ω � ‖f ‖2

ω +
∫
T

|f (ζ )|2Zμ(ζ )dm(ζ ). (8)

Proof By equation (7), we have

‖Bf ‖2
ω � ‖f ‖2

ω +
∫
D

|f (z)|2(1 − |B(z)|2)dμ(z). (9)

Let Bk denotes the finite Blaschke product associated with (zn)1≤n≤k and let B0 = 1. We
have

1 − |Bk(z)|2 =
k∑

n=1

|Bn−1(z)|2 − |Bn(z)|2 =
k∑

n=1

|Bn−1(z)|2(1 − |zn|2)(1 − |z|2)
|1 − z̄nz|2 .

Then

1 − |B(z)|2 =
∞∑

n=1

|Bn−1(z)|2(1 − |zn|2)(1 − |z|2)
|1 − z̄nz|2 ≤

∞∑
n=1

(1 − |zn|2)(1 − |z|2)
|1 − z̄nz|2
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Combining this inequality with Eq. 9, we obtain

‖Bf ‖2
ω � ‖f ‖2

ω +
∞∑

n=1

(1 − |zn|2)
∫
D

|f (z)|2(1 − |z|2)
|1 − z̄nz|2 dμ(z)

≤ ‖f ‖2
ω +

∞∑
n=1

(1 − |zn|2)
∫
T

|f (ζ )|2
∫
D

(1 − |z|2)2

|ζ − z|2|1 − z̄nz|2 dμ(z)dm(ζ )

= ‖f ‖2
ω +

∫
T

|f (ζ )|2Zμ(ζ )dm(ζ ).

The proof is complete.

Note that if ω = Uμ + Pν is a general superharmonic weight we have

‖Bf ‖2
ω � ‖f ‖2

ω +
∫
T

|f (ζ )|2Zμ(ζ )dm(ζ ) +
∑
n≥1

(1 − |zn|2)
∫
T

|f (ζ )|2
|1 − znζ |2 dν(ζ ), (10)

by Eqs. 6 and 8.

3 Blaschke Products

Our aim in this section is to prove Theorem 1.1. First, we give a sufficient condition which
ensures that an infinite Blaschke product belongs to Dω.

Let μ be a positive Borel measure on D satisfying Eq. 5. The function 	μ is given by

	μ(w) = (1 − |w|2)
∫
D

1 − |z|2
|1 − wz|2 dμ(z) (w ∈ D).

Let Z = (zn)n≥1 ⊂ D and recall that Z is said to be uniformly separated if there exists
δ > 0 such that ∏

n: n�=k

∣∣∣∣ zn − zk

1 − znzk

∣∣∣∣ ≥ δ, (k ≥ 1).

Theorem 3.1 Let ω = Uμ + Pν be a superharmonic weight, where μ is a positive Borel
measure on D satisfying Eq. 5 and ν be a finite positive Borel measure on T. Let B be the
Blaschke product associated with Z = (zn)n≥1 ⊂ D. Then B ∈ Dω, if∑

n≥1

	μ(zn) + Pν(zn) < ∞. (11)

If in addition, Z is uniformly separated then Eq. 11 is also necessary.

Proof Applying Eq. 10, with f = 1, we get

‖B‖2
ω ≤ 1 +

∫
T

Zμ(ζ )dm(ζ ) +
∑
n≥1

∫
T

1 − |zn|2
|1 − znζ |2 dν(ζ )

= 1 +
∑
n≥1

	μ(zn) + Pν(zn) < ∞.
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This proves that B ∈ Dω. If Z is uniformly separated, by [13], we have

1 − |B(z)|2 �
∑
n≥1

(1 − |zn|2)(1 − |z|2)
|1 − z̄nz|2 ,

The second assertion comes from Eqs. 6 and 7.

The following lemma will be useful in the proof of the main result.

