
https://doi.org/10.1007/s11118-019-09786-8

Two-Dimensional Brownian Random Interlacements

Francis Comets1,2 · Serguei Popov3

Received: 23 July 2018 / Accepted: 22 May 2019 /
© Springer Nature B.V. 2019

Abstract
We introduce the model of two-dimensional continuous random interlacements, which is
constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually,
a disk). This model yields the local picture of Wiener sausage on the torus around a late
point. As such, it can be seen as a continuous analogue of discrete two-dimensional random
interlacements (Comets et al. Commun. Math. Phys. 343, 129–164, 2016). At the same
time, one can view it as (restricted) Brownian loops through infinity. We establish a number
of results analogous to these of Comets and Popov (Ann. Probab. 45, 4752–4785, 2017),
Comets et al. (Commun. Math. Phys. 343, 129–164, 2016), as well as the results specific to
the continuous case.

Keywords Brownian motion · Conditioning · Transience · Wiener moustache ·
Logarithmic capacity · Gumbel process
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1 Introduction

The model of random interlacements in dimension d ≥ 3 has been introduced in the discrete
setting in [37] to describe the local picture of the trace left by the random walk on a large
torus at a large time. It consists in a Poissonian soup of (doubly infinite) random walk paths
modulo time-shift, which is a natural and general construction [27]. It has soon attracted the
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interest of the community, the whole field has now come to a maturity, as can be seen in
two books [9, 19] dedicated to the model.

In the continuous setting and dimension d ≥ 3, Brownian random interlacements bring
the similar limit description for the Wiener sausage on the torus [29, 39]. Continuous setting
is very appropriate to capture the geometrical properties of the sausage in their full com-
plexity, see [20]. We also mention the “general” definition [35] of continuous RI, and an
alternative definition of Brownian interlacements via Kuznetsov measures [16].

The model of two-dimensional (discrete) random interlacements was introduced in [12].
(For completeness, we mention here the one-dimensional case that has been studied in [6].)
The point is that, in two dimensions, even a single trajectory of a simple random walk is
space-filling, so the existence of the model has to be clarified together with its meaning. To
define the process in a meaningful way on the planar lattice, one uses the SRW’s trajectories
conditioned on never hitting the origin, and it gives the local limit of the trace of the walk
on a large torus at a large time given that the origin has not been visited so far. We mention
also the recent alternative definition [34] of the two-dimensional random interlacements
in the spirit of thermodynamic limit. A sequence of finite volume approximation is intro-
duced, consisting in random walks killed with intensity depending on the spatial scale and
restricted to paths avoiding the origin. Two versions are presented, using Dirichlet boundary
conditions outside a box or by killing the walk at an independent exponential random time.

The interlacement gives the structure of late points and accounts for their clustering stud-
ied in [15]. We note that large deviations have been studied only in the discrete case [11]
where they are non-standard. They convey information on the cover time, for which the
LLN was obtained in [14]. Let us mention recent results for the cover time in two dimen-
sions in the continuous case: (i) computation of the second order correction to the typical
cover time on the torus [4], (ii) tightness of the cover time relative to its median for Wiener
sausage on the Riemann sphere [5].

In this paper we define the two-dimensional Brownian random interlacements, imple-
menting the program of [12] in the continuous setting; similarly to the discrete case, they are
made of conditioned (on not hitting the unit disk) Brownian paths. Again, similarly to the
discrete case, it holds that the Brownian random interlacements arise as a limit of the picture
seen from a fixed point on the torus, given that this point remains uncovered by the Brow-
nian sausage. In fact, we find that the purity of the concepts and the geometrical interest
of the interlacement and of its vacant set are uncomparably stronger here. From a different
perspective, we also obtain fine properties of Brownian loops through infinity which shows
that the two models are equivalent by inversion in the complex plane.

For our purpose, we introduce the Wiener moustache, which is the doubly infinite path
used in the soup. The Wiener moustache is obtained by pasting two independent Brownian
motions conditioned to stay outside the unit disk starting from a random point on the circle.
The conditioned Brownian motion is itself an interesting object, it seems to be overlooked
in spite of the extensive literature on the planar Brownian motion, cf. [26]. It is defined
as a Doob’s h-transform, see Chapter X of Doob’s book [17] about conditional Brownian
motions; see also [18] for an earlier approach via transition semigroup. A modern exposi-
tion of methods and difficulties in conditioning a process by a negligible set is [36]. For a
perspective from non equilibrium physics, see [8, Section 4].

We also study the process of distances of a point to the BRI as the level increases. After
a non-linear transformation in time and space, the process has a large-density limit given
by a pure jump process with a drift. The limit is stationary with the negative of a Gumbel
distribution for invariant measure, and it is in fact related to models for congestion control
on Internet (TCP/IP), see [2, 3].
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2 Formal Definitions and Results

In Section 2.1 we discuss the Brownian motion conditioned on never returning to the unit
disk (this is the analogue of the walk̂S in the discrete case, cf. [10, 12]), and define an object
called Wiener moustache, which will be the main ingredient for constructing the Brownian
random interlacements in two dimensions. In Section 2.2 we formally define the Brownian
interlacements, and in Section 2.3 we state our main results.

In the following, we will identify R
2 and C via x = (x1, x2) = x1 + ix2, ‖ · ‖ will

denote the Euclidean norm in R
2 or Z2 as well as the modulus in C, and let B(x, r) = {y :

‖x − y‖ ≤ r} be the (closed) disk of radius r centered in x, and abbreviate B(r) := B(0, r).

2.1 BrownianMotion Conditioned on Staying Outside a Disk, andWiener
Moustache

Let W be a standard two-dimensional Brownian motion. For A ⊂ R
2 define the stopping

time
τ(A) = inf{t > 0 : Wt ∈ A}, (2.1)

and let us use the shorthand τ(r) := τ (∂B(r)). It is well known that h(x) = ln ‖x‖ is a
fundamental solution of Laplace equation,

1

2
�h = πδ0,

with δ0 being the Dirac mass at the origin and � = ∂2
x1
+ ∂2

x2
the Laplacian.

An easy consequence of h being harmonic away from the origin and of the optional
stopping theorem is that, for any 0 < a < ‖x‖ < b < ∞,

Px[τ(b) < τ(a)] = ln(‖x‖/a)

ln(b/a)
. (2.2)

Since h is non-negative outside the ball B(1) and vanishes on the boundary, a further
consequence of harmonicity is that, under Px for ‖x‖ > 1,

1{t<τ(1)}
h(Wt)

h(x)
≡ h(Wt∧τ(1))

h(x)

is a non-negative martingale with mean 1. Thus, the formula

Px

[

̂W ∈ A
] = Ex

(

1{W∈A}1{t<τ(1)}
h(Wt)

h(x)

)

, (2.3)

for all t > 0, for A ∈ Ft (σ -field generated by the evaluation maps at times ≤ t in
C(R+,R2)), defines a continuous process ̂W on [0,∞) starting at x and taking values in
R

2 \ B(1).
The process defined as the Doob’s h-transform of the standard Brownian motion by

the function h(x) = ln ‖x‖, can be seen as the Brownian motion conditioned on never
hitting B(1), as it appears in Lemma 2.1 below. Similarly to Eq. 2.1, we define

τ̂ (A) = inf
{

t > 0 : ̂Wt ∈ A
}

(2.4)

and use the shorthand τ̂ (r) := τ̂ (∂B(r)). For a R
2-valued process X = (Xt , t ≥ 0) we will

distinguish its geometric range XI on some time interval I from its restriction X∣
∣I ,

XI =
⋃

t∈I
{Xt } , X∣

∣I : t ∈ I 
→ Xt . (2.5)
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Lemma 2.1 For all R > 1 and all x ∈ R
2 such that 1 < ‖x‖ < R we have

Px

[

W∣
∣[0,τ (R)] ∈ · | τ(R) < τ(1)

]

= Px

[

̂W∣
∣[0,̂τ (R)] ∈ ·

]

. (2.6)

Proof From Eq. 2.3 it follows that for A ∈ Fτ(R),

Px

[

̂W ∈ A
] = Ex

(

1{W∈A}1{τ(R)<τ(1)}
h(Wτ(R))

h(x)

)

= Ex

(

1{W∈A}1{τ(R)<τ(1)}
) h(R)

h(x)
,

which is the desired equality in view of Eq. 2.2.

From Eq. 2.3 we derive the transition kernel of ̂W : for ‖x‖ > 1, ‖y‖ ≥ 1,

p̂(t, x, y) = p0(t, x, y)
ln ‖y‖
ln ‖x‖ . (2.7)

where p0 denotes the transition subprobability density of W killed on hitting the unit
disk B(1). Thus, the semigroup ̂Pt of the process ̂W is given by

̂Ptf (x) = h(x)−1P 0
t (hf ) (x),

for bounded functions f vanishing on B(1), where P 0
t = e(t/2)�0 with �0 being the Lapla-

cian with Dirichlet boundary conditions on R
2 \B(1). From the above formula we compute

its generator,

̂Lf (x) = lim
t↘0

t−1 [
̂Ptf (x)− f (x)

]

= h(x)−1 lim
t↘0

t−1
[

P 0
t (hf )(x)− (hf )(x)

]

= 1

2h(x)
� (hf ) (x) (2.8)

= 1

2
�f + x

‖x‖2 ln ‖x‖ · ∇f, (2.9)

using �0(hf ) = �(hf ) and harmonicity of h. Thus the diffusion ̂W obeys the stochastic
differential equation

d ̂Wt =
̂Wt

‖̂Wt‖2 ln ‖̂Wt‖
dt + dWt . (2.10)

Sometimes it will be useful to consider an alternative definition of the diffusion ̂W using
polar coordinates, ̂Wt = (Rt cos �t,Rt sin �t). With W(1,2) two independent standard
linear Brownian motions, consider the stochastic differential equations

dRt =
(

1

Rt lnRt

+ 1

2Rt

)

dt + dW
(1)
t , (2.11)

and

d�t = 1

Rt

dW
(2)
t (2.12)

where the diffusion � takes values on the whole R; it is an easy exercise in stochastic
calculus to show that Eq. 2.10 is equivalent to Eqs. 2.11–2.12.

Since the norm of the 2-dimensional Brownian motion W is a BES2 process and ̂W is W

conditioned to have norm larger than 1 (recall Lemma 2.1), the process R = ‖̂W‖ is itself
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a BES2 conditioned on being in (1,∞). For further use, we give an alternative proof of this
fact. The BES2 process has generator and scale function1 given by

LBES2f (r) = 1

2r

(

rf ′(r)
)′

, s(r) = ln r . (2.13)

Following Doob [18], the infinitesimal generator of BES2 conditioned on being in [1,∞) is

[s − s(1)]−1LBES2 ([s − s(1)]f ) = 1

2

(

f ′′ +
(

1

r ln r
+ 1

2r

)

f ′
)

, (2.14)

which coincides with the one of the process R.
It is elementary to obtain from Eq. 2.11 that

d
1

lnRt

= −1

Rt ln2 Rt

dW
(1)
t ,

so (lnRt )
−1 = (ln ‖̂Wt‖

)−1
is a local martingale. (Alternatively, this can be seen directly

from Eq. 2.7.)
We will need to consider the process ̂W starting from ̂W0 = w with unit norm. Since the

definition (2.10) makes sense only when starting from w, ‖w‖ > 1, we now extend it to the
case when ‖w‖ = 1. Consider X a 3-dimensional Bessel process BES3(x), i.e., the norm of
a 3-dimensional Brownian motion starting form a point of norm x. It solves the SDE

dXt = 1

Xt

dt + dBt , X0 = x ≥ 0,

with B a 1-dimensional Brownian motion on some probability space (	,A, P ). Denoting
by Ft the σ -field generated by B up to time t , we consider the probability measure Q on
F∞ given by dQ

dP

∣

∣

Ft
= Zt , t ≥ 0, where

Zt = exp

(∫ t

0
ϕ(Xs)dBs − 1

2

∫ t

0
ϕ(Xs)

2ds

)

, (2.15)

with

ϕ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2(1 + x)
+ 1

(1 + x) ln(1 + x)
− 1

x
, if x > 0,

1/2, if x = 0.

Then, ϕ(Xt ) is progressively measurable and bounded, so Zt is a P -martingale. By
Girsanov theorem, we see that

B̃t = Bt −
∫ t

0
ϕ(Xs) ds

is a Brownian motion under Q. Now, the integral formula

Xt = X0 +
∫ t

0

(

1

2(1 +Xs)
+ 1

(1 + Xs) ln(1 + Xs)

)

ds + B̃t , t ≥ 0,

and uniqueness of the solution of the above SDE show that the law of 1+X under Q is the
law of R under P , provided that X0 > 0.

1Recall that the scale function of a one-dimensional diffusion is a strictly monotonic function s such that, for
all a < x < b, the probability starting at x to exit interval [a, b] to the right is equal to (s(x)− s(a))/(s(b)−
s(a)).
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Definition 2.2 We define the process R starting from R0 = 1 in the following way: it has
the same law as 1+X under Q with X0 = 0. Similarly, we define the law of the process ̂W
starting from w ∈ R

2 with unit norm as the law of (Rt , �t )t with R as above and � given
by its law conditional on R as in Eq. 2.12.

Then, the process R (respectively, ̂W ) is the limit as ε → 0 of processes started from
1 + ε (respectively, from (1 + ε)w). This follows from the identities

Ef (Rt ) = EQf (1 + Xt) = EP [Ztf (1 + Xt)] ,

with Zt from Eq. 2.15 and X depending continuously on its initial condition X0 ≥ 0.
Let us mention some elementary but useful reversibility and scaling properties of ̂W .

Proposition 2.3 (i) The diffusion ̂W is reversible for the measure with density ln2 ‖x‖
with respect to the Lebesgue measure on R2 \ B(1).

(ii) The diffusionR is reversible for the measure r ln2 r dr on (1,∞).
(iii) Let 1 ≤ a ≤ ‖x‖. Then, the law of ̂W starting from x conditioned on never hit-

ting B(a) is equal to the law of the process (âW(ta−2); t ≥ 0) with ̂W starting
from x/a.

(iv) For 1 ≤ a ≤ r , the law of R starting from r conditioned on staying strictly greater
than a is equal to that of (aR(a−2t))t≥0 withR0 = r/a.

Proof For smooth f, g : R2 \ B(1) → R, we have

ε̂(f, g) := −
∫

R2\B(1)

f (x)̂Lg(x)h2(x) dx = 1

2

∫

R2\B(1)

∇(hf ) · ∇(hg) dx,

by Eq. 2.8 and integration by parts. Since this is a symmetric function of f, g, claim (i)
follows. For (ii), using Eq. 2.11, we write the generator of R as

LRf (r) = 1

2r ln2 r

(

f ′(r)r ln2 r
)′

,

for smooth f : (1,∞) → R, and conclude by a similar computation.
For a Brownian motion W starting from x/a, the scaled process W(a)(t) = aW(t/a2)

is a Brownian motion starting from x. Since ̂W is the Brownian motion conditioned on
never hitting B(1), the process (âW(ta−2); t ≥ 0) has the law of W conditioned on never
hitting B(a). In turn, the latter has the same law as ̂W starting from x conditioned on never
hitting B(a). We have proved (iii). Claim (iv) follows directly from (iii) and the definition
of R as the norm of ̂W .

