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Abstract
We construct the Green function for second order elliptic equations in non-divergence form
when the mean oscillations of the coefficients satisfy the Dini condition and the domain has
C1,1 boundary. We also obtain pointwise bounds for the Green functions and its derivatives.
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1 Introduction andMain Results

Let � be a bounded C1,1 domain (open connected set) in R
n with n ≥ 3. We consider a

second-order elliptic operator L in non-divergence form

Lu =
n∑

i,j=1

aij (x)Diju. (1.1)

We assume that the coefficient A := (aij ) is an n×n real symmetric matrix-valued function
defined on R

n, which satisfies the uniform ellipticity condition

λ|ξ |2 ≤
n∑

i,j=1

aij (x)ξ iξ j ≤ �|ξ |2, ∀ ξ = (ξ1, . . . , ξn) ∈ R
n, ∀ x ∈ R

n (1.2)

for some constants 0 < λ ≤ �.
In this article, we are concerned with construction and pointwise estimates for the

Green’s function G(x, y) of the non-divergent operator L (1.1) in �. Unlike the Green’s
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function for uniformly elliptic operators in divergence form, the Green’s function for
non-divergent elliptic operators does not necessarily enjoy the usual pointwise bound

G(x, y) ≤ c|x − y|2−n (1.3)

even in the case when the coefficient A is uniformly continuous; see [1]. On the other hand,
in the case when the coefficient A is Hölder continuous, then it is well known that the
Green’s function satisfies the pointwise bound (1.3); see e.g., [10] for the construction of
fundamental solutions of parabolic operators by the parametrix method. In this perspective,
it is an interesting question to ask what is the minimal regularity condition to ensure the
Green’s function to have the pointwise bound (1.3). We shall show that if the coefficient
A is of Dini mean oscillation, then the Green’s function exists and satisfies the pointwise
bound (1.3). We shall say that a function is of Dini mean oscillation if its mean oscillation
satisfies the Dini condition. Here, we briefly describe the role of this Dini mean oscillation
condition because it will be used somewhat implicitly in the paper. First, it will imply that
the coefficient A is uniformly continuous so that the Calderón-Zygmund Lp theory can be
applied. Also, it will provide us a local L∞ estimate for the solutions of the adjoint equation
L∗u = 0 as appears in Eq. 2.18, which is one of the main results of the very recent papers
by the second author and collaborators [4, 5]. This L∞ estimate is crucial for the pointwise
bound (1.3) and the uniform continuity of the coefficient A alone is not enough to produce
such an estimate. Below is a more precise formulation of Dini mean oscillation condition.

For x ∈ R
n and r > 0, we denote by B(x, r) the Euclidean ball with radius r centered at

x, and denote

�(x, r) := � ∩ B(x, r).

We shall say that a function g : � → R is of Dini mean oscillation in � if the mean
oscillation function ωg : R+ → R defined by

satisfies the Dini condition; i.e.,
∫ 1

0

ωg(t)

t
dt < +∞.

It is clear that if g is Dini continuous, then g is of Dini mean oscillation. However, the
Dini mean oscillation condition is strictly weaker than the Dini continuity; see [4] for an
example. Also if g is of Dini mean oscillation, then g is uniformly continuous in � with its
modulus of continuity controlled by ωg; see Appendix.

The formal adjoint operator L∗ is given by

L∗u =
n∑

i,j=1

Dij (a
ij (x)u). (1.4)

We need to consider the boundary value problem of the form

L∗u = div2 g + f in �, u = gν · ν

Aν · ν
on ∂�, (1.5)

where g = (gij ) is an n × n matrix-valued function,

div2 g = ∑n
i,j=1 Dijg

ij ,
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and ν is the unit exterior normal vector of ∂�. For g ∈ Lp(�) and f ∈ Lp(�), where
1 < p < ∞ and 1

p
+ 1

p′ = 1, we say that u in Lp(�) is an adjoint solution of Eq. 1.5 if u

satisfies ∫

�

uLv =
∫

�

tr(gD2v) +
∫

�

f v (1.6)

for any v in W 2,p′
(�) ∩ W

1,p′
0 (�). The following lemma is quoted from [7, Lemma 2].