Lemma 3.2 Let ω = Uμ + Pν be a superharmonic weight, where μ is a positive Borel
measure on D satisfying Eq. 5 and ν is a finite positive Borel measure on T. The following
are equivalent.

i) Dω contains an infinite Blaschke product.

ii) lim inf
|z|→1−

(
	μ(z) + Pν(z)

) = 0.

Proof Suppose that there exists an infinite Blaschke sequence Z = (zn)n≥1 ⊂ D such that
the associated Blaschke product B belongs to Dω. Let (an)n≥1 be a uniformly separated
infinite subsequence of Z and let B1 be the associated Blaschke product. Clearly, from
Eqs. 6 and 7, B1 ∈ Dω. By Theorem 3.1, we have

∑
n≥1

	μ(an)+Pν(an) < ∞. In particular,

lim inf
|z|→1−

(
	μ(z) + Pν(z)

) = 0.

Conversely, suppose that lim inf
|z|→1−

(
	μ(z) + Pν(z)

) = 0. Then there exists (zn)n≥1 such

that 	μ(zn) + Pν(zn) < 1/2n. By Theorem 3.1, the Blaschke product associated with
(zn)n≥1 belongs to Dω.

Proof of Theorem 1.1 The following implications ii) =⇒ iii) =⇒ iv) are obvious.
iv) =⇒ i) comes from the fact that D contains no infinite Blaschke product.

It remains to prove that i) =⇒ ii). To this end, suppose that ii) is not satisfied and
suppose that ω = Uμ + Pν . For ε > 0, we have m({ζ ∈ T : h(ζ ) < ε}) := a > 0.
Let (rn)n≥1 ∈ (0, 1) be a sequence which converges to 1. By Fatou’s lemma, we have
limn Pν(rnζ ) = h(ζ ) a.e.. Then for n, large enough, we have

m({ζ ∈ T : Pν(rnζ ) < ε}) ≥ a/2.

Let un(ζ ) = 	μ(rnζ ). We have

‖un‖1 :=
∫
T

un(ζ )dm(ζ ) �
∫
D

(1 − rn)

1 − rn|z| (1 − |z|)dμ(z).

Since the measure (1 − |z|)dμ(z) is finite, limn ‖un‖1 = 0. In particular we have, for large
n,

m({ζ ∈ T un(ζ ) ≥ ε}) < a/2.

Consequently,

m({ζ ∈ T : Pν(rnζ ) < ε} ∩ {ζ ∈ T un(ζ ) < ε}) > 0.

This implies that lim inf
|z|→1− 	μ(z) + Pν(z) = 0. By applying Lemma 3.2 we obtain the result.
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4 Zero Sets forDω

Since Dω possesses a division property it is clear that a Blaschke sequence Z is a zero set
for Dω if and only if there exists an outer function f ∈ Dω such that Bf ∈ Dω. In this
section we give two ways to construct such functions.

4.1 Regularization Using Smooth Functions

We begin this subsection by recalling some standard facts. Let ρ be an increasing function
such that ρ(0) = 0. We say that a closed subset E of T is a ρ−Carleson set if

∫
T

log
1

ρ(d(ζ, E))
dm(ζ ) < ∞.

It is known (see for instance [8, 11, 33]) that if ρ(t) = O(tε), for some ε > 0, then
there exists an analytic function f on D with bounded derivatives and such that |f (z)| =
O(ρ(d(z, E)).

The aim of the following theorem is to exhibit conditions ensuring the membership of
f B to Dω. For simplicity, we state our result only in the radial case.

Theorem 4.1 Let ρ be an increasing function such that ρ(t) = O(tε) for some ε > 0. Let
E be a ρ−Carleson set. Let ω = Uμ be a purely superharmonic radial weight on D. Let
Z = (zn)n≥1 be a Blaschke sequence such that

∑
n≥1

	μ(zn)ρ(16d(zn, E)) < ∞. (12)

Then Z is a zero set for Dω.

We will need the following lemma, which is due to K. Kellay and J. Mashreghi [22].