Since
(

ln ‖̂Wt‖
)−1

is a local martingale, the optional stopping theorem implies that for
any 1 < a < ‖x‖ < b < ∞

Px [̂τ (b) < τ̂ (a)] = (ln a)−1 − (ln ‖x‖)−1

(ln a)−1 − (ln b)−1
= ln(‖x‖/a)× ln b

ln(b/a)× ln ‖x‖ . (2.16)

Sending b to infinity in Eq. 2.16 we also see that for 1 ≤ a ≤ ‖x‖
Px [̂τ(a) = ∞] = 1 − ln a

ln ‖x‖ . (2.17)

Now, we introduce one of the main objects of this paper:

Definition 2.4 Let U be a random variable with uniform distribution on [0, 2π ], and let
(R(1,2), �(1,2)) be two independent copies of the two-dimensional diffusion on R+ × R
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Fig. 1 An instance of Wiener moustache (for aestetical reasons, the starting point was randomly chosen to
be x = (0,−1))

defined by Eqs. 2.11–2.12, with common initial point (1, U). Then, the Wiener mous-
tache η is defined as the union of ranges of the two trajectories, i.e.,

η =
{

(r, θ) : there exist k ∈ {1, 2}, t ≥ 0 such that R(k)
t = r,�

(k)
t = θ

}

.

When there is no risk of confusion, we also call the Wiener moustache the image of the
above object under the map (r, θ) 
→ (r cos θ, r sin θ) (see below).

We stress that we view the trajectory of a process as a geometric subset of R2, forgetting
its time parametrization.

Informally, the Wiener moustache is just the union of two independent Brownian tra-
jectories started from a random point on the boundary of the unit disk, conditioned on
never re-entering this disk, see Fig. 1. One can also represent the Wiener moustache as one
doubly-infinite trajectory (̂Wt, t ∈ R), where ‖̂W0‖ = 1, ‖̂Wt‖ > 1 for all t �= 0.

Remark 2.5 The Brownian motion ̂Wb conditioned not to enter in the ball B(b) of radius
b > 0 can be defined similarly to above. Proposition 2.3 (iii) and Lemma 2.1 imply that, in
law,

̂Wb(t) = b̂W(b−2t) , t ≥ 0.

Therefore, the set of visited points and the connected component of 0 in its complement are
simply the b-homothetics of the Wiener moustache.

2.2 Two-Dimensional Brownian Random Interlacements

Now, we are able to define the model of Brownian random interlacements in the plane.
We prefer not to imitate the corresponding construction of [12] of discrete random inter-
lacements which uses a general construction of [40] of random interlacements on transient
weighted graphs; instead of defining a consistent family of probability measures on closed
subsets of bounded regions, we rather give an “infinite volume description” of the model.
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Definition 2.6 Let α > 0 and consider a Poisson point process (ρα
k , k ∈ Z) on R+ with

intensity r(ρ) = 2α
ρ

, ρ ∈ R+. Let (ηk, k ∈ Z) be an independent sequence of i.i.d. Wiener
moustaches. Fix also b ≥ 0. Then, the model of Brownian Random Interlacements (BRI)
on level α truncated at b is defined as the following subset of Rd \ B(1) (see Fig. 2):

BRI(α; b) =
⋃

k:ρα
k ≥b

ρα
k ηk . (2.18)

Let us abbreviate BRI(α) := BRI(α; 1). As shown on Fig. 2 on the left, the Poisson
process with rate r(ρ) = 2α

ρ
can be obtained from a two-dimensional Poisson point process

with rate 1 in the first quadrant, by projecting onto the horizontal axis those points which
lie below r(ρ). Since the area under r(ρ) is infinite in the neighborhoods of 0 and ∞, there
is a.s. an infinite number of points of the Poisson process in both (0, ε) and (M,∞) for all
positive ε and M .

An important observation is that the above Poisson process is the image of a homoge-
neous Poisson process of rate 1 in R under the map x 
→ ex/2α (or, equivalently, the image
of a homogeneous Poisson process of rate 2α under the map x 
→ ex); this is a straight-
forward consequence of the Mapping Theorem for Poisson processes (see e.g. Section 2.3
of [22]). In particular, we may write

ρα
k = exp

(

Y1 + · · · + Yk

2α

)

, (2.19)

where Y1, . . . , Yk are i.i.d. Exponential(1) random variables.

Remark 2.7 From the above, it follows that we can construct BRI(α; 0) – and hence also
BRI(α; b) for all b > 0 – simultaneously for all α > 0 in the following way (as shown on
the left side of Fig. 2): consider a two-dimensional Poisson point process of rate 1 in R

2+,
and then take the abscissa of the points below the graph of r(ρ) = 2α

ρ
to be the distances to

the origin of the corresponding Wiener’s moustaches. In view of the previous observation,
an equivalent way to do this is to consider a Poisson point process of rate 1 in R×R+, take
the first coordinates of points with second coordinate at most 2α, and exponentiate.

Observe also that, by construction, for all positive α, β, b it holds that

BRI(α; b)⊕ BRI(β; b)
law= BRI(α + β; b), (2.20)

where ⊕ means superposition of independent copies.
At this point it is worth mentioning that the (discrete) random interlacements may be

regarded as Markovian loops “passing through infinity”, see e.g. Section 4.5 of [38]. In the
continuous case, we note that the object we just constructed can be viewed as “Brownian
loops through infinity”. More precisely, we have a simple relation to the Brownian loop
measure defined in [24] (see also [25] and [41]) and studied in [43]:

Theorem 2.8 Consider a Poisson process of loops rooted in the origin with the intensity
measure 2παμ(0, 0), with μ(·, ·) as defined in Section 3.1.1 of [24]. Then, the inversion
(i.e., the image under the map z 
→ 1/z) of this family of loops is BRI(α; 0). The inversion
of the loop process restricted on B(1) is BRI(α).
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Fig. 2 On the definition of BRI(α; b)

Proof This readily follows from Theorem 1 of [31] and the invariance of Brownian
trajectories under conformal mappings.

Remark 2.9 Analogously to Eqs. 2.7–2.9 one can also define a diffusion ̂W(L) avoiding a
compact set L ⊂ C such that C \ L is simply connected on the Riemann sphere. Observe
that, by the Riemann mapping theorem, there exists a unique conformal map ϕ that sends
the exterior of B(1) to the exterior of L and also satisfies the conditions ϕ(∞) = ∞,
ϕ′(∞) > 0. We then define BRI(α;L) as ϕ(BRI(α)), see Fig. 3.

Next, we need also to introduce the notion of capacity in the plane. Let A be a com-
pact subset of R2 such that B(1) ⊂ A. Let hmA be the harmonic measure (from infinity)
on A, that is, the entrance law in A for the Brownian motion starting from infinity, cf. e.g.
Theorem 3.46 of [30]. We define the capacity of A as

cap(A) = 2

π

∫

A

ln ‖y‖ d hmA(y). (2.21)

We stress that there exist other definitions of capacity; a common one, called the loga-
rithmic capacity in Chapter 5 of [33], is given by the exponential of Eq. 2.21 without the
constant 2

π
in front. However, in this paper, we prefer the above definition (2.21) which

Fig. 3 On the definition of random interlacements avoiding the domain L
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matches the corresponding “discrete” capacity for random walks, cf. e.g. Chapter 6 of [23].
Note that Eq. 2.21 immediately implies that cap(A) ≥ 0 for A ⊃ B(1), and

cap (B(r)) = 2

π
ln r (2.22)

for any radius r . Next, we need to define the harmonic measure ̂hmA for the (transient)
conditioned diffusion ̂W . For a compact, non polar set A ⊂ R

2 (see, e.g. [30, p.234]), with
A ⊂ R

2 \ B̊(1) and M ⊂ ∂A, let

̂hmA(M) = lim‖x‖→∞Px

[

̂Wτ̂(A) ∈ M | τ̂ (A) < ∞] ,

where the existence of the limit follows e.g. from Lemma 3.10 below. Observe that for any A

as above it holds that ̂hmA (B(1) ∩ ∂A) = 0.
Now, we show that we have indeed defined the “right” object in Eq. 2.18:

Proposition 2.10 (i) for any compact A ⊂ R
2 such that B(1) ⊂ A, we have

P [A ∩ BRI(α) = ∅] = exp (−πα cap(A)) . (2.23)

Equivalently, for A compact, P [A ∩ BRI(α) = ∅] = exp (−πα cap(A ∪ B(1))) .
(ii) the trace of BRI(α) on any compact set A such that B(1) ⊂ A can be obtained using

the following procedure:

– take a Poisson(πα cap(A)) number of particles;
– place these particles on the boundary of A independently, with distribu-

tion ̂hmA;
– let the particles do independent ̂W -diffusions (since ̂W is transient, each

walk only leaves a nowhere dense trace on A).

We postpone the proof of this result to Section 4. Let us stress that Eq. 2.23 is the char-
acteristic property of random interlacements, compare to (2) of [12]. As explained just after
Definition 2.1 of [12], the factor π is there just for convenience, since it makes the formulas
cleaner. Also, the construction in (ii) of BRI(α) on A agrees with the corresponding discrete
“constructive description” of [12], and is presented in larger details just after Definition 2.1
there.

Next, for a generic function g : C 
→ C, we denote by g (BRI(α; b)) the image of
BRI(α; b) under the map g. We will also need from g that the image of a Wiener moustache
is itself a Wiener moustache. Thus, one needs to give a special treatment to power functions
of the form g(z) = zλ for a noninteger λ. We will use the polar representation, so that the
complex-valued power function now has a natural definition,

for r > 0 and θ ∈ R, (r, θ)λ := (rλ, λθ); (2.24)

for arbitrary λ > 0. However this transformation does not preserve the law of Wiener
moustache. Indeed, the angular coordinates of the initial points of the moustaches to be
uniform in the interval [0, 2π). If we then apply the power map with, say, λ = 1/2, then all
the initial points will have their angular coordinates in [0, π), breaking the isotropy.

In this concrete case this can be repaired by choosing the angular coordinates of the initial
points in the interval [0, 4π), but what to do for other (possibly irrational) values of λ?
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Here, we present a construction that works for all λ > 0 simultaneously, but uses an
additional sequence ξ = (ξ1, ξ2, ξ3, . . .) of i.i.d. Uniform[0, 2π) random variables. Let �k

be the angular coordinate of the initial point of ηk , the kth moustache. For all λ > 0, set

�
(λ)
k = λ(�k − ξk)+ ξk mod 2π

= λ�k + (1 − λ)ξk mod 2π;
observe that �

(λ)
k is also Uniform[0, 2π). Also, �k 
→ �

(λ)
k seen as a function on R/2πZ

varies continuously in λ. The extra randomization carried by the sequence ξk defines a
transformation on the law of BRI(α; b), where the scaling of the angle is performed with
respect to a reference angle ξk: if (r, θ) belongs to the k-th moustache, its image by the
power function will be (rλ, λθ + (1 − λ)ξk).

2.3 Main Results

First, let us define the vacant set – set of points of the plane which do not belong to
trajectories of BRI(α; b)

Vα;b = R
2 \ BRI(α; b).

For s > 0 let Ds(A) be the s-interior of A ⊂ R
2:

Ds(A) = {x : B(x, s) ⊂ A}.
We are also interested in the sets of the form Ds(Vα;b), the sets of points that are at distance
larger than s to BRI(α; b). Let us also abbreviate Vα := Vα;1.

To formulate our results, we need to define the logarithmic potential �x generated by the
entrance law in the unit disk of Brownian motion starting at x: for x /∈ B(1),

�x =
∫

∂B(1)

ln ‖x − z‖H(x, dz) = ‖x‖2 − 1

2π

∫

∂B(1)

ln ‖x − z‖
‖x − z‖2

dz, (2.25)

where H(x, ·) is the entrance measure of the Brownian motion starting from x into B(1),
given in Eq. 3.6 below, also known as the Poisson kernel.

First, we list some properties of Brownian interlacements (Theorems 2.11, 2.13, 2.14)
that are “analogous” to those of discrete two-dimensional random interlacements obtained
in [10, 12]. Then, we state the results which are specific for the Brownian random inter-
lacements (Theorems 2.15, 2.20, 2.16). We do this for BRI(α) only, since BRI(α; b) can be
obtained from BRI(α) by a linear rescaling (this is easy to see directly, but also observe that
it is a consequence of Theorem 2.15 with λ = 1).

Theorem 2.11 (i) For any α > 0, x ∈ R
2 \ B(1) and for any compact set A ⊂ R

2, it
holds that

P[A ⊂ Vα | B(x, 1) ⊂ Vα] = P[−A + x ⊂ Vα | B(x, 1) ⊂ Vα]. (2.26)

More generally, for all α > 0, x ∈ R
2 \ B(1), A ⊂ R

2, and any isometry M

exchanging 0 and x, we have

P[A ⊂ Vα | B(x, 1) ⊂ Vα] = P[MA ⊂ Vα | B(x, 1) ⊂ Vα]. (2.27)

We call this property the conditional translation invariance.
(ii) We have, for x /∈ B(1)

P[x ∈ D1(Vα)] ≡ P[B(x, 1) ⊂ Vα] = ‖x‖−α
(

1 + O
(

(‖x‖ ln ‖x‖)−1
))

. (2.28)
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More generally, if ‖x‖ > s + 1

P[x ∈ Ds (Vα)] ≡ P[B(x, s) ⊂ Vα ]

= exp

(

−2α
ln2 ‖x‖

ln ‖x‖ + �x − ln s

(

1 + O

(

ln θx,s

θx,s

(

1

ln(‖x‖ + 1)
+ 1

ln θx,s + ln ‖x‖
)))

)

,

(2.29)

where θx,s = ‖x‖−1
s

.
(iii) For compact set A such that B(1) ⊂ A ⊂ B(r) and x ∈ R

2 such that ‖x‖ ≥ 2r ,

P[A ⊂ Vα | B(x, 1) ⊂ Vα] = exp

⎛

⎝−πα

4
cap(A)

1 + O
(

r ln r
‖x‖
)

1 − π cap(A)
4 ln ‖x‖ + O

(

r ln r
‖x‖ ln ‖x‖

)

⎞

⎠

(2.30)
(iv) Let x, y /∈ B(1). As s := ‖x‖ → ∞, ln ‖y‖ ∼ ln s and ln ‖x−y‖ ∼ β ln s with some

β ∈ [0, 1], we have
P
[

B(x, 1) ∪ B(y, 1) ⊂ Vα
] = s

− 4α
4−β

+o(1)
,

and polynomially decaying correlations

Cor
({B(x, 1) ⊂ Vα}, {B(y, 1) ⊂ Vα}) = s

− αβ
4−β

+o(1)
, (2.31)

where Cor(A,B) = Cov(1A,1B)

[Var(1A) Var(1B)]1/2 ∈ [−1, 1].

Remark 2.12 When x ∈ ∂B(1), one can also write both explicit and asymptotic as r → 0
formulas for P[x ∈ Dr (Vα)] using Lemma 3.12 below. Also, the results presented in (iv)
above are important because they permit us to “quantify” the dependence between what
happens in different (distant) places. Such quantitative estimates play an important role in
many renormalization-type arguments, which are frequently useful in the context of random
interlacements.

From the definition, it is clear that BRI(α) model is not translation invariant (note
also Eq. 2.28). Therefore, in (iv) we emphasize estimate Eq. 2.31 using the correlation in
order to measure the spatial dependence because this is a normalized quantity.

Then, we obtain a few results about the size of the interior of the vacant set.

Theorem 2.13 Fix an arbitrary s > 0.