Lemma 1.7 Let 1 < p < ∞ and assume that g ∈ Lp(�) and f ∈ Lp(�). Then there
exists a unique adjoint solution u in Lp(�). Moreover, the following estimates holds

‖u‖Lp(�) ≤ C
[‖g‖Lp(�) + ‖f ‖Lp(�)

]
,

where a constant C depends on �, p, n, λ, �, and the continuity of A.

We clarify that “the continuity” of A in Lemma 1.7 specifically means “the modulus of
continuity” of A, which is clear from the context in [7]. By the modulus of continuity of A,
we mean the function 	A defined by

	A(t) :=⊃ , |A(x) − A(y)| : x, y ∈ �, , |x − y| ≤ t,, ∀t ≥ 0.

Therefore, in the case when coefficient A is of Dini mean oscillation, the constant C in
Lemma 1.7 depends only on �, p, n, λ, �, and ωA.

It is also known that if f ∈ Lp(�) with p > n
2 , then the adjoint solution of the problem

L∗u = f in �, u = 0 on �, (1.8)

is uniformly continuous in �; see Theorem 1.8 in [5].
We say ∂� is Ck,Dini if for each point x0 ∈ ∂�, there exist a constant r > 0 independent

of x0 and a Ck,Dini function (i.e., Ck function whose kth derivatives are uniformly Dini
continuous) γ : Rn−1 → R such that (upon relabeling and reorienting the coordinates axes
if necessary) in a new coordinate system (x′, xn) = (x1, . . . , xn−1, xn), x0 becomes the
origin and

� ∩ B(0, r) = {x ∈ B(0, r) : xn > γ (x1, . . . , xn−1)}, γ (0′) = 0.

A few remarks are in order before we state our main theorem. There are many papers
in the literature dealing with the existence and estimates of Green’s functions or funda-
mental solutions of non-divergence form elliptic operators with measurable or continuous
coefficients. To our best knowledge, the first author who considered Green’s function for
non-divergence form elliptic operators with measurable coefficients is Bauman [2, 3], who
introduced the concept of normalized adjoint solutions; see also Fabes et al. [9]. Fabes and
Stroock [8] established Lp-integrablity of Green’s functions for non-divergence form ellip-
tic operators with measurable coefficients. Krylov [14] showed that the weak uniqueness
property holds for solutions of non-divergence form elliptic equations in � if and only if
there is a unique Green’s function in �. Escauriaza [6] established bounds for fundamental
solution for non-divergence form elliptic operators in terms of nonnegative adjoint solution.
We would like to thank Luis Escauriaza for bringing our attention to these results in the
literature.

Now, we state our main theorem.

Theorem 1.9 Let � be a bounded C1,1 domain in R
n with n ≥ 3. Assume the coeffi-

cient A = (aij ) of the non-divergent operator L in Eq. 1.1 satisfies the uniform ellipticity
condition (1.2) and is of Dini mean oscillation in �. Then, there exists a Green’s function
G(x, y) (for any x, y ∈ �, x = y) of the operator L in � and it is unique in the following
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sense: if u is the unique adjoint solution of the problem (1.8), where f ∈ Lp(�)with p > n
2 ,

then u is represented by

u(y) =
∫

�

G(x, y)f (x) dx. (1.10)

The Green function G(x, y) satisfies the following pointwise estimates:

|G(x, y)| ≤ C|x − y|2−n, (1.11)

|DxG(x, y)| ≤ C|x − y|1−n, (1.12)

where C = C(n, λ, �, �,ωA). Moreover, if the boundary ∂� is C2,Dini, then we have

|D2
xG(x, y)| ≤ C|x − y|−n, (1.13)

where C = C(n, λ, �, �,ωA).

Remark 1.14 In the proof of Theorem 1.9, we will construct the Green’s function G∗(x, y)

for the adjoint operator L∗ as a by-product. It is characterized as follows: for q > n
2 and

f ∈ Lq(�), if v ∈ W 2,q (�) ∩ W
1,q

0 (�) is the strong solution of

Lv = f in �, v = 0 on ∂�,

then, we have the representation formula

v(y) =
∫

�

G∗(x, y)f (x) dx.

Also, in the proof of Theorem 1.9, we shall show that

G(x, y) = G∗(y, x), ∀ x, y ∈ �, x = y. (1.15)

Finally, by the maximum principle, it is clear that G(x, y) ≥ 0.