Lemma 4.2 Let ρ, E satisfying the conditions of Theorem 4.1. Then
∫
T

1 − |z|2
|1 − zζ |2 ρ(d(ζ, E))dm(ζ ) � ρ(2d(z, E)) + (1 − |z|2)

∫ 2

2d(z,E)

ρ(t)

t2
dt (z ∈ D).

Proof of Theorem 4.1 Since ρ−Carleson sets and ρ2/ε−Carleson sets are the same, we sup-
pose that ρ(t) = O(t2). By the above discussion, there exists a function f ∈ Dω such that
|f (z)|2 ≤ ρ(d(z, E)). We have∫

T

|f (ζ )|2Zμ(ζ )dm(ζ ) ≤
∫
T

ρ(d(ζ, E))Zμ(ζ )dm(ζ )

=
∑
n≥1

(1 − |zn|2)
∫
D

(1 − |z|2)2

|1 − znz|2
∫
T

ρ(d(ζ, E))

|1 − zζ |2 dm(ζ )dμ(z).

By Lemma 4.2 we have
∫
T

1 − |z|2
|1 − zζ |2 ρ(d(ζ, E))dm(ζ ) � ρ(2d(z, E)) + (1 − |z|2).
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Then ∫
D

(1 − |z|2)2

|1 − znz|2
∫
T

ρ(d(ζ, E))

|1 − zζ |2 dm(ζ )dμ(z) �
∫
D

(1 − |z|2)
|1 − znz|2 ρ(2d(z, E))dμ(z)

+
∫
D

(1 − |z|2)2

|1 − znz|2 dμ(z).

Since ω is radial, dμ(rζ ) = dλ(r)dm(ζ ), where λ is a positive Borel measure on [0, 1].
Recall that ω �= +∞ is equivalent to

∫
D

(1 − |z|)dμ(z) =
∫ 1

0
(1 − r)dλ(r) < ∞.

Then we have∫
D

(1 − |z|2)2

|1 − znz|2 dμ(z) =
∫ 1

0

∫
T

(1 − r2)2

|1 − rznζ |2 dm(ζ )dλ(r) �
∫ 1

0
(1 − r)dλ(r) < ∞.

Note that d(z, E) ≤ max(2d(z/|z|, E), 2(1 − |z|)). Using Lemma 4.2 again, we get
∫
D

(1 − |z|2)
|1 − znz|2 ρ(2d(z, E))dμ(z) ≤

∫ 1

0

∫
T

(1 − r2)

|1 − znrζ |2 ρ(4d(ζ, E))dm(ζ )dλ(r)

+
∫ 1

0

∫
T

(1 − r2)

|1 − znrζ |2 ρ(4(1 − r))dm(ζ )dλ(r)

�
∫ 1

0

1 − r

1 − r|zn|ρ(8d(rzn, E))dλ(r) +
∫ 1

0
(1 − r)dλ(r).

Combining these inequalities, we obtain
∫
T

|f (ζ )|2Zμ(ζ )dm(ζ ) �
∑
n≥1

(1−|zn|2)
∫ 1

0

1 − r

1 − r|zn|ρ(8d(rzn, E))dλ(r)+
∑
n≥1

(1−|zn|2).

Since ρ is increasing,

ρ(8d(rzn, E)) ≤ ρ(16d(zn, E)) + ρ(8(1 − r)) � ρ(16d(zn, E)) + (1 − r)2.

We get

∫
T

|f (ζ )|2Zμ(ζ )dm(ζ ) �
∑
n≥1

(1 − |zn|2)
(∫ 1

0

1 − r

1 − r|zn|dλ(r)

)
ρ(16d(zn, E))

+
∑
n≥1

(1 − |zn|2)

�
∑
n≥1

	μ(zn)ρ(16d(zn, E)) +
∑
n≥1

(1 − |zn|2).

