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Abstract
We study the regularity of the solutions of second order boundary value problems on mani-
folds with boundary and bounded geometry. We first show that the regularity property of a
given boundary value problem (P, C) is equivalent to the uniform regularity of the natural
family (Px, Cx) of associated boundary value problems in local coordinates. We verify that
this property is satisfied for the Dirichlet boundary conditions and strongly elliptic operators
via a compactness argument. We then introduce a uniform Shapiro-Lopatinski regularity
condition, which is a modification of the classical one, and we prove that it characterizes
the boundary value problems that satisfy the usual regularity property. We also show that
the natural Robin boundary conditions always satisfy the uniform Shapiro-Lopatinski regu-
larity condition, provided that our operator satisfies the strong Legendre condition. This is
achieved by proving that “well-posedness implies regularity” via a modification of the clas-
sical “Nirenberg trick”. When combining our regularity results with the Poincaré inequality
of (Ammann-Große-Nistor, preprint 2015), one obtains the usual well-posedness results for
the classical boundary value problems in the usual scale of Sobolev spaces, thus extending
these important, well-known theorems from smooth, bounded domains, to manifolds with
boundary and bounded geometry. As we show in several examples, these results do not
hold true anymore if one drops the bounded geometry assumption. We also introduce a uni-
form Agmon condition and show that it is equivalent to the coerciveness. Consequently, we
prove a well-posedness result for parabolic equations whose elliptic generator satisfies the
uniform Agmon condition.
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1 Introduction

We study the regularity of the solutions of general second order boundary value problems on
manifolds with boundary and bounded geometry. We obtain several sufficient and several
necessary conditions for the regularity of the solution in the usual scale of Sobolev spaces.
To state these results in more detail, we need to introduce some notation.

One of the reasons for our interest in manifolds with bounded geometry is due to the
fact that they provide a very convenient setting to study evolution equations in a geometric
setting [15, 17, 21, 24, 25, 30, 31, 64, 65]. For instance, maximal regularity results on
manifolds with bounded geometry were obtained by H. Amann [6, 7] and A. Mazzucato
and V. Nistor [49]. Applications to Quantum Field Theory were obtained C. Bär and A.
Strohmaier [16], by C. Gérard [29], and by W. Junker and E. Schrohe [41], to mention just
a few of the many papers on the subject. In this paper, however, we establish some basic
results for elliptic equations, which are useful in the study of evolution equation and for
many other problems.

Let M be a manifold with boundary and bounded geometry, see Definition 2.5, and
consider a boundary value problem of the form{

Pu = f in M

Cu = h on ∂M .
(1)

More precisely, we are interested in regularity results, which generally say that if u has a
minimal regularity, but f and h have a good regularity, then u also has a good regularity.
See Definition 4.11 for a precise definition.

We provide three main methods to obtain a good regularity for u based on:

(1) the uniform regularity of the local problems;
(2) the uniform Shapiro-Lopatinski conditions; and
(3) the well-posedness in energy spaces.

The first two methods provide a characterization of the boundary value problems that
satisfy regularity, but are not always easy to use in practice. Most of the examples of
boundary value problems that we know that are satisfying regularity are obtained from
a well-posedness result in spaces of minimal regularity (energy spaces). In turn, these
well-posedness results are obtained from coercivity.

Let us discuss now each of the three methods and the specific results and applications
contained in this paper.

Uniform Regularity of the Local Problems This method is discussed in Section 5. In that
section, we associate to each point x of M a local operator Px . This operator is associ-
ated to a boundary value problem (Px, Cx) if x is on the boundary. These operators are
defined on small–but uniform size–coordinate patches around x (some care is needed close
to the boundary). We introduce then uniform regularity conditions for these local operators.
This amounts to regularity conditions for each of the local operators in such a way that the
resulting constants are independent of x (see Definition 5.1). We then show that the initial
operator satisfies regularity if, and only if, the associated family of local operators satisfies
a uniform regularity condition. This is Theorem 5.6. We further show that if the family of
local operators is compact and satisfies regularity, then it satisfies a uniform regularity con-
dition. The compactness condition is satisfied, for instance, by strongly elliptic operators
endowed with Dirichlet boundary conditions. This then yields right away a regularity result
for these operators (Theorem 5.12).
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Uniform Shapiro-Lopatinski Conditions This method is discussed in Section 6. In analogy
with the classical case, we introduce a uniform Shapiro-Lopatinski regularity condition and
we show that it characterizes the boundary value problems that satisfy regularity (Theorem
6.9). The usual Shapiro-Lopatinski conditions are not expressed in a quantitative way that
will make them amenable to generalize right away to uniform conditions. For this reason,
we go back to a more basic formulation of the Shapiro-Lopatinski condition in terms of the
left invertibility of suitable model problems (P

(0)
x , C

(0)
x ), one for each point of the boundary,

and we require the norms of inverses of these problems to be bounded. If the problems
(Px, Cx) are the local versions of the initial problem (P, C), the problems (P

(0)
x , C

(0)
x ) are

the micro-local versions of (P, C).

Well-Posedness in Energy Spaces This method is discussed in Section 7. While intellectu-
ally satisfying (especially in view of the classical results), the uniform Shapiro-Lopatinski is
not very easy to use in practice. For this reason, we extend a result of Nirenberg [56] to prove
that the problems that are well-posed in energy spaces satisfy regularity (Theorem 7.2). We
then combine this method with the other two to check that the Robin boundary conditions
e1∂

a
ν + Q (for suitable Q, see Remark 4.4) satisfy, first, the classical (i.e. not necessarily

uniform) Shapiro-Lopatinski boundary conditions, then that they satisfy the compactness
condition, and hence, the uniform regularity for the local problems. This allows us to con-
clude a regularity result for mixed Dirichlet/Robin boundary conditions (with suitable Q).
Let us explain this result in more detail.

For the rest of this introduction, (M, g) will be a Riemannian manifold with bound-
ary and bounded geometry and E → M will be a vector bundle with bounded geometry.
We assume that we are given a decomposition E|∂M = F0 ⊕ F1 as an orthogonal sum
of vector bundles with bounded geometry and we let ej denote the orthogonal projection
E → Fj . Let a be a sesquilinear form on T ∗M ⊗ E and let Q be a first order differen-
tial operator acting on the sections of F1 → ∂M . To this data we associate the operator
P̃(a,Q) : H 1(M;E)→ H 1(M;E)∗ defined by

〈P̃(a,Q)u, v〉 =
∫

M

a(∇u,∇v)d volg +
∫

∂M

(Qu, v)d vol∂g . (2)

We shall be interested in the second order operator P̃ := P̃(a,Q) +Q1, where Q1 is a first
order differential operator. An operator of this form will be called a second order differential
operator in divergence form. Let ν be the outer normal vector field to the boundary and r

be the distance to the boundary, then dr(ν) = 1 and ∂a
ν u := a(dr,∇u) is the associated

conormal derivative, see Remarks 4.3, 4.4 and Example 4.8. We let P be obtained from P̃

using the restriction to H 1
0 . See Section 4.1 for more details. Our result is a regularity result

for the problem ⎧⎨
⎩

Pu = f in M

e0u = h0 on ∂M

e1∂
a
ν u+Qu = h1 on ∂M .

(3)

Recall that a sesquilinear form a on a hermitian vector bundle V → X is called strongly
coercive (or strictly positive) if there is some c > 0 such that	a(ξ, ξ) ≥ c|ξ |2 for all x ∈ X

and ξ ∈ Vx . If the sesquilinear form a on T ∗M ⊗ E used to define P is strongly coercive,
then P is said to satisfy the strong Legendre condition. See also Definition 6.11.

Theorem 1.1 Let M be a manifold with boundary and bounded geometry, E → M be a
vector bundle with bounded geometry, and P̃ := P̃(a,Q) +Q1 be second order differential

Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems... 409



operator in divergence form acting on (M,E), as above. Assume that P̃ has coefficients in
W�+1,∞, that a that is strongly coercive, and that Q + Q∗ is a zero order operator. Then
there is C > 0 such that, if u ∈ H 1(M;E), f := Pu ∈ H�−1(M;E), h0 := e0u|∂M ∈
H�+1/2(∂M;F0), and h1 := e1∂

a
ν u+Qu ∈ H�−1/2(∂M;F1), then u ∈ H�+1(M;E) and

‖u‖H�+1 ≤ C
(‖f ‖H�−1 + ‖h0‖H�+1/2 + ‖h1‖H�−1/2 + ‖u‖H 1

)
.

In Section 7.4, we will see why, in general, the bounded geometry assumption is useful.
Many of our results extend to higher order equations, however, including this would have
greatly extended the length of the paper. See nevertheless Remarks 4.13 and 7.3.

Contents of the Paper The results in this paper are a natural continuation of our joint paper
with Bernd Ammann [10]. In that paper, we established some general geometric results on
manifolds with boundary and bounded geometry and dealt almost exclusively with Dirich-
let boundary conditions. Also, in [10] we restricted ourselves to the case of the Laplace
operator. The main contribution of this paper is the fact that we consider general uniformly
elliptic operators and we work under general boundary conditions. This requires some new,
specific ideas and results. Further results are included in [9].

Here are the contents of the paper. Section 2 contains some basic definitions and some
background results. Several of these results are from [10]. For instance, in this section we
review the needed facts on manifolds with bounded geometry and we recall the definition
of Sobolev spaces using partitions of unity. Section 3 contains some preliminary results on
Sobolev spaces and differential operators. In particular, we provide a description of Sobolev
on manifolds with bounded geometry spaces using vector fields. The first two sections can
be skipped at a first reading by the seasoned researcher. Section 4 introduces our differential
operators and boundary value problems, both of which are given in a variational (i.e. weak)
form. We show that, under some mild conditions, all non-degenerate boundary conditions
are equivalent to variational ones, which justifies us to concentrate on the later. Also in
this section we formulate the regularity condition. The last three sections describe the three
methods explained above and their applications. In the last section, in addition to discussing
the third method mentioned above (“Well-posedness in energy spaces”), we also introduce
a uniform Agmon condition, which, we show, is equivalent to the coercivity of the operator.
This then leads to an application to the well-posedness of some parabolic equations on
manifolds with bounded geometry.

2 BackgroundMaterial and Notation

We begin with some background material, for the benefit of the reader. More precisely, we
introduce here the needed function spaces and we recall the needed results from [10] as well
as from other sources. We also use this opportunity to fix the notation, which is standard, so
this section can be skipped at a first reading. This section contains no new results. Through-
out this paper, M will be a (usually non-compact) connected smooth manifold, possibly with
boundary.

2.1 General Notations and Definitions

We begin with the most standard concepts and some notation.
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2.1.1 Continuous Operators

Let X and Y be Banach spaces and A : X → Y be a linear map. Recall that A is continuous
(or bounded) if, and only if, ‖A‖X,Y := infx �=0

‖Ax‖
‖x‖ < ∞. When the spaces on which A

acts are clear, we shall drop them from the notation of the norm, thus write ‖A‖ = ‖A‖X,Y .
We say that A is an isomorphism if it is a continuous bijection (in which case the inverse
will also be continuous, by the open mapping theorem).

2.1.2 The Conjugate Dual Spaces

For complex vector spaces V and W , a sesquilinear map V × W → C will always be
(complex) linear in V and anti-linear in W . A Hermitian form on V is a positive definite
sesquilinear map ( · , · ) : V ×V → C, which implies (w, v) = (v,w). In order to deal with
the complex version of the Lax–Milgram lemma, we introduce the following notation and
conventions.

Notation 2.1 Let V be a complex vector space, usually a Hilbert space. We shall denote by
V the complex conjugate vector space to V . If V is endowed with a topology, we denote by
V ′ the (topological) dual of V . It will be convenient to denote V ∗ := (V )′ � V ′. We can
thus regard a continuous sesquilinear form B : V ×W → C as a continuous bilinear form
on V ×W , or, moreover, as a map V → W ∗. Let us assume that V is a Hilbert space with
inner product ( , ) : V ×V → C. If T : V → W is a continuous map of Hilbert spaces, then
we denote by T ∗ : W ∗ → V ∗ the adjoint of T , as usual.

2.1.3 Vector Bundles

Let E → M be a smooth real or complex vector bundle endowed with metric ( , )E . We
denote by �(M;E) the set of smooth sections of E. Let E be endowed with a connection

∇E : �(M;E)→ �(M;E ⊗ T ∗M).

We assume that ∇E is metric preserving, which means that

X(ξ, η)E = (∇Xξ, η)E + (ξ,∇Xη)E .

If F → M is another vector bundle with connection ∇F , then we endow E ⊗ F with the
induced product connection ∇E⊗F (ξ ⊗ η) := (∇Eξ)⊗ η + ξ ⊗∇F η.

We endow the tangent bundle T M → M with the Levi-Civita connection ∇M , which
is the unique torsion free, metric preserving connection on T M . We endow T ∗M and all
the tensor product bundles E ⊗ T ∗⊗kM := E ⊗ (T ∗M)⊗k with the induced tensor product
connections (we write V⊗k := V ⊗ V ⊗ . . .⊗ V , k-times).

2.2 Manifolds with Boundary and Bounded Geometry

We now recall some basic material on manifolds with boundary and bounded geometry,
mostly from [10], to which we refer for more details and references.

Definition 2.2 A vector bundle E → M with given connection is said to have totally
bounded curvature if its curvature and all its covariant derivatives are bounded (that is,
‖∇kRE‖∞ < ∞ for all k). If T M has totally bounded curvature, we shall then say that M

has totally bounded curvature.
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Let expM
p : TpM → M be the exponential map at p associated to the metric and

rinj(p) := sup{r | expM
p : BTpM

r (0)→ M is a diffeomorphism onto its image}
rinj(M) := inf

p∈M
rinj(p).

The following concept is classical and fundamental.

Definition 2.3 A Riemannian manifold without boundary (M, g) is said to be of bounded
geometry if rinj(M) > 0 and if M has totally bounded curvature.

If M has boundary, clearly rinj(M) = 0, so a manifold with non-empty boundary will
never have bounded geometry in the sense of the above definition. However, Schick has
found a way around this difficulty [63]. Let us recall a definition equivalent to his following
[10]. The main point is to describe the boundary as a suitable submanifold of a manifold
without boundary and with bounded geometry. Let us consider then a hypersurface ⊂ M ,
i.e. a submanifold with dim H = dim M − 1. Assume that H carries a globally defined unit
normal vector field ν and let exp⊥(x, t) := expM

x (tνx) be the exponential in the direction
of the chosen unit normal vector. By IIN we denote the second fundamental form of N (in
M: IIN(X, Y )ν := ∇XY − ∇N

X Y ).

Definition 2.4 Let (Mm, g) be a Riemannian manifold of bounded geometry with a hyper-
surface H = Hm−1 ⊂ M and a unit normal field ν on H . We say that H is a bounded
geometry hypersurface in M if the following conditions are fulfilled:

(i) H is a closed subset of M;
(ii) ‖(∇H )kIIH ‖L∞ <∞ for all k ≥ 0;

(iii) exp⊥ : H × (−δ, δ)→ M is a diffeomorphism onto its image for some δ > 0.

We shall denote by r∂ the largest value of δ satisfying this definition.

We have shown in [10] that (H, g|H ) is then a manifold of bounded geometry in its
own right. See also [24, 25] for a larger class of submanifolds of manifolds with bounded
geometry.