2 Proof of Theorem 1.9

2.1 Construction of Green’s Function

To construct Green’s function, we follow the scheme of [13], which in turn is based on [12].
For y ∈ � and ε > 0, let vε = vε;y ∈ W 2,2(�) ∩ W

1,2
0 (�) be a unique strong solution of

the problem

Lv = 1

|�(y, ε)| χ�(y,ε) in �, v = 0 on ∂�. (2.1)

Note that A is uniformly continuous in � with its modulus of continuity controlled by
ωA. Therefore, the unique solvability of the problem (2.1) is a consequence of standard
Lp theory; see e.g., Chapter 9 of [11]. Also, by the same theory, we see that vε belong to
W 2,p(�) for any p ∈ (1,∞) and we have an estimate

‖vε‖W 2,p(�) ≤ C ε
−n+ n

p , ∀ ε ∈ (0, diam �), (2.2)

where C = C(n, λ,�, p,�, ωA). In particular, we see that vε is continuous in �. Next, for
f ∈ C∞

c (�), consider the adjoint problem

L∗u = f in �, u = 0 on ∂�.
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By Lemma 1.7, there exists a unique adjoint solution u in L2(�), and by Eq. 1.6, we have

(2.3)

Let w be the solution of the Dirichlet problem

w = f in �, w = 0 on ∂�. (2.4)

By the standard Lp theory and Sobolev’s inequality, for 1 < p < n
2 , we have

‖w‖Lq(�) ≤ C(n, �, p)‖f ‖Lp(�), where 1
q

= 1
p

− 2
n
, (2.5)

and for 1 < p < n, we have

‖∇w‖Lq(�) ≤ C(n, �, p)‖f ‖Lp(�), where 1
q

= 1
p

− 1
n

.

In particular, for n
2 < p < n, we have by Morrey’s theorem that

[w]C0,μ(�) ≤ C(n, �, p)‖f ‖Lp(�), where μ = 1 − n
q

= 2 − n
p

. (2.6)

Hereafter, we set
g := wI.

Note that by Eqs. 1.8 and 2.4, u ∈ L2(�) is an adjoint solution of

L∗u = div2 g in �, u = 0 on ∂�. (2.7)

By Lemma 1.7 and Eq. 2.5, we see that u ∈ Lq(�) for q ∈ ( n
n−2 , ∞) and that it satisfies

‖u‖Lq(�) ≤ C‖f ‖Lnq/(n+2q)(�), where C = C(n, q, λ, �, �,ωA). (2.8)

Also, by Eq. 2.6, we see that g is of Dini mean oscillation in � with

ωg(t) ≤ C‖f ‖Lp(�) t
2− n

p .

Therefore, by Theorem 1.8 of [5], we see that u ∈ C(�). As a matter of fact, Lemma 2.27 of
[5] and Theorem 1.10 of [4] with a scaling argument (x �→ rx) reveals that for any x0 ∈ �

and 0 < r < diam �, we have

sup
�(x0,

1
2 r)

|u| ≤ C
(
r−n‖u‖L1(�(x0,r))

+ r
2− n

p ‖f ‖Lp(�)

)
,

where C = C(n, p, λ,�, �,ωA). In particular, if f is supported in �(y, r), then by Eq. 2.8
and Hölder’s inequality, we have

sup
�(y, 1

2 r)

|u| ≤ C
(
r
− n

q ‖f ‖Lnq/(n+2q)(�(y,r)) + r
2− n

p ‖f ‖Lp(�(y,r))

)
≤ Cr2‖f ‖L∞(�(y,r)).

(2.9)
Therefore, if f is supported in �(y, r), then it follows from Eqs. 2.3 and 2.9 that

∣∣∣∣
∫

�(y,r)

f vε

∣∣∣∣ ≤ Cr2‖f ‖L∞(�(y,r)), ∀ ε ∈
(

0, 1
2 r

)
.