By Theorem 2.1 and Eq. 12, Bf ∈ Dω. The proof is complete.

Let � = {(α, β) : α ∈ (0, 1), β ∈ (−∞,+∞)}∪{0}×(0,+∞)∪{1}×(−∞, 0) and let

ωα,β(z) = (1 − |z|2)α
logβ(1/1 − |z|) , (α, β) ∈ �. (13)
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Corollary 1 Let ρ be an increasing function such that ρ(t) = O(tε) for some ε > 0 and let
E be a ρ−Carleson set. Set (α, β) ∈ � and suppose that a Blaschke sequenceZ = (zn)n≥1
of D satisfies ∑

n≥1

ωα,β(zn)ρ(16d(zn, E)) < ∞.

Then Z is a zero set for Dωα,β .

Proof By a straightforward computation we get, for all (α, β) ∈ �, that 	ωα,β � ωα,β . The
desired result comes from Theorem 4.1.

4.2 Regularization Using Potential Theory

Let ω = Uμ+Pν be a superharmonic weight on D. Now we introduce the notion of capacity
associated with Dω. The space Dh

ω is given by

Dh
ω := {f ∈ L2(μ) : ‖f ‖2

ω := ‖f ‖2
L2(m)

+ Dω(f ) < ∞},
where

Dω(f ) =
∫
T

∫
T

|f (ζ )−f (η)|2Aμ(ζ, η)dm(ζ )dm(η)+
∫
T

∫
T

|f (ζ ) − f (η)|2
|ζ − η|2 dν(ζ )dm(η)

and

Aμ(ζ, η) =
∫
D

(1 − |z|)
|1 − ζz|2

(1 − |z|)
|1 − zη|2 dμ(z).

Note that, the real part of Dh
ω is a Dirichlet space in the sense of Beurling-Deny (see [7,

19]). So, the capacity cω associated with Dh
ω is defined by

cω(E) = inf{‖f ‖2
ω : f ∈ Dh

ω and f ≥ 1 a.e on a neighborhood of E }.
By the definition, cω is inner, that is

cω(E) = inf{cω(U) : U is open and E ⊂ U}.
We also have the following properties

• cω(∅) = 0 and cω(E1) ≤ cω(E2), whenever E1 ⊂ E2 ⊂ T.
• Let (An)n be an increasing sequence of subsets of T. Then cω(∪nAn) = lim

n→∞ cω(An).

• Let (Kn) be a decreasing sequence of compacts subset of T. Then cω(∩nKn) =
lim

n→∞ cω(Kn).

Then by Choquet’s theorem we have

cω(E) = sup{cω(K) : K is compact and K ⊂ E},
where E is a Borelian subset of T. A property is said to be satisfied cω− quasi everywhere,
if there exists a subset N ⊂ T with cω(N) = 0 and such that the property is satisfied
on T \ N . We say that a function f defined on T is quasi continuous if for every ε > 0
there exists an open subset U with cω(U) < ε and such that f is continuous on T \ U . It
is known, from the general potential theory associated with Dirichlet forms, that for each
function f ∈ Dh

ω, there exists a quasi continuous function f̃ ∈ Dh
ω such that f̃ = f a.e..

Note also that if f and g are two quasi continuous functions of Dh
ω such that f = g a.e. on

an open subset U then f = g cω − q.e. on U . Using these facts one can see that for every
subset E of T we have

cω(E) = inf{‖f ‖2
ω : f ∈ Dh

ω and f̃ ≥ 1 cω − q.e.on E }.
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Now, we introduce the notion of potential which will play an important role in our construc-
tion. We say that a positive Borel measure λ on T is of finite energy (with respect to Dh

ω) if
there exists a constant C > 0 such that∫

|f (ζ )|dλ(ζ ) ≤ C‖f ‖ω, (f ∈ Dh
ω ∩ C(T)),

where C(T) is the space of continuous functions on T. In particular the linear form f →∫
f (ζ )dλ(ζ ) can be extended to the whole space Dh

ω. Consequently, there exists a unique

(since Dh
ω ∩ C(T) is dense in Dh

ω) function gλ ∈ Dh
ω such that

〈gλ, f 〉 =
∫

f (ζ )dλ(ζ ) (f ∈ Dh
ω ∩ C(T)).