Definition 2.5 A Riemannian manifold M with (smooth) boundary has bounded geometry
if there is a Riemannian manifold M̂ with bounded geometry satisfying

(i) M is contained in M̂;
(ii) ∂M is a bounded geometry hypersurface in M̂ .

Example 2.6 Lie manifolds have bounded geometry [11, 12]. It follows that, Lie manifolds
with boundary are manifolds with boundary and bounded geometry.

For x, y ∈ M , we let dist(x, y) denote the distance between x and y with respect to the
metric g.

2.3 Coverings, Partitions of Unity, and Sobolev Spaces

We now introduce some basic notation and constructions for manifolds with boundary and
bounded geometry. The boundary ∂M of a manifold with boundary M will always be a
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subset of M: i.e. ∂M ⊂ M . For the rest of the paper, we will always assume that E → M

has totally bounded curvature, and, for the rest of this section, we shall assume that M is a
manifold with boundary and bounded geometry.

Let ν be the inner unit normal vector field of ∂M and let r∂ as in the bounded geometry
condition for ∂M in M , Definition 2.4. Moreover, for a metric space X, we shall denote by
BX

r (p) the open ball of radius r centered at p and set Bm
r (p) := BR

m

r (p). We shall identify
TpM with R

m+1 and, respectively, Tp∂M with R
m, using an orthonormal basis, thus obtain-

ing a diffeomorphism expM
p : Bm+1

r (0) → BM
r (p). For r < 1

2 min{rinj(∂M), rinj(M), r∂ }
we define the maps

{
κp : Bm

2r (0)× [0, 2r)→ M, κp(x, t) := expM
q (tνq), ifp ∈ ∂M, q := exp∂M

p (x)

κp : Bm+1
r (0)→ M, κp(v) := expM

p (v), if dist(p, ∂M) ≥ r,

with range

Up(r) :=
{

κp(Bm
2r (0)× [0, 2r)) ⊂ M if p ∈ ∂M

κp(Bm+1
r (0)) = expM

p (Bm+1
r (0)) ⊂ M otherwise.

(4)

Definition 2.7 Let rFC := min
{

1
2 rinj(∂M), 1

4 rinj(M), 1
2 r∂

}
and 0 < r ≤ rFC . Then

κp : Bm
r (0)× [0, r) → Up(r) is called a Fermi coordinate chart at p ∈ ∂M . The charts κp

for dist(p, ∂M) ≥ r are called geodesic normal coordinates.

To define our Sobolev spaces, we need suitable coverings of our manifold. For the sets
in the covering that are away from the boundary, we will use geodesic normal coordi-
nates, whereas for the sets that intersect the boundary, we will use the Fermi coordinates
introduced in Definition 2.7.

Definition 2.8 Let M be a manifold with boundary and bounded geometry and let 0 < r ≤
rFC := min

{
1
2 rinj(∂M), 1

4 rinj(M), 1
2 r∂

}
, as in Definition 2.7. A subset {pγ }γ∈N is called

an r-covering subset of M if the following conditions are satisfied:

(i) For each R > 0, there exists NR ∈ N such that, for each p ∈ M , the set {γ ∈
N| dist(pγ , p) < R} has at most NR elements.

(ii) For each γ ∈ N, we have either pγ ∈ ∂M or dist(pγ , ∂M) ≥ r , so that Uγ := Upγ (r)

is defined, compare to Eq. 4.
(iii) M ⊂ ∪∞γ=1Uγ .

Remark 2.9 If 0 < r < rFC , then we can always find an r-covering subset of M , since
M is a manifold with boundary and bounded geometry [36, Remark 4.6]. Moreover, it then
follows from (i) of Definition 2.8 that the coverings {Uγ } of M and {Uγ ∩ ∂M} of ∂M are
uniformly locally finite.

We shall need the following class of partitions of unity defined using r-covering sets.
Recall the definition of the sets Uγ := Upγ (r) from Eq. 4.

Definition 2.10 A partition of unity {φγ }γ∈N of M is called an r-uniform partition of unity
associated to the r-covering set {pγ } ⊂ M , see Definition 2.8, if the support of each φγ is
contained in Uγ and supγ ‖φγ ‖W�,∞(M) <∞ for each fixed � ∈ Z+.
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In order to deal with boundary value problems with values in a vector bundle (that is,
with boundary value problems for systems), we will also need the concept of synchronous
trivializations, which we briefly recall here:

Definition 2.11 Let M be a Riemannian manifold with boundary and bounded geometry,
and let E → M be a Hermitian vector bundle with metric connection. Let (Uγ , κγ , φγ )

be Fermi and geodesic normal coordinates on M together with an associated r-uniform
partition of unity as in the definitions above. If pγ ∈ M \ Ur(∂M), then E|Uγ is trivialized
by parallel transport along radial geodesics emanating from pγ . If pγ ∈ ∂M , then we
trivialize E|Uγ as follows: First we trivialize E|Uγ∩∂M along the underlying geodesic normal
coordinates on ∂M . Then, we trivialize by parallel transport along geodesics emanating
from ∂M and being normal to ∂M . The resulting trivializations are called synchronous
trivializations along Fermi coordinates and are maps

ξγ : κ−1
γ (Uγ )× C

t → E|Uγ (5)

where t is the rank of E.

We shall need a definition of Sobolev spaces using partitions of unity and “Fermi coor-
dinates” [36] and a few standard results. In the scalar case, these results were stated in [10].
Here we stress the vector valued case. First, we have the following proposition that is a
direct consequence of Theorems 14 and 26 in [36].

Proposition 2.12 Let M be a Riemannian manifold with boundary and bounded geometry.
Let {φγ } be an r-uniform partition of unity associated to an r-covering set {pγ } ⊂ M and
let κγ = κpγ be as in Definition 2.7. Let E → M be a vector bundle with totally bounded
curvature with trivializations ξγ as in Definition 2.11. Then

|||u|||p :=
∑
γ

‖ξ∗γ (φγ u)‖pWs,p

defines a norm equivalent to the standard norm on Ws,p(M;E), s ∈ R, 1 < p <∞.

As in the scalar case [10], the space �c(M;E) of smooth, compactly supported sections
of E is dense in Ws,p(M;E), for s ∈ R and 1 < p < ∞. This is obtained by truncating
the sum. As usual, we shall let H�(M;E) := W�,2(M;E), s ∈ R. Similarly, we shall need
the following extension of the trace theorem to the case of manifolds with boundary and
bounded geometry, see Theorem 27 in [36] (see [10] for more references).

Theorem 2.13 (Trace theorem) Let M be a manifold with boundary and bounded geometry
and let E → M have totally bounded curvature. Then, for every s > 1/2, the restriction
to the Dirichlet part of the boundary res : C∞c (M) → C∞c (∂DM) extends to a continuous,
surjective map

res : Hs(M;E) → Hs− 1
2 (∂DM;E).

Let ∂ν be the normal derivative at the boundary. We then denote by Hm
0 (M;E) the kernel

of the restrictions maps res ◦∂j
ν , 0 ≤ j ≤ m − 1. It is known that H−m(M;E∗) identifies

with Hm
0 (M;E)∗.
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See also [12, 13, 37, 38, 44, 45, 65, 68, 69] for related results, in particular, for the use of
the partitions of unity. See [26] and its outgrowth [27] for an introduction to manifolds of
bounded geometry. See [20, 40, 46, 66] for the general results on Sobolev spaces not proved
above.

3 Preliminary Results

We now include some preliminary results. This section consists mostly new results, but
advanced reader can nevertheless skip this section at a first reading. In this section we
assume that M is a manifold with boundary and bounded geometry and that E → M is a
vector bundle with totally bounded curvature (and, hence, with bounded geometry).

3.1 Alternative Characterizations of Sobolev Spaces

We now provide an alternative description of Sobolev spaces using vector fields. If
A : V1 → V2 is a linear map of normed spaces, we define its minimum reduced modulus
γ (A) by

γ (A) := inf
ξ∈V1/ ker(A)

sup
η∈ker(A)

‖Aξ‖
‖ξ + η‖ ,

i.e. γ (A) is the largest number γ satisfying ‖Aξ‖ ≥ γ ‖ξ + ker(A)‖V1/ ker(A) for all ξ ∈ V1
where ‖ · ‖V1/ ker(A) is the quotient norm on V1/ ker(A). As it is well known, if V1 is
complete, a standard application of the Open Mapping Theorem gives that the image of A

is closed if, and only if, γ (A) > 0. If V1 and V2 are Hilbert spaces and A is surjective, we
have γ (A)−2 = ‖(AA∗)−1‖.

We have the following alternative characterization of Sobolev spaces in terms of vector
fields. This alternative definition is more intuitive and easier to use in analysis. It is based
on a the choice of a suitable finite family of vector fields, whose existence is assured by the
following lemma.

Lemma 3.1 Let (M, g) be a manifold with boundary and of bounded geometry. Then there
exist vector fields X1, X2, . . . , XN ∈ W∞,∞(M; T M) such that for any x ∈ M the map
�x : RN � (λ1, . . . , λN) �→ ∑

λiXi(x) ∈ TxM is onto at any x and infx γ (�x) > 0.
Then we have that [Xi, Xj ] =∑N

k=1 Ck
ijXk and ∇Xi

Xj =∑N
k=1 Gk

ijXk for some functions

Gk
ij , C

k
ij ∈ W∞,∞ and any 1 ≤ i, j ≤ N . Moreover, we can choose X1 of length one and

normal to the boundary of M and Xj tangent to the boundary for j > 1.

Proof We use a covering by Fermi coordinates resp. geodesic normal coordinates (Uβ, κβ)

as in Definition 2.8 together with an associated partition of unity φβ as in Definition 2.10.
We recall that all transition function κα ◦ κ−1

β , the φβ and all their derivatives are uniformly

bounded, see [36, 65]. Let xi
β be the coordinates corresponding to the chart κβ . Note that

the Christoffel symbols in each chart and their derivatives are also uniformly bounded due
to the bounded geometry, [36, Lemma 3.10].

Let those coordinates be ordered such that x1
β = r , the distance to the boundary, for

Uβ ∩ ∂M �= ∅. Let X1 :=∑
Uβ∩∂M �=∅ φβ∂r . Then, X1 is normal to ∂M .
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To define Xj for j > 1 we divide {Uβ}β into finitely many disjoints subsets Vi , i =
1, . . . , d , such that the Uβ ’s in any Vi are pairwise disjoint. This is always possible since
the covering {Uβ}β is uniformly locally finite. We set

Xi,j :=
∑

Uβ∈Vi

φβ∂
x

j
β

forj ∈ {2, . . . , m}

Xi,1 :=
∑

Uβ∈Vi ,Uβ∩∂M=∅
φβ∂x1

β

Then, X1, Xi,j ∈ W∞,∞(M, T M). Moreover, all Xi,j are tangent to the boundary by
construction. By renaming the vector fields we obtain X1, . . . , XN . Then �x is onto by
construction for all x ∈ M .

Next we show that the reduced minimum modulus is uniformly bounded from below:
Let x ∈ M . Since the covering is uniformly locally finite, there is a chart κα around x with
φα(x) > c > 0, c independent of x. Since ∂i

xα
span TxM for all (λ1, . . . , λN) ∈ R

N there
is a (μ1, . . . , μN) ∈ R

N with μj = 0 if Xj was not build from κβ . Thus,

γ (�x) ≥ inf
(λ1,...,λN )∈RN

|∑i μiXi(x)|∑
i |μi |2 ≥ inf

(λ1,...,λN )∈RN

c
∑

i μ2
i∑

i μ2
i

= c.

We have ∂
x

j
β

= ∑
i ai

j ∂xi
α

with ai
j ∈ W∞,∞ with bounds independent of α and β since

this is true for the transition functions κα ◦ κ−1
β . Thus, together with the uniform bounds

on the corresponding Christoffel symbols we get ∇∂
xi
α
∂
x

j
β

= ∑
k bk

ij ∂xk
α

with bk
ij ∈ W∞,∞.

Altogether, we have

∇Xi
Xj =

∑
Uβ∈Vi ,Uα∈Vj

φβ∇∂
xi
β

(φα∂
x

j
α
) =

∑
Uβ∈Vi ,Uα∈Vj ,k

φβ(δ
j
k ∂xi

β
φα + φαbk

ij )∂xk
β

=
∑

k

Gk
ijXk withGk

ij =
∑

Uβ∈Vi ,Uα∈Vj

(δ
j
k ∂xi

β
φα + φαbk

ij ) ∈ W∞,∞

where we used in the last step that the supports of any two Uβ in Vi are disjoint.
By, [Xi, Xj ] = ∇Xi

Xj −∇Xj
Xi the remaining claim follows.

Proposition 3.2 Let X1, X2, . . . , XN ∈ W∞,∞(M; T M) be such that for any x ∈ M the
map �x : RN � (λ1, . . . , λN) �→ ∑

λiXi(x) ∈ TxM is onto at any x and infx γ (�x) > 0.
Then

W�,p(M;E) = { u | ∇E
Xk1
∇E

Xk2
. . .∇E

Xkj
u ∈ Lp(M;E), j ≤ �, k1, . . . , kj ≤ N },

1 ≤ p ≤ ∞. If E has furthermore totally bounded curvature, we have also

W�,p(M;E) =
{

u | ∇E
Xk1
∇E

Xk2
. . .∇E

Xkj
u ∈ Lp(M;E)

}
,

where, this time, 1 ≤ k1 ≤ k2 ≤ . . . ≤ kj ≤ N , j ≤ �.

We notice that the condition that �x : RN → TxM be surjective implies that
dim ker �x = N − dim M is constant. For compact M then infx∈M γ (�x) > 0 is
automatically satisfied.
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Proof Let

X :=
{

u | ∇E
Xk1
∇E

Xk2
. . .∇E

Xkj
u ∈ Lp(M;E), j ≤ �, k1, . . . , kj ≤ N

}
.

The fact that the vector fields Xk are bounded with bounded covariant derivatives gives that
∇Xk

: Wj+1,p(M;E) → Wj,p(M;E) is bounded for any j ≥ 0 and any p. This gives
W�,p(M;E) ⊂ X .

To prove the converse, we proceed by induction as follows. First of all, the assump-
tion that infx γ (�x) > 0 together with the fact that �x is surjective for all x gives that
�∗x(�x�

∗
x)
−1 is a (pointwise bounded) right inverse to �x , regarded as a map (RN)⊗� →

T M⊗�. (Here R
N is the trivial vector bundle of rank N .) Let us denote by � the extension

of this map to sections of the corresponding vector bundles, and, by abuse of notation, also
by

� : Lp(M; T ∗M⊗� ⊗ E)→ Lp(M; (RN)⊗� ⊗ E)

the induced maps. Then � is continuous and a right inverse of (the map defined by) �.
Therefore � is a homeomorphism onto its image. That gives that �(ξ) ∈ Lp(M; (RN)⊗�⊗
E) if, and only if, ξ ∈ Lp(M; T ∗M⊗� ⊗ E). By taking the (k1, k2, . . . , k�) component of
�(ξ), we obtain that (∇E)�u ∈ Lp(M; T ∗M⊗�⊗E) if, and only if, 〈(∇E)�u,Xk1 ⊗Xk2 ⊗
. . .⊗ Xk�

〉 ∈ Lp(M;E) for all k1, k2, . . . , k� ∈ {1, 2, . . . , N}. To use induction, we notice
that 〈(∇E)�u,Xk1 ⊗Xk2 ⊗ . . .⊗Xk�

〉 −∇E
Xk1
∇E

Xk2
. . .∇E

Xk�
u is given by lower order terms

of the same kind.
For the last part, we also notice that we can commute∇E

Xi
with∇E

Xj
up to totally bounded

terms using Lemma 3.1.