By duality, we obtain

‖vε‖L1(�(y,r)) ≤ Cr2, ∀ ε ∈
(

0, 1
2 r

)
, ∀ r ∈ (0, diam �), (2.10)

where C = C(n, λ, �, �,ωA). We define the approximate Green’s function

Gε(x, y) = vε,y(x) = vε(x).
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Lemma 2.11 Let x, y ∈ � with x = y. Then

|Gε(x, y)| ≤ C|x − y|2−n, ∀ε ∈
(

0, 1
3 |x − y|

)
, (2.12)

where C = C(n, λ, �, �,ωA).

Proof Let r = 2
3 |x − y|. If ε < 1

2 r , then vε satisfies Lvε = 0 in �(x, r). Therefore, by the
standard elliptic estimate (see [11, Theorem 9.26]) and Eq. 2.10, we have

|vε(x)| ≤ Cr−n‖vε‖L1(�(x,r)) ≤ Cr−n‖vε‖L1(�(y,3r)) ≤ Cr2−n.

Lemma 2.13 For any y ∈ � and 0 < ε < diam �, we have
∫

�\B(y,r)

|Gε(x, y)| 2n
n−2 dx ≤ Cr−n, ∀ r > 0, (2.14)

∫

�\B(y,r)

|D2
xGε(x, y)|2 dx ≤ Cr−n, ∀ r > 0, (2.15)

where C = C(n, λ, �, �,ωA).

Proof We first establish Eq. 2.14. In the case when r > 3ε, we get from Eq. 2.12 that
∫

�\B(y,r)

|Gε(x, y)| 2n
n−2 dx ≤ C

∫

�\B(y,r)

|x − y|−2n dx ≤ Cr−n.

In the case when r ≤ 3ε, by Eq. 2.2 with p = 2n
n+2 and the Sobolev’s inequality, we have

‖vε‖
L

2n
n−2 (�)

≤ C‖vε‖
W

2, 2n
n+2 (�)

≤ Cε1− n
2 ≤ Cr1− n

2 , (2.16)

and thus we still get Eq. 2.14.
Next, we turn to the proof of Eq. 2.15. It is enough to consider the case when r > 2ε.

Indeed, by Eq. 2.2, we have
∫

�\B(y,r)

|D2vε |2 ≤
∫

�

|D2vε |2 ≤ Cε−n ≤ Cr−n.

For g ∈ C∞
c (� \ B(y, r)), let u ∈ L2(�) be an adjoint solution of Eq. 2.7 so that we have

(2.17)

Since g = 0 in �(y, r), we see that u is continuous on �(y, 1
2 r) by [5, Theorem 1.8]. In

fact, it follows from [5, Lemma 2.27] that

sup
�(y, 1

2 r)

|u| ≤ Cr−n‖u‖L1(�(y,r)). (2.18)

Therefore, by Hölder’s inequality and Lemma 1.7, we have

sup
�

(
y, 1

2 r
) |u| ≤ Cr− n

2 ‖u‖L2(�(y,r)) ≤ r− n
2 ‖g‖L2(�).
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Since g is supported in � \ Br(y), by Eq. 2.17 and the above estimate, we have
∣∣∣∣
∫

�\B(y,r)

tr(gD2vε)

∣∣∣∣ ≤ Cr− n
2 ‖g‖L2(�\B(y,r)).

Therefore, Eq. 2.15 follows by duality.

Lemma 2.19 For any y ∈ � and 0 < ε < diam �, we have

|{x ∈ � : |Gε(x, y)| > t}| ≤ Ct−
n

n−2 , ∀ t > 0, (2.20)

|{x ∈ � : |D2
xGε(x, y)| > t}| ≤ Ct−1, ∀ t > 0, (2.21)

where C = C(n, λ, �, �,ωA).

Proof We first establish Eq. 2.20. Let

At = {x ∈ � : |Gε(x, y)| > t}
and take r = t−

1
n−2 . Then, by Eq. 2.14, we get

|At \ B(y, r)| ≤ t−
2n

n−2

∫

At\B(y,r)

|Gε(x, y)| 2n
n−2 dx ≤ Ct−

2n
n−2 t

n
n−2 = Ct−

n
n−2 .

Since |At ∩ B(y, r)| ≤ Crn = Ct−
n

n−2 , obviously we thus obtain (2.20).
Next, we prove Eq. 2.21. Let

At = {x ∈ � : |D2
xGε(x, y)| > t}

and take r = t− 1
n . Then, by Eq. 2.15, we have

|At \ B(y, r)| ≤ t−2
∫

At\B(y,r)

|D2
xGε(x, y)|2 dx ≤ Ct−2 t = Ct−1.

