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1 Introduction

A Brownian motion on a Riemannian manifold (M, g) is a diffusion process with infinites-
imal generator equal to one-half of the Laplace-Beltrami operator �g on M . If (M, g) is a
complete Riemannian manifold, a lower bound for the Ricci curvature is a sufficient condi-
tion for Brownian motion to have infinite lifetime [47]. Stated in terms of the minimal heat
kernel pt (x, y) to 1

2�g , this means that
∫

M

pt (x, y) dμ(y) = 1

for any (t, x) ∈ (0, ∞) × M , where μ = μg is the Riemannian volume measure. Infinite
lifetime of the Brownian motion is equivalent to uniqueness of solutions to the heat equation
in L∞, see e.g. [23, 27 Section 5]. Furthermore, let Pt denote the minimal heat semigroup
of 1

2�g and let ∇f denote the gradient of a smooth function with respect to g. Then a
lower Ricci bound also guarantees that t �→ ‖∇Ptf ‖L∞(g) is bounded on any finite interval
whenever ∇f is bounded. This fact allows one to use the �2-calculus of Bakry-Émery, see
e.g. [5, 6].

For a second order partial differential operator L on M , let σ(L) ∈ �(Sym2 T M)

denote its symbol, i.e. the symmetric, bilinear tensor on the cotangent bundle T ∗M uniquely
determined by the relation

σ(L)(df, dφ) = 1

2
(L(f φ) − f Lφ − φLf ) , f, φ ∈ C∞(M). (1.1)

If L is elliptic, then σ(L) coincides with the cometric g∗ of some Riemannian metric g

and L can be written as L = �g + Z for some vector field Z. Hence, we can use the
geometry of g along with the vector field Z to study the properties of the heat flow of L, see
e.g. [46]. If σ(L) is only positive semi-definite we can still associate a geometric structure
known as a sub-Riemannian structure. Recently, several results have appeared linking sub-
Riemannian geometric invariants to properties of diffusions of corresponding second order
operators and their heat semigroup, see [8, 10, 12, 24, 25]. These results are based on a
generalization of the �2-calculus for sub-Riemannian manifolds, first introduced in [11].
As in the Riemannian case, the preliminary requirements for using this �2-calculus is that
the diffusion of L has infinite lifetime and that the gradient of a function does not become
unbounded under the application of the heat semigroup.

Consider the following example of an operator L with positive semi-definite symbol.
Let (M, g) be a complete Riemannian manifold with a foliation F corresponding to an
integrable distribution V . Let H be the orthogonal complement of V with corresponding
orthogonal projection prH and define a second order operator L on M by

Lf = div (prH ∇f ), f ∈ C∞(M). (1.2)

If H satisfies the bracket-generating condition, meaning that the sections of H along with
their iterated brackets span the entire tangent bundle, then L is a hypoelliptic operator by
Hörmander’s classical theorem [30]. The operator L corresponds to the sub-Riemannian
metric gH = g|H . Let us make the additional assumption that leaves of the foliation
are totally geodesic submanifolds of M and that the foliation is Riemannian. If only the
first order brackets are needed to span the entire tangent bundle, it is known that any
1
2L-diffusion Xt has infinite lifetime given certain curvature bounds [25, Theorem 3.4].
Furthermore, if H satisfies the Yang-Mills condition, then no assumption on the number of
brackets is needed to span the tangent bundle is necessary [12, Section 4], see Remark 3.16
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for the definition of the Yang-Mills condition. Under the same restrictions, for any smooth
function f with bounded gradient, t �→ ‖∇Ptf ‖L∞(g) remains bounded on a finite interval.

We will show how to modify the argument in [12] to go beyond the requirement of the
Yang-Mills condition and even beyond foliations. We will start with some preliminaries on
sub-Riemannian manifolds and sub-Laplacians in Section 2. In Section 3.1 we will show
that existence of a Weitzenböck type formula for a connection sub-Laplacian always cor-
responds to the adjoint of a connection compatible with a sub-Riemannian structure. Our
results on infinite lifetime are presented in Section 3.3 based on a Feynman-Kac represen-
tation of dPtf using a particular adjoint of a compatible connection. Using recent results
of [18], we also show that our curvature requirement in the case of totally geodesic folia-
tions implies that the Brownian motion of the full Riemannian metric g has infinite lifetime
as well, see Section 3.7.

Our Feynman-Kac representation in Section 3.3 uses parallel transport with respect to a
connection that does not preserve the horizontal bundle. In Section 4.1 we give an alternative
stochastic representation of dPtf using parallel transport along a connection that preserves
the sub-Riemannian structure. This rewritten representation allows us to derive an explicit
pointwise bound for the horizontal gradient in Carnot groups. For a smooth function f on
M , the horizontal gradient ∇H f is defined by the condition that α(∇H f ) = σ(L)(df, α)

for any α ∈ T ∗M . Carnot groups are the ‘flat model spaces’ in sub-Riemannian geometry
in the sense that their role is similar to that of Euclidean spaces in Riemannian geometry.
See Section 4.3 for the definition. It is known that there exists pointwise bounds for the
horizontal gradient on Carnot groups. From [34], there exist constants Cp such that

|∇H Ptf |gH
≤ Cp

(
Pt |∇H f |pgH

)1/p

, p ∈ (1,∞), (1.3)

holds pointwise for any t > 0. This can even be extended to p = 1 in the case of the
Heisenberg group [32]. According to [16], the constant Cp has to be strictly larger than 1.
We give explicit constants for the gradient estimates on Carnot groups. Our results improve
on the constant found in [4] for the special case of the Heisenberg group. Also, for p > 2
we find a constant that does not depend on the heat kernel.