(i) We have, as r → ∞

E
(|Ds(Vα) ∩ B(r)|) ∼

⎧

⎨

⎩

2π
2−α

× r2−α, for α < 2,

2π × ln r, for α = 2,
2π

α−2 , for α > 2.

(ii) For all α > 1, the set Ds(Vα) is a.s. bounded. Moreover, we have
P
[

Ds(Vα) ⊂ B(1 − s + δ)
]

> 0 for all δ > 0, and P
[

Ds(Vα) ⊂ B(1 − s + δ)
]→

1 as α →∞.
(iii) For all α ∈ (0, 1], the set Ds(Vα) is a.s. unbounded. Moreover, for α ∈ (0, 1) it

holds that

P
[

Ds(Vα) ∩ (B(r) \ B(r/2)) = ∅] ≤ r−2(1−√α)2+o(1). (2.32)
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Remarkably, the above results do not depend on the value of s. This is due to the fact that
(recall Eq. 2.29), for large x,

P[x ∈ Ds(Vα)] ≈ ‖x‖
− α

1− ln s
2 ln x ,

so the exponent approaches α as x → ∞ for any fixed s. Notice, however, that for very
small or very large values of s this convergence can be quite slow. Statement (ii) shows the
phase transition, which concerns the boundedness of the (s-interior of the) vacant set: this
is in contrast with the case of dimension d ≥ 3, where the phase transition concerns the
connectivity of the vacant set [28].

Now, we state our results for the Brownian motion on the torus. Let (Xt , t ≥ 0) be the
Brownian motion on R

2
n = R

2/nZ2 with X0 chosen uniformly at random.2 Define

X (n)
t = {Xs, s ≤ t}⊂ R

2
n

to be the set of points hit by the Brownian trajectory until time t . The Wiener sausage at
time t is the set of points on the torus at distance less than or equal to 1 from the set X (n)

t .
The cover time is the time when the Wiener sausage covers the whole torus. Denote by ϒn :
R

2 → R
2
n the natural projection modulo n: ϒn(x, y) = (x mod n, y mod n). Then, if W0

were chosen uniformly at random on any fixed n× n square with sides parallel to the axes,
we can write Xt = ϒn(Wt). Similarly, B(y, r) ⊂ R

2
n is defined by B(y, r) = ϒnB(z, r),

where z ∈ R
2 is such that ϒnz = y. Define also

tα := 2α

π
n2 ln2 n;

it was proved in the seminal paper [14] that α = 1 corresponds to the leading-order term
of the expected cover time of the torus, see also [4] for the next leading term and [1] in the
discrete case. In the following theorem, we prove that, given that the unit ball is unvisited
by the Brownian motion, the law of the uncovered set around 0 at time tα is close to that of
BRI(α):

Theorem 2.14 Let α > 0 and A be a compact subset of R2 such that B(1) ⊂ A. Then, we
have

lim
n→∞P

[

ϒnA ∩X (n)
tα

= ∅ | B(1) ∩X (n)
tα

= ∅
]

= exp (−πα cap(A)) . (2.33)

In fact, Theorems 2.11, 2.13, and 2.14 can be seen as the continuous counterparts of
Theorems 2.3, 2.5, and 2.6 of [12] and also Theorem 1.2 of [10] (for the critical case α = 1).

From this point on, we discuss some facts specific to the continuous-time case (i.e.,
the Brownian random interlacements). We first describe the scaling properties of two-
dimensional Brownian interlacements:

Theorem 2.15 For any positive c and λ, it holds that

c × BRI(α; b)
law= BRI(α; cb) and (BRI(α; b))λ

law= BRI(α/λ; bλ) .

2The reader may wonder at this point why we consider a torus of linear size n. By scaling our results can be
formulated on the torus of unit size, replacing the Wiener sausage’s radius 1 by ε = 1/n. The reason for our
choice is that in this paper we study BRI(α, b) with a fixed radius b = 1, which corresponds to the former
case.

Two-Dimensional Brownian Random Interlacements 739



In a more compact form, the claim is c × (BRI(α; b))λ
law= BRI(α/λ; cbλ).

Next, we discuss some fine properties of two-dimensional Brownian random interlace-
ments as a process indexed by α. We emphasize that the coupling between the different
BRI’s as α varies becomes essential in the forthcoming considerations. We recall the
definition of BRI from Remark 2.7.

For x ∈ R
2 let

�x(α) = dist (x, BRI(α))

be the Euclidean distance from x to the closest trajectory in the interlacements. Since
�0(α) = ρα

1 , by Eqs. 2.22 and 2.23 we see that for s ≥ 1,

P[�0(α) > s] = P[B(s) ⊂ Vα] = s−2α ,

that is, for all α > 0

2α ln �0(α)
law= Exp(1) random variable. (2.34)

It is interesting to note that, for all x, (�x(α), α > 0) is an homogeneous Markov process:

Theorem 2.16 The process (�x(α), α > 0) is a nonincreasing Markov pure-jump process.
Precisely,

(i) given �x(α) = r , the jump rate is π cap(B(1) ∪ B(x, r)), and the process jumps to
the state V (x,r) < r , where V (x,r) is a random variable with distribution

P[V (x,r) < s] = cap(B(1) ∪ B(x, s))

cap(B(1) ∪ B(x, r))
,

for r > s > dist(x,B(1)�) = (1 − ‖x‖)+.
(ii) given �0(α) = s > 1, the jump rate is 2 ln s, and the process jumps to the state sU ,

where U is a Uniform[0, 1] random variable.

In view of the above, we consider the time-changed process Y , which will appear as one
of the central objects of this paper,

Y (β) = β + ln ln �0(e
β)+ ln 2 , β ∈ R. (2.35)

Theorem 2.17 The process Y is a stationary Markov process with unit drift in the positive
direction, jump rate ey and jump distribution given by the negative of an Exp(1) random
variable. It solves the stochastic differential equation

dY (β) = dβ − EβdN(β),

where N is a point process with stochastic intensity exp Y (β) and marks Eβ with Exp(1)-
distribution. Its infinitesimal generator is given on C1 functions f : R → R by

Lf (y) = f ′(y)+ ey

∫ +∞

0
[f (y − u)− f (y)] e−udu .

Its invariant measure is the negative of a standard Gumbel distribution, it has density
exp{y − ey} on R.

Note that the invariant measure is in agreement with Eq. 2.34, since the negative of
logarithm of an exponentially distributed random variable is a Gumbel.
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Remark 2.18 The process Y relates to models for dynamics of TCP (Transmission Con-
trol Protocol) for the internet: In one of the popular congestion control protocols, known
as MIMD (Multiplicative Increase Multiplicative Decrease), the throughput (transmission
flow, denoted by X) is linearly increased as long as no loss occurs in the transmission, and
divided by 2 when a collision is detected. The collision rate is proportional (say, equal) to
the throughput. Following [3, Eq. (3)], X(t) solves dX = Xdt − (X/2)dM(t) with M a
point process with stochastic rate X. Thus, if at every collision the throughput would be
divided by the exponential of an independent exponential variable (instead of by 2), then
the 2 models would be related by X = eY . The authors of [2, 3] analyse the system, prov-
ing existence of the equilibrium, formulas for moments and density using Mellin transform.
The explicit (Gumbel) solution in the case of exponential jumps seems to be new.

The asymptotics of the process �x for x �= 0 is remarkable. First, note that �x(α) →
(1−‖x‖)+ a.s. as α →∞. Hence, we will study the process �x under different scales and
a common exponential time-change, depending on x being outside the unit circle, on the
circle or inside. Define, for β ∈ R,

Yout
x (β) = β − ln | ln �x(e

β)| + ln
(

2 ln2 ‖x‖
)

, for ‖x‖ > 1,

Y ∂
x (β) = β + 2 ln �x(e

β), for ‖x‖ = 1,

Y in
x (β) = β + 3

2
ln
(

�x(e
β) − 1 + ‖x‖)+ ln

3π

4
√

2

√

‖x‖
1 − ‖x‖ , for ‖x‖ ∈ (0, 1),

(2.36)

with the convention in the first line ln | ln �x(e
β)| = −∞ when �x(e

β) = 1. The following
result describes the behavior of �x(α) for large α:

Theorem 2.19 Let Y (·) denote the stationary process defined in Eq. 2.35. As βw → +∞,
we have

for x /∈ B(1), Y out
x (βw + ·)

for ‖x‖ = 1, Y ∂
x (βw + ·)

for ‖x‖ ∈ (0, 1), Y in
x (βw + ·)

⎫

⎬

⎭

−→ Y (·)

where the convergence holds in law in the Skorohod space D(R+;R).

That is, the large α behavior of �x(α) has three different regimes according to |x| being
ouside, on, or inside the unit circle. Although the scalings are different in all these regimes,
surprisingly enough, the scaling limit is the same process Y . At the present moment, the
authors have no heuristic explanation of why such a result holds.

Again, we observe that the invariant measure of the limit Y fits with the asymptotic of
the marginal distribution of �x(α) in Theorem 2.20 below. Our last theorem is a finer result,
in the sense that x does not need to be fixed. We obtain the asymptotic law of �x(α) for x

such that ‖x‖ ≥ 1, in the regime when the number of trajectories which are “close” to x

goes to infinity.

Theorem 2.20 For any s > 0 and x /∈ B(1) it holds that

P

[

2α ln2 ‖x‖
ln(�x(α)−1)

> s

]

= e−s

(

1 +O

(

s(|�x | + ln ‖x‖)
α ln2 ‖x‖ + ln θx,rs

θx,rs

(

1

ln(‖x‖ + 1)
+ 1

ln θx,rs + ln ‖x‖
)))

,

(2.37)
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where rs = exp(−2s−1α ln2 ‖x‖) and θx,rs = ‖x‖−1
rs

. For x ∈ ∂B(1) and s > 0, it holds that

P

[

α(�x(α))2 > s
]

= e−s

(

1 + O

(

( s

α

)3/2
))

. (2.38)

In particular, Eq. 2.37 implies that 2α ln2 ‖x‖/ ln(�x(α))−1 converges in distribution to
an Exponential random variable with rate 1, either with fixed x and as α → ∞, or for
a fixed α and x → ∞; also, Eq. 2.38 implies that α(�x(α))2 converges in distribution
to an Exponential random variable with rate 1, as α → ∞. Informally, the above means
that, if α > 0 and x /∈ B(1) are such that α ln2 ‖x‖ is large, then �x(α) is approxi-
mately exp(−2αY−1 ln2 ‖x‖), where Y is an Exponential(1) random variable. In the case

x ∈ ∂B(1), �x(α) is approximately
√

Y
α

as α →∞.

3 Some Auxiliary Facts

In many computations we meet the mean logarithmic distance of x ∈ R
2 to the points of

the unit circle,

gx := 1

2π

∫ π

0
ln
(

‖x‖2 + 1 − 2‖x‖ cos θ
)

dθ =
∫

∂B(1)

ln ‖x − z‖ d hmB(1)(z); (3.1)

that is, gx is equal to the logarithmic potential generated at x by the harmonic measure on
the disk. Compare with Eq. 2.25. This integral can be computed:

Proposition 3.1 We have

gx =
{

0, for x ∈ B(1),

ln ‖x‖, for x /∈ B(1).
(3.2)

For completeness, we give a short elementary proof in the Appendix. The reader is
referred to the Frostman’s theorem [33, Theorem 3.3.4] for how the result relates to general
potential theory. Moreover, we mention that another proof is possible, observing that both
sides are solutions of �u = 2π hmB(1) on R

2 in the distributional sense.

3.1 On Hitting and Exit Probabilities for W and ̂W

First, we recall a couple of basic facts for the exit probabilities of the two-dimensional
Brownian motion. The following is a slight sharpening of Eq. 2.2:

Lemma 3.2 For all x, y ∈ R
2 and R > r > 0 with x ∈ B(y, R) \ B(r), ‖y‖ ≤ R − 2, we

have

Px [τ(r) > τ(y, R)] = ln(‖x‖/r)

ln(R/r)+ O
( ‖y‖∨1

R

) , (3.3)

as R →∞.

Proof It is a direct consequence of the optional stopping theorem for the local martingale
ln ‖Wt‖ and the stopping time τ(y, R) ∧ τ(r).

We need to obtain some formulas for hitting probabilities by Brownian motion of arbi-
trary compact sets, which are “not far” from the origin. Let μr be the uniform probability
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measure on ∂B(r); observe that, by symmetry, μr = hmB(r). Let νA,x the entrance mea-

sure to A starting at x ∈ B(y, R) \ A; also, let ν
y,R
A,x be the conditional entrance measure,

given that τ(A) < τ(y, R) (all that with respect to the standard two-dimensional Brownian
motion).

Lemma 3.3 Assume also that A ⊂ B(r) for some r > 0. We have
∣

∣

∣

∣

dνA,x

d hmA

− 1

∣

∣

∣

∣

= O
( r

s

)

, (3.4)

and
∣

∣

∣

∣

∣

dν
y,R
A,x

d hmA

− 1

∣

∣

∣

∣

∣

= O
( r

s

)

, (3.5)

where s = ‖x‖ − r .

Proof Observe that we can assume that r = 1, the general case then follows from a rescaling
argument. Next, it is well known (see e.g. Theorem 3.44 of [30]) that for x /∈ B(1) and y ∈
∂B(1)

H(x, y) = ‖x‖2 − 1

2π‖x − y‖2
(3.6)

is the Poisson kernel on R
2 \ B(1) (i.e., the entrance measure to B(1) starting from x). A

straightforward calculation implies that
∣

∣

∣

∣

H(x, y) − 1

2π

∣

∣

∣

∣

= O

(

1

‖x‖ − 1

)

(3.7)

uniformly in y ∈ ∂B(1). Recall that μ denotes the uniform measure on ∂B(1) and μ =
hmB(1) by symmetry. Therefore, it holds that

hmA(u) =
∫

∂B(1)

νA,y(u) dμ(y);
also,

νA,x(u) =
∫

∂B(1)

νA,y(u) dνB(1),x(y) =
∫

∂B(1)

νA,y(u)
dνB(1),x

dμ
(y) dμ(y).

Now, Eq. 3.7 implies that
∣

∣

dνB(1),x

dμ
− 1
∣

∣ = O
(

1
‖x‖−1

)

, which shows Eq. 3.4 for r = 1 and

so (as observed before) for all r > 0. The corresponding fact Eq. 3.5 for the conditional
entrance measure then follows in a standard way, see e.g. the calculation (31) in [12].

We also need an estimate on the (relative) difference of entrance measures to B(1) from
two close points x1, x2 /∈ B(1). Using Eq. 3.6, it is elementary to obtain that

∣

∣

∣

∣

dH(x1, ·)
dH(x2, ·) − 1

∣

∣

∣

∣

= O

( ‖x1 − x2‖
dist ({x1, x2},B(1))

)

. (3.8)

Next, recall the definition (2.25) of the quantity �x . Clearly, it is straightforward to obtain
that

�x =
(

1 +O(‖x‖−1)
)

ln ‖x‖, as ‖x‖ → ∞. (3.9)

We also need to know the asymptotic behaviour of �x as ‖x‖ → 1. Write

�x = ln(‖x‖ − 1)+ 1

2π

∫

∂B(1)

‖x‖2 − 1

‖x − z‖2
ln
‖x − z‖
‖x‖ − 1

dz;
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it is then elementary to obtain that there exists C > 0 such that

0 ≤ ‖x‖2 − 1

‖x − z‖2
ln
‖x − z‖
‖x‖ − 1

≤ C

for all z ∈ ∂B(1). This means that

�x = ln(‖x‖ − 1)+ O(1) as ‖x‖ ↓ 1. (3.10)

Now, we need an expression for the probability that the diffusions W and ̂W visit a set
before going out of a (large) disk.