Since |At ∩ B(y, r)| ≤ Crn = Ct−1, we get Eq. 2.21.

We are now ready to construct a Green’s function. By Lemma 2.13, for any r > 0, we
have

sup
0<ε<diam �

‖Gε(·, y)‖W 2,2(�\B(y,r)) < +∞.

Therefore, by applying a diagonalization process, we see that there exists a sequence of
positive numbers {εi}∞i=1 with limi→∞ εi = 0 and a function G(·, y), which belongs to
W 2,2(� \ B(y, r)) for any r > 0, such that

Gεi
(·, y) ⇀ G(·, y) weakly in W 2,2(� \ B(y, r)), ∀ r > 0. (2.22)

Note that by Eq. 2.15, we have
∫

�\B(y,r)

|D2
xG(x, y)|2 dy ≤ Cr−n, ∀ r > 0. (2.23)

By compactness of the embedding W 2,2 ↪→ L
2n

n−2 , we also get from Eq. 2.14 that
∫

�\B(y,r)

|G(x, y)| 2n
n−2 dx ≤ Cr−n, ∀ r > 0,
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On the other hand, Eq. 2.20 implies that for 1 < p < n
n−2 , we have (see e.g., Section 3.5 in

[13])

sup
0<ε<diam �

‖Gε(·, y)‖Lp(�) < +∞.

Therefore, by passing to a subsequence if necessary, we see that

Gεi
(·, y) ⇀ G(·, y) weakly in Lp(�), ∀ p ∈

(
1, n

n−2

)
.

For f ∈ Lq(�) with q > n
2 , let u be the unique adjoint solution in Lq(�) of the problem

(1.8). Then by Eq. 2.3, we have

By taking the limit, we get the representation formula (1.10), which yields the uniqueness
of the Green’s function.

Finally, from Eqs. 2.22 and 2.1, we find that G(·, y) belongs to W 2,2(� \ B(y, r)) and
satisfies LG(·, y) = 0 in � \ B(y, r) for all r > 0. Since A is uniformly continuous in �,
by the standard Lp theory (see e.g., [11]), we then see that G(·, y) is continuous in � \ {y}.
Moreover, by the same reasoning, we see from Lemma 2.13 that Gε(·, y) is equicontinuous
on �\B(y, r) for any r > 0. Therefore, we may assume, by passing if necessary to another
subsequence, that

Gεi
(·, y) → G(·, y) uniformly on � \ B(y, r), ∀ r > 0. (2.24)

In particular, from Lemma 2.11, we see that

|G(x, y)| ≤ C|x − y|2−n.

Therefore, we have shown Eq. 1.11.

2.2 Construction of Green’s Function for the Adjoint Operator

To construct Green’s function for the adjoint operator L∗ given in Eq. 1.4, we follow the
same scheme in Section 2.1. For y ∈ � and ε > 0, consider the following adjoint problem:

L∗u = 1

|�(y, ε)|χ�(y,ε) in �, u = 0 on ∂�. (2.25)

By Lemma 1.7, there exists a unique adjoint solution uε = uε;y in L2(�) such that

‖uε‖L2(�) ≤ Cε− n
2 , ∀ ε ∈ (0, diam �),

where C = C(n, λ, �, �,ωA). Next, for f ∈ C∞
c (�), consider the problem

Lv = f in �, v = 0 on ∂�.

By the standard Lp theory (see e.g., [11]) and the Sobolev’s inequality, we have

‖v‖Lq(�) ≤ C‖f ‖Lnq/(n+2q)(�),

where C = C(n, λ, �, �, q, ωA). Also, we have

sup
�

(
x0,

1
2 r

)|v| ≤ C
(
r−n‖v‖L1(�(x0,r))

+ r2‖f ‖L∞(�(x0,r))

)
, ∀ x0 ∈ �, ∀ r ∈ (0, diam �).
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Therefore, if f is supported in �(y, r), then by the above estimates and Hölder’s inequality,
we get

sup
�

(
y, 1

2 r
)|v| ≤ Cr2‖f ‖L∞(�(y,r)).