3.2 Sobolev SpacesWithout Using Connections

Recall that we assume that E → M has totally bounded curvature. One way to think of
such vector bundles is given by the following lemma:

Lemma 3.3 Let us assume that M is a manifold with bounded geometry (possibly with
boundary) and that E → M is a Hermitian vector bundle of totally bounded curvature.
Then there exists a fibrewise isometric embedding E ⊂ M × C

N into the trivial N -
dimensional vector bundle with the standard metric such that, if e denotes the orthogonal
projection onto E, then e ∈ MN(W∞,∞(M)) and the connection of E is equivalent to the
Grassmann (projection) connection of the embedding (i.e. the difference of both connec-
tions is in W∞,∞). Conversely, if e ∈ MN(W∞,∞(M)) and E := e(M ×C

N), then E with
the Grassmann connection has totally bounded curvature.

Proof Let us consider for each open subset Uγ as above the synchronous trivialization

ξγ : E|Uγ → κ−1
γ (Uγ ) × C

t from Eq. 5, with C
t the typical fiber above pγ . Then φ

1/2
γ ξγ

extends to a vector bundle map E → M × C
t that is in W∞,∞ since M has bounded

geometry and the connection on E has totally bounded curvature. Let N = N5r , with N5r

as in Definition 2.8. By the construction of the sets Uγ , we can divide the set of all γ ’s
into N + 1 disjoint subsets �k , such that, for each fixed k and any γ, γ ′ ∈ �k , the sets
Uγ and Uγ ′ are disjoint, by the construction of the sets Uγ . Let �k := ∑

γ∈�k
φ

1/2
γ ξγ and

� := (�1, �2, . . . , �N+1) : E → M×C
t (N+1) be the resulting bundle morphism. Then �

is isometric, it is in W∞,∞, and hence e := ��∗ is the desired projection. The equivalence
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of the connections follows from the uniform boundedness of the Christoffel symbols and
their derivatives associated to the synchronous trivialization [36, Remark 5.3].

This lemma may be used to reduce differential operators acting on vector bundles to
matrices of scalar differential operators. It also gives the following characterization of
Sobolev spaces of sections of a vector bundle.

Proposition 3.4 We use the notation of the last lemma. Then

Wk,p(M;E) = eWk,p(M)N, 1 ≤ p ≤ ∞.

We can now use this proposition to derive a description of Sobolev spaces on manifolds
with bounded geometry that is completely independent of the use of connections.

Remark 3.5 The standard definition of the norm on Sobolev spaces is using powers of ∇
[10, 36]. For instance Wk,∞(M) := {u | ∇j u ∈ L∞(M), 0 ≤ j ≤ k} (alternatively, it is the
space of functions with uniformly bounded derivatives of order ≤ k in any normal geodesic
coordinate chart on Bm

r , for any fixed r less than the injectivity radius rinj(M) of M). We
can define Wk,∞(M; T M) similarly. Let then X1, X2, . . . , XN as in Proposition 3.2 and
Lemma 3.1, 1 ≤ p <∞. Then

W�,p(M) = { u | Xk1Xk2 . . . Xkj
u ∈ Lp(M), j ≤ �, 1 ≤ k1 ≤ . . . ≤ kj ≤ N }.

Together with Proposition 3.4, this gives a description of Sobolev spaces without using
connections.

3.3 Differential Operators and Partitions of Unity

A differential operator on E is an expression of the form Pu := ∑k
j=0 aj∇j u,with aj

a section of End(E) ⊗ T M⊗j . It can thus simply be regarded as a formal collection of
coefficients. In particular, we do not identify the differential operator with the maps that it
induces (since it induces many). A differential operator Pu = ∑k

j=0 aj∇j u will be said to

have coefficients in W�,∞ if aj ∈ W�,∞(M;End(E)⊗ T M⊗j ). If � = 0, we shall say that
P has bounded coefficients. If � = ∞, we shall say that P has totally bounded coefficients.
The continuity of the contraction map

W�,∞(M;End(E)⊗ T M⊗j )⊗W�,p(M; T ∗M⊗j ⊗ E) → W�,p(M;E),

gives that a differential operator P = ∑k
j=0 aj∇j with coefficients in W�,∞ defines a

continuous map

P =
k∑

j=0

aj∇j : W�+k,p(M;E) → W�,p(M;E), � ≥ 0.

Lemma 3.6 Let k ≥ 0 and let P be an order � differential operator with coefficients
aj ∈ Wk+1,∞(M;End(E) ⊗ T M⊗j ). Let φ ∈ Wk+�+1,∞(M). Then the commutator
[P, φ] defines a continuous linear map Hk+�(M;E) → Hk+1(M;E). Moreover, if {φγ }γ
is a bounded family in Wk+�+1,∞(M), then operator norms of [P, φγ ] : Hk+�(M;E) →
Hk+1(M;E) are bounded uniformly in γ .
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Proof We have [P, φ]u =∑�
j=1 aj

∑j−1
s=0

(
j
s

)∇j−sφ∇su. Thus,

‖[P, φ]u‖Hk+1 ≤ C

k+1∑
r=0

�∑
j=0

‖∇r

⎛
⎝aj

j−1∑
s=0

∇j−sφ∇su

⎞
⎠ ‖L2

≤ C

k+1∑
r=0

r∑
t=0

�∑
j=0

‖∇r−t aj∇ t

⎛
⎝j−1∑

s=0

∇j−sφ∇su

⎞
⎠ ‖L2

and the claim follows by the regularity assumptions on aj and φ.

4 Variational Boundary Conditions and Regularity

We now introduce “differential operators in divergence form” from a global point of view.
The natural boundary value problem associated to differential operators in divergence form
will be called variational boundary value problems. In this subsection, we introduce and
take a first look at these variational boundary value problems. We will see that, under some
mild assumptions on our differential operator P , any non-degenerate boundary value prob-
lem is equivalent to a variational one. This allows to reduce the study of the former to that
of the latter, for which several general regularity results will be obtained in the following
sections. On the other hand, the degenerate boundary value problems are known to behave
in a significantly different way than the non-degenerate ones (see, for instance, [54] and the
references therein). The possibility of reducing non-degenerate boundary value problems to
variational ones seems not to have been explored too much in the literature.

We will continue to assume that M is a smooth manifold with smooth boundary. More-
over, we will assume that T M has totally bounded curvature, but we will not assume that
M has bounded geometry, since we want to allow M to be a domain in a Euclidean space.
Recall that all differential operators are assumed to have bounded coefficients and E → M

has totally bounded curvature.

4.1 Sesquilinear Forms and Operators in Divergence Form

It is important in applications to consider operators “in divergence form,” which we will
define below shortly. They provide a slightly different class of differential operators than the
operators with coefficients in L∞ considered above and will be useful in order to treat the
Dirichlet and Robin problems on the same footing. To introduce second order differential
operators in divergence form, we shall need the following data and assumptions:

Assumption 4.1 Let M be a smooth manifold with smooth boundary, E → M a vector
bundle, a a sesquilinear form on T ∗M ⊗E, and first order differential operators Q and Q1
satisfying

(A1) T M and E have totally bounded curvature.
(A2) E|∂M = F0 ⊕ F1, with F0 and F1 with totally bounded curvature and F0 is the

orthogonal complement of F1.
(A3) a = (ax)x∈M is a measurable, bounded family of hermitian sesquilinear forms

a = (ax)x∈M, ax : T ∗x M ⊗ Ex × T ∗x M ⊗ Ex → C.

(A4) Q1 has L∞ coefficients and acts on (M,E).
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(A5) Q has W 1,∞ coefficients and acts on (∂M, F1).
(A6) V is the closed subspace H 1

0 (M;E) ⊂ V ⊂ H 1(M;E) defined by

V := {u ∈ H 1(M;E) | u|∂M ∈ �(∂M;F1)}.

The family (ax) defines a section a of the bundle ((T ∗M⊗E)⊗(T ∗M⊗E))′. In general,
we say that a section a = (ax)x∈M is a bounded sesquilinear form on T ∗M ⊗ E if it is an
L∞-section of ((T ∗M ⊗ E)⊗ (T ∗M ⊗ E))′.

4.1.1 The Dirichlet (Sesquilinear) Form

Using our assumptions 4.1, we first define

Ba(u, v) :=
∫

M

a(∇u,∇v) dvolg, (6)

which is the Dirichlet form associated to a = (ax)x∈M . Then the Dirichlet form B : V ×
V → C associated to a, Q, and Q1 is

B(u, v) := Ba(u, v)+ (Q1u, v)L2(M;E) + (Qu|∂M, v|∂M)L2(∂M;F1)
, (7)

where, initially, u, v ∈ V ∩H∞(M;E), and then we then extend B to a sesquilinear linear
form B : V × V → C by continuity. In the future, we shall usually write (Qu, v)L2(∂M)

instead of (Qu|∂M, v|∂M)L2(∂M;F1).

4.1.2 The Induced Operator P̃

The continuous, sesquilinear form B : V × V → C defines a linear map (or operator)

P̃ : V −→ V ∗

〈P̃ (v), w〉 := B(v,w) , v, w ∈ V . (8)

If B = Ba , we shall denote by P̃a the associated operator. We note that B and P̃ depend on
the choice of the metric g, although this will typically not be shown in the notation, since
the metric will be fixed.

Definition 4.2 We shall say that a differential operator P̃ : V → V ∗ obtained as in Eq. 8 is
a second order differential operator in divergence form.

Recall that H−1(M;E∗) � H 1
0 (M;E)∗. Using the metric on E, we shall identify

H−1(M;E∗) � H−1(M;E). Since H 1
0 (M;E) ⊂ V , we obtain the natural map V ∗ →

H 1
0 (M;E)∗ � H−1(M;E∗), and hence P̃ gives rise to a map P : V → H−1(M;E∗).

Clearly, P does not depend on Q, whereas this is in general not the case for P̃ . In fact,
Q only enters in the boundary conditions, see Example 4.8. Similarly, P̃ extends to a map
P̃ : H 1(M;E)→ H 1(M;E)∗. We notice that P (and hence also P̃ ) determines the form a,
which is the principal symbol of P . We shall say that a is the sesquilinear form associated to
P . More precisely, let us identify ((T ∗M⊗E)⊗(T ∗M⊗E))′ � (T ∗M⊗T ∗M)′⊗End(E)

using the metric on E. Then the quadratic function

T ∗M � ξ → a(ξ, ξ) ∈ End(E) (9)
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is the principal symbol of P . In fact, it would be actually more natural to start with a ∈
T M ⊗ T M ⊗ End(E). However, as we always consider a metric on E, this makes not
difference for us.

In a certain way, P is the “true” differential operator associated to B, whereas P̃ includes,
in addition to P , also boundary terms. To better understand this statement as well as the
difference between P and P̃ , a calculation in local coordinates is contained in Example 4.8
below, see also [22, 46].

4.2 Variational Boundary Value Problems

We now examine the relation between the operators in divergence form (i.e. of the form
P̃ ) and boundary value problems. In particular, we discuss the weak formulation of the
Robin problem. See also [4, 43, 46, 51, 57, 58] for the weak formulation of boundary value
problems. We assume that we are given a decomposition

E|∂M = F0 ⊕ F1 (10)

of the restriction of E to the boundary into a direct sum of two vector bundles with totally
bounded curvature. We consider boundary differentials operators

Cj : H∞(M;E)→ L2(∂M;Fj ), (11)

where C0 is of order zero and C1 = C10 + C11∂ν , with C11 and C00 of order zero, ∂ν the
covariant normal derivative at the boundary in the direction of the outer unit normal vector
ν, and C10 only including derivatives tangential to ∂M . Each of the operators C0, C10, and
C11 factors through a map H∞(∂M;E|∂M) → L2(∂M;Fj ), which will be denoted with
the same symbol and we will assume to be differential operators with bounded coefficients.
If C−1

0 ∈ L∞(∂M;End(F0)) and C−1
11 ∈ L∞(∂M;End(F1)) we shall say that the boundary

conditions C = (C0, C1) are non-degenerate.
We are interested in boundary value problems of the form (1) where h = (h0, h1),

hj ∈ �(∂M;Fj ), and the relation Cu = h means C0u = h0 and C1u = h1. We shall regard
the boundary conditions (C0, C1) and (C′0, C′1) as equivalent if (C′0, C′1) = (D0C0,D1C1),
where Dj , for each j , is a bounded automorphism of Fj with bounded inverse. The two
sets of solutions of two equivalent boundary value problems are in a natural (continuous)
bijection, which justifies looking at equivalence classes of boundary value problems. More
precisely, let C and C′ be equivalent boundary value problems and (D0,D1) be the automor-
phisms implementing the equivalence. Assume C and C′ have totally bounded coefficients,
for simplicity, and let h0 ∈ Hk+1/2(∂M;F0), h1 ∈ Hk−1/2(∂M;F1), h := (h0, h1) and
h′ := (D0h0,D1h1). Then the boundary value problems Pu = f , Cu = h and Pu = f ,
C′u = h′ have the same solutions u ∈ Hk+1(M;E).

4.2.1 Definition of Variational Boundary Conditions

Let ej be the orthogonal projection onto Fj at the boundary. Also, let B be the basic
sesquilinear form defined in Eq. 7 of the previous subsection. Thus consider for the rest of
this paper

V := {u ∈ H 1(M;E) | e0u = 0 on ∂M}. (12)
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Spaces V of this form with e0 non-trivial (i.e. different from the restriction to some com-
ponents of the boundary) arises in the study of the Hodge-Laplacian and in the study of the
Ricci flow [61]. Let k ≥ 1. For any h ∈ Hk−1/2(∂M;F1) and f ∈ Hk−1(M;E), we let

F(v) :=
∫

M

(f, v) dvolg +
∫

∂M

(h, v) d vol∂g ,

where d vol∂g is the induced volume form on ∂M . Then F defines a linear functional on V

and hence an element of V ∗. We denote jk−1(f, h) := F the induced map

jk−1 : Hk−1(M;E)⊕Hk−1/2(∂M;F1)→ V ∗. (13)

The formula for F makes sense also for k = 0 and f = 0, in which case it is just the dual
map to the restriction at the boundary. Recall that all our differential operators, including
P̃ , have bounded coefficients.

Remark 4.3 We identify (T ∗M⊗E⊗T ∗M⊗E)′ with (T ∗M ⊗ T ∗M)′⊗End(E) using the
metrics on T M and E, respectively, as above. Then a(dr, dr) can be regarded as a section of
End(E)|∂M and we have on V that a(dr,∇.) = a(dr, dr)∂ν +Q′, where Q′ is a differential
operator on �(∂M;E|∂M) (that is, it does not involve normal derivatives at the boundary; it
involves only tangential derivatives).

Note that we are not assuming the bundles Fi to be orthogonal.

Remark 4.4 Let us assume, in the definition of B(u, v), Eq. 7, that u ∈ H 2(M;E) ∩ V .
Then we obtain

B(u, v) := (Pu, v)+
∫

∂M

(∂P
ν u, v)d vol∂g, (14)

where d vol∂g is the volume form on ∂M , as before. We have ∂P
ν u = e1a(dr, dr⊗∇νu)+Q,

a first order differential operator. We shall also denote ∂a
ν u := a(dr, dr ⊗ ∇νu), with u a

section of F1 over ∂M . For reasons of symmetry (to have a class of operators stable under
adjoints), one may want to consider in the minimal regularity case the following bilinear
form

B(u, v) := Ba(u, v)+ (Q1u, v)L2(M) + (u,Q2v)L2(M) + (Qu, v)L2(∂M).