Lemma 3.4 Assume that A ⊂ R
2 is such that B(1) ⊂ A ⊂ B(r). Let y, R be such that

B(2r) ⊂ B(y, R). Then, for all x ∈ B(y, R) \ B(2r) we have

Px [τ(y, R) < τ(A)] =
ln ‖x‖ − π

2 cap(A)+O
( ‖y‖∨1

R
+ r ln r

‖x‖
)

ln R − π
2 cap(A)+ O

( ‖y‖∨1
R

+ r ln r
‖x‖
) , (3.11)

and

Px [̂τ(y, R) < τ̂ (A)] =
ln ‖x‖ − π

2 cap(A)+ O
( ‖y‖∨1

R
+ r ln r

‖x‖
)

ln R − π
2 cap(A)+ O

( ‖y‖∨1
R

+ r ln r
‖x‖
)

×
ln R + O

( ‖y‖∨1
R

)

ln ‖x‖ . (3.12)

Note that Eq. 3.11 deals with more general sets than Eq. 3.3—for which A = B(r) and
cap(A) = (2/π) ln r – but has different error terms.

Proof For x ∈ B(y, R) \ B(2r), abbreviate (cf. Lemma 3.2)

p1 = Px[τ(1) < τ(y, R)] = 1 − ln ‖x‖
ln R +O

( ‖y‖∨1
R

) , (3.13)

and

pA = Px[τ(A) < τ(y, R)].
Using Lemma 3.2 and Eq. 3.5 again, using also that B(1) ⊂ A, we write

pA = p1 + Px[τ(A) < τ(y, R) < τ(1)]
= p1 + pA

∫

A

Pv[τ(y, R) < τ(1)] dν
y,R
A,x (v)

= p1 + pA

∫

A

ln ‖v‖
ln R + O

( ‖y‖∨1
R

) dν
y,R
A,x (v)

= p1 +
(

1 + O

(

r

‖x‖
))

pA

∫

A

ln ‖v‖
ln R +O

( ‖y‖∨1
R

) d hmA(v)

= p1 + π

2

(

1 + O

(

r

‖x‖
))

pA

ln R + O
( ‖y‖∨1

R

) cap(A),
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which implies that

pA =
⎛

⎝1 − ln ‖x‖
ln R + O

( ‖y‖∨1
R

)

⎞

⎠

⎛

⎝1 − π

2

(

1 + O

(

r

‖x‖
))

cap(A)

ln R + O
( ‖y‖∨1

R

)

⎞

⎠

−1

.

(3.14)
Since Px[τ(y, R) < τ(A)] = 1 − pA, we obtain Eq. 3.11 after some elementary
calculations.

Next, using Lemma 2.1, we obtain

Px [̂τ(y, R) < τ̂ (A)] = Px [τ(y, R) < τ(A) | τ(y, R) < τ(1)]

= 1 − pA

1 − p1

where both terms can be estimated by Eqs. 3.13 and 3.14. Again, after some elementary
calculations, we obtain Eq. 3.12.

Setting y = 0 and sending R to infinity in Eq. 3.12, we derive the following fact:

Corollary 3.5 Assume that A ⊂ R
2 is such that B(1) ⊂ A ⊂ B(r). Then for all x /∈ B(2r)

it holds that

Px [̂τ(A) = ∞] = 1 − π cap(A)

2 ln ‖x‖
(

1 + O

(

r

‖x‖
))

. (3.15)

It is interesting to observe that Eq. 3.14 implies that the capacity is translationary invari-
ant (which is not very evident directly from Eq. 2.21), that is, if A ⊂ R

2 and y ∈ R
2 are

such that B(1) ⊂ A ∩ (y + A), then cap(A) = cap(y + A). Indeed, it clearly holds that
Px[τ(R) < τ(A)] = Px+y[τ(y, R) < τ(y + A)] for any x,R; on the other hand, if we
assume that cap(A) �= cap(y + A), then the expressions (3.14) for the two probabilities
will have different asymptotic behaviors as R → ∞ for, say, x = R1/2, thus leading to a
contradiction.

Next, we relate the probabilities of certain events for the processes W and ̂W . In the next
result3 we show that the excursions of W and ̂W on a “distant” (from the origin) set are
almost indistinguishable:

Lemma 3.6 Assume that M is compact and suppose that B(1) ∩ M = ∅, denote s =
dist(0,M), r = diam(M), and assume that r < s. Then, for any x ∈ M ,

∥

∥

∥

dPx

[

̂W|[0,̂τ (∂M)] ∈ · ]

dPx

[

W|[0,τ (∂M)] ∈ · ] − 1
∥

∥

∥∞ = O
( r

s ln s

)

. (3.16)

Proof First note that τ(∂M) < τ(1) and is finite Px-a.s..

3Which is analogous to Lemma 3.3 (ii) from [12]
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Let A be a Borel set of paths starting at x and ending on the first hitting of ∂M . Let R be
such that M ⊂ B(R). Then, using Lemma 2.1, Markov property and Eq. 2.2, one can write

Px

[

̂W|[0,̂τ (∂M)] ∈ A
] = Px

[

W|[0,τ (∂M)] ∈ A | τ(R) < τ(1)
]

=
∫

∂M
Px

[

W|[0,τ (∂M)] ∈ A, τ(R) < τ(1),Wτ(∂M) ∈ dy
]

Px [τ(R) < τ(1)]

=
∫

∂M
Px

[

W|[0,τ (∂M)] ∈ A,Wτ(∂M) ∈ dy
]

Py [τ(R) < τ(1)]

Px [τ(R) < τ(1)]

= Ex

(

1{{W|[0,τ (∂M)]∈A}}
ln ‖Wτ(∂M)‖

ln ‖x‖
)

.

Thus, we derive the following expression for the Radon-Nikodym derivative from Eq. 3.16,
extending Eq. 2.3:

dPx

[

̂W|[0,̂τ (∂M)] ∈ · ]

dPx

[

W|[0,τ (∂M)] ∈ · ] =
ln ‖Wτ(∂M)‖

ln ‖x‖ . (3.17)

The desired result now follows by writing ln ‖y‖ = ln ‖x‖ + ln
(

1 + ‖y‖−‖x‖
‖x‖

)

for y ∈
∂M .

Let us state several other general estimates, for the probability of (not) hitting a given set
which is, typically in (i) and (ii), far away from the origin (so this is not related to Lemma 3.4
and Corollary 3.5, where A was assumed to contain B(1)):

Lemma 3.7 Assume that x /∈ B(y, r) and ‖y‖ > r + 1 (so B(1) ∩ B(y, r) = ∅). Abbre-
viate also �0 = ‖y‖−1r , �1 = ‖y‖−1(r + 1), �2 = r ln r

‖y‖ , �3 = r ln r
(

1
‖x−y‖ + 1

‖y‖
)

,

�4 = ‖x−y‖ ln(‖y‖−1)
‖y‖−1 , �5 = r(1+| ln r−1|+ln ‖y‖)

‖y‖ , �6 = r
‖y‖−1 ln ‖y‖−1

r
, and �7 =

1
‖x‖ ln ‖y‖−1

r

(| ln r−1| + ln ‖y‖(1 + | ln r−1| + | ln(‖y‖ − 1)|)).
(i) It holds that

Px [̂τ(y, r) < ∞] = (ln ‖y‖ + O(�0)) (ln ‖x‖ + ln ‖y‖ − ln ‖x − y‖ + O(�1))

ln ‖x‖ (2 ln ‖y‖ − ln r + O(�1))
.

(3.18)
(ii) For any r > 1 and any set A such that B(y, 1) ⊂ A ⊂ B(y, r), we have

Px [̂τ(A) < ∞] = (ln ‖y‖ + O(�0)) (ln ‖x‖ + ln ‖y‖ − ln ‖x − y‖ +O(�3))

ln ‖x‖ (2 ln ‖y‖ − π
2 cap(T−yA)+ O(�2)

) ,

(3.19)
being Ty the translation by vector y.

(iii) Next, we consider the regime when x and y are fixed, r < ‖x − y‖, and ‖x − y‖ is
small (consequently, r is small as well). Then, we have

Px [̂τ(y, r) < ∞] = ln ‖x − y‖−1 + �y + ln ‖x‖ + O(�4)

ln r−1 + �y + ln ‖y‖ + O(�3)
(1 + O(‖x − y‖)) .

(3.20)
(iv) The last regime we need to consider is when x is large, but y possibly not (it can be

even very close to B(1)). Then, we have

Px [̂τ(y, r) < ∞] = (ln ‖y‖ + O(�0))(ln ‖y‖ +O(�5 + �7))

ln ‖x‖(ln r−1 + ln ‖y‖ + �y + O(�6))
. (3.21)
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Fig. 4 On the proof of Lemma 3.7

We now mention a remarkable property of the process ̂W , to be compared with the
display just after (36) in [12] for the discrete case.

Remark 3.8 Observe that, for all x ∈ R
2 \ B(1) and for all r > 0, Eq. 3.18 yields

Px [̂τ(y, r) < ∞] → 1

2
as ‖y‖ → ∞.

Proof For the parts (i)–(ii), one can use essentially the same argument as in the proof of
Lemma 3.7 of [12]; we sketch it here for completeness. Fix some R > max{‖x‖, ‖y‖ + r}.
Define the quantities (see Fig. 4)

h1 = Px[τ(1) < τ(R)],
h2 = Px[τ(y, r) < τ(R)],
p1 = Px[τ(1) < τ(R) ∧ τ(y, r)],
p2 = Px[τ(y, r) < τ(R) ∧ τ(1)],
q12 = Pν1 [τ(y, r) < τ(R)],
q21 = Pν2 [τ(1) < τ(R)],

where ν1 is the entrance measure to B(1) starting from x conditioned on the event {τ(1) <

τ(R) ∧ τ(y, r)}, and ν2 is the entrance measure to B(y, r) starting from x conditioned on
the event {τ(y, r) < τ(R) ∧ τ(1)}. Using Lemma 3.2, we obtain

h1 = 1 − ln ‖x‖
ln R

, (3.22)

h2 = 1 − ln ‖x − y‖ − ln r

ln R − ln r + O(R−1‖y‖) , (3.23)

and

q12 = 1 − ln ‖y‖ − ln r + O(�1)

ln R − ln r + O(R−1‖y‖) , (3.24)

q21 = 1 − ln ‖y‖ + O(�0)

ln R
, (3.25)
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using Eq. 2.2 for the last line. Then, we use the fact that, in general,

h1 = p1 + p2q21,

h2 = p2 + p1q12,

and therefore

p1 = h1 − h2q21

1 − q12q21
, (3.26)

p2 = h2 − h1q12

1 − q12q21
. (3.27)

We then write

Px[τ(y, r) < τ(R) | τ(1) > τ(R)] = p2(1 − q21)

1 − h1
= (1 − q21)(h2 − h1q12)

(1 − h1)(1 − q12q21)
. (3.28)

Note that Eqs. 3.22–3.25 imply that

(1 − h1) ln R = ln ‖x‖, (3.29)

lim
R→∞(1 − h2) ln R = ln ‖x − y‖ − ln r, (3.30)

lim
R→∞(1 − q21) ln R = ln ‖y‖ + O(�0), (3.31)

lim
R→∞(1 − q12q21) ln R = 2 ln ‖y‖ − ln r + O(�1), (3.32)

lim
R→∞(h2 − h1q12) ln R = ln ‖x‖ + ln ‖y‖ − ln ‖x − y‖ + O(�1), (3.33)

lim
R→∞(h1 − h2q21) ln R = ln ‖x − y‖ − ln ‖x‖ + ln ‖y‖ − ln r + O(�0). (3.34)

We then plug Eqs. 3.29–3.33 into Eq. 3.28 and send R to infinity to obtain Eq. 3.18. The
proof of Eq. 3.19 is quite analogous (one needs to use Eq. 3.11 there; note also that we
indirectly assume in (ii) that r ≥ 1).

Part (iii). Next, we prove Eq. 3.20. By Eq. 3.8, we can write for any z such that ‖y−z‖ ≤
‖y − x‖

∣

∣

∣

∣

dH(z, ·)
dH(y, ·) − 1

∣

∣

∣

∣

≤ O

(‖x − y‖
‖y‖ − 1

)

. (3.35)

Then, a last-exit-decomposition argument implies that
∣

∣

∣

∣

dν1

dH(y, ·) − 1

∣

∣

∣

∣

≤ O

(‖x − y‖
‖y‖ − 1

)

+ O
(

(ln R)−1
)

. (3.36)

We then write

1 − q12 =
∫

∂B(1)

ln ‖y − z‖ − ln r

ln R − ln r + O(R−1‖y‖) dν1(z)

=
∫

∂B(1)

ln ‖y − z‖ − ln r

ln R − ln r + O(R−1‖y‖)
(

O

(‖x − y‖
‖y‖ − 1

)

+ O
(

(ln R)−1
)

)

H(y, dz)

= �y − ln r

ln R − ln r + O(R−1‖y‖)
(

O

(‖x − y‖
‖y‖ − 1

)

+ O
(

(ln R)−1
)

)

.

F. Comets, S. Popov748



Then, we obtain the following refinements of Eqs. 3.32–3.33:

lim
R→∞(1 − q12q21) ln R =

(

1 + O

(‖x − y‖
‖y‖ − 1

))

(ln r−1 + �y)+ ln ‖y‖ + O(�0),

(3.37)

lim
R→∞(h2 − h1q12) ln R = �y + ln ‖x‖ − ln ‖x − y‖ + O(�4). (3.38)

As before, the claim then follows from Eq. 3.28 (note that ln ‖x‖ − ln ‖y‖ = O(‖x − y‖)).
Part (iv). Finally, we prove Eq. 3.21. Recalling notations introduced just before Lemma

3.3, we denote for short ν̃x(·) = ν
0,R
B(1),x the entrance measure into B(1) starting from x con-

ditioned on {τ(1) < τ(R)}, and μ = μ1 the uniform law on the circle. Notice that Eq. 3.5
implies

ν̃x(·) = μ(·)
(

1 + O(‖x‖−1)
)

,

and, on the other hand

ν̃x(·) = (1 − p2)ν1(·)+ p2H(y, ·)
(

1 + O

(

r

‖y‖ − 1

))

.

We thus obtain

ν1(·) = 1

1 − p2

(

μ(·)
(

1 + O(‖x‖−1)
)

− p2H(y, ·)
(

1 + O

(

r

‖y‖ − 1

)))

. (3.39)

Using Lemma 3.2 and Proposition 3.1 in the definition of q12, we obtain

lim
R→∞(1 − q12) ln R = ln r−1 + 1

1 − p2

((

1 +O(‖x‖−1) ln ‖y‖ − p2�y

(

1 +O

(

r

‖y‖ − 1

)))

.