Let E be a closed subset of T. The set of positive Borel measures supported by E and with
finite energy with respect to Dh

ω, will be denoted by Sω(E). It is known that if λ ∈ Sω(T),
then λ charges no sets of cω− capacity zero. In particular if f ∈ Dh

ω, then f̃ ∈ L1(λ) and

〈gλ, f 〉 =
∫

f̃ (ζ )dλ(ζ ) (f ∈ Dh
ω). (14)

The function gλ is called the potential of λ with respect Dh
ω. We have the following

fundamental theorem.

Theorem 4.3 Let E be a closed subset of T such that cω(E) > 0. There exists a unique
measure λE ∈ Sω(E) such that

cω(E) = ‖gλE
‖2
ω = λE(E).

Moreover, we have 0 ≤ gλE
≤ 1 and g̃λE

= 1 cω − q.e. on E.

A direct and important consequence of this theorem is the following expression of the
capacity of closed sets in terms of measures with finite energy

cω(E) = sup{λ(E) : λ ∈ Sω(E) and g̃λ ≤ 1 cω − q.e.},
where E is a closed subset of T. For more details we refer to [19].

Let Kω be the reproducing kernel of Dω. The Poisson transform of a function f ∈ Dh
ω

will be also denoted by f . Let f + = 〈f,Kω〉 the analytic part of f . Since f − =: f − f + ∈
Dω, we have

f (z) = 〈f, 2ReKω
z − 1〉 (z ∈ D).

Let λ ∈ Sω(T) and let fλ =: g+
λ . We have

gλ(z) =
∫
T

(2ReKω
z (ζ ) − 1)dλ(ζ ) and fλ(z) =

∫
T

Kω
z (ζ )dλ(ζ ) (z ∈ D).

From the above discussion we have the following result.

Lemma 4.4 Let ω be a superharmonic weight and let E be a closed subset of T such that
cω(E) > 0. Then RefλE

≥ 0, RefλE
= 1 cω − q.e. on E and ‖fλE

‖2
ω � cω(E).

The following lemma will be used in the proof of Theorem 1.2.
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Lemma 4.5 Let ω be a superharmonic weight. Let (En)n be a (finite or infinite) decreasing
sequence of closed subsets of T such that cω(En) > 0 for each n. There exists a function
f ∈ Dω such that Ref ≥ 0 on D, ‖f ‖ω ≤ 1 and

Ref ≥ 1

4
log

1

cω(En)
cω − q.e. on En for all n.

Proof Let �p = {n : 2p ≤ log(1/cω(En)) < 2p+1}. Write {p : �p �= ∅} = {pj , j ≥ 1}
such that pj < pj+1 and put nj = min �pj

. Then we have

2pj ≤ log
1

cω(En)
< 2pj +1, nj ≤ n < nj+1.

Let f =
∑
j≥1

2pj −1fj , where fj = fλEnj
. We have

‖f ‖ω ≤
∑
j≥1

2pj −1‖fj‖ω ≤
∑
j≥1

2pj −1c1/2
ω (Ej ) ≤

∑
j≥1

2pj −1

22pj −1 ≤ 1.

Let n ≥ 1 and let j be such that nj ≤ n < nj+1. Since En ⊂ Enj
we have Refj = 1, cω−

q.e. on En. We get

Ref ≥ 2pj −1 ≥ 1

4
log

1

cω(En)
, cω−q.e. on En.