In that case, the boundary operator ∂P
ν u will depend also on Q2. However, if our operators

have coefficients in W 1,∞, which is the case when dealing with regularity estimates, as in
this paper, then we can absorb Q2 into Q1 by taking adjoints, with the price of obtaining
an additional boundary term, which, nevertheless, can then be absorbed into Q. See also
Example 4.8, where the term Q2 was kept in the formula.

Lemma 4.5 Assume u ∈ H 2(M;E) and let P̃ be as in Eq. 8. The equation

P̃ (u) = jk−1(f, h) (15)

is then equivalent to the mixed Dirichlet/Robin boundary value problem⎧⎪⎨
⎪⎩

Pu = f in M

e0u = 0 on ∂M

e1∂
a
ν u+Qu = h on ∂M,

(16)

where ∂a
ν u := a(dr,∇u) as above.
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Proof Indeed, e0u = 0 on ∂M since u is in V , which is, by definition the domain of P̃ . Let
F := jk−1(f, h). The rest follows from Eq. 7, which gives

〈P̃ (u),w〉 − F(w) = B(u,w)−
∫

M

(f,w) dvolg −
∫

∂M

(h,w) d vol∂g

= (Pu− f,w)M −
∫

∂M

(∂a
ν u+Qu− h,w) d vol∂g .

The boundary conditions of this lemma will be the main object of study for us. As we
will see below in Proposition 4.7, these boundary conditions turn out to be, in fact, quite
general. Recall the following standard terminology.

Definition 4.6 We keep the notation of the Lemma 4.5. We shall say, as usual, that e0u = h0
are the Dirichlet boundary conditions and e1∂

a
ν u + Qu = h1 are the natural (or Robin)

boundary conditions. Also, we shall say that P and the boundary conditions (e0, e1∂
a
ν +Q)

of Eq. 16 are obtained from a variational formulation. We shall also say that (e0, e1∂
a
ν +Q)

are variational boundary conditions associated to P̃ .

Non-degenerate boundary conditions are equivalent to variational ones for suitable a, as
we will see below.

Proposition 4.7 Let P̃ be a second order differential operator in divergence form associ-
ated to a, regarded as a bounded, measurable section of T ∗M ⊗ T ∗M ⊗ End(E), such
that e1a(dr, dr)e1 is invertible in L∞(∂M;End(F1)). Let C = (C0, C1) be non-degenerate
boundary conditions. Then there is a first order differential operator Q with bounded coeffi-
cients such that the boundary conditions C and (e0, e1∂

a
ν +Q) are equivalent. In particular,

C is equivalent to some variational boundary conditions associated to P̃ .

This proposition justifies our choice to consider only boundary value problems of the
form (16) instead of the general form (1). Indeed, let P̃ be the differential operator in diver-
gence form with boundary conditions (e0, e1∂

a
ν + Q). Then the solutions of the equation

P̃ (u) = F are in a natural bijections to the solutions of the boundary value problem Pu = f

and Cu = h, where f and h depend linearly and continuously on F .

Proof Let C1 = C10+C11∂ν as explained after Eq. 11. We have C0e0 = C0 with C0 invert-
ible. Then, e1∂

a
ν+Q = e1a(dr, dr)e1∂ν+Q′ and e1a(dr, dr)e1C

−1
11 C1 = e1a(dr, dr)e1∂ν+

Q′′, where Q′ and Q′′ are first order differential operators on F1 with bounded coefficients.
Since Q (and hence also Q′) can be chosen arbitrarily with these properties, we can certainly
arrange that Q′ = Q′′ within the class of operators considered.

There is no good reason to chose C0 other than e0. On the other hand, there is no reason
to expect, in general, that C11 be invertible. However, if C11 is not invertible, the behavior
of the problem becomes completely different and, to the best of our knowledge, it is not
fully understood at this time (see, however, [54] and the references therein).

Example 4.8 Recall the operator P̃ from Eq. 8 and the related form B from Eq. 7. Let us
assume that M = U ⊂ R

m is a submanifold with boundary of dimension m. (Here ∂U

denotes the boundary of U as a manifold with boundary, not as a subset of Rm!) Let E =
C

N , F0 = C
N0 , and F1 = C

N1 be trivial bundles with N = N0 + N1—all equipped with
the standard metric. Finally, we assume that are matrix valued functions aij , bi, b

∗
j , c, d ∈
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L∞(U ;MN). We will assume that the metric on U is the euclidean metric, since this will
not really decrease the generality, but will simplify our notation. In this example, we choose

V := {u ∈ H 1(U)N | u1 = u2 = . . . = uN1 = 0 on ∂U}. (17)

We let a denote the bilinear form on C
mN associated to the matrix (aij ∈ (CN)∗⊗C

N)ij .
We have ∇i = ∂i since we are dealing with the trivial bundles with standard metric over the
euclidean space. Let Q = (Qkl)Nk,l=N1+1 be a matrix first order differential operator on ∂U

and (Pu)k be the kth component of Pu. This gives for all w ∈ V

〈P̃(a,Q)u,w〉 =
∫

U

a(∇u,∇w)dx +
∫

∂U

(Qu,w)dS

=
m∑

i,j=1

N∑
k,l=1

∫
U

akl
ij ∂j ul∂iwkdx +

∫
∂U

(Qu,w)dS,

where dS is the induced volume form on ∂U . In particular,

(P(a,Q)u)k = (Pau)k = −
m∑

i,j=1

N∑
l=1

∂i(a
kl
ij ∂j ul).

Let Q1u := ∑m
j=1 bj ∂ju + cu and Q2u := ∑m

i=1 b∗i ∂iu, let u, v ∈ C∞(U)N ∩ V , and let
ν be the outer, unit normal to ∂U . The formula

∫
U

(∂ju) dx = ∫
∂U

νju dS gives

〈P̃ (u),w〉 :=
∫

U

a(∇u,∇w)dx + (Q1u,w)U + (u,Q2w)U

+
N∑

k,l=N1+1

∫
∂U

Qkluk(x)wl(x)dS=
∫

U

Pu(x)w(x)dx+
∫

∂U

∂P
ν u(x)w(x)dS.

Let us extend Q to an N ×N -matrix by completing it with zeroes. In turn, this gives that

Pu = Pau+
m∑

j=1

bj ∂ju+ cu−
m∑

i=1

∂i(b
∗
i u)

and

(∂P
ν u)k :=

{ ∑N
l=N1+1

(∑m
ij=1 νia

kl
ij ∂j ul +∑

i νib
∗kl
i ul

)
+ (Qu)k if k > N1

0 otherwise.

If the coefficients b∗i are differentiable and F1 = 0, we can get rid of the operator Q2
by absorbing it into Q1. However, if these coefficients are not differentiable and we want a
class of operators that is closed under adjoints, then we need to include the Q2 term into the
definition of P (or, rather, P̃ ). Moreover, if F1 �= 0, we see that P̃ u contains an additional
term compared to Pu, meaning that P̃ u − Pu is a distribution supported on ∂U . Also, we
see that P̃ determines P , but not the other way around.

4.2.2 Uniformly Strongly Elliptic Operators

There are some classes of operators for which the conditions of Proposition 4.7 are almost
automatically satisfied. Recall the following standard terminology.
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Definition 4.9 We shall say that the operator P̃ : V → V ∗ defined using the sesquilinear
form B, see Eq. 8, is uniformly strongly elliptic if there exists ca > 0 such that

	(
a(η ⊗ ξ, η ⊗ ξ)

) ≥ ca‖η‖2‖ξ‖2

for all x and all ξ ∈ Ex and η ∈ T ∗x M . The associated operator P will be called uniformly
strongly elliptic. A family of operators is called uniformly strongly elliptic if each operator
is uniformly strongly elliptic and we can choose the same constant ca for all operators in the
family. We shall say that P̃ is uniformly elliptic if there exists ce > 0 such that, for every
ξ ∈ Ex , there exists ξ1 ∈ Ex , ‖ξ1‖ = ‖ξ‖, such that∣∣a(η ⊗ ξ, η ⊗ ξ1)

∣∣ ≥ ce‖η‖2‖ξ‖2

for all x and η ∈ T ∗x M .

Note that in the above definition, we have taken advantage of the fact that our operator
acts on sections of the same bundle. For operators acting between sections of different bun-
dles, the definition will change in an obvious way (replacing the injectivity of the principal
symbol with its invertibility). We see that if P is uniformly strongly elliptic, then e1a(ν, ν)e1
is invertible in L∞(∂M;End(F1)). (If e1 = 1, i.e. if F = E|∂M , it is enough to assume that
a is uniformly elliptic. We agree that if F1 is the zero bundle on some component of ∂M ,
then we consider every endomorphism of it to be invertible on that set.)

4.2.3 The Scale of Regularity for Boundary Value Problems

Let P be associated to B as in Eq. 8 and V be as in Eq. 12. We define

Ȟ �−1(M;E) :=
{

H�−1(M;E)⊕H�−1/2(∂M;F1) for � ≥ 1
V ∗ for � = 0.

The natural exact sequence 0 → H−1/2(∂M;F1) → V ∗ → H−1(M;E) → 0, where the
second map is induced by the trace map, see Theorem 2.13, shows that we have a natural
scale of regularity spaces. In particular, Ȟ �+1(M;E) ⊂ Ȟ �(M;E), � ≥ 0. In general, the
natural inclusion Ȟ �(M;E) → Ȟ−1(M;E) := V ∗ is given by the operators j� defined in
Eq. 13. Let P̃� : H�+1(M;E) ∩ V → Ȟ �−1(M;E) be given by

P̃�(u) := (Pu, e1∂
a
ν u+Qu) for� ≥ 1. (18)

Then the relation between P̃� and P̃ is by Eq. 15 expressed in the commutativity of the
diagram

H�+1(M;E) ∩ V
P̃�−−−−→ Ȟ �−1(M;E)⏐⏐�

⏐⏐�j�−1

H 1(M;E) ∩ V
P̃−−−−→ Ȟ−1(M;E)

(19)

where the vertical arrows are the natural inclusions. Thus, although the definition of P̃0 :=
P̃ : H 1(M;E)∩ V → Ȟ−1(M;E) is different from that of P̃� for � > 0, it fits into a scale
of regularity spaces.

4.3 Regularity Conditions

The scale of regularity spaces provides a good setting to study regularity conditions
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Notation 4.10 We shall denote by D�,j (M;E) the set of pairs (D, C), where D is a second
order differential operator defined on sections of E → M and C is an order j boundary
condition, with both D and C assumed to have coefficients in W�,∞. In case M has no
boundary (and thus there are no boundary conditions), we shall denote the resulting space
D�,∅(M;E). If E := C (that is, if we are dealing with scalar boundary value problems),
then we shall drop the vector bundle from the notation.

The assumption that C is an order j boundary condition implies that E|∂M = Fj , and
hence that F1−j = 0. The general case just involves a more complicated notation. We endow
the space D�,j (M;E) with the norm defined by the maximum of the W�,∞-norms of the
coefficients. Recall the following definition:

Definition 4.11 We say that (D, C) ∈ D�,j (M;E), � ≥ j+1, satisfies an H�+1-regularity
estimate on M if there exists cR > 0 with the following property: For any w ∈ Hk(M;E),
� ≥ k ≥ j + 1, with compact support in M such that Dw ∈ Hk−1(M;E) and Cw ∈
Hk−j+1/2(∂M;E), we have w ∈ Hk+1(M;E) and

‖w‖Hk+1(M;E) ≤ cR

(‖Dw‖Hk−1(M;E) + ‖w‖Hk(M;E) + ‖Cw‖Hk−j+1/2(∂M;E)

)
.

If D ∈ D�,∅(M;E), we just drop the term ‖Cw‖Hk−j+1/2(∂M;E). If j = 1 and if (D, C)

are obtained from a variational formulation, then we allow also � = 1, with the relations
Dw ∈ L2(M;E) and Cw ∈ H 1/2(∂M;E) being replaced with D̃w = j0(f, h), with
(f, h) ∈ L2(M;E)⊕H 1/2(∂M;E) and the estimate is replaced with

‖w‖H 2(M;E) ≤ cR

(‖f ‖L2(M;E) + ‖w‖H 1(M;E) + ‖h‖H 1/2(∂M;E)

)
,

in which case we also say that D̃ satisfies an H�+1-regularity estimate on M .

The following comments on this definition are in order.

Remark 4.12 (i) The condition that w have compact support in M does not imply that it
vanishes near the boundary ∂M .

(ii) Typically, we shall consider boundary value problems coming from a variational
formulation, but, at this time, it is not necessary to make this assumption.

(iii) The conditions that D and C have coefficients in W�,∞ are needed so that Dw ∈
Hk−1(M;E) and Cw ∈ Hk−j+1/2(∂M;E) for w ∈ Hk+1(M;E), k ≤ �.

(iv) Let (D′, C′) ∈ D�,j (M;E) be a second boundary value problem such that D − D′
has order < 2 and C − C′ has order < j . Then (D, C) satisfies an H�+1-regularity
estimate on M if, and only if, (D′, C′) does so.

Remark 4.13 The careful reader might have noticed already that, apart from notation, we
have not really used the fact that our operator is second order, except maybe in Proposition
4.7. For instance, for an order 2m problem, one would consider

a ∈ L∞(M; T ⊗mM ⊗ T ⊗mM ⊗ End(E)),

but the form B would involve several boundary terms relating the normal derivatives at the
boundary. For V we would take an intermediate subspace Hm

0 (M;E) ⊂ V ⊂ Hm(M;E).
This could be given by a sub-bundle F1 ⊂ Em

∂M representing the possible values of
(u, ∂νu, . . . , ∂m−1

ν u) at the boundary:

V := {u ∈ Hm(M;E) | (u, ∂νu, . . . , ∂m−1
ν u) ∈ L∞(∂M;F1)}.
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Nevertheless, non-local conditions are also important [47]. One could then proceed to deal
with higher order problems as in [46], for instance. Since Proposition 4.7 plays an important
role in justifying our choice of essentially always using variational boundary value con-
ditions and in view of the many complications that arise when dealing with higher order
problems (see [2, 46, 60, 62]), we decided to restrict ourselves to the case of second order
operators. See also Remark 7.3.

5 Uniform Regularity Estimates for Families

We shall consider the same framework as in the previous section, in particular, (M, g)

will continue to be a Riemannian manifold with smooth boundary ∂M such that T M has
totally bounded curvature. Also, we continue to assume that E → M has totally bounded
curvature.

5.1 Compact Families of Boundary Value Problems

We use the same notation as in the previous section. In particular, B, P̃ , P , a, e1∂
a
ν + Q,

C = (C0, C1), and F0 ⊕ F1 = E|∂M are as in the previous section. In particular, P̃ will
always represent a second order differential operator in divergence form associated to the
sesquilinear form a; in particular, (the quadratic map associated to) a is the principal symbol
of P .

We shall need a uniform version of Definition 4.11.