(3.40)

We then recall the expression Eq. 3.27 to obtain that

p2 =
O
( ‖y‖
|x‖
)

+ 1
1−p2

[

ln ‖y‖ (1 +O(‖x‖−1)
)− p2�y

(

1 +O
(

r
‖y‖−1

))]

ln ‖y‖ + ln r−1 +O
(

r
‖y‖
)

+ 1
1−p2

[

ln ‖y‖ (1 +O(‖x‖−1)
)− p2�y

(

1 +O
(

r
‖y‖−1

))] ,

which can be rewritten as

p2 = a − bp2

c − dp2
, (3.41)

where, being �̂ = �y

(

1 + O
(

r
‖y‖−1

))

and w = ln ‖y‖ (1 + O(‖x‖−1)
)

,

a = w + O

(‖y‖
‖x‖

)

,

b = �̂,

c = w + ln r−1 + ln ‖y‖ + O

(

r

‖y‖
)

,

d = �̂ + ln ‖y‖ + ln r−1

(we need to keep track of the expressions which are exactly equal, not only up to O’s). We
then solve Eq. 3.41 to obtain

p2 = (b + c) −√(b + c)2 − 4ad

2d
.
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Note also that ln r−1 + �y = O(ln ‖y‖−1
r

). Then, after some elementary (but long)
computations one can obtain that

√

(b + c)2 − 4ad = (�y + ln r−1)(1 + O(�5 + �7)),

which yields

p2 = ln ‖y‖ + O(�5 +�7)

ln r−1 + ln ‖y‖ + �y + O(�6)
. (3.42)

We use Eqs. 3.28, 3.29, and 3.31 to conclude the proof of Lemma 3.7.

3.2 Some Geometric Properties of ̂W and theWiener Moustache

For two stochastic processes X(1), X(2), we say that they coincide trajectory-wise if there
exists a monotone (increasing or decreasing) stochastic process σ such that a.s. it holds that
X

(1)
σ (t) = X

(2)
t for all t .

Recall that, in Remark 2.5, we denoted by ̂Wr the Brownian motion conditioned on never
hitting B(r), for r > 0; also, it can be constructed as a time change of r ̂W . Proposition 2.3
implies that ̂Wr can be seen as ̂W conditioned on never hitting B(r), i.e.,

Px

[

̂W[0,̂τ (R)] ∈ · | τ̂ (R) < τ̂ (r)
] = Px

[

̂Wr
[0,̂τ r (R)] ∈ ·

]

(3.43)

for any R > r and any x such that r ≤ ‖x‖ < R (we have denoted τ̂ r (R) = inf{t ≥ 0 :
̂Wr

t ≥ R}).
Using the above fact, we can prove the following lemma:

Lemma 3.9 Let ζ be a random point with uniform distribution on ∂B(1) and let us fix
r0 > 1. For t ≥ 0 define V−t = r0 ̂W

(1)
t , Vt = ̂W

(2)
t , where ̂W(1,2) are two independent

conditioned (on not hitting B(1)) Brownian motions started from ζ and r0ζ correspondingly.
Denote

Q = inf
t∈R ‖Vt‖ = inf

t>0
‖̂W(2)

t ‖.

Let η be an instance of Wiener moustache, as in Definition 2.4. Then, for all r0 > 1 and
h ∈ (1, r0), the law of h× η is a regular version of the conditional law of VR givenQ = h.

In other words, the range VR has same law as an independent product Q× η of a Wiener
moustache η and a random variable Q distributed as in Eq. 3.44 (Fig. 5).

Proof The idea is to split (Vt )t≥0 at its minimum distance from the origin. We use polar
coordinates, and let us first study the radius Rt = ‖Vt‖, starting with t ∈ R

+. From Eq. 2.17
we derive the density of the minimal distance to the origin,

Q = min{Rt ; t ≥ 0} ∼ 1

h ln r0
1[1,r0](h)dh. (3.44)

Applying general techniques of path decomposition [42, Theorem 2.4] to the one-
dimensional diffusion Rt , we obtain that

(a) there a.s. exists a unique random time σ ∈ (0,∞) such that Rσ = Q;
(b) given Q and σ , the process (Rt , t ∈ [0, σ ]) has the same law as the diffusion R

started at r0 and conditioned to converge to 1, observed up to the time of first hit of Q;
(c) given Q, σ and (Rt , t ∈ [0, σ ]), the process (Rσ+t , t ≥ 0) has the same law as the

diffusion R started at Q and conditioned on staying in [Q,∞).
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Fig. 5 On the proof of Lemma 3.9

We recall that conditional diffusions are rigorously defined as in Eqs. 2.13, 2.14. By the
scaling property (iv) of Proposition 2.3, we see that the conditioned diffusion in (c) has the
same law as an independent product Q × (Rt ; t ≥ 0) with R0 = 1. For the conditioned
diffusion in (b), we use the reversibility property (ii) of Proposition 2.3: Given Q and σ ,

(Rσ−t , t ∈ [0, σ ]) law= (

R′
t , t ∈ [0, L′

r0
]) ,

where R′ is an independent R-process (i.e., the norm of Brownian motion conditioned to
be at least Q) starting from Q and where L′

r0
= sup{t ≥ 0 : R′

t = r0} is the last exit time
of R′ from r0. Pasting it with the (independent) piece for negative times we define a new
process,

Xt =
{Rσ−t , t ∈ [0, σ ],

r0
∥

∥̂W
(1)
t−σ

∥

∥, t > σ,

which has the same law as the above process R′. By (c), the processes (Rσ+t , t ≥ 0) and X

are independent given Q.
Now we consider the two-dimensional process V . By rotational invariance, it is clear

that Q−1Vσ is uniformly distributed on ∂B(1). Once the norm ‖Vt‖ is defined for all t , one
uses an independent Brownian motion and the SDE (2.12) to construct the angle process
(�t ; t ∈ R). Given the angle �σ , it holds that (�t ; t ≥ 0) and (�−t ; t ≥ 0) are independent
with same distribution as in Eq. 2.12.

Finally, (Vσ+t ; t ≥ 0) and (Vσ−t ; t ≥ 0) are independent conditionally on Vσ , and both
distributed as ‖Vσ ‖ × ̂W . This concludes the proof.

3.3 Harmonic Measure and Capacities

First, we need an expression on the harmonic measure ̂hmA with respect to the diffusion ̂W .

Lemma 3.10 Assume that B(1) ⊂ A and let M be a measurable subset of ∂A. We have

̂hmA(M) =
∫

M
ln ‖y‖ d hmA(y)

∫

∂A
ln ‖y‖ d hmA(y)

, (3.45)
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that is, ̂hmA is hmA biased by logarithm of the distance to the origin.

Proof Let νR
A,x := ν

0,R
A,x be the conditional entrance measure to A starting at x ∈ B(R) \ A,

given that τ(A) < τ(R). For M ⊂ ∂A we can write, using Lemma 2.1,

Px

[

̂Wτ̂(A) ∈ M | τ̂ (A) < τ̂ (R)
] = Px[Wτ(A) ∈ M, τ(A) < τ(R) < τ(1)]

Px[τ(A) < τ(R) < τ(1)]
= Px[Wτ(A) ∈ M, τ(R) < τ(1) | τ(A) < τ(R)]

Px[τ(R) < τ(1) | τ(A) < τ(R)]

=
∫

M
ln ‖y‖ dνR

A,x(y)
∫

∂A
ln ‖y‖ dνR

A,x(y)
(3.46)

(observe that, by Eq. 2.2, one has to integrate ln ‖y‖
ln R

with respect to νR
A,x , and then the term

ln R cancels). So, using Eq. 3.5 we obtain Eq. 3.45.

Before proceeding, let us notice the following immediate consequence of Eq. 3.15: for
any bounded A ⊂ R

2 such that B(1) ⊂ A, we have

cap(A) = lim‖x‖→∞
2

π
ln ‖x‖Px [̂τ(A) < ∞]. (3.47)

Next, we need estimates for the capacity of a union of B(1) with a “distant” set (in
particular, a disk), and also that of a disjoint union of the unit disk and a set.

Lemma 3.11 Assume that ‖y‖ > r + 1.

(i) We have

cap (B(1) ∪ B(y, r)) = 2

π
· ln2 ‖y‖ + O(‖y‖−1(r + 1) ln ‖y‖)

2 ln ‖y‖ − ln r + O(‖y‖−1(r + 1))
. (3.48)

(ii) For any set A such that B(y, 1) ⊂ A ⊂ B(y, r), we have

cap (B(1) ∪ A) = 2

π
·cap (B(1) ∪ A) = 2

π
· ln2 ‖y‖ +O(‖y‖−1r ln ‖y‖ ln r)

2 ln ‖y‖ − π
2 cap(T−yA)+ O(‖y‖−1r)

.

(3.49)
with Ty the translation by vector y.

(iii) Moreover, we have the following refinement of Eq. 3.48

cap (B(1) ∪ B(y, r)) = 2

π
· (ln ‖y‖ + O(�0))(ln ‖y‖ + O(�5 + �7))

ln r−1 + �y + ln ‖y‖ +O(�6)
(3.50)

with �0, �5, �6, �7 as in Lemma 3.7.

Proof All these expressions follow from Eq. 3.47 and Lemma 3.7.

We also need to estimates the capacity of a union of two overlapping disks. We first
consider a (typically small) disk with center on the boundary of B(1).
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Fig. 6 The direction of vector v1 is π
2 + πϕ, and the direction of vector v2 is πϕ

2

Lemma 3.12 For any x ∈ ∂B(1) and r ∈ (0, 2) it holds that

cap (B(1) ∪ B(x, r)) = 2

π
ln

2 sin(πϕ)

(1 + ϕ) sin(π
1−ϕ
1+ϕ

)

= r2

π
(1 +O(r)) as r → 0, (3.51)

where ϕ = 2
π

arcsin r
2 .

Proof Clearly, without loss of generality one may assume that x = 1; let us abbreviate
Ar = B(1) ∪ B(1, r). We intend to use Theorem 5.2.3 of [33]; for that, we need to find
a conformal mapping f of C∞ \ Ar onto C∞ \ B(s), which sends ∞ to ∞ and such that
f (z) = z + O(1) as z → ∞, where s > 1 (and then Theorem 5.2.3 of [33] will imply that
the capacities of Ar and B(s) are equal). Clearly, for this it is enough to map C∞ \ Ar onto
C∞ \ B(1) with f such that f (z) = cz + O(1), where |c| ∈ (0, 1), and then normalize.
That is, we then obtain that c−1f sends C∞ \ Ar onto C∞ \ B(|c|−1), which would give
that cap(Ar) = 2

π
ln |c|−1.

First, it is elementary to obtain that ∂B(1) and ∂B(1, r) intersect in the points eiπϕ

and e−iπϕ . We then apply the map

f1(z) = z − eiπϕ

z − e−iπϕ
, (3.52)

which sends the first of these points to 0 and the second to ∞. Observe also that f1(∞) = 1.
Since f1 is a Möbius transformation, it sends the two arcs that form ∂Ar into two rays, and
therefore C∞ \ Ar gets mapped to a sector. The tangent vectors v1,2 to the two arcs at eiπϕ

have directions π
2 + πϕ and πϕ

2 (see Fig. 6), so the angle of that sector is π
2 + πϕ − πϕ

2 =
π
2 (ϕ + 1).

To see what are the directions of these two rays, observe that

f ′
1(z) =

eiπϕ − e−iπϕ

(z − e−iπϕ)2
,
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so f ′
1(e

iπϕ) = (eiπϕ − e−iπϕ)−1 = −i
2 sin πϕ

. This means that, at point eiπϕ , the map f1

rotates π
2 clockwise, and so the direction of the first ray is πϕ and the direction of the second

one is (−i π
2 (1 − ϕ)).

Next, we apply the function

z 
→
(

ei π
2 (1−ϕ)z

) 2
1+ϕ

to send this sector to the upper half-plane (we first rotate the sector so that its right boundary
goes to the positive part of the horizontal axis, and then “open” it so that its angle changes

from π
2 (ϕ + 1) to π ). The point 1 (the image of ∞ under f1) is then sent to e

iπ
1−ϕ
1+ϕ . Then,

we need to map the upper half plane to C∞ \ B(1) in such a way that e
iπ

1−ϕ
1+ϕ is sent back

to ∞. This is achieved by the function

z 
→ z − e
−iπ

1−ϕ
1+ϕ

z − e
iπ

1−ϕ
1+ϕ

.

Gathering the pieces, we then obtain that the map

f (z) =
(

ei π
2 (1−ϕ) z−eiπϕ

z−e−iπϕ

) 2
1+ϕ − e

−iπ
1−ϕ
1+ϕ

(

ei π
2 (1−ϕ) z−eiπϕ

z−e−iπϕ

) 2
1+ϕ − e

iπ
1−ϕ
1+ϕ

(3.53)

sends C∞ \ Ar to C∞ \ B(1).
Next, we need to obtain the asymptotic behavior of the above function as z → ∞. First,

it clearly holds that

∣

∣

∣

∣

∣

∣

(

ei π
2 (1−ϕ) z − eiπϕ

z − e−iπϕ

)
2

1+ϕ

− e
−iπ

1−ϕ
1+ϕ

∣

∣

∣

∣

∣

∣

→
∣

∣

∣

∣

e
iπ

1−ϕ
1+ϕ − e

−iπ
1−ϕ
1+ϕ

∣

∣

∣

∣

= 2 sin

(

π
1 − ϕ

1 + ϕ

)

as z →∞.

(3.54)

We have

z − eiπϕ

z − e−iπϕ
= 1 − eiπϕz−1

1 − e−iπϕz−1
= 1 − (eiπϕ − e−iπϕ)z−1 + O(z−2) = 1 − 2i sin(πϕ)z−1 +O(z−2),

so, we can write

lim
z→∞ |z| ·

∣

∣

∣

∣

∣

∣

(

ei π
2 (1−ϕ) z − eiπϕ

z − e−iπϕ

)
2

1+ϕ

− e
iπ

1−ϕ
1+ϕ

∣

∣

∣

∣

∣

∣

= lim
z→∞ |z| ·

∣

∣

∣

∣

(

1 − 2i sin(πϕ)z−1 + O(z−2)
) 2

1+ϕ − 1

∣

∣

∣

∣

= 4 sin(πϕ)

1 + ϕ
. (3.55)

The relations Eqs. 3.54–3.55 imply that the function in Eq. 3.53 is f (z) = cz + O(1) with

|c| = 2 sin

(

π
1 − ϕ

1 + ϕ

)(

4 sin(πϕ)

1 + ϕ

)−1

= (1 + ϕ) sin(π
1−ϕ
1+ϕ

)

2 sin(πϕ)
.
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This gives the exact formula in Eq. 3.51, and then one obtains the asymptotic expression as
r → 0 with a straightforward calculation.

Also, we treat the case when the center of the second disk is in the interior of the first one.

Lemma 3.13 For ‖x‖ ∈ (0, 1) and r ∈ (1 − ‖x‖, 1 + ‖x‖) it holds that

cap (B(1) ∪ B(x, r)) = 2

π
ln

sin(πϕ)

(1 + ϕ − ψ) sin πϕ
1+ϕ−ψ

= 4
√

2

3π2

√

1 − ‖x‖
‖x‖ h3/2 + O(h2) (3.56)

as h := r − (1 − ‖x‖) ↘ 0, where

ϕ = 2

π
arcsin

⎛

⎝

1

2

√

r2 − (1 − ‖x‖)2

‖x‖

⎞

⎠ , ψ = 2

π
arcsin

⎛

⎝

1

2

√

(r + ‖x‖)2 − 1

r‖x‖

⎞

⎠ .

One can check that, at ‖x‖ = 1, Eqs. 3.56 matches Eq. 3.51.

Proof We proceed exactly as in the proof of Lemma 3.12. Without loss of generality we
assume that x is on the positive semi-axis. We parametrize the intersection points of ∂B(1)

and ∂B(x, r) by their angles±πϕ̂ as seen from the origin and±πψ̂ as seen from the point x.