Proof of Theorem 1.2 Obviously, one can suppose that cω(Fn) > 0, for all n ≥ 1. Let En
j =

∪j≤k≤nFk . By Lemma 4.5, there exists a sequences (fn)n ⊂ Dω such that Refn ≥ 0 a.e.
on T,

sup
n

‖fn‖ω < ∞ and Refn ≥ log
1

cω(En
j )

cω − q.e. on Fj (1 ≤ j ≤ n).

Since En
j ⊂ Ej , Re fn ≥ log 1

cω(Ej )
cω − q.e. on Fj (1 ≤ j ≤ n). One can extract from

(fn) a subsequence which converges weakly to a quasi-continuous function f ∈ Dω. Since
weak convergence implies uniform convergence on compact subsets of D, we have Ref ≥ 0
on D. By a standard argument, it is easy to see that Ref ≥ log 1

cω(Ej )
cω − q.e. on Fj for

j ≥ 1. Hence the proof is complete.

Before giving the proof of Theorem 1.3 remark that the condition ω(z) = Uμ(z) +
Pν(z) = O((1 − |z|)α) implies that

ν(I ) � (1 − |z|)Pν(z) = O(m(I)1+α),

where I is an arbitrary arc of T and z ∈ D\{0} such that z/|z| is the center of I and 1−|z| is
the length of I . This implies that ν = 0 if α > 0 and dν = φdm for some bounded function
φ, if α = 0.

Proof of Theorem 1.3 By Theorem 1.2, there exists a function f ∈ Dω such that Ref ≥
0 a.e. on T and Ref ≥ log(1/cω(En)) cω − q.e. on I (zn, γ ). Clearly, the bounded analytic
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function h =: e−Af ∈ Dω and |h| ≤ cω(En)
A cω − q.e. on I (zn, γ ). Our goal is to prove

that Bh ∈ Dω. By Theorem 2.1 and equality (7) it suffices to prove that

∑
n≥1

∫
T

∫
D

|h(ζ )|2 (1 − |zn|2)((1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z)dm(ζ ) < ∞, (15)

and

∑
n≥1

∫
T

|h(ζ )|2 1 − |zn|2
|1 − znζ |2 dν(ζ ) < ∞. (16)

Since |h| ≤ cω(En)
A cω − q.e. on I (zn, γ ), we have

∫
I (zn,γ )

∫
D

|h(ζ )|2 (1 − |zn|2)((1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z)dm(ζ ) ≤ 	μ(zn)c
2A
ω (En)

On the other hand, we have

Uμ(w) =
∫
D

log
1

|ϕz(w)|dμ(z)

≥
∫
D

(1 − |ϕz(w)|)dμ(z)

�
∫
D

(1 − |z|2)(1 − |w|2)
|1 − zw|2 dμ(z).

Let Dz be the disc centered at z and of radius 1−|z|
4 . We get

∫
D

(1−|zn|2)Uμ(w)

|1−znw|2|1−wζ |2 dA(w) �
∫
D

∫
D

(1−|zn|2)
|1−znw|2|1 − wζ |2

(1 − |z|2)(1−|w|2)
|1−zw|2 dA(w)dμ(z)

≥
∫
D

∫
Dz

(1 − |zn|2)
|1 − znz|2|1 − zζ |2

(1 − |z|2)(1−|w|2)
|1−zw|2 dA(w)dμ(z)

�
∫
D

(1 − |zn|2)(1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z).

Since h is bounded and Uμ(z) ≤ ω(z) = O((1 − |z|)α), we deduce that

∫
D

|h(ζ )|2 (1 − |zn|2)(1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z) �
∫
D

(1 − |zn|2)((1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z)

�
∫
D

(1 − |zn|2)Uμ(z)

|1 − znz|2|1 − zζ |2 dA(z)

� (1 − |zn|2)
|1 − znζ |2−α

1311Blaschke Products and Zero Sets in Weighted Dirichlet Spaces



Let Jn = T \ I (zn, γ ). We have
∫

Jn

∫
D

|h(ζ )|2 (1 − |zn|2)((1 − |z|2)2

|1 − znz|2|1 − zζ |2 dμ(z)dm(ζ ) �
∫

Jn

(1 − |zn|2)
|1 − znζ |2−α

dm(ζ )