From the identity

(2.26)

we then see that (c.f. Eq. 2.10 above)

‖uε‖L1(�(y,r)) ≤ Cr2, ∀ ε ∈
(

0, 1
2 r

)
, ∀ r ∈ (0, diam �),

where C = C(n, λ, �, �,ωA). We define

G∗
ε (x, y) = uε,y(x) = uε(x).

Then, similar to Lemma 2.11, for any x, y ∈ � with x = y, we have

|G∗
ε (x, y)| ≤ C|x − y|2−n, ∀ε ∈

(
0, 1

3 |x − y|
)

. (2.27)

Indeed, if we set r = 2
3 |x − y|, then for ε < 1

2 r , we have L∗uε = 0 in �(x, r). Since A is
of Dini mean oscillation, by [5, Lemma 2.27], we have

|uε(x)| ≤ Cr−n‖uε‖L1(�(x,r)) ≤ Cr−n‖uε‖L1(�(y,3r)) ≤ Cr2−n,

which yields Eq. 2.27.
By using Eq. 2.27 and following the proof of Lemma 2.13, we get the following estimate,

which is a counterpart of Eq. 2.14. For any y ∈ � and 0 < ε < diam �, we have
∫

�\B(y,r)

|G∗
ε (x, y)| 2n

n−2 dx ≤ Cr−n, ∀ r > 0. (2.28)

Indeed, by taking f = 1
|�(y,ε)|χ�(y,ε) and q = 2n

n−2 in Eq. 2.8, we have

‖uε‖
L

2n
n−2 (�)

≤ C‖f ‖
L

2n
n+2 (�)

≤ Cε1− n
2 ,

which corresponds to Eq. 2.16. Then, by the same proof of Lemma 2.13, we get Eq. 2.28.
By using Eq. 2.28 and proceeding as in the proof of Eq. 2.20, we obtain

|{x ∈ � : |G∗
ε (x, y)| > t}| ≤ Ct−

n
n−2 , ∀ t > 0,

which in turn implies that for 0 < p < n
n−2 , there exists a constant Cp such that

∫

�

|G∗
ε (x, y)|p dx ≤ Cp, ∀ y ∈ �, ∀ ε ∈ (0, diam �).

Therefore, for any 1 < p < n
n−2 , we obtain

sup
0<ε<diam �

‖G∗
ε (·, y)‖Lp(�) < +∞,

and thus, there exists a sequence of positive numbers {εj }∞j=1 with limj→∞ εj = 0 and a
function G∗(·, y) ∈ Lp(�) such that

G∗
εj

(·, y) ⇀ G∗(·, y) weakly in Lp(�). (2.29)

For f ∈ Lq(�) with q > n
2 , let v ∈ W 2,q (�) ∩ W

1,q

0 (�) be the strong solution of

Lv = f in �, v = 0 on ∂�.
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Then, we have (c.f. Eq. 2.26 above)

and thus, by taking the limit, we also get the representation formula

v(y) =
∫

�

G∗(x, y)f (x) dx.

Finally, by Eqs. 2.25, 2.29, and Theorem 1.10 of [4], we see that G∗(·, y) is continuous
away from its singularity at y.

2.3 Proof of Symmetry (1.15)

For any x = y in �, choose two sequences {εi}∞i=1 and {δj }∞j=1 such that 0 < εi, δj <
1
3 |x − y| for all i, j and εi , δj → 0 as i, j → ∞. From the construction of Gε(·, y) and
G∗

ε (·, x), we observe the following:

By Eq. 2.29 and the continuity of G∗(·, x) away from its singularity, we get

On the other hand, by the continuity of Gεi
(·, y) and Eq. 2.24, we obtain

We have thus shown that

G(x, y) = G∗(y, x), ∀x = y.

So far, we have seen that there is a subsequence of {εi} tending to zero such that
Gεki

(·, y) → G(·, y). However, for any x = y, we have

That is, we have

Therefore, we find that

lim
ε→0

Gε(x, y) = G(x, y), ∀x = y.

2.4 Proof of Estimates Eqs. 1.12 and 1.13

We now show Eqs. 1.12 and 1.13. Let v = G(·, y) and r = 1
3 |x − y|. Note that we have

Lv = 0 in �(x, 2r), v = 0 on ∂�(x, 2r).
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By the standard elliptic theory, we have

‖Dv‖L∞(�(x,r)) ≤ Cr−1−n‖v‖L1(�(x,2r)).