Writing the identity eiπϕ̂ = x+reiπψ̂ in terms of sin(πϕ̂/2), sin(πψ̂/2), we obtain that ϕ̂ =
ϕ and ψ̂ = ψ with ϕ,ψ defined in the Lemma. The tangent vectors v1,2 at point eiπϕ now
have directions π(ϕ+1/2) and π(ψ−1/2), so the sector has angle π(1+ϕ−ψ). Applying
the map f1 from Eq. 3.52, the domain C∞ \ Ar gets mapped to the sector determined the
rays eiπϕ and e−iπ(1−ψ) containing the point 1. Next we apply the function

z 
→ e
iπ

1−ψ
1+ϕ−ψ z

1
1+ϕ−ψ

which maps this sector to the upper half-plane. Finally we compose with the function z 
→
z−ā
z−a

with a = e
iπ

1−ψ
1+ϕ−ψ , i.e., the image of 1 by the previous function.

Collecting the pieces, we then obtain that the map

f (z) =
(

z−eiπϕ

z−e−iπϕ

) 1
1+ϕ−ψ − e

−2iπ
1−ψ

1+ϕ−ψ

(

z−eiπϕ

z−e−iπϕ

) 1
1+ϕ−ψ − 1

(3.57)

sends C∞ \ Ar to C∞ \ B(1).
Next, we expand the above function at ∞:

(

z − eiπϕ

z − e−iπϕ

)
1

1+ϕ−ψ

= 1 − 2i sin(πϕ)

1 + ϕ − ψ
z−1 + O(z−2),
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yielding, as z →∞,

f (z) = cz + O(1) , c = i(1 + ϕ − ψ)

2 sin(πϕ)

(

1 − e
−2iπ

1−ψ
1+ϕ−ψ

)

,

and so

|c| = (1 + ϕ − ψ)

sin(πϕ)
sin

(

π
1 − ψ

1 + ϕ − ψ

)

= (1 + ϕ − ψ)

sin(πϕ)
sin

(

π
ϕ

1 + ϕ − ψ

)

.

This gives the exact formula in Eq. 3.56. Then, the asymptotic expression as r → 1 − ‖x‖
follows from a tedious expansion.

Next, we need a formula for the capacity of a union of three unit disks; note that, unlike
the discrete case (see Lemma 3.8 in [12]), in the continuous setting there is no closed-form
exact expression for this capacity (at least the authors are unaware of such).

Lemma 3.14 For y, z such that the disks B(1),B(y, 1),B(z, 1) are disjoint, abbreviateA =
B(1)∪ B(y, 1)∪ B(z, 1) and a = ln ‖y‖, b = ln ‖z‖, c = ln ‖y − z‖. Assume that, for some
fixed ε0 > 0, it holds that min{a, b, c} ≥ ε0 max{a, b, c}. Then, we have

cap(A) = 2

π
·

2abc + O
(

ln2(a∨b∨c)
a∧b∧c

)

2(ab + ac + bc)− (a2 + b2 + c2)+ O
(

ln(a∨b∨c)
a∧b∧c

) . (3.58)

Proof Let r = �‖y‖ ∨ ‖z‖� + 1, and observe that A ⊂ B(r). The idea is to use Eq. 3.11
with x = (r3, 0) (so that ln ‖x‖ = 3 ln r) and R = r5. In this situation, Eq. 3.11 implies that

π

2
cap(A) =

⎛

⎝1 −
2 + O

(

1
r2

)

5Px[τ(A) < τ(R)]

⎞

⎠ ln R + O

(

ln r

r2

)

. (3.59)

Then, we proceed similarly to the proof of Lemma 3.7. Let

p1 = Px [τ(A) < τ(R), τ (A) = τ(B(1))] ,

p2 = Px [τ(A) < τ(R), τ (A) = τ(B(y, 1))] ,

p3 = Px [τ(A) < τ(R), τ (A) = τ(B(z, 1))] ,

so Px[τ(A) < τ(R)] = p1 + p2 + p3. Next, denote (recall Eq. 3.3)

h1 = Px [τ(B(1)) < τ(R)] = 2

5
,

h2 = Px [τ(B(y, 1)) < τ(R)] = 2

5

(

1 + O

(

1

r2 ln r

))

,

h3 = Px [τ(B(z, 1)) < τ(R)] = 2

5

(

1 + O

(

1

r2 ln r

))

,
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(observe that ln ‖x‖
ln R

= 3
5 ). Let â = a/ ln R, b̂ = b/ ln R, ĉ = c/ ln R. Then, let us denote

q12 = Pν1 [τ(B(y, 1)) < τ(R)] = 1 − â

(

1 + O

(

1

‖y‖ ln ‖y‖
))

,

q13 = Pν1 [τ(B(z, 1)) < τ(R)] = 1 − b̂

(

1 + O

(

1

‖z‖ ln ‖z‖
))

,

q21 = Pν2 [τ(B(1)) < τ(R)] = 1 − â

(

1 + O

(

1

‖y‖ ln ‖y‖
))

,

q23 = Pν2 [τ(B(z, 1)) < τ(R)] = 1 − ĉ

(

1 + O

(

1

‖y − z‖ ln ‖y − z‖
))

,

q31 = Pν3 [τ(B(1)) < τ(R)] = 1 − b̂

(

1 + O

(

1

‖z‖ ln ‖z‖
))

,

q32 = Pν1 [τ(B(y, 1)) < τ(R)] = 1 − ĉ

(

1 + O

(

1

‖y − z‖ ln ‖y − z‖
))

,

where ν1 (respectively, ν2 and ν3) is the entrance measure to B(1) (respectively, to B(y, 1)

and B(z, 1)) conditioned on {τ(1) < τ(B(y, 1)) ∧ τ(B(z, 1)) ∧ τ(R)} (respectively, on
{τ(B(y, 1)) < τ(1) ∧ τ(B(z, 1)) ∧ τ(R)} and {τ(B(z, 1)) < τ(1) ∧ τ(B(y, 1)) ∧ τ(R)}).

It is elementary to see that, as a general fact,

h1 = p1 + p2q21 + p3q31,

h2 = p1q12 + p2 + p3q32,

h3 = p1q13 + p2q23 + p3.

Next, we solve the above system of linear equations with respect to p1,2,3 and then
use Eq. 3.59 to obtain Eq. 3.58. We omit the precise calculations which are elementary but
long; however, to convince the reader that the answer is correct, let us forget for a moment
about the O’s in the above expressions for h’s and q’s and see where it will lead us. Denote
by 1 the column vector with all the coordinates being equal to 1, and define the matrix

L =
⎛

⎝

1 1 − â 1 − b̂

1 − â 1 1 − ĉ

1 − b̂ 1 − ĉ 1

⎞

⎠ .

Let p′
1,2,3 be the solutions of the above equations “without the O’s”, i.e., with 2

5 on the

place of h1,2,3, and 1 − â (respectively, 1 − b̂ and 1 − ĉ) on the place of q12 (respectively,
q13 and q23). Clearly, we have that p′

1 + p′
2 + p′

3 = 1TL−11. Then, the right-hand side
of Eq. 3.59 would become

(

1 − 1

1TL−11

)

ln R =
(

1 − 2(âb̂ + âĉ + b̂ĉ) − (â2 + b̂2 + ĉ2)− 2âb̂ĉ

2(âb̂ + âĉ + b̂ĉ) − (â2 + b̂2 + ĉ2)

)

ln R

= 2âb̂ĉ

2(âb̂ + âĉ + b̂ĉ)− (â2 + b̂2 + ĉ2)
ln R

= 2abc

2(ab + ac + bc)− (a2 + b2 + c2)
,

which indeed agrees with Eq. 3.58. As a final remark, let us also observe that inserting
the O’s back is not problematic, because an elementary calculation shows that | det L| =
2(âb̂+âĉ+b̂ĉ)−(â2+b̂2+ĉ2)−2âb̂ĉ is bounded away from 0 (note that, due to the triangle
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inequality, at least two of the quantities a, b, c should be approximately equal to ln r , and so
at least two of â, b̂, ĉ are approximately 1

5 ; also, we assumed that the smallest of them must
be bounded away from 0).

We also need to compare the harmonic measure on a set (typically distant from the origin)
to the entrance measure of ̂W started far away from that set.

Lemma 3.15 Assume that the compact subset A of R2 and x /∈ B(1) are such that

2 diam(A) + 1 < min
(

dist(x,A), 1
4 dist(B(1), A)

)

. Abbreviate u = diam(A), s =
dist(x,A). Assume also thatA′ ⊂ R

2 is compact or empty, and such that dist(A,A′) ≥ s+1
(for definiteness, we adopt the convention dist(A,∅) = ∞ for any A). Then, for all
M ⊂ ∂A, it holds that

Px

[

̂Wτ̂(A) ∈ M | τ̂ (A) < ∞, τ̂ (A) < τ̂ (A′)
] = hmA(M)

(

1 + O
(u

s

))

. (3.60)

Proof This result is analogous to Lemma 3.10 of [12], but, since the proof of the latter
contains an inaccuracy, we give the proof here, also noting that the same argument works in
the discrete setting as well.

Let z0 ∈ A be such that ‖z0 − x‖ = s, and observe that the assumptions imply that
(B(1)∪A′)∩B(z0, s) = ∅. Let us fix some R such that A∪A′ ∪{x} ⊂ B(R), and abbreviate

G = {τ(A) < τ(A′) ∧ τ(R), τ (R) < τ(1)
}

.

Define the (possibly infinite) random variable

σ =
{

inf
{

t ≥ 0 : Wt ∈ B(z0,
s
2 ),W[t,τ (A)] ∩ ∂B(z0, s) = ∅} on G,

∞ on G�

to be the moment when the last excursion between B(z0,
s
2 ) and ∂B(z0, s) starts; formally,

we also set Wσ = ∞ on {σ = ∞}. Let us stress that σ is not a stopping time; it was defined
in such a way that the law of the excursion that begins at time σ is the law of a Brownian
excursion conditioned to reach A (and then ∂B(R)) before going back to B(1). Let ν be the
joint law of the pair (σ,Wσ ) under Px . Abbreviate also H = R+ × ∂B(z0,

s
2 ) and observe

that
∫

H dν(t, y) = Px[G].
Now, using Lemma 2.1, Eqs. 2.2, and 3.5, we write

Px

[

̂Wτ̂(A) ∈ M, τ̂ (A) < τ̂ (R) ∧ τ̂ (A′)
]

= Px

[

Wτ(A) ∈ M, τ(A) < τ(R) ∧ τ(A′) | τ(R) < τ(1)
]

= ln R

ln ‖x‖Px

[

Wτ(A) ∈ M, τ(A) < τ(A′) ∧ τ(R), τ (R) < τ(1)
]

= ln R

ln ‖x‖
∫

H
Py

[

Wτ(A) ∈ M | τ(A) < τ
(

∂B(z0,
s

2
)
)]

dν(t, y)

= ln R

ln ‖x‖ hmA(M)
(

1 + O
(u

s

))

Px

[

τ(A) < τ(A′) ∧ τ(R), τ (R) < τ(1)
]

= hmA(M)
(

1 + O
(u

s

))

Px

[

τ(A) < τ(A′) ∧ τ(R) | τ(R) < τ(1)
]

= hmA(M)
(

1 + O
(u

s

))

Px

[

τ̂ (A) < τ̂ (A′) ∧ τ̂ (R)
]

,

and we conclude the proof of Lemma 3.15 by sending R to infinity.
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3.4 Excursions

In this section we define excursions of the Brownian random interlacements and the
Brownian motion on the torus. The corresponding definitions for the discrete random inter-
lacements and the simple random walk on the torus are contained in Section 3.4 of [12];
since the definitions are completely analogous in the continuous case, we make this section
rather sketchy.

Consider two closed sets A and A′ such that A ⊂ (A′)o ⊂ R
2
n (usually, they will be

disks), and let Tn(M) be the hitting time of a set M ⊂ R
2
n for the process X. By definition,

an excursion � is a continuous (in fact, Brownian) path that starts at ∂A and ends on its first
visit to ∂A′, i.e., � = (�t , t ∈ [0, v]), where �0 ∈ ∂A, �v ∈ ∂A′, �s /∈ ∂A′ for all s ∈ [0, v).
To define these excursions, consider the following sequence of stopping times:

D0 = Tn(∂A′),
J1 = inf{t > D0 : Xt ∈ ∂A},
D1 = inf{t > J1 : Xt ∈ ∂A′},

and

Jk = inf{t > Dk−1 : Xt ∈ ∂A},
Dk = inf{t > Jk : Xt ∈ ∂A′},

for k ≥ 2. Then, denote by Z(i) = X|[Ji ,Di ] the ith excursion of X between ∂A and ∂A′, for
i ≥ 1. Also, let Z(0) = X|[0,D0] be the “initial” excursion (it is possible, in fact, that it does
not intersect the set A at all). Recall that tα := 2α

π
n2 ln2 n and define

Nα = max{k : Jk ≤ tα}, (3.61)

N ′
α = max{k : Dk ≤ tα} (3.62)

to be the number of incomplete (respectively, complete) excursions up to time tα .
Observe that, quite analogously to the above, we can define the excursions of the condi-

tioned diffusion ̂W between ∂A and ∂A′ (this time, A and A′ are subsets of R2); since ̂W
is transient, the number of those will be a.s. finite. Next, we also define the excursions
of (Brownian) random interlacements. Suppose that the trajectories of the ̂W -diffusions
that intersect A are enumerated according to the points of the generating one-dimensional
Poisson process (cf. Definition 2.6). For each trajectory from that list (say, the j th one,
denoted ̂W(j) and time-shifted in such a way that ̂W(j)

s /∈ A for all s < 0 and ̂W(j)

0 ∈ A)
define the stopping times

Ĵ1 = 0,

D̂1 = inf
{

t > Ĵ1 : ̂W(j)
t ∈ ∂A′} ,

and

Ĵk = inf
{

t > D̂k−1 : ̂W(j)
t ∈ ∂A

}

,

D̂k = inf
{

t > Ĵk : ̂W(j)
t ∈ ∂A′} ,
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for k ≥ 2. Let �j = inf{k : Ĵk = ∞} − 1 be the number of excursions corresponding to the
j th trajectory. The excursions of BRI(α) between ∂A and ∂A′ are defined by

̂Z(i) = ̂W
(j)

[Ĵm,D̂m],

where i = m + ∑j−1
k=1 �k , and m = 1, 2, . . . , �j . Let Rα be the number of trajectories

intersecting A on level α, and denote N̂α = ∑Rα

k=1 �k to be the total number of excursions
of BRI(α) between ∂A and ∂A′.

Observe also that the above construction makes sense with α = ∞ as well; we then
obtain an infinite sequence of excursions of BRI (=BRI(∞)) between ∂A and ∂A′.

Next, we need to control the number of excursions between the boundaries of two
concentric disks on the torus:

Lemma 3.16 Consider the random variables (Jk, Dk) defined in this section with A =
B(r) and A′ = B(R). Assume that 1 < r < R < n

2 , m ≥ 2, and δ ∈ (0, c0) for some
c0 > 0. Then, there exist positive constants c1, c2 such that

P

[

Jm /∈
(

(1 − δ)m

π
n2 ln

R

r
,
(1 + δ)m

π
n2 ln

R

r

)]

≤ c1 exp

(

−c2δ
2m

R
(

1 − r
R

)6

n ln2 r−1

)

,

(3.63)
and the same result holds with Dm on the place of Jm.