� 1 − |zn|2
dist1−α(zn, Jn)

� (1 − |zn|2)1−γ (1−α)

= (1 − |zn|2)1−ε,

which completes the proof of Eq. 15.
To prove Eq. 16 we suppose that α = 0 , otherwise ν = 0. Let dν = φdm, where φ is a

bounded function. We have

∑
n≥1

∫
T

|h(ζ )|2 1 − |zn|2
|1−znζ |2 dν(ζ ) �

∑
n≥1

(∫
I (zn,γ )

|h(ζ )|2 1 − |zn|2
|1−znζ |2 dν(ζ )+

∫
Jn

1−|zn|2
|1−znζ |2 dm(ζ )

)

�
∑
n≥1

Pν(zn)c
A
ω (En) +

∑
n≥1

(1 − |zn|)1−ε,

and Eq. 16 is proved.

Applying the latter result to ωα,β , which is given by Eq. 13, we get

Corollary 2 Let (α, β) ∈ �. Let Z = (zn)n≥1 be a sequence of D such that
∑
n≥1

(1 −

|zn|2)1−ε < ∞, for some ε ∈ (0, 1). Let γ = ε
1−α

and let En = ∪k≥nI (zk, γ ). If there
exists A > 0 such that ∑

n≥1

ωα,β(zn)c
A
ωα,β

(En) < ∞,

then Z is a zero set for Dωα,β .

Theorem 4.6 Let α, ε ∈ (0, 1) and let γ = ε
1−α

. Let Z = (zn)n≥1 be a sequence of D and

let En = ∪k≥nI (zk, γ ). Suppose that
∑
n≥1

(1 − |zn|)1−ε < ∞. If

∑
n≥1

(1 − |zn|)α exp
(
− log1/β(1/cα(En))

)
< ∞,

for some β ∈ (α, 1), then Z is a zero set for Dα .

Proof Recall that the reproducing kernel of Dα is given by Kα(z,w) = 1
(1−zw)α

. Let f ∈
Dα be the function constructed in Theorem 1.2. We have Ref ≥ 0 a.e. on T and Ref ≥
log(1/cα(∪j≥nIj )) cα − q.e. on In. Since |Arg(Kα(z,w))| < π

2 α, it is easy to see that

Ref 1/β ≥ 0. This implies that h =: e−f 1/β ∈ Dα . We get the result by following the proof
of Theorem 1.3.
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Note that for the classical Dirichlet space D the associated capacity c0 is comparable
with the logarithmic capacity and the reproducing kernel is given by

K(z, w) = 1

zw
log

1

1 − zw
.

Clearly, we have |ImK(z, w)| ≤ π
2 . Our method implies the following result.

Theorem 4.7 Let Z = (zn)n≥1 be a sequence of D \ {0}. Let ε ∈ (0, 1) and suppose that∑
n≥1

(1 − |zn|)1−ε < ∞. Let En = ∪j≥nIj (zn, ε). If

∑
n≥1

exp

(
− A

c0(En)

)
< ∞,

for some A > 0, then Z is a zero set for D.

Proof It suffices to replace h in the proof of Theorem 1.3 by exp(−Aef ).

5 General Weights

In this section we discuss briefly the case of general positive weights. Let ω be an integrable
positive weight on D. Let B be the Blaschke product associated with the sequence Z =
(zn)n≥1. Using the fact that (1 − |z|2)|B ′(z)| ≤ 1, we get

(1 − |z|2)|B ′(z)|2 ≤
∑
n≥1

1 − |zn|2
|1 − znζ |2 .

Now one can show easily the following proposition.