Definition 5.1 Let S ⊂ D�,j (M;E) and N ⊂ M a submanifold with boundary ∂N =
∂M ∩N of M . We shall say that S satisfies a uniform H�+1-regularity estimate on N ⊂ M

if each (D, C) ∈ S satisfies an H�+1-regularity estimate on N ⊂ M with a bound cR (in
Definition 4.11) independent of (D, C) ∈ S. If S ⊂ D�,∅(M;E), we just consider D ∈ S.

Note that S in the above definition is not assumed to be bounded. However, typically,
we shall obtain the independence of the bound cR by assuming also that S is compact (or,
sometimes, just precompact).

Proposition 5.2 Assume that S ⊂ D�,j (M;E) is compact and that each (D, C) satis-
fies an H�+1-regularity estimate on M . Also, assume that the restriction Hj(M;E) →
Hj−1/2(∂M;E) is continuous for all j ≥ 1. Then S satisfies a uniform H�+1-regularity
estimate on M . The same result holds if S ⊂ D�,∅(M;E).

The assumption that the restriction (trace map) Hj(M;E) → Hj−1/2(∂M;E) is con-
tinuous for all j ≥ 1 is, of course, satisfied if M is an open subset of a manifold with
boundary and bounded geometry M0 [36] (see Theorem 2.13). In particular, this is the case
if M is the domain of a Fermi coordinate chart. Also, note that here the boundary is in the
sense of manifolds with boundary, and not in the sense of point-set topology.

Proof Consider first the case S ⊂ D�,j (M;E). Let us assume the contrary and show that
we obtain a contradiction. That is, let us assume that there exist sequences (Di, Ci) ∈ S and
wi ∈ Hk+1(M;E), with compact support in M , such that

‖wi‖Hk+1(M;E) > 2i
(‖Diwi‖Hk−1(M;E) + ‖wi‖Hk(M;E) + ‖Ciwi‖Hk−j+1/2(∂M;E)

)
.
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Since S forms a compact subset inD�,j (M;E), by replacing (Di, Ci) with a subsequence, if
necessary, we can assume that (Di, Ci) converges. Let us denote the limit with (D, C) ∈ S.
Thus, there is a sequence εi → 0 with

‖Diw‖Hk−1(M;E) ≥ ‖Dw‖Hk−1(M;E) − εi‖w‖Hk+1(M;E),

‖Ciw‖
H

k−j+ 1
2 (∂M;E)

≥ ‖Cw‖
H

k−j+ 1
2 (∂M;E)

− εi‖w‖
H

k+ 1
2 (∂M;E)

.

Together with the assumed continuity of the trace map, this implies that there exists c′ > 0
such that

‖wi‖Hk+1(M;E) > 2i
(‖Dwi‖Hk−1(M;E) + ‖wi‖Hk(M;E) + ‖Cwi‖Hk−j+1/2(∂M;E)

−c′εi‖wi‖Hk+1(M;E)

)
,

for all i. On the other hand, (D, C) satisfies, by assumption, an Hk+1- regularity estimate.
Consequently, there is a c > 0 such that

‖Dwi‖Hk−1(M;E) + ‖wi‖Hk(M;E) + ‖Cwi‖Hk−j+1/2(∂M;E) ≥ c−1‖wi‖Hk+1(M;E) ,

and hence we obtain

‖wi‖Hk+1(M;E) ≥ 2i (c−1 − c′εi)‖wi‖Hk+1(M;E) .

For i → ∞, this gives the desired contradiction since 2i (c−1 − c′εi) → ∞, for i → ∞,
and ‖wi‖Hk+1(M;E) �= 0. This completes the proof if S ⊂ D�,j (M;E).

If S ⊂ D�,∅(M;E), the proof is obtained by simply dropping the terms that contain Cw

from the above proof. (We can further replace 2εi with εi , but that is not essential.)

Recall that a relatively compact subset is a subset whose closure is compact.

Proposition 5.3 Let N ⊂ M be a relatively compact open subset and let S ⊂
D�+1,j (M;E) be a bounded subset. Assume that every D�,j (N;E)–limit (D̃, C̃) of a
sequence (Di, Ci) ∈ S satisfies an H�+1-regularity estimate on N . Then S satisfies a
uniform H�+1-regularity estimate on N . The same result holds if S ⊂ D�+1,∅(M;E).

We remark that in this proposition the compactness condition of Proposition 5.2 is
replaced by a higher regularity assumption on the coefficients. This is needed in order to
use the Arzela-Ascoli Theorem. Moreover, we note that by choosing a constant sequence,
we see that the assumptions imply that each element in S satisfies an H�+1-regularity esti-
mate on N . We also note that (D̃, C̃) in the statement automatically satisfies (D̃, C̃) ∈
D�,j (N;E).

Proof of Proposition 5.3 We treat explicitly only the case S ⊂ D�+1,j (M;E), the case
S ⊂ D�+1,∅(M;E) being completely similar. Since the coefficients of all boundary value
problems in S are bounded in W�+1,∞(M), the set of coefficients of the operators (D, C) ∈
S is precompact in W�,∞(N), by the Arzela-Ascoli theorem. Let K be the closure of S

in D�,j (N,E), which is therefore a compact set. Moreover, our assumptions imply that
every element in K satisfies an H�+1-regularity estimate. Proposition 5.2 then implies the
result.

We shall need the following lemma.
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Lemma 5.4 Let S ⊂ D�,j (M;E) satisfy a uniform H�+1-regularity estimate on M . If
N ⊂ M is an open subset, then S satisfies a uniform H�+1-regularity estimate on N . The
same result holds in the boundaryless case.

Proof Let w ∈ Hk(N;E) with compact support. Then w ∈ Hk(M;E) and the uniform
regularity estimate for w on M yields the desired result.

Remark 5.5 To deal with the general case when C is not a boundary condition of fixed
order j , but rather combines a boundary condition C1 of order one and a boundary con-
dition C0 of order zero, we just replace ‖Cw‖Hk−j+1/2(∂M;E) with ‖C1w‖Hk−1/2(∂M;E) +
‖C0w‖Hk+1/2(∂M;E). In this case, we may have that both F0 �= 0 and F1 �= 0.

5.2 Higher Regularity and Bounded Geometry

The relevance of uniform regularity conditions introduced in Section 5 is that it allows us
to obtain higher regularity on manifolds with boundary and bounded geometry and suitable
boundary conditions as follows.

Let (M, g) be a Riemannian manifold with boundary and bounded geometry, as before.
Let (P, C) be a boundary value problem on M . We shall assume that (P, C) comes from a
variational formulation, since most of the results will require this assumption. (This means
that if C = (C0, C1), then P̃ can be identified with (P, C1) and C0 is simply the projection
onto F0 at the boundary.) We assume, for notational simplicity, that C has constant order j

at the boundary. For the same reasons, we also assume P acts and takes values in the same
vector bundle E (that is, E1 = E), as before. The results of this subsection hold, however,
in full generality (when the vector bundles E, E1, and F of Section 5 are distinct), but with
some obvious changes. Let 0 < r ≤ rFC , as in Definition 2.7. Recall that Up and κp from
Eq. 4 and ξp from Definition 2.11 are such that either p ∈ ∂M or dist(p, ∂M) ≥ r . We
denote by (Pp, Cp) the induced boundary value problems on κ−1

p (Up) = Bm
2r (0)× [0, 2r),

if p ∈ ∂M . Then Pp = ξ∗p ◦ P ◦ (ξp)∗ and Cp = ξ∗p ◦C ◦ (ξp)∗, with the obvious notation,
meaning that the operators correspond through the diffeomorphisms ξp. If dist(p, ∂M) ≥ r ,
there is no Cp and we obtain a differential operator Pp on Bm+1

r (0). Let t denote the rank
of E and let

Fb := {(Pp, Cp)| p ∈ ∂M} ⊂ D0,j (Bm
2r (0)× [0, 2r);Ct )

Fi := {(Pp)| dist(p, ∂M) ≥ r} ⊂ D0,∅(Bm+1
r (0);Ct ), (20)

be the induced boundary and interior families of operators. Note that we always equip
Bm

2r (0)× [0, 2r), (respectively, Bm+1
r (0)) with the euclidean metric.

Theorem 5.6 Let (M, g) be a Riemannian manifold with boundary and bounded geom-
etry and let E → M be a Hermitian vector bundle with totally bounded curvature.
Let (P, C) ∈ D�,j (M;E). If each of the families Fb := {(Pp, Cp)| p ∈ ∂M} and
Fi := {Pp| dist(p, ∂M) ≥ r} (see Eq. 20 and above) satisfy a uniform H�+1-regularity
estimate, then (P, C) satisfies an H�+1-regularity estimate. The converse is also true.

Proof This follows from Definition 4.11 of uniform order k regularity estimates, from
Proposition 2.12, and from Lemma 3.6. Let us choose the r-uniform partition of unity φγ
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used in those results such that ∂νφγ vanishes at the boundary. This can be done first by
choosing an r-uniform partition of unity on ∂M .

‖u‖2
Hk+1 �

∑
γ

‖ξ∗γ (φγ u)‖2
Hk+1

�
∑
γ

(
‖Pγ ξ∗γ (φγ u)‖Hk−1 + ‖Cγ ξ∗γ (φγ u)‖

H
k−j+ 1

2
+ ‖ξ∗γ (φγ u)‖Hk

)2

�
∑
γ

(
‖ξ∗γ P (φγ u)‖2

Hk−1 + ‖ξ∗γ C(φγ u)‖2

H
k−j+ 1

2
+ ‖ξ∗γ (φγ u)‖2

Hk

)

� (‖Pu‖2
Hk−1 + ‖Cu‖2

H
k−j+ 1

2
+ ‖u‖Hk )

2 +
∑
γ

‖[P, φγ ]u‖2
Hk−1

+
∑
γ

‖[C, φγ ]u‖2

H
k−j+ 1

2
,

since the trivializations ξγ have uniformly bounded norms. Next we notice that∑
γ ‖[P, φγ ]u‖2

Hk−1 � ‖u‖2
Hk since the family φγ is uniformly locally finite and by Lemma

3.6. The boundary term is treated similarly:
∑

γ ‖[C, φγ ]u‖2

H
k−j− 1

2
� ‖u‖2

H
k− 1

2
� ‖u‖2

Hk .

Here the last inequality is given by the trace theorem. For the first inequality we note that for
j = 0 the commutator is actually zero. For j = 1 we have [C, φγ ] = [C10, φγ ] since multi-
plication by φγ and ∂ν commute, given the product form of φγ near the boundary. Together
with Lemma 3.6, this completes the proof.

Remark 5.7 The method of proof of Theorem 5.6 will yield similar global results in other
classes of spaces, as long as the local regularity results are available and as long as a local
description of these spaces using partitions of unity is available. This is the case for the Lp-
Sobolev spaces, 1 < p < ∞, for which we have both the local description using partitions
of unity (Proposition 2.12) and the local regularity results [33].

5.3 Regularity for Dirichlet Boundary Conditions

The results of the previous two sections were tailored to deal with the Dirichlet boundary
conditions. It is known [3, 4, 66] that strongly elliptic operators with Dirichlet boundary
conditions satisfy regularity conditions. We formulate this well-known result as a lemma
for further use. As before, E → M will be a vector bundle with bounded geometry.

Lemma 5.8 Let (P, C) ∈ D�,0(Bm
r (0) × [0, r);E), 0 < r ≤ ∞, be a uniformly strongly

elliptic boundary value problem with Dirichlet boundary conditions. Then P satisfies an
H�+1-regularity estimate on M . The same result holds for a uniformly elliptic operator
P ∈ D�,∅(Bm

r (0);E), 0 < r ≤ ∞.

From this we obtain

Corollary 5.9 Let S ⊂ D�+1,0(Bm
r (0)×[0, r);E) be a bounded, uniformly strongly elliptic

family of boundary value problems on Bm
r (0)×[0, r) ⊂ R

m+1 equipped with the euclidean
metric, r ≤ ∞. We assume that the boundary conditions are all Dirichlet. Then the family
S satisfies a uniform H�+1-regularity estimate on Bm

r ′ (0)× [0, r ′), r ′ < r .
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Proof Let (Dn, Cn) ∈ S converge to (D,C) ∈ D�,j (Bm
r ′ (0) × [0, r ′);E). Then D is a

uniformly strongly elliptic operator because the parameter ca stays away from 0 on S, in
view of Definition 4.9. Lemma 5.8, then gives that (D,C) satisfies an H�+1-regularity
estimate, since the type of boundary conditions (Dirichlet or Neumann) do not change by
taking limits. This allows us to use Proposition 5.3 for the relatively compact subset N :=
Bm

r ′ (0)× [0, r ′) of M := Bm
r (0)× [0, r) to obtain the result.

Analogously, (in fact, even more directly, since we do not have to take boundary
conditions into account), we obtain

Corollary 5.10 Let S ⊂ D�+1,∅(Bm+1
r (0);E) be a bounded uniformly elliptic family of

differential operators on Bm+1
r (0) ⊂ R

m+1, for some 0 < r ≤ ∞. Then the family S

satisfies a uniform H�+1-regularity estimate on Bm+1
r ′ (0) ⊂ R

m+1 for any r ′ < r .

Remark 5.11 The regularity results of this section extend to the Lp-Sobolev spaces W�,p ,
1 < p <∞, with essentially the same proofs by using also the results in [33].

Note that in Corollaries 5.9 and 5.10 we use a slightly stronger assumption on the coef-
ficients of our operators than usually, namely we require them to have W�+1,∞-regularity
(usually we require only W�,∞-regularity). This is required since we will use Proposition
5.3. Combining these result, we obtain the following.

Theorem 5.12 Let P be a uniformly strongly elliptic second order differential operator with
coefficients in W�+1,∞ acting on sections of E → M . Then there exists c > 0 such that, if
u ∈ H�(M;E), Pu ∈ H�−1(M;E), and u|∂M ∈ H�+1/2(∂M;E), then u ∈ H�+1(M;E)

and

‖u‖H�+1(M;E) ≤ c
(‖Pu‖H�−1(M;E) + ‖u‖H�(M;E) + ‖u‖H�+1/2(∂M;E)

)
.

Proof Corollaries 5.9 and 5.10 show that the assumptions of Theorem 5.6 are satisfied. That
theorem immediately gives our result.

An alternative proof of this result is obtained using the methods of Section 7. The
advantage of the method used in this section is that it applies right away to higher order
equations.

6 A Uniform Shapiro-Lopatinski Regularity Condition

The case of Neumann boundary conditions seems to be different (at least for systems, see
[3, 4, 66, 67]). This case, as well as that of Robin boundary conditions motivates, in part,
the results of this section. In particular, we introduce a uniform version of the Shapiro-
Lopatinski condition [2–4, 23, 39, 48, 55, 66], which turns out to characterize the operators
satisfying regularity. Our approach has several points in common to the ones in [46, 60]. To
deal with the concrete case of Robin (and Neumann) boundary conditions, we use positivity
to check that the uniform Shapiro-Lopatinski regularity conditions are satisfied.
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6.1 Homogeneous Sobolev Spaces and Regularity Conditions

We need first the following homogeneous (with respect to dilations) versions of the usual
Sobolev spaces. This setting was used for similar purposes in [60]. For simplicity, we work
in R

n, but the same considerations apply to any vector space V endowed with a metric (or
a half-vector space V+ ⊂ V ). (See, however, Eq. 29 for the dependence of the norms on the
choice of the metric.)