Proof This is Proposition 8.10 of [4], with small adaptations, since we are working with
torus of size n in the continuous setting as well.

4 Proofs of themain results

4.1 Proof of Theorems 2.10, 2.11 and 2.13

Proof of Proposition 2.10 We start with a preliminary observation. Consider the process ̂W
started at some x ∈ R

2 with ‖x‖ = r > 1, and consider the random variable H =
inft>0 ‖̂Wt‖ to be the minimal distance of the trajectory to the origin; note that H > 1
a.s.. By Eq. 2.17, it holds that Px[H ≤ s] = ln s

ln r
, so H has density f (s) = 1

s ln r
1{s∈[1,r]}.

But then, using Lemma 3.9, we see that the trace of BRI(α) on B(r) can be obtained in
the following way: take N ∼ Poisson(2α ln r) particles and place them on ∂B(r) uniformly
and independently; then let these particles perform independent ̂W -diffusions. Indeed, the
trace left by these diffusions on B(r) has the same law as the trace of BRI(α) defined as in
Definition 2.6.

Now, we are ready for the proof of part (i). Using Eq. 3.15 and recalling that EsN =
e2α(s−1) ln r , we write

P [A ∩ BRI(α) = ∅] = E (P [A ∩ BRI(α) = ∅ | N ])

= E

(

1 − π

2

(

1 + O(r−1)
) cap(A)

ln r

)N

= exp
(

−πα cap(A)(1 + O(r−1))
)

,

and we obtain Eq. 2.23 by sending r to infinity.

F. Comets, S. Popov760



Observe also, since cap(B(r)) = 2
π

ln r by Eq. 2.22, the above construction of BRI(α)

on B(r) agrees with the “constructive description” in the part (ii) of Proposition 2.10 (note
that 2 ln r = π cap(B(r))). In fact, a calculation completely analogous to the above (i.e.,
fix A, start with independent particles on ∂B(r), and then send r to infinity) provides the
proof of the part (ii).

As we mentioned in Section 2.3, Theorems 2.11–2.14 are quite analogous to the corre-
sponding results of [10, 12] for the discrete two-dimensional random interlacements, and
their proofs are quite analogous as well. Therefore, we give only a sketch of the proofs,
since the adaptations to the continuous setting are usually quite straightforward.

Proof of Theorem 2.11 The proof of part (i) follows from the invariance of the capacity with
respect to isometries of R2. Using Eq. 3.48, we obtain that

cap(B(1) ∪ B(x, 1)) = 1

π

(

1 + O
(

(‖x‖ ln ‖x‖)−1
))

ln ‖x‖,
and, together with Eq. 2.23, this implies the part (ii) (the more general formula (2.29) fol-
lows from Eq. 3.50). Next, observe that, by symmetry, Theorem 2.11 (ii), and Eq. 3.49
imply that

P[A ⊂ Vα | x ∈ D1(Vα)] = exp (−πα (cap(A ∪ B(x, 1)) − cap(B(1) ∪ B(x, 1))))

= exp

(

−πα

(

2

π
· ln2 ‖x‖ + O(‖x‖−1(r + 1) ln ‖x‖ ln(r + 1))

2 ln ‖x‖ − π
2 cap(A) +O(‖x‖−1(r + 1))

− 1

π

(

1 + O
(

(‖x‖ ln ‖x‖)−1
))

ln ‖x‖
))

= exp

⎛

⎝−πα

4
cap(A)

1 +O
(

r ln r
‖x‖
)

1 − π cap(A)
4 ln ‖x‖ + O

(

r ln r
‖x‖ ln ‖x‖

)

⎞

⎠ ,

thus proving the part (iii). Finally, the part (iv) follows from Lemma 3.14 and Eq. 2.28.

Proof of Theorem 2.13 The part (i) follows directly from Eq. 2.28.
Let us deal with the part (ii). First, we explain how the fact that Ds(Vα) is a.s. bounded

for α > 1 implies the second part of the statement. For a fixed α, we first choose ε > 0 such
that α − ε > 1, and then use the superposition property (2.20): Ds(Vα−ε) is a.s. compact,
and with positive probability the “BRI-sausages” BRI(ε) + B(s) will cover Ds(Vα−ε) \
B(1 − s + δ). The same kind of argument works for proving that this probability tends to 1
as α → ∞: for any ε′ > 0 there is R such that P[Ds(Vα) \ B(R) = ∅] > 1 − ε′; then, we
have many tries to cover B(R) \ B(1 − s + δ) by independent copies of BRI(1).

Note that in [12] one does not need the FKG inequality in the proof of the corresponding
statement, due to the same kind of argument.

From this point to the end of the proof, we consider the case s = 1 to simplify the
notations. The general case is similar. To complete the proof of part (ii), it remains to show
that D1(Vα) is a.s. bounded for any α > 1. Let us abbreviate a0 := (1 + √

2)−1, and
consider the square grid 2a0Z

2 ⊂ R
2. It is elementary to obtain that for any x ∈ R

2 there
exists y ∈ 2a0Z

2 such that B(y, a0) ⊂ B(x, 1). This means that

{y ∈ 2a0Z
2 : B(y, a0) ⊂ Vα} is finite ⇒ D1(Vα) is bounded. (4.1)
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Let r > 8 (so that ln r > 2). We use Lemmas 2.1 and 3.2 to obtain that, for any x ∈
∂B(2r) and y ∈ B(r) B(r/2),

Px [̂τ(B(y, a0)) < τ̂ (∂B(r ln r))]

= ln(r ln r)

ln(2r)
Px [τ(B(y, a0)) < τ(∂B(r ln r)) < τ(B(1))]

= (1 + o(1)) (Px [τ(B(y, a0)) < τ(∂B(r ln r))]

−Px [τ(B(y, a0)) < τ(∂B(r ln r)), τ (B(1)) < τ(∂B(r ln r))]) (4.2)

= ln ln r

ln r
(1 + o(1)) (4.3)

(note that the first probability in Eq. 4.2 is ln ln r
ln r

(1 + o(1)) by Lemma 3.2 and it is

straightforward to obtain that the second one is O(
(ln ln r)2

ln2 r
)).

Let Nα,r be the number of ̂W -excursions of BRI(α) between ∂B(2r) and ∂B(r ln r).
By Eqs. 2.17 and 2.22, Nα,r is a compound Poisson random variable with rate 2α ln(2r) and
with Geometric(1 − ln 2r

ln(r ln r)
) terms. Analogously to (66) of [12], we can show that

P

[

Nα,r ≤ b
2α ln2 r

ln ln r

]

≤ r−2α(1−√b)2(1+o(1)) (4.4)

for b < 1. Now, Eq. 4.3 implies that for y ∈ B(r) \ B(r/2)

P

[

B(y, a0) is untouched by first b
2α ln2 r

ln ln r
excursions

]

≤
(

1 − ln ln r

ln r
(1 + o(1))

)b 2α ln2 r
ln ln r

= r−2bα(1+o(1)),

so, by the union bound,

P

[

there exists y ∈ 2a0Z
2 ∩ (B(r) \ B(r/2)) such that B(y, a0) ∈ Vα,Nα,r > b

2α ln2 r

ln ln r

]

≤ r−2(bα−1)(1+o(1)). (4.5)

Using Eqs. 4.4 and 4.5 with b = 1
4

(

1 + 1
α

)2
, we obtain that

P

[

there exists y ∈ 2a0Z
2 ∩ (B(r) \ B(r/2)) such that B(y, a0) ∈ Vα

]

≤ r−
α
2 (1− 1

α
)2(1+o(1)).

(4.6)
This implies that the set D1(Vα) is a.s. bounded, since

{D1(Vα) unbounded} =
{

D1(Vα) ∩
(

B(2n) \ B(2n−1)
)

�= ∅ for infinitely many n
}

,

and the Borel-Cantelli lemma together with Eq. 4.6 imply that the probability of the latter
event equals 0. This concludes the proof of part (ii) of Theorem 2.13.

Let us now prove the part (iii). First, we deal with the critical case α = 1. Again, the
proof is essentially the same as in [10], so we present only a sketch. For k ≥ 1 we denote
bk = exp

(

exp(3k)
)

, and let vk = bke1 ∈ R
2. Fix some γ ∈ (1,

√
π/2), and consider

the disks Bk = B(vk, b
1/2
k ) and B ′

k = B(vk, γ b
1/2
k ). Let Nk be the number of excursions

between ∂Bk and ∂B ′
k in RI(1). The main idea is that, although “in average” the number

of those excursions will be enough to cover Bk (this is due to the fact that the expected
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cover time has a negative second-order correction, see [4]), the fluctuations of Nk are of
much bigger order than those of the excursion counts on the torus. Therefore, Nk’s will be
atypically low for some k’s, thus leading to non-covering of corresponding Bk’s.

Let us now present some details. Lemma 3.11 (i) together with Lemma 3.7 (i) imply
that Nk is (approximately) compound Poisson with rate 4

3π

(

1 + O((ln−1 bk)
)

ln bk and

Geometric
(

2 ln γ
3 ln bk

(1 + O((ln−1 bk))
)

terms. Then, standard arguments (see (72) of [10])

imply that
ln γ√

6 ln3/2 bk

(

Nk − 2

ln γ
ln2 bk

)

law−→ Normal(0,1). (4.7)

Observe that π

4γ 2 > 1
2 by our choice of γ . Choose some β ∈ (0, 1

2 ) in such a way that

β + π

4γ 2 > 1, and define qβ > 0 to be such that

∫ −qβ

−∞
1√
2π

e−x2/2 dx = β.

Consider the sequence of events

�k =
{

Nk ≤ 2

ln γ
ln2 bk − qβ

√
6 ln3/2 bk

ln γ

}

. (4.8)

Observe that Eq. 4.7 clearly implies that P[�k] → β as k → ∞. Analogously to [10] (see
the proof of (76) there) it is possible to obtain that

lim
k→∞P[�k | Dk−1] = β a.s., (4.9)

where Dj is the partition generated by the events �1, . . . , �j . Roughly speaking, the idea
is that the sequence (bk) grows so rapidly, that what happens on B ′

1, . . . , B
′
k−1 has almost

no influence on what is seen on Bk . Using Eq. 4.9, we then obtain

lim inf
n→∞

1

n

n
∑

j=1

1{�j } ≥ β a.s. (4.10)

Now, let (̂Z(j),k, j ≥ 1) be the RI’s excursions between ∂Bk and ∂B ′
k , k ≥ 1, constructed

as in Section 3.4. Let (˜Z(j),k, j ≥ 1) be sequences of i.i.d. excursions, with starting points
chosen uniformly on ∂B ′

k . Next, let us define the sequence of independent events

Jk =
{

∃x ∈ Bk : x /∈ ˜Z(j),k , ∀j ≤ 2

ln γ
ln2 bk − ln11/9 bk

}

, (4.11)

that is, Jk is the event that the set Bk is not completely covered by the first 2
ln γ

ln2 bk −
ln11/9 bk independent excursions.

Next, fix δ0 > 0 such that β + π

4γ 2 > 1 + δ0. Quite analogously to Lemma 3.2 of [10],
one can prove the following fact: For all large enough k it holds that

P[Jk] ≥ π

4γ 2
− δ0. (4.12)

We only outline the proof of Eq. 4.12:

• consider a Brownian motion on a torus of slightly bigger size (specifically, (γ +
ε1)b

1/2
k ), so that the set B ′

k would “completely fit” there;
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• we recall a known result (of [4]) that, up to time

tk= 2

π
(γ+ε1)

2bk ln2
(

(γ+ε1)b
1/2
k

)

−ĉ(γ+ε1)
2bk ln

(

(γ+ε1)b
1/2
k

)

ln ln
(

(γ+ε1)b
1/2
k

)

the torus is not completely covered with high probability;
• using soft local times [32], we couple the i.i.d. excursions between ∂Bk and ∂B ′

k with
the Brownian motion’s excursions between the corresponding sets on the torus;

• using Lemma 2.9 of [10] adapted to the present setting (see also Section 6 of [13]),
we conclude that the set of Brownian motion’s excursions un the torus up to time tk is
likely to contain the set of i.i.d. excursions;

• finally, we note that the Brownian motion’s excursions will not completely cover the
smaller disk with at least constant probability, and this implies Eq. 4.12.

Then, analogously to (88)–(91) of [10], we can prove that, for all but a finite num-

ber of k’s, the set of 2
ln γ

ln2 bk − qβ

√
6 ln3/2 bk

ln γ
BRI’s excursions between ∂Bk and ∂B ′

k

(recall Eq. 4.8) is contained in the set of 2
ln γ

ln2 bk−ln11/9 bk independent excursions. Since
(recall Eqs. 4.10 and 4.12) β + π

4γ 2 − δ0 > 1, for at least a positive proportion of k’s the

events �k ∩ Jk occur. This implies that D1(V1) ∩ Bk �= ∅ for infinitely many k’s, thus
proving that D1(V1) is a.s. unbounded.

Now, it remains only to prove that Eq. 2.32 holds for α < 1. Fix some γ ∈ (1,
√

π/2)

and β ∈ (0, 1), which will be later taken close to 1, and fix some set of non-intersecting
disks B̃ ′

1 = B(x1, γ rβ), . . . , B̃ ′
kr

= B(xkr , γ rβ) ⊂ B(r) \ B(r/2), with cardinality kr =
1
8 r2(1−β). Denote also B̃j := B(xj , r

β), j = 1, . . . , kr .

By Lemma 3.11 (i), the number of ̂W -diffusions in BRI(α) intersecting a given disk B̃j

has Poisson law with parameter λ = (1 + o(1)) 2α
2−β

ln r . By Lemma 3.7 (i), the probability

that a ̂W -diffusion started from any y ∈ ∂B̃ ′
j does not hit B̃j is (1 + o(1))

ln γ
(2−β) ln r

. Let

N̂
(j)
α be the total number of excursions between ∂B̃j and ∂B̃ ′

j in BRI(α). Quite analogously
to (57) of [12], we obtain

P

[

N̂ (j)
α ≥ b

2α ln2 r

ln γ

]

≤ exp

(

−(1 + o(1))
(√

b − 1
)2 2α

2 − β
ln r

)

= r
−(1+o(1))(

√
b−1)2 2α

2−β . (4.13)

Let Ub be the set

Ub =
{

j ≤ kr : N̂ (j)
α < b

2α ln2 r

ln γ

}

.

Then, just as in (58) of [12], we obtain that

P [|Ub| ≥ kr/2] ≥ 1 − 2r
−(1+o(1))(

√
b−1)2 2α

2−β . (4.14)

We then again use the idea of comparing the (almost) Brownian excursions between ∂B̃j

and ∂B̃ ′
j with the Brownian excursions on a (slightly larger) torus containing a copy of B̃ ′

j .

In this way, we see that the “critical” number of excursions there is 2β2 lnr

ln γ
, up to terms of

smaller order. So, let us assume that β < 1 is such that β2 < α.
We then repeat the arguments we used in the case α = 1 (that is, use soft local times for

constructing the independent excursions together with the Brownian motion’s excursions
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etc.) to prove that the probability that all the disks (B̃j , j = 1, . . . , kr ) are completely
covered is small (in fact, of a subpolynomial order in r), to show that, for any fixed h > 0

P
[

D1(Vα) ∩ (B(r) \ B(r/2)) = ∅] ≤ 2r
−(1+o(1))(

√
b−1)2 2α

2−β + o(r−h)

as r → ∞. Since b ∈ (1, α−1) can be arbitrarily close to α−1 and β ∈ (0, 1) can be
arbitrarily close to 1, this concludes the proof of Eq. 2.32.