Therefore, by Eq. 1.11, we get

|Dv(x)| ≤ Cr−1−n‖v‖L1(�(y,4r)) ≤ Cr1−n,

from which Eq. 1.12 follows.
In the case when � has C2,Dini boundary, by Theorem 1.5 of [5], we have

sup
�(x,r)

|D2v| ≤ Cr−n‖D2v‖L1(�(x,2r)).

Therefore, by Hölder’s inequality and Eq. 2.23, we have

|D2v(x)| ≤ Cr− n
2 ‖D2v‖L2(�(x,2r)) ≤ Cr− n

2 ‖D2v‖L2(�\B(y,r)) ≤ Cr−n,

from which Eq. 1.13 follows.
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Appendix

The following lemma is well known to experts and essentially due to Campanato. We
provide its proof for the reader’s convenience.

Lemma A.1 Let � ∈ R
n be a domain satisfying the following condition: there exists a

constant A0 ∈ (0, 1] such that for every x ∈ � and 0 < r < diam �, we have

|�(x, r)| ≥ A0|B(x, r)|, where �(x, r) := � ∩ B(x, r).

Suppose that a function u ∈ L1
loc(�) is of Dini mean oscillation in �, then there exists a

uniformly continuous function u∗ on � such that u∗ = u a.e. in �.

Proof In the proof we shall denote

By taking the average over �(x, 1
2 r) to the triangle inequality

|ūx,r − ū
x, 1

2 r
| ≤ |u − ūx,r | + |u − ū

x, 1
2 r

|
and using |�(x, r)|/|�(x, 1

2 r)| ≤ 2n/A0, we get

|ūx,r − ūx,r/2| ≤ (2n/A0)ω(r) + ω
(

1
2 r

)
≤ (2n/A0)

(
ω(r) + ω

(
1
2 r

))
.
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By telescoping, we get

|ūx,r − ūx,2−kr | ≤
k−1∑

j=0

|ūx,2−j r − ūx,2−(j+1)r |

≤ (2n/A0)
(
ω(r) + 2ω

(
1
2 r

)
+ · · · + 2ω

(
1

2k−1 r
)

+ ω
(

1
2k r

))

≤ (2n+1/A0)

∞∑

j=0

ω
(

1
2j r

)
�

∫ r

0

ω(t)

t
dt, (A.2)

where in the last step we used the fact that ω(t) � ω
(

1
2j r

)
when t ∈

(
1

2j+1 r, 1
2j r

]
; see [4].

Note that the last inequality also implies that

ω(r) �
∫ r

0

ω(t)

t
dt . (A.3)

Now, we define the function u∗ on � by setting u∗(x) = limr→0 ūx,r . By the Lebesgue
differentiation theorem, we have u = u∗ a.e. By letting k → ∞ in (A.2), we obtain

|u∗(x) − ūx,r | �
∫ r

0

ω(t)

t
dt for a.e. x ∈ �. (A.4)

For any x, y in �, let r = |x − y|, z = 1
2 (x + y), and use Eq. A.4 to get

|u∗(x)−u∗(y)|≤|u∗(x)−ūx,r |+|u∗(y)−ūy,r |+|ūx,r − ūy,r |�
∫ |x−y|

0

ω(t)

t
dt +|ūx,r − ūy,r |.

By taking the average over �(z, 1
2 r) to the triangle inequality

|ūx,r − ūy,r | ≤ |u − ūx,r | + |u − ūy,r |
and noting that �(z, 1

2 r) ⊂ �(x, r) ∩ �(y, r), we get

|ūx,r − ūy,r | ≤ (2n+1/A0)ω(|x − y|).
Combining together and using Eq. A.3, we conclude that

|u∗(x) − u∗(y)| �
∫ |x−y|

0

ω(t)

t
dt + ω(|x − y|) �

∫ |x−y|

0

ω(t)

t
dt .

Therefore, we see that u∗ is uniformly continuous with it the modulus of continuity

dominated by the function ρ(r) :=
∫ r

0

ω(t)

t
, dt .
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