Let û be the Fourier transform of u, regarded as a tempered distribution (the normaliza-
tions are not important here). Consider the semi-norm

|u|2Hs(Rn) :=
∫
Rn

|ξ |2s |û(ξ)|2dξ, (21)

and
•
Hs(Rn) := {u | |u|Hs(Rn) < ∞}. Here u is such that |ξ |s |û(ξ)| is a function (but

|û(ξ)| is not assumed to be a function, which allows us to include polynomials of low

degree in
•
Hs(Rn)). When s ∈ Z+, the seminorm |u|Hs(Rn) is equivalent to the (usual)∑

|α|=s ‖∂αu‖L2(Rn), which allows us to define in this case also |u|Hs(Rn+) for a function

u defined only on a half-space of the form R
n+ := R

n−1 × [0,∞). In what follows, we
shall write simply | · |Hs for the above semi-norms. The reason for considering the semi-

norms | · |Hs and the spaces
•
Hs(Rn) is that they have good dilation properties (see the next

lemma). These definitions extend right away to functions with values in C
N yielding the

spaces
•
Hs(Rn;CN) = •

Hs(Rn)N .

Lemma 6.1 Let s > 0.

(i) Let αt (f )(s) = f (ts), then |αt (f )|Hs = t s−n/2|f |Hs .
(ii) limt→∞ t−s+n/2‖αt (f )‖Hs = |f |Hs .

(iii) If T is an order k, homogeneous, constant coefficient differential operator, then it

defines continuous maps T : •Hs(Rn)→ •
Hs−k(Rn).

(iv) If s ∈ N, the restrictions
•
Hs(Rn) → •

Hs(Rn+) and
•
Hs(Rn) → •

Hs−1/2(Rn−1)

are continuous and surjective and, if also T is as in (iii) and has order k ≤ s,

T : •Hs(Rn+)→ •
Hs−k(Rn+) is continuous.

Proof The proof is standard [28, 40, 46, 66] and easy. We include a few details for the
benefit of the reader.

(i), (ii), and (iii) are direct calculations based on the definition and the formulas for the
norms in terms of the Fourier transform.

(iv) is slightly less trivial, but it is known in the classical case and our case can either
be proved directly following the same method as in the case of the classical Sobolev spaces
or it can be reduced to the classical Sobolev spaces using (ii). Indeed, for the continuity,
this is immediate, as the restriction maps commute with αt . For the surjectivity, one has
to argue also that there exist right inverses for the restriction that are αt -invariant. This is
done by choosing a partition of unity that is invariant with respect to α2 and then choosing
a right inverse to the restriction on one coordinate patch that is continuous for the classical
norms. We replicate this right inverse for all patches using α2. This yields a continuous right
inverse Hs−1/2(Rn−1/2)→ Hs(Rn) for the restriction Hs(Rn)→ Hs−1/2(Rn−1/2) that is,
moreover, invariant for α2. We obtain a fully R

∗+-invariant inverse by integrating over the
compact group R

∗+/2Z. This right inverse will work also for the homogeneous spaces.
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Let D be an N ×N matrix of second order differential operators on Bm
r (0)× [0, r), and

let C be a boundary differential operator of order j . Assume the coefficients have W�,∞
smoothness, that is, that (D, C) ∈ D�,j (Bm

r (0) × [0, r);CN). Here r > 0, and the case
r = ∞ is not excluded.

Definition 6.2 Let � ≥ j + 1. We shall say that (D, C) ∈ D�,j (Bm
r (0) × [0, r);CN)

satisfies an
•
H�+1-regularity estimate on Bm

r (0)× [0, r) if there exists cSL such that for all
� ≥ k ≥ j + 1, we have

|w|
Hk+1(Rm+1+ )

≤ cSL

(
|Dw|

Hk−1(Rm+1+ )
+ |Cw|Hk−j+1/2(Rm)

)
,

for all w smooth with compact support in Bm
r (0) × [0, r), where we have removed the

vector bundle from the notation for the norms. If (D,C) are obtained from a variational
formulation, then we allow also � = k = j = 1 and in that case we assume that D̃w =
j0(f, h) and we replace the right hand side with |f |

L2(Rm+1+ )
+ |h|H 1/2(Rm). This case is,

in fact, crucial in applications, since it is the one obtained using coercivity to prove well-
posedness.

This definition is very similar to Definition 4.11, except that we consider semi-norms
instead of norms. Also, we only require w to be smooth. However, an operator satisfying
the conditions in Definition 6.2, will satisfy also those of Definition 4.11. We formulate this
result as a lemma, for further use.

Lemma 6.3 Assume (D, C) ∈ D�,j (Bm
r (0) × [0, r);CN) satisfies an

•
H�+1(Bm

r (0) ×
[0, r))N -regularity estimate, then it satisfies an H�+1-regularity estimate for all � ≥ j + 1
(� ≥ j if C is a variational boundary condition). This result extends to uniform conditions.

Proof Denote M = Bm
r (0)× [0, r) for the simplicity of the notation. Assume first that k ≥

2. Let w ∈ �(M;E) be smooth with compact support in M such that Dw ∈ Hk−1(M;E)

and Cw ∈ Hk−j+1/2(∂M;E). We need to show that w ∈ Hk+1(M;E). We have

‖w‖Hk+1(M;E) ≤ |w|Hk+1(M;E) + ‖w‖Hk(M;E)

≤ cSL

(|Dw|Hk−1 + |Cw|Hk−j+1/2(∂M;E)

)+ ‖w‖Hk(M;E)

≤ c
(‖Dw‖Hk−1(M;E) + ‖w‖Hk(M;E) + ‖Cw‖Hk−j+1/2(∂M;E)

)
.

This result is extended to w ∈ Hk(M;E) by a continuity and density argument using
mollifying functions. The proof for k = j = 1 and variational boundary conditions is
similar.

Remark 6.4 Let us assume that r = ∞ and consider the map

(D, C) : •Hk+1(Rm+1+ )N → •
Hk−1(Rm+1+ )N ⊕ •

Hk−j+1/2(Rm)N, (22)

given by (D, C)(u) = (Du, Cu). Then (D, C) satisfies an
•
H�+1(Rm+1+ )N –regularity esti-

mate if, and only if, (D, C) is injective with closed range for all j+1 ≤ k ≤ �. Equivalently,
we have that (D, C) is injective and its minimal reduced module γ (D, C) > 0, see
Section 3.1. (In this case, the number γ (D,C) is the least cSL in Definition 6.2.) In case D

and C have constant coefficients, this is similar to the Shapiro-Lopatinski condition.
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6.2 A Global Shapiro-Lopatinski Regularity Condition

Let us assume first that we are on a Euclidean space and that D = ∑
|α|≤2 aα∂α , with aα

smooth, matrix valued functions. Recall that j is the order of the boundary conditions and
that we assume for simplicity, that only one of the vector bundles F0 and F1 (from E|∂M =
F0 ⊕ F1) is non-zero. Thus, according to our notational convention, if j = 0, C = C0 is
a smooth, matrix valued function on Bm

r (0) and, if j = 1, C = C1 = C10 + C11∂ν , with
C10 = ∑

|α|≤1 cα∂α a first order differential operator on Bm
r (0) and C11 a smooth, matrix

valued function on Bm
r (0). Here ∂ν = −∂n is the outward pointing normal derivative, where

∂n is the partial derivative with respect to the last variable. We denote by (D(0), C(0)) the
principal part of (D,C) with coefficients frozen at 0, that is,

D(0) :=
∑
|α|=2

aα(0)∂α (23)

C
(0)
0 := C0(0), ifj = 0, (24)

C
(0)
1 :=

∑
|α|=1

cα(0)∂α + C0(0)∂ν, ifj = 1. (25)

Thus (D(0), C(0)) is a homogeneous, constant coefficient boundary value problem on R
m+1+ .

In case both F0 and F1 are non-zero, we let C(0) = (C
(0)
0 , C

(0)
1 ).

Motivated by Remark 6.4, we introduce the following definition.

Definition 6.5 We shall say that (D,C) ∈ D�,j (Bm
r (0) × [0, r);CN) satisfies the H�+1-

Shapiro-Lopatinski regularity condition at 0 if (D(0), C(0)) satisfies an
•
H�+1(Rm+1+ )N -

regularity estimate.

Let us turn now to the case of a manifold with boundary. As noticed already, all

the needed definitions and concepts (homogeneous Sobolev spaces
•
H�+1(V ;E) and

•
H�+1(V+;E), regularity conditions, ... ) extend to a vector space (respectively, half-vector
space) endowed with a metric. For instance, we define the principal part with coefficients
frozen at a boundary point as follows.

Notation 6.6 Let T +x M be the half-space of TxM corresponding to the inward pointing
vectors at x ∈ ∂M . Let (Dx, Cx) be the induced operator (defined only a neighborhood of
0) on T +x M . The principal part (D

(0)
x , C

(0)
x ) of (Dx, Cx) with coefficients frozen at x will

then be a matrix of constant coefficient differential operators on T +x M .

Most importantly, the above definition (Definition 6.5) generalizes to (D, C) ∈
D�,j (M;E) and any point x ∈ ∂M .

Definition 6.7 We shall say that (D,C) ∈ D�,j (M;E) satisfies the H�+1-Shapiro-
Lopatinski regularity condition at x ∈ ∂M if (D

(0)
x , C

(0)
x ) satisfies the H�+1-Shapiro-

Lopatinski regularity condition at 0 on T +x M .

The above condition is closely related to the condition of “regularity upon freezing the
coefficients” introduced in [66, Equation (11.30)] and used, for instance, in [50]. We are
ready now to globalize the Shapiro-Lopatinski regularity condition.
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Definition 6.8 We shall say that (D,C) ∈ D�,j (M;E) satisfies a uniform H�+1-
Shapiro-Lopatinski regularity condition (at ∂M) if it satisfies the H�+1-Shapiro-Lopatinski
regularity condition at x for each x ∈ ∂M and the constant cSL of Definition 6.2 can be
chosen independently of x ∈ ∂M .

In particular, the constant cSL depends and scales with the metric; see Eq. 29 for the
precise dependence on the metric. We thus see that (D, C) ∈ D�,j (M;E) satisfies the
uniform, H�+1-Shapiro-Lopatinski regularity condition (at ∂M) if there exists cSL > 0 such
that, for all x ∈ ∂M and all 1 ≤ k ≤ �, we have

|w|Hk+1(T +x M) ≤ cSL

(
|D(0)

x w|Hk−1(T +x M) + |C(0)
x w|Hk−j+1/2(Tx∂M)

)
. (26)

We now apply these notions to a manifold M with boundary and bounded geometry.
For any x ∈ M , we denote by (Dx, Cx) (or simply by Dx , if x /∈ ∂M) the operators
(respectively, operator) on Bm

r (0) × [0, r) (respectively, on Bm
r (0)) induced by (D, C)

(respectively, by D) in Fermi coordinates around x. We let Fb = {(Dx, Cx) | x ∈ ∂M} and
Fi = {Dx | dist(x, ∂M) ≥ r}, as in Eq. 20. We have the following theorem.

Theorem 6.9 Assume that M is a manifold with boundary and bounded geometry and that
E → M is a vector bundle with bounded geometry. Let (D, C) ∈ D�+1,j (M;E). The
following are equivalent.

(i) (D, C) satisfies an H�+1-regularity estimate on M .
(ii) The family Fb ∪ Fi = {(Dx, Cx) | x ∈ ∂M} ∪ {Dx | dist(x, ∂M) ≥ r} satisfies a

uniform H�+1-regularity estimate.
(iii) D is uniformly elliptic onM and (D, C) satisfies a uniformH�+1-Shapiro-Lopatinski

regularity condition (at ∂M).
(iv) D is uniformly elliptic and (D,C) satisfies a uniform H 2-Shapiro-Lopatinski regu-

larity condition (at ∂M).

If (D, C) are obtained from a variational formulation, then the above conditions are
equivalent also to

(v) D is uniformly elliptic and (D, C) satisfies a uniform H 1-Shapiro-Lopatinski regular-
ity condition (at ∂M).

Note that usually we assume (D,C) ∈ D�,j (M;E), whereas here we assume (D, C) ∈
D�+1,j (M;E). This is needed for the proof of (iii)⇒ (i).

Proof The implication (i) ⇒ (ii) follows from the definitions by localization. (This is the
converse of Theorem 5.6.)

To obtain (ii) ⇒ (iii) for each x ∈ ∂M , we consider ξ with compact support on T +x M

and ξε(v) = ξ(ε−1v). Using a chart around x with Fermi coordinates as in Section 2.3
and using the corresponding bounds of the transition function, the uniform H�+1-regularity
estimate for each ε > 0 from Definition 4.11 implies

εk+1−n/2 ‖ξε‖Hk+1(T +x M;E) ≤ εk+1−n/2c̄R

(
‖ξε‖Hk(T +x M;E)

+εk+1−n/2‖Dxξε‖Hk−1(T +x M;E) + ‖Cxξε‖Hk−j+1/2(∂T +x M;E)

)

Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems... 435



for some c̄R independent on x. Passing to the limit as ε → 0 and using Lemma 6.1(ii) we
obtain

|ξ |Hk+1(T +x M;E) ≤ c̄R

(
|D(0)

x ξ |Hk−1(T +x M;E) + |C(0)
x ξ |Hk−j+1/2(∂T +x M;|E)

)
.

This gives right away that (D, C) satisfies a uniform, Hk+1-Shapiro-Lopatinski regularity
condition (at ∂M). The same argument combined with a Fourier transform at an arbitrary
interior point (and 0 < r < rFC arbitrary) and a perturbation argument [39, 66] gives that
D is uniformly elliptic on M � ∂M . Hence D is uniformly elliptic on M .

The implications (iii)⇒ (iv)⇒ (v) are trivial. We have that, in fact, they are equivalent.
This is seen in the same way in which one proves higher regularity for boundary value
problems using divided differences. See any textbook, in particular [28, 40, 46, 66].

To complete the proof, it is enough then to show that (iii) ⇒ (i). We want to estimate
‖u‖Hk+1 in terms of ‖Du‖Hk−1 , ‖Cu‖Hk−j−1/2 and ‖u‖Hk . This is done using an r-partition
of unity φγ as in Definition 2.10 and following then almost word for word the proof of
Theorem 5.6, but choosing r > small enough. Let us use the notation of the proof of that
theorem. Then the only difference in the estimate of the proof is that we need to replace
Pγ and Cγ with their principal parts P

(0)
γ and C

(0)
γ and with coefficients frozen at pγ . We

note that the family (P
(0)
γ , C

(0)
γ ) satisfies a uniform H�+1-regularity estimate, in view of

Lemma 6.3. The lower order terms can be absorbed into the weaker norm ‖u‖Hk . We then
use the fact that ‖(P − Pγ )u‖Hk−1 ≤ C(r)‖u‖Hk+1 , for u with support in the ball of radius
r centered at γ and with C(r) independent of γ and with C(r) → 0 as r → 0. We have
C(r) → 0 when r → 0 since P has coefficients in W�+1,∞. To obtain regularity estimates
in the interior (away from the boundary), we use the uniform ellipticity of the operator. For
more details, one can consult also Proposition 11.2 of [66], which is a similar result with a
similar proof.

In particular, the sequence (ii)⇒ (iii)⇒ (i) gives a new proof of Theorem 5.6. We obtain
the following consequence.

Corollary 6.10 Let (D, C) ∈ D�,j (M;E). If (D, C) satisfies an order H 2-regularity
estimate on M , then (D, C) satisfies an H�+1-regularity estimate on M .

It would be interesting to investigate the relation between the results of this paper and
those of Karsten Bohlen [18, 19].