Appendix A deals with Feynman-Kac representations of semigroups whose generators
are not necessarily self-adjoint, which is needed for the result in Section 3.3.

2 Sub-Riemannian Manifolds and Sub-Laplacians

2.1 Sub-Riemannian Manifolds

We define a sub-Riemannian manifold as a triple (M,H, gH ) where M is a connected
manifold, H ⊆ T M is a subbundle of the tangent bundle and gH is a metric tensor defined
only on H . Such a structure induces a map �H : T ∗M → H ⊆ T M by the formula

α(v) = 〈�H α, v〉gH
:= gH (�H α, v), α ∈ T ∗

x M, v ∈ Hx, x ∈ M. (2.1)

The kernel of this map is the subbundle Ann(H) ⊆ T ∗M of covectors vanishing on H . This
map �H induces a cometric g∗

H on T ∗M by the formula

〈α, β〉g∗
H

= 〈�H α, �H β〉gH
, (2.2)

which is degenerate unless H = T M . Conversely, given a cometric g∗
H degenerating along

a subbundle of T ∗M , we can define �H α = g∗
H (α, ·) and use (2.2) to obtain gH . Going
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forward, we will refer to g∗
H and (H, gH ) interchangeably as a sub-Riemannian structure

on M . We will call H the horizontal bundle. For the rest of the paper, n is the rank of H

while n + ν denotes the dimension of M .
Let μ be a chosen smooth volume density with corresponding divergence divμ. Relative

to μ, we can define a second order operator

�H f := �gH
f = divμ �H df. (2.3)

By means of definition (1.1), the symbol of �H satisfies σ(�H ) = g∗
H . Locally the operator

�H can be written as

�H f =
n∑

i=1

A2
i f + A0f, n = rank H,

where A0, A1, . . . , An are vector fields taking values in H such that A1, . . . , An form a
local orthonormal basis of H .

The horizontal bundle H is called bracket-generating if the sections of H along with its
iterated brackets span the entire tangent bundle. The horizontal bundle is said to have step
k at x if k − 1 is the minimal order of iterated brackets needed to span TxM . From the local
expression of �H , it follows that H is bracket-generating if and only if �H satisfies the
strong Hörmander condition [30]. We shall assume that this condition indeed holds, giving
us that both �H and 1

2�H − ∂t are hypoelliptic and that

dgH
(x, y) := sup

{|f (x) − f (y)| : f ∈ C∞
c (M), σ (�H )(df, df ) ≤ 1

}
, (2.4)

is a well defined distance on M . Here, and in the rest of the paper, C∞
c (M) denotes the

smooth, compactly supported functions on M . Alternatively, the distance dgH
(x, y) can be

realized as the infimum of the lengths of all absolutely continuous curves tangent to H and
connecting x and y. The bracket-generating condition ensures that such curves always exist
between any pair of points. For more information on sub-Riemannian manifolds, we refer
to [36].

In what follows, we will always assume that H is bracket-generating, unless otherwise
stated explicitly. We note that if �H satisfies the strong Hörmander condition and if dgH

is
a complete metric, then �H |C∞

c (M) is essentially self-adjoint by [41, Chapter 12].
For the remainder of the paper, we make the following notational conventions. If p :

E → M is a vector bundle, we denote by �(E) the space of smooth sections of E. If
E is equipped with a connection ∇ or a (possibly degenerate) metric tensor g, we denote
the induced connections on E∗,

∧2
E, etc. by the same symbol, while the induced metric

tensors are denoted by g∗, ∧2g, etc. For elements e1, e2, we write g(e1, e2) = 〈e1, e2〉g and

|e1|g = 〈e1, e1〉1/2
g even in the cases when g is only positive semi-definite. If μ is a chosen

volume density on M and f is a function on M , we write ‖f ‖Lp for the corresponding
Lp-norm with the volume density being implicit. If Z ∈ �(E) then ‖Z‖Lp(g) := ‖|Z|g‖Lp .

For x ∈ M , if A ∈ End TxM is an endomorphism, we let A ᵀ ∈ End T ∗
x M denote its

transpose. If M is equipped with a Riemannian metric g, then A ∗ ∈ End T ∗
x M denotes its

dual. In other words,

〈A v, w〉g = 〈v,A ∗w〉g, (A
ᵀ
α)(v) = α(A v), α ∈ T ∗

x M, v, w ∈ TxM.