4.2 Proofs for the cover process on the torus

Proof of Theorem 2.14 The proof of this fact parallels that of Theorem 2.6 of [12], with
some evident adaptations. Therefore, in the following we only recall the main steps of the
argument. With Tn(M) the hitting time of a set M ⊂ R

2
n by the process X, denote for x∈ R

2
n,

h(t, x) = Px [Tn(B(1)) > t]

(for simplicity in the proof we will omit the notation ϒn for the projection from R
2 to R

2
n,

starting with writing B(1) instead of ϒnB(1) in this display). The Brownian motion ˜X on
the torus conditioned on not hitting the unit ball by time tα can be defined in an elemen-
tary manner by conditioning by a non-negligible event. Consider the time-inhomogeneous
diffusion ˜X with the transition densities from time s to time t > s:

p̃(s, t, x, y) = p̃0(t − s, x, y)
h(tα − t, y)

h(tα − s, x)
, (4.15)

where p̃0 is the transition density of X killed on hitting B(1). This formula is similar to
Eq. 2.7. Denote ˜T (s)

n (A) = inf{t ≥ s : ˜Xt ∈ A}. Analogously to Eq. 3.17, we can compute
the Radon-Nikodym derivative of the law of ˜X on the time-interval [s,˜T (s)

n (∂B(n/3))] given
˜Xs = x with respect to that of ̂W on [0, τ̂ (n/3)] started at x,

dP
[

˜X[s,˜T (s)
n (∂B( n

3 ))] ∈ ·|˜Xs = x
]

dPx

[

̂W[0,̂τ ( n
3 )] ∈ ·

] = ln
(

n
3 ln n

)

ln( n
3 )

×
h
(

tα − ˜T (s)
n (∂B( n

3 )), ˜X
˜T

(s)
n (∂B( n

3 ))

)

h(tα − s, x)
,

(4.16)
for any x ∈ ∂B( n

3 ln n
) (see also (92) of [12]).

Next, for a large C abbreviate δn,α = Cα

√

ln ln n
ln n

and

Iδn,α =
[

(1 − δn,α)
2α ln2 n

ln ln n
, (1 + δn,α)

2α ln2 n

ln ln n

]

.

Let Nα be the number of Brownian motion’s excursions between ∂B
(

n
3 ln n

)

and ∂B(n/3) on
the torus, up to time tα . It is well known that P

[

B(1) ∩X n
tα
= ∅] = n−2α+o(1) (see e.g. [4]).

Then, observe that Eq. 3.63 implies that

P

[

Nα /∈ Iδn,α

∣

∣ B(1) ∩X (n)
tα

= ∅
]

≤ P[Nα /∈ Iδn,α ]
P[B(1) ∩X (n)

tα
= ∅]

≤ n2α+o(1) × n−C′α2
,

where C′ is a constant that can be made arbitrarily large by making the constant C in the
definition of δn,α large enough. So, if C is large enough, for some c′′ > 0 it holds that

P

[

Nα ∈ Iδn,α

∣

∣ B(1) ∩X (n)
tα

= ∅
]

≥ 1 − n−c′′α . (4.17)
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Now, we estimate the (conditional) probability that an excursion hits the set A. For this,
observe that Eq. 3.12 implies that, for any x ∈ ∂B

(

n
3 ln n

)

Px [̂τ1(A) > τ̂1(∂B(n/3))] = 1 − π

2
cap(A)

ln ln n

ln2 n
(1 + o(1)) , (4.18)

see also (84) of [12]. This is for ̂W -excursions, but we also need a corresponding fact for
˜X-excursions. More precisely, we need to show that

P

[

˜T (s)
n (A) < ˜T (s)

n (∂B(
n

3
)) | ˜Xs = x

]

= Px

[

τ̂ (A) < τ̂ (∂B(
n

3
))
]

(

1 + O

(

1√
ln n

))

.

(4.19)
In order to prove the above fact, we first need the following estimate, which (in the

discrete setting) was proved in [12] as Lemma 4.2. For all λ ∈ (0, 1/5), there exist c1 >

0, n1 ≥ 2, σ1 > 0 (depending on λ) such that for all n ≥ n1, 1 ≤ β ≤ σ1 ln n, ‖x‖, ‖y‖ ≥
λn, |r| ≤ βn2 and all s ≥ 0,

∣

∣

∣

∣

h(s, x)

h(s + r, y)
− 1

∣

∣

∣

∣

≤ c1β

ln n
. (4.20)

The proof of the above in the continuous setting is completely analogous. Then, the idea is
to write, similarly to (86) of [12] that

h(s, x) = ln
(

n
3 ln n

)

ln( n
3 )

∫

∂B(n/3)×R+
h(s − t, y) dν(y, t)+ ψx,s,n , (4.21)

where

ν(M, T ) = Px

[

XTn(∂B( n
3 )) ∈ M, Tn(∂B(

n

3
)) ∈ T | Tn(0) > Tn(∂B(

n

3
))
]

and ψx,s,n = Px[Tn(∂B(n/3)) ≥ Tn(0) > s]. Then, one uses Eq. 4.21 together with Eq. 4.16
to obtain Eq. 4.19 in a rather standard way; the only obstacle in adapting the discrete argu-
ment to the continuous setting is that (87) of [12] does not hold for all x ∈ R

2
n \B(1) (this is

because x can be very close to B(1); that fact would be true e.g. for all x ∈ R
2
n \B(2), which

would be, unfortunately, not enough to obtain the analogue of (88) of [12]). Note, however,
that by a repeated application of Eq. 4.20 one readily obtains that

h(s, x)

h(s + r, y)
≤ exp

(

Cr

n2 ln n

)

(4.22)

(one could use this observation in [12] as well), which is even stronger than (88) of [12].
Once we have Eq. 4.19, the idea is roughly that

P

[

ϒnA ∩X (n)
tα

= ∅ | B(1) ∩X (n)
tα

= ∅
]

≈ E[(right-hand side of Eq. 4.18)Nα ]

(4.17)≈
(

1 − π ln ln n

2 ln2 n
cap(A)

) 2α ln2 n
ln ln n

= exp (−πα cap(A)(1 + o(1))) ,

which would show Theorem 2.14. Also, one needs to take care of some extra technicalities
(in particular, excursions starting at times close to tα need to be treated separately), but the
arguments of [12, section 4.2] are quite standard and adapt to the continuous case mutatis
mutandis.
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4.3 Proof of Theorems 2.15, 2.16, 2.17, 2.19 and 2.20.

Proof of Theorem 2.15 First, we need the following elementary consequence of the Map-
ping Theorem for Poisson processes (e.g. Section 2.3 of [22]): if P is a Poisson process on
R+ with rate r(ρ) = a

ρ
, then the image of P under the map g(ρ) = cρh is a Poisson pro-

cess P ′ with rate r ′(ρ) = ah−1

ρ
, where c and h are positive constants. Theorem 2.15 now

follows from the fact that a conformal image of a Brownian trajectory is a Brownian tra-
jectory (the fact that we are dealing with a conditioned Brownian motion does not change
anything due to Lemma 2.1).

Proof of Theorem 2.20 We write

P

[

2α ln2 ‖x‖
ln �x(α)−1

> s

]

= P [�x(α) > rs]

= P
[

B(x, rs) ⊂ Vα
]

= exp (−πα cap (B(x, rs) ∪ B(1))) ,

and an application of Lemma 3.11 (iii) concludes the proof of the first part. For the boundary
case x ∈ ∂B(1), using Lemma 3.12 we obtain

P

[

α�x(α)2 > s
]

= P

[

�x(α) >

√

s

α

]

= P

[

B

(

x,

√

s

α

)

⊂ Vα

]

= exp
(

−α × s

α
+ O

(

(s/α)3/2
))

= e−s
(

1 + O
(

(s/α)3/2
))

,

which concludes the proof.

Proof of Theorem 2.16 Note that the proof of (ii) follows directly from the construction,
since �0(α) = ρα

1 . The fact that the process (�x(α), α > 0) is Markovian immediately
follows from Eq. 2.20. Let Gα,δ be the event that there is a jump in the interval [α, α + δ].
Then, to compute the jump rate of �x given that �x(α) = r , observe that, by Eqs. 2.20,
2.22, and 2.23

lim
δ→0

P
[

Gα,δ

]

δ
= lim

δ→0

P [�x(δ) < r]

δ

= lim
δ→0

1 − P
[

B(x, r) ⊂ Vδ
]

δ

= lim
δ→0

1 − exp (−πδ cap (B(1) ∪ B(x, r)))

δ

= π cap (B(1) ∪ B(x, r)) .

Moreover, conditioned on Gα,δ , we have for s < r

P[V (x,r) < s | Gα,δ] = 1 − P[B(s) ⊂ Vδ]
P[Gα,δ] = πδ cap (B(1) ∪ B(x, s)) (1 + o(1))

πδ cap (B(1) ∪ B(x, r)) (1 + o(1))
,

and we conclude the proof by sending δ to 0.
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Proof of Theorem 2.19 For a fixed x denote by kx : R+ → R
+ the non-decreasing function

kx(r) = cap (B(1) ∪ B(x, r)). From Theorem 2.16 we obtain that the process �x(α) is a
pure jump Markov process with generator given by

Lf (r) = π

∫ r

0
[f (s)− f (r)]dkx(s) ,

for f : [max{1 − ‖x‖, 0},+∞) → R. We define the mappings Rx,β : R → R by

Rx,β(y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp
(

−e−{y−β−ln(2 ln2 ‖x‖)}
)

, for ‖x‖ > 1,

exp
(

1
2 (y − β)

)

, for ‖x‖ = 1

1 − ‖x‖ +
(

4
√

2
3π2 (

1−‖x‖
‖x‖ )1/2ey−β

)2/3
, for ‖x‖ ∈ (0, 1).

Note that Rx,β are increasing and one-to-one with that R−1
x,β(�x(e

β)) = Yout
x (β), Y ∂

x (β) or

Y in
x (β) defined in Eq. 2.36, according to x /∈ B(1), x ∈ ∂B(1) or 0 < ‖x‖ < 1. Thus, all

these three processes are (time inhomogeneous) Markov processes, with generators given
by

Lx,βf (y) = f ′(y)+ π

∫ y

−∞
[f (z)− f (y)]eβdkx(Rx,β(z))

for smooth f : R → R. Now, the above particular choices of Rx,β(·) are to ensure that, in
each of the three different cases,

lim
β→∞πeβkx(Rx,β(y)) = ey

uniformly on compacts. The convergence follows from Lemmas 3.11 (iii), 3.12, and 3.13.
Thus, for the generators themselves we have for fixed f

lim
β→∞Lx,βf (y) = Lf (y)

uniformly on compacts. With this to hand, we follow the standard scheme of compactness
and identification of the limit for convergence: (i) the family of processes indexed by βw is
tight in the Skorohod space D(R+,R); (ii) the limit is solution of the martingale problem
associated to the generator L, which is uniquely determined. It is not difficult to check that

sup
β≥0

eβkx(Rx,β(y)) −→ 0 as y →−∞ .

Then we can apply Theorem 3.39 of Chapter IX in [21] in order to obtain tightness (the
assumptions can be checked as in the proof of Theorem 4.8 of Chapter IX in [21] which
deals with time-homogeneous processes whereas we have here a weak inhomogeneity;
tightness of the 1-dimensional marginal follows from Theorem 2.20, that we prove inde-
pendently, for the cases ‖x‖ > 1 and ‖x‖ = 1; the last case is similar). This concludes the
proof of convergence of Yout (βw + ·), Y ∂(βw + ·) and Y in(βw + ·) to Y as βw →∞.

Proof of Theorem 2.17 The Markov process �0(α) described by (ii) in Theorem 2.16 is
transformed by the change of variables α = eβ, y = ln ln r + β + ln 2, or equivalently,
r = exp(ey−β/2), into a Markov process Y (β). Indeed, for the new process the jump rate
becomes

2 × ey−β

2
× dα

dβ
= ey ,
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and the evolution is given by

Y (β + h) =
{

Y (β)+ h, with probability 1 − eyh + o(h),

Y (β)+ ln U + h, with probability eyh + o(h),

where U is an independent Uniform[0, 1] random variable. Since − ln U is an Exp(1)
variable, the generator of Y is given by L.

The adjoint generator L∗ is given by

L∗g(y) = −g′(y)+ ey

∫ +∞

y

g(z)dz − eyg(y) .

The negative of a Gumbel variable has density g(y) = exp(y − ey), we easily check that
L∗g(y) = 0. Hence this law is invariant.

Acknowledgements The authors thank Christophe Sabot for helping with the rigorous definition of the
process R starting from R0 = 1, and Alexandre Eremenko for helping with the proof of Lemma 3.12. The
work of S.P. was partially supported by CNPq (grant 300886/2008–0) and FAPESP (grant 2017/02022–2).
The work of F.C. was partially supported by CNRS (LPSM, UMR 8001). Both of us have beneficiated from
support of Math Amsud programs 15MATH01-LSBS and 19MATH05-RSPSM.

Appendix

Proof of Proposition 3.1. Let a = ‖x‖. Note that,

1

2π

∫ π

0
ln(a2 + 1 − 2a cos θ) dθ − ln a = 1

2π

∫ π

0
ln(1 + a−2 − 2a−1 cos θ) dθ,

and that the claim is obviously valid for a = 0, so it remains to prove that

I (a) :=
∫ π

0
ln(a2 + 1 − 2a cos θ) dθ = 0 for all a ∈ (0, 1].

By the change of variable θ → π − θ we find that I (a) = ∫ π

0 ln(a2 + 1+ 2a cos θ) dθ , and
so

I (a) = 1

2

∫ π

0
ln
(

(a2 + 1)2 − 4a2 cos2 θ
)

dθ

=
∫ π/2

0
ln
(

(a2 + 1)2 − 4a2 cos2 θ
)

dθ . (4.23)
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Then, using the same trick as above (change the variable θ → π
2 − θ so that the cosine

becomes sine), we find

I (a) = 1

2

∫ π/2

0
ln
[(

(a2 + 1)2 − 4a2 cos2 θ
) (

(a2 + 1)2 − 4a2 sin2 θ
)]

dθ

= 1

2

∫ π/2

0
ln
[

(a2 + 1)4 − 4a2(a2 + 1)2 + 16a4 cos2 θ sin2 θ
]

dθ

= 1

2

∫ π/2

0
ln
[

(a2 + 1)4 − 4a2(a2 + 1)2 + 4a4 sin2 2θ
]

dθ

= 1

2

∫ π/2

0
ln
[

(a2 + 1)4 − 4a2(a2 + 1)2 + 4a4 − 4a4 cos2 2θ
]

dθ

= 1

2

∫ π/2

0
ln

[

(

(a2 + 1)2 − 2a2
)2 − 4a4 cos2 2θ

]

dθ

= 1

2
× 1

2

∫ π

0
ln
[

(a4 + 1)2 − 4a4 cos2 θ
]

dθ

using Eq. 4.23, and we finally arrive to the following identity:

I (a) = I (a2)

2
. (4.24)

This implies directly that I (1) = 0; for a < 1 just iterate Eq. 4.24 and use the obvious fact
that I (·) is continuous at 0.

We have to mention that other proofs are available as well; see [7, Ch. 20].
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