6.3 A Uniform Agmon Condition

In view of the results on the uniform Shapiro-Lopatinski conditions and of the usefulness of
positivity apparent in the next section, we now consider the coercivity of our operators, in
the same spirit as the uniform Shapiro-Lopatinski conditions. The notation and the approach
are very similar. We keep the notation of Section 4. In particular, P̃ will be a second order
differential operator in divergence form with associated boundary conditions C = (C0, C1),
as in Section 5.2. From now on, M will be a manifold with boundary and bounded geometry.

Recall the following standard terminology.

Definition 6.11 A sesquilinear form a on a hermitian vector bundle V → X is called
strongly coercive (or strictly positive) if there is some c > 0 such that 	a(ξ, ξ) ≥ c|ξ |2 for
all x ∈ X and ξ ∈ Vx . If the sesquilinear form a on T ∗M ⊗ E used to define P is strongly
coercive, then P is said to satisfy the strong Legendre condition.
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Let V ⊂ H be a continuous inclusion of Hilbert spaces (with non-closed image, in
general). Let V ∗ be the complex conjugate of V with pairing V × V ∗ → C restricting to
the scalar product of H on V ×H . Recall that an operator T : V → V ∗ is coercive on V if
it satisfies the Gårding inequality, that is, if there exist γ > 0 and R ∈ R such that, for all
u ∈ V ,

	〈T u, u〉 ≥ γ ‖u‖2
V − R‖u‖2

H . (27)

Then T+λ is strongly coercive for	(λ) > R (see Definition 6.11), and hence it satisfies the
conditions of the Lax-Milgram lemma. Therefore, it satisfies regularity in view of the results
of the next section. Coercive operators on bounded domains were characterized by Agmon
in [1] as strongly elliptic operators satisfying suitable conditions at the boundary (which we
shall call the “Agmon condition.”). We shall need a uniform version of this condition, to
account for the non-compactness of the boundary.

Let now P̃ Ṽ → V ∗ be as in Eq. 8 (so it is associated to the sesquilinear form B and
has principal symbol a). Let C be the boundary conditions associated to P̃ . That is, C =
(e0, e1∂

a
ν + Q). We let e0x and e1x be the values at x of the endomorphisms e0 and e1.

Similarly, let Q
(0)
x be the principal part of Q with coefficients frozen at 0, where Qx is

regarded as a first order differential operator (so Q
(0)
x = 0 if Q is of order zero. Let P

(0)
x

be the principal part of the operator P and C
(0)
x = (e0x, e1x∂

a
ν +Q

(0)
x ) be the principal part

of the boundary conditions C with coefficients frozen at some x ∈ ∂M , as in Notation 6.6.
Let B

(0)
x be the associated Dirichlet bilinear form to P

(0)
x equipped with the above boundary

conditions (again with coefficients frozen at x), that is

B(0)
x (u, v) :=

∫
T +x

a(0)
x (du, dv)+

∫
Tx∂M

(Q(0)
x u, v). (28)

This defines a continuous sesquilinear form on

Vx := {u ∈ H 1(T +x M;Ex) | u|Tx∂M ∈ (F1)x}.
The associated operator in divergence form P̃

(0)
x will be called the principal part of P̃ with

coefficients frozen at x.

Definition 6.12 We say that P̃ satisfies the uniform Agmon condition (on ∂M) if it is
uniformly strongly elliptic and if there exists C > 0 such

〈P̃ (0)
x u, u〉 = B(0)

x (u, u) ≥ C|u|2
H 1 ,

for all x ∈ ∂M and all u ∈ C∞c (T +x M) with e0xu = 0 on the boundary of T +x M .

We have then the following result that is proved, mutatis mutandis, as the regularity result
of Theorem 6.9.

Theorem 6.13 Let M be a manifold with boundary and bounded geometry, E → M be
a vector bundle with bounded geometry, and P̃ be a second order differential operator
in divergence form, as above. We assume P̃ has coefficients in W 1,∞. We have that P̃ is
coercive on V := {u ∈ H 1(M;E) | e0u = 0 on∂M} if, and only if, P̃ is uniformly strongly
elliptic and it satisfies the uniform Agmon condition on ∂M .

The proof is essentially the same as that of Theorem 6.9, more precisely, of the
equivalence (i)⇔ (iii). We need at least W 1,∞ to make the partition of unity argument work.
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Remark 6.14 As is well-known, coercivity estimates lead to solutions of evolution equations
[6, 7, 46, 59]. Let H 1

0 (M;E) ⊂ V ⊂ H 1(M;E) be the space defining our variational
boundary value problem, see 4.1, Eq. 12, and Remark 4.13. Let V ∗ be the complex conjugate
dual of V , as before, W := L2(0, T ;V ), T > 0, so that W∗ = L2(0, T ;V ∗). Assume
P : V → V ∗ is coercive (i.e. it satisfies Eq. 27). Then Theorem 4.1 of [46, Section 3.4.4]
states that, for any f ∈W∗, there exists a unique w ∈W ∩C([0, T ], L2(M;E)) such that
∂tw(t)− Pw(t) = f (t) and w(0) = 0. Moreover, we also have w ∈ H 1(0, T ;V ∗).

This leads to the following result.

Theorem 6.15 Let us assume that P̃ is as in Remark 6.14, whose notation we continue to
use, and that P̃ satisfies the uniform Agmon condition. Then, for any f ∈ W∗, there is a
unique w ∈ W ∩ C([0, T ], L2(M;E)) such that ∂tw(t) − Pw(t) = f (t) and w(0) = 0.
Moreover, we also have w ∈ H 1(0, T ;V ∗).

For manifolds with bounded geometry (no boundary), this result was proved in [49]. The
result in [49] was generalized to higher order equations in [7]. For the particular case mixed
(Dirichlet/Neumann) boundary conditions and scalar equations, this result was proved in
[6].

6.4 Conformal Invariance

Both the uniform Shapiro-Lopatinski regularity condition and the uniform Agmon condition
are conformally invariant in an obvious sense that we make explicit in this subsection. Let
ρ > 0 be a smooth function on M such that ρ−1dρ is in W∞,∞ (a function ρ with these
properties will be called an admissible weight). Let (P, C) = (P, C0, C1) be a boundary
value problem. (We no longer assume that C has constant order on the boundary). Recall that
the metric on M is denoted g, and consider g′ := ρ−2g, P ′ := ρ2P , C′0 := C0, C′1 := ρC1,
and C′ := (C′0, C′1). All differential operators will act on the same vector bundle E, whose
metric we do not change.

Proposition 6.16 Assume that (P, C) has coefficients in W�+1,∞ (i.e. (P, C) ∈
D�+1,j (M;E) if C is of constant order j ). We have that (P, C) satisfies a uniform H�+1-
Shapiro-Lopatinski regularity condition (with respect to the metric g) if, and only if, (P ′, C′)
satisfies a uniform H�+1-Shapiro-Lopatinski regularity condition (with respect to the met-
ric g′). The same statement remains true if we replace “a uniform H�+1-Shapiro-Lopatinski
regularity condition” with “a uniform Agmon condition.”

Proof This follows directly from definitions, by taking into account how the homogeneous
Sobolev space norms change under the change of metric. More precisely, the semi-norm
|·|′Hs = |·|′Hs(TxM) associated to the metric g′ := ρ−2g = ρ(x)−2g on TxM is related to the
original semi-norm | · |Hs = | · |Hs(TxM) associated to the metric g on TxM by the relation

|v|′Hs = ρ(x)s+m/2|v|Hs , (29)

where m is the dimension of M . Taking into account this equation and, assuming, for
simplicity that we have constant order j at the boundary, we have the following (where
ρ = ρ(x))

|w|Hk+1(T +x M) ≤ cSL

(
|P (0)

x w|Hk−1(T +x M) + |C(0)
x w|Hk−j+1/2(Tx∂M)

)
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⇔ ρk+1+m/2|w|Hk+1(T +x M) ≤ ρk+1+m/2cSL

(
|P (0)

x w|Hk−1(T +x M)

+|C(0)
x w|Hk−j+1/2(Tx∂M)

)

⇔ |w|′
Hk+1(T +x M)

≤ cSL

(
ρk−1+m/2|ρ2P (0)

x w|Hk−1(T +x M)

+ρk−j+1/2+(m−1)/2|ρjC(0)
x w|Hk−j+1/2(Tx∂M)

)

⇔ |w|′
Hk+1(T +x M)

≤ cSL

(
|(P ′)(0)

x w|′
Hk−1(T +x M)

+|(C′)(0)
x w|′

Hk−j+1/2(Tx∂M)

)
.

This completes the proof for the case of Shapiro-Lopatinski regularity condition, in view of

the definition of the uniform
•
H�+1-Shapiro-Lopatinski regularity condition, Definition 6.8.

The proof for the uniform Agmon condition is completely similar (only shorter), once
one notices that the “full” operator P̃ ′ associated to (P ′, C′) (and the associated bilinear
form) scales in the right way, that is P̃ ′ = ρ2P̃ .

Note that for the above proof we did not need that ρ be an admissible weight. We con-
tinue to use the notation (P ′, C′) introduced right before Proposition 6.16. We obtain the
following consequence. The regularity estimates and the coercivity are stable under con-
formal changes of metric with bounded, admissible weights. More precisely, we have the
following theorem.

Theorem 6.17 Assume that (P, C) has coefficients in W�+1,∞ and that ρ is an admissible
weight. Then (P, C) satisfies an H�+1-regularity estimate on M (with respect to the metric
g) if, and only if, (P ′, C′) satisfies an H�+1-regularity estimate on M (with respect to the
metric g′). The same statement remains true for coercivity.

Proof Let us notice that P is uniformly elliptic (respectively, uniformly strongly elliptic)
with respect to the metric g if, and only if, P ′ satisfies the same property for the metric g′.
Also, the fact that the weight is admissible and bounded guarantees that P ′ is in divergence
form with bounded coefficients. Then the result follows by combining Proposition 6.16
with Theorem 6.9 (for the regularity part), respectively with Theorem 6.13 for the coercivity
part.

7 Coercivity, Legendre Condition, and Regularity

In this section we use coercivity (or positivity) to obtain regularity results. As an appli-
cation, we study mixed Dirichlet/Robin boundary conditions for operators satisfying the
strong Legendre condition. We continue to assume that M is a manifold with boundary and
bounded geometry and that E → M is a vector bundle with bounded geometry.

7.1 Well-Posedness in Energy Spaces Implies Regularity

Often the regularity conditions (including the Shapiro-Lopatinski ones discussed below) are
obtained from the invertibility of the given operator. This is the case also in the bounded
geometry setting, owing to Proposition 3.2. The results of this subsection will be used to
deal with the Neumann and Robin boundary conditions. The approach below is based on
the so called “Nirenberg trick” (see also [50] and the references therein).
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Lemma 7.1 Let Xj be as in Lemma 3.1 and Y = Xj , for some j > 1 fixed.

(i) There exists a one parameter group of diffeomorphisms φt : M → M , t ∈ R, that
integrates Y , that is d

dt
f (φt (x))t=0 = (Yf )(x), for any x ∈ M and any smooth

function f : M → C.
(ii) Let π : E → M be a vector bundle. Then there exists a one parameter group of

diffeomorphisms ψt : E → E, t ∈ R, with π ◦ψt = φt ◦ π , that integrates ∇Y , that is
d
dt

(ψ−t ◦ ξ)|t=0 = ∇Y ξ , for any smooth section ξ : M → E.

Proof (i) Let M̂ be as in Definition (2.5). Let Ŷ ∈ W∞,∞(M̂, T M̂) be an extension of
Y . Then Ŷ is a bounded vector field on a complete manifold. Hence, by [5, Sec. 3.9]
it admits a global flow, i.e. a smooth solution φ : R× M̂ → M̂ of

d

dt
φ(t, p) = Ŷ (p), φ(0, p) = p

such that φt := φ(t, .) is a one-parameter family of diffeomorphisms of M̂ . Since Ŷ

is tangent to ∂M ⊂ M̂ , φ(t, ∂M) = ∂M . Since ∂M divides M̂ into two parts, φt

restricts to diffeomorphisms of M .
(ii) We choose a connection ∇E on E. Let ψt : E → E be defined by e �→ e(t) where

e(t) is the solution of ∇E
Y(p)=∂t φt (p)e(t) = 0 with e(0) = e. By the standard prop-

erties of parallel transport, respectively of the underlying linear ordinary differential
equation, we have the global existence and uniqueness of the solution and the claimed
properties.

We then obtain the following abstract regularity result. Let Xj be as in Lemmas 3.1
and 7.1. We can assume that X1 is a unit vector field normal at the boundary. Recall that
V := H 1(M;E) ∩ {u|∂M ∈ �(∂M;F1)}.
Theorem 7.2 Let P̃ be a second order differential operator in divergence form with asso-
ciated form a and W�,∞-coefficients. Let ζ := a(X1, X1) and let us assume that ζ is
invertible and ζ−1 bounded. Also, let us assume that P̃ : V → V ∗ is a continuous bijection
(i.e., an isomorphism). Then P satisfies an H�+1-regularity estimate on M .

Proof The proof is classic, except maybe the fact that we have a slightly weaker assumption
on the coefficients; typically one requires Ck+1-coefficients in textbooks. We include, nev-
ertheless, a very brief outline of the proof. Recall that the proof is done by induction, with
the general step the same as the first step (going from well-posedness to H 2-regularity). Let
us assume then that � = 1.

Let F ∈ j0(L
2(M;E)⊕H 1/2(M;F1)) and let P̃ u = F , with u ∈ V . For simplicity, let

us assume E is one-dimensional. In general, we just replace Xj with ∇Xj
. We want to show

that u ∈ H 2(M), with continuous dependence on F . To this end, in view of Proposition 3.2,
it is enough to check that XiXju ∈ L2(M), with continuous dependence on F , since we
already know that u ∈ V ⊂ H 1(M), with continuous dependence on F .

In particular, Xju ∈ L2(M). Nirenberg’s trick is to give conditions on Xj such that we
can formally apply Xj to the equation P̃ u = F to obtain that Xju ∈ V is the unique
solution of

P̃ (Xju) = [P̃ , Xj ](u)+Xj(F ) ∈ V ∗. (30)
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This is possible whenever [P̃ , Xj ] : V → V ∗ continuously and Xj generates a continuous
parameter semi-group on V (see [14] for a general approach and more details). These con-
ditions are satisfied since P̃ has coefficients in W 1,∞ and if j > 1, since then Xj is tangent
to the boundary and we can invoke Lemma 7.1. This argument gives that XiXju ∈ L2(M)

if at least one of the i and j is > 1.
It remains to prove that X2

1u ∈ L2(M). This is proved using the equation

ζX2
1u = Pu−

∑
i+j>2

cijXiXju ∈ L2(M),

since we can choose cij ∈ L∞(M;End(E)) and Pu ∈ L2(M;E), by assumption. (Recall
that we assumed that X1 is a unit vector everywhere on the boundary.)

Remark 7.3 Except the above theorem, it is very likely that most of the results obtained
so far extend to higher order equations, but we have not checked all the details. The above
theorem will require, however, some additional ideas in order to extend it to the setting of
Remark 4.13.