The same conventions apply for endomorphisms of T ∗M . If A is a differential operator,
then A ∗ is defined with respect to the L2-inner product of g.
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2.2 Taming Metrics

Given a sub-Riemannian manifold (M,H, gH ), a Riemannian metric g on M is said to
tame gH if g|H = gH . If dg is the corresponding Riemannian distance, then dg(x, y) ≤
dgH

(x, y) for any x, y ∈ M , since curves tangent to H have equal length with respect to
both metrics, while dg considers the infimum of the lengths over curves that are not tangent
to H as well. It follows that if dg is complete, then dgH

is a complete metric as well, as
observed in [41, Theorem 7]. By [40, Theorem 2.4], if g is a complete Riemannian metric
taming gH , then the sub-Laplacian �H with respect to the volume density of g and the
Laplace-Beltrami operator �g are both essentially self adjoint on C∞

c (M).
Given g, we denote the corresponding orthogonal projection to H by prH . Let � :

T M → T ∗M be the vector bundle isomorphism v �→ 〈v, ·〉g with inverse �. The fact that
g tames gH is equivalent to the statement that �H = prH �. Let V denote the orthogonal
complement of H with corresponding projection. The curvature R and the cocurvature R̄
of H with respect to the complement V are defined as

R(A, Z) = prV [prH A, prH Z], R̄(A,Z) = prH [prV A, prV Z], (2.5)

for A,Z ∈ �(T M). By definition, R and R̄ are vector-valued two-forms, and R̄ vanishes
if and only if V is integrable. The curvature and the cocurvature only depend on the direct
sum T M = H ⊕ V and not the metrics gH or g.

2.3 Connections Compatible with the Metric

Let ∇ be an affine connection on T M . We say that ∇ is compatible with the sub-Riemannian
structure (H, gH ) or g∗

H if ∇g∗
H = 0. This condition is equivalent to requiring that

∇ preserves the horizontal bundle H under parallel transport and that Z〈A1, A2〉gH
=

〈∇ZA1, A2〉gH
+ 〈A1,∇ZA2〉gH

for any Z ∈ �(T M), A1, A2 ∈ �(H). For any sub-
Riemannian manifold (M,H, gH ), the set of compatible connections is non-empty. Let g̃

be any Riemannian metric on M and define V as the orthogonal complement to H . Let prH
and prV be the corresponding orthonormal projections. Define

g = pr∗H gH + pr∗V g̃|V.

Then g is a metric taming gH . Let ∇g be the Levi-Civita connection of g and define finally

∇0 := prH ∇g prH + prV ∇g prV . (2.6)

The connection ∇0 will be compatible with g∗
H and also with g.

2.4 Rough Sub-Laplacians

In this section we introduce rough sub-Laplacians and compare them to the sub-Laplacian
as defined in (2.3). Let g∗

H ∈ �(Sym2 T M) be a sub-Riemannian structure on M with
horizontal bundle H . For any two-tensor ξ ∈ �(T ∗M⊗2) we write trH ξ(×,×) := ξ(g∗

H ).
We use this notation since for any x ∈ M and any orthonormal basis v1, . . . , vn of Hx

trH ξ(x)(×,×) =
n∑

i=1

ξ(x)(vi, vi).

For any affine connection ∇ on T M , define the Hessian ∇2 by

∇2
A,B = ∇A∇B − ∇∇AB.
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We define the rough sub-Laplacian L(∇) as L(∇) = trH ∇2×,×. Since ∇ induces a connec-
tion on all tensor bundles, L(∇) defines as an operator on tensors in general. We have the
following result.

Lemma 2.1 (a) Let μ be a volume density on M with corresponding sub-Laplacian �H .
Assume that H is a proper subbundle in T M . Then there exists some connection ∇
compatible with g∗

H and satisfying L(∇)f = �H f .
(b) Let g be a Riemannian metric taming gH and with volume form μ. Let ∇ be a con-

nection compatible with both g∗
H and g. Let T ∇ be the torsion of ∇ and define the

one-form β by
β(v) = tr T ∇(v, ·).

Then the dual of L = L(∇) on tensors is given by

L∗ = L − 2∇�H β − divμ �H β = L + (∇�H β)∗ − ∇�H β .

In particular, Lf = �H f + 〈β, df 〉g∗
H
for any f ∈ C∞(M).

Proof (a) If H is properly contained in T M , then there is some Riemannian metric g such
that g|H = gH and such that μ is the volume form g. Define ∇0 as in (2.6) and for
any endomorphism valued one-form κ ∈ �(T ∗M ⊗ End T ∗M), define a connection
∇κ

v = ∇0
v + κ(v). The connection ∇κ is compatible with g∗

H if and only if

〈κ(v)α, α〉g∗
H

= 0, v ∈ T M, α ∈ T ∗M. (2.7)

Furthermore, L(∇κ )f = L(∇0)f + (trH κ(×)
ᵀ×)f .

Define Z = �H − L(∇0). We want to show that there is an endomorphism-valued
one-form κ such that trH κ(×)

ᵀ× = Z and such