Proposition 5.1 Let f ∈ H 2, and let B be the Blaschke product associated with the
Blaschke sequence Z = (zn)n≥1 of D. Then

‖Bf ‖2
ω � ‖f ‖2

ω +
∫
T

|f (ζ )|2Z̃ω(ζ )dm(ζ ). (17)

where

Z̃ω(ζ ) =
∑
n≥1

(1 − |zn|2)
∫
D

ω(z)

|1 − znz|2|1 − zζ |2 dA(z) (ζ ∈ T).

Note that for ωα we have

Z̃ωα (ζ ) �
∑
n≥1

1 − |zn|2
|1 − znζ |2−α

(ζ ∈ T).

A comparison between Proposition 5.1 and Theorem 2.1 is needed. Let ω = Uμ be a purely
superharmonic weight. To get Zμ � Z̃ω it suffices to have (1 − |z|2)2|
ω(z)| � ω(z).
Note that this condition is satisfied for a large class of regular radial concave weights. For
example, it is satisfied by the weights ωα,β , when α ∈ (0, 1) and β ∈ (−∞,+∞). However,
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if α = 0 and β > 0 (which means that Dωα,β is close to the classical Dirichlet space) the
situation is quite different. Indeed, we have

(1 − |z|2)2|
ω0,β(z)| � ω0,β(z)

log
(

1
1−|z|

) = ω0,β+1(z), (|z| → 1−).

and Theorem 2.1 is more precise than Proposition 5.1. The same phenomenon happens
when Dω is close to H 2. It is the case for Dωα,β with α = 1 and β < 0.

By Proposition 5.1, it is clear that B ∈ Dω if
∑
n≥1

�ω(zn) < ∞, where �ω is given by

�ω(w) = (1 − |w|2)
∫
D

ω(z)

|1 − zw|2(1 − |z|2)dA(z).

An analogue of Theorem 4.1 can be stated as follow.

Theorem 5.2 Let ω be a radial weight and let E, ρ satisfying conditions of Theorem 4.1.
Let Z = (zn)n≥1 be a Blaschke sequence of D. If

∑
n≥1

�ω(zn)ρ(16d(zn, E)) < ∞,

then Z is a zero set of Dω.

6 Final Remarks

Let ω be a superharmonic weight. As mentioned in the introduction, a Blaschke sequence
Z = (zn)n≥1 is a zero set for Dω if

∑
n≥1

1
Kω(zn,zn)

< ∞. To take advantage from this
result we need to estimate Kω(z, z).

Problem 1: Give an estimate of Kω(z, z), where ω = Uμ + Pν is a general superhar-
monic weight.

The estimate of Kω(z, z), when ω is a ”regular” radial weight is not difficult to obtain.
Indeed, for example if ω = ωα,β , with (α, β) ∈ �, then

Kω(z, z) � 1/ω̃αβ(z), (z ∈ D),

where

ω̃α,β =
⎧⎨
⎩

ωα,β if α ∈ (0, 1]

ωα,β+1 if α = 0.

Note also that for the harmonic case ω = Pν it was proved in [15] that

Kω(z, z) � 1 +
∫ |z|

0

dr

(1 − r)Pν(rz/|z|) + (1 − r)2
(z ∈ D \ {0}).

We remark that an answer to this problem will allow to get estimates of the capacity of
some borelian subsets of T (see [15] for the harmonic case).
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In [21], D. Guillot considered harmonic weights ω = Pν , where ν = ∑
n≥1 cnδζn is

a positive finite atomic measure on T. He proved that every Blaschke sequence is a zero
set for Dω if and only if ∫

T

log V2(ν)(ζ )dm(ζ ) < ∞,

where V2(ν)(ζ ) = ∫
T

dν(λ)

|ζ−λ|2 is the newtonian potential. A natural and interesting prob-
lem raised from this result is the following.

Problem 2: Determine all superharmonicaly weighted Dirichlet spaces for which every
Blaschke sequence is a zero set.

Acknowledgments The authors are grateful to the referee for his valuable remarks and suggestions.
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