7.2 Robin vs Shapiro-Lopatinski

Let us discuss, as an example, Robin (and hence also Neumann) boundary conditions from
the perspective of the Shapiro-Lopatinski conditions. We do that now in the case of a model
problem on the half-space R

n+ = R
n−1 × [0,∞). The sesquilinear form a of Section 4 (see

Assumption 4.1) is now simply a sesquilinear form on C
nN = R

n ⊗C
N . We allow now F0

and F1 to be both non-trivial, which amounts to a decomposition N = N0 + N1, Nj ≥ 0.
We shall need also the operator Q, which is now a N1 ×N1 matrix of constant coefficients
differential operators on R

n−1 acting on the last N1 components of CN . The bilinear form
that we consider is then

B(u, v) :=
∫
R

n+

[
a(du, dv)+ c(u, v)

]
dx +

∫
Rn−1

(Qu, v)dx′, (31)

where c is a scalar and x = (x′, xn). This is a particular case of the form considered in
Eq. 7. Recall the definition of a strongly coercive form, Definition 6.11. Note that strong
coercivity implies uniform strong ellipticity as in Definition 4.9.

Lemma 7.4 Let us assume that Q + Q∗ is of order zero and that a is strongly coercive.
Then for c (of Eq. 31) large enough, there is a γ > 0 such that

B(u, u) ≥ γ ‖u‖2
H 1(Rn+)

(32)

for all u ∈ H 1(Rn+).

Proof We identify R
n−1 with the boundary of the half-space Rn+, as usual. Let cQ > 0 be a

bound for the norm of the matrix 1
2 (Q+Q∗). We have, using first the definition

B(u, u) :=
∫
R

n+

[
a(du, du)+ c(u, u)

]
dx +

∫
Rn−1

(Qu, u)dx′

≥ ca |u|2H 1(Rn+)
+ c‖u‖2

L2(Rn+)
− cQ‖u‖L2(Rn−1)

≥ ca

2
‖u‖2

H 1(Rn+)
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for c large. The last statement is proved in the same way one proves the trace inequality
‖u‖L2(Rn−1) ≤ cT ‖u‖H 1(Rn+), but using also Lebesgue’s dominated convergence theorem.

We obtain the following consequence.

Corollary 7.5 Let a and Q be as in Lemma 7.4 and let P̃ be the differential operator in
divergence form associated to the form B of Eq. 31. Then P̃ (or, (P, e0, e1∂

a
ν +Q)) satisfies

an H�+1-regularity estimate on Rn+ for all �. In particular, (P (0), e0, e1∂
a
ν +Q(0)) satisfies

the H�+1-Shapiro-Lopatinski regularity condition at 0.

Proof Let V := {u ∈ H 1(Rn+) | e0u = 0 onRn−1}. We then have that the restriction of B to
V × V satisfies the assumptions of the Lax-Milgram lemma [33], and hence P̃ : V → V ∗
is an isomorphism. Theorem 7.2 then gives the first part of the result. The last part follows
from Theorem 6.9.

7.3 Mixed Dirichlet/Robin Boundary Conditions

Let us turn now back to the study of mixed Dirichlet/Robin boundary value problems on
M . Let M be a manifold with bounded geometry with a decomposition E|∂M = F0⊕F1 as
the direct sum of two vector bundles with bounded geometry. We consider the same bilinear
form B as in Section 4, see Eq. 7, with the data defining it as in Assumptions (4.1). In
particular, B is obtained from a form a that can be interpreted as the principal symbol of the
associated operators P and P̃ . If a is strongly coercive, we say that P (or P̃ ) satisfies the
strong Legendre condition. (See [42] for a similar concept for Stokes-type operators.)

The associated boundary conditions are then

C0u = e0u|∂M and C1u = e1∂
a
ν u+Qu|∂M (33)

for some first order differential operator Q acting on sections of F1. We let

‖Cv‖k := ‖C0v‖Hk+1/2(∂M;F0) + ‖C1v‖Hk−1/2(∂M;F1).

We say that the boundary conditions C are mixed Dirichlet/Robin boundary conditions. We
shall need the following analog of Corollary 5.9.

Corollary 7.6 Let S ⊂ D�+1,0(Bm
r (0)× [0, r);E) be a bounded family of boundary value

problems on Bm
r (0) × [0, r) ⊂ R

m+1 equipped with the euclidean metric, r ≤ ∞. We
assume that the family S satisfies a uniform strong Legendre condition and all the boundary
conditions are are Robin boundary conditions of the form (e0, e1∂

a
ν + Q), with Q + Q∗

of order zero and bounded on S. Then the family S satisfies a uniform H�+1-regularity
estimate on Bm

r ′ (0)× [0, r ′), r ′ < r .

Proof Let (Dn, Cn) ∈ S converge to (D,C) ∈ D�,j (Bm
r ′ (0) × [0, r ′);E), with Cn =

(e0, e1∂
an
ν +Qn), with Qn +Q∗

n of order zero. Then D satisfies the strong Legendre con-
dition because the parameter ca in the definition of the strong Legendre condition (the fact
that a is strongly coercive) is assumed to stay away from 0 on S. The limit of Robin bound-
ary conditions is again a Robin boundary condition and the condition that Q + Q∗ be
scalar is also preserved under limits. Corollary 7.5 then gives that (D, C) satisfies an H�+1-
regularity estimate. This allows us again to use Proposition 5.3 for the relatively compact
subset N := Bm

r ′ (0)× [0, r ′) of M := Bm
r (0)× [0, r) to obtain the result.

Nadine Große, Victor Nistor442



We are ready now to prove the result stated in the Introduction, Theorem 1.1.

Proof The proof of Theorem 1.1 is the same as that of Theorem 5.12. Indeed Corollaries 7.6
and 5.10 show that the assumptions of Theorem 5.6 are satisfied. That theorem immediately
gives our result.

Notice that in the statement of the theorem, we have dropped the condition that B be of
constant order (it is, nevertheless, of locally constant order).

Let us assume now that we have a partition of the boundary ∂M = ∂DM � ∂RM as a
disjoint union of two open and closed subsets and that F0 = E|∂DM and F1 = E|∂RM .
By combining Theorem 7.2 with the Poincaré inequality [9], we can prove following well-
posedness result for the mixed Dirichlet/Robin boundary value problem. Let A ⊂ ∂M (see
[9] for details). Recall that we say that (M,A) has finite width [10] if the distance to A is
bounded uniformly on M and A intersects all connected components of M .

Theorem 7.7 We use the same notation as in Theorem 1.1, in particular, M is a manifold
with boundary and bounded geometry and P̃ = (P, ∂a

ν u+Q) has coefficients in W�,∞ and
satisfies the strong Legendre condition. Assume that F0 = E|∂DM , that F1 = E|∂RM , that
Q +Q∗ ≥ 0, that there exists ε > 0 and an open and closed subset ∂PRM ⊂ ∂RM such
that Q+Q∗ ≥ ε on ∂PRM , and, finally, that (M, ∂DM ∪ ∂PRM) has finite width. Then the
boundary value problem⎧⎪⎪⎨

⎪⎪⎩
Pu = f ∈ Hk−1(M;E) in M

u = hD ∈ Hk+1/2(∂DM;E) on ∂DM

∂a
ν u+Qu = hR ∈ Hk−1/2(∂RM;E) on ∂RM,

(34)

has a unique solution u ∈ Hk+1(M;E), k ≥ 0, and this solution depends continuously on
the data, 0 ≤ k ≤ �.

Note that the more general form of the Robin boundary conditions considered in this
paper (i.e. corresponding to a splitting of E at the boundary, is useful for treating the Hodge-
Laplacian. See also [53, 67]. See [66] also for results on the Robin problem on smooth
domains. See [22, 32] for some results on the Robin problem on non-smooth domains. See
also [8].

7.4 The Bounded Geometry of the Boundary is Needed

Let us provide now an example of a manifold � with smooth metric and smooth boundary
∂� that satisfies the Poincaré inequality, and hence such that � : H 1

0 (�) → H−1(�) is
an isomorphism, but such that � : H 2(�) ∩ H 1

0 (�) → L2(�) is not onto. In other words,
the operator D = � with Dirichlet boundary condition does not satisfy an H 2-regularity
estimate on �, in spite of the fact that it has coefficients in W∞,∞. Our example is based
on the loss of regularity for problems on concave polygonal domains.

Let G ⊂ R
n be a bounded domain with Lipschitz boundary. It will be convenient to

consider only closed domains. Let m ∈ N (we shall need only the case m = 1). We denote
by Hm(G) the space of functions with m derivatives in L2. It is the set of restrictions of
functions from Hm(Rn) to G. We let Hm

G (Rn) be the set of distributions in Hm(Rn) with
support in G = G and Hm

0 (G) be the closure of the set of test functions with support in
G in Hm(Rn), as usual. It is known that H 1

G(Rn) = H 1
0 (G) = ker(H 1(G) → L2(G)).
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See [66] for the case G smooth. The Lipschitz case is completely similar and follows from
H 1

0 (G) = ker(H 1(G)→ L2(G)), see, for example [52].
Our construction of the manifold with boundary � is based on the following lemma.

Lemma 7.8 Let G and ω1 ⊃ ω2 ⊃ . . . ⊃ ωn ⊃ . . . be closed, bounded domains in Rn with
Lipschitz boundary such that G := ∩ωn. Let f ∈ L2(G), un ∈ H 1

0 (ωn), and w ∈ H 1
0 (G)

satisfy �un = f on ωn and �w = f on G. If the domains ωn have smooth boundary and
w /∈ H 2(G), then ‖un‖H 2(ωn) →∞.

Proof We have that

H 1
0 (ω1) ⊃ H 1

0 (ω2) ⊃ . . . ⊃ H 1
0 (ωn) . . . ⊃ H 1

0 (G).

Let ξ ∈ ∩∞n=1H
1
0 (ωn). Then ξ has support in G = ∩∞n=1ωn, and hence ξ has support in G,

which gives ξ ∈ H 1
G(Rn) = H 1

0 (G), by the discussion preceding this lemma. This shows
that H 1(G) = ∩∞n=1H

1
0 (ωn). Let B(u, v) := ∫

Rn(∇u,∇v)d vol. Then B induces an inner
product on H 1

0 (ω1) equivalent to the initial inner product. Moreover, the relations

B(un, v) = (f, v) = B(un+1, v), v ∈ H 1
0 (ωn+1)

show that un+1 is the B-orthogonal projection of un onto H 1
0 (ωn+1). Similarly, w is the

B-orthogonal projection of un onto H 1
0 (G). Since H 1(G) = ∩∞n=1H

1
0 (ωn), we obtain that

un → w in H 1
0 (ω1).

To prove that ‖un‖H 2(ωn) → ∞ if w /∈ H 2(G), we shall proceed by contradiction.
Let us assume then that this is not the case. Then, by passing to a subsequence, we may
assume that ‖un‖H 2(ωn) is bounded. Then ‖un|G‖H 2(G) ≤ ‖un‖H 2(ωn) also forms a bounded
sequence. By passing to a subsequence again, we may assume then that un|G converges
weakly in H 2(G) to some w̃, by the Alaoglu-Bourbaki theorem. Hence un|G → w̃ weakly
in H 1(G) (even in norm, since H 2(G)→ H 1(G) is compact). We have ‖un|G−w‖H 1(G) ≤
‖un − w‖H 1(ω1)

→ 0. Hence un|G → w in H 1(G). Consequently, w̃ = w, which is a
contradiction, since we have assumed that w /∈ H 2(G).

We are ready now to construct our manifold �. Let G be a bounded domain whose
boundary is smooth, except at one point, where we have an angle > π (so G is not convex).
It is known then that there exists u ∈ H 1

0 (G), u /∈ H 2(G) such that f := �u ∈ L2(M).
See [23, 34, 35, 55]. In fact, the space of functions φ ∈ L2(W) such that �−1φ ∈ H 2(G)∩
H 1

0 (G) is of codimension one in L2(G). Let . . . ⊂ ωn+1 ⊂ ωn ⊂ . . . ⊂ ω1 be a sequence
of closed, smooth, bounded domains whose intersection is G. Then we can take for � the
(disjoint) union of all the domains ωn × {n}, n ∈ N.

Let us check that � has the desired properties. We construct φ ∈ L2(�) by taking
φ := cnf on ωn, cn > 0. Let un ∈ H 1

0 (ωn) be the unique solution of �un = f . We can
choose cn such that

∑
n c2

n < ∞, and hence φ ∈ L2(�), but
∑

n c2
n‖un‖2

H 2(ωn)
= ∞, since

the sequence ‖un‖H 2(ωn) is unbounded, by the last lemma. We have that � ⊂ ω1 × N, and
hence it satisfies the Poincaré inequality for all functions in H 1

0 (�). Let u ∈ H 1
0 (�) be the

unique solution of the equation �u = φ [10]. Then u = cnun on ωn, by the uniqueness of
un, and hence ‖u‖2

H 2(�)
= ∑∞

n=1 c2
n‖un‖2

H 2(ωn)
= ∞. That is, u /∈ H 2(�). Note that � is

not of bounded geometry: indeed, the second fundamental form of ωn cannot be uniformly
bounded in n, since the “limit” G of the domains ωn has a corner.
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(1992). Méthodes semi-classiques Vol. 1 (Nantes 1991)
66. Taylor, M.: Partial Differential Equations I. Basic Theory, 2nd edn., vol. 115 of Applied Mathematical

Sciences. Springer, New York (2011)
67. Taylor, M.: Partial Differential Equations II. Qualitative Studies of Linear Equations, 2nd edn., vol. 116

of Applied Mathematical Sciences. Springer, New York (2011)
68. Triebel, H.: Characterizations of function spaces on a complete Riemannian manifold with bounded

geometry. Math. Nachr. 130, 321–346 (1987)
69. Triebel, H.: Function spaces on Lie groups, the Riemannian approach. J. London Math. Soc. (2) 35(2),

327–338 (1987)

Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems... 447

https://arxiv.org/abs/1711.09654.pdf

	Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems...
	Abstract
	Introduction
	Uniform Regularity of the Local Problems
	Uniform Shapiro-Lopatinski Conditions
	Well-Posedness in Energy Spaces
	Contents of the Paper



	Background Material and Notation
	General Notations and Definitions
	Continuous Operators
	The Conjugate Dual Spaces
	Vector Bundles

	Manifolds with Boundary and Bounded Geometry
	Coverings, Partitions of Unity, and Sobolev Spaces

	Preliminary Results
	Alternative Characterizations of Sobolev Spaces
	Sobolev Spaces Without Using Connections
	Differential Operators and Partitions of Unity

	Variational Boundary Conditions and Regularity
	Sesquilinear Forms and Operators in Divergence Form
	The Dirichlet (Sesquilinear) Form
	The Induced Operator 

	Variational Boundary Value Problems
	Definition of Variational Boundary Conditions
	Uniformly Strongly Elliptic Operators
	The Scale of Regularity for Boundary Value Problems

	Regularity Conditions

	Uniform Regularity Estimates for Families
	Compact Families of Boundary Value Problems
	Higher Regularity and Bounded Geometry
	Regularity for Dirichlet Boundary Conditions

	A Uniform Shapiro-Lopatinski Regularity Condition
	Homogeneous Sobolev Spaces and Regularity Conditions
	A Global Shapiro-Lopatinski Regularity Condition
	A Uniform Agmon Condition
	Conformal Invariance

	Coercivity, Legendre Condition, and Regularity
	Well-Posedness in Energy Spaces Implies Regularity
	Robin vs Shapiro-Lopatinski
	Mixed Dirichlet/Robin Boundary Conditions
	The Bounded Geometry of the Boundary is Needed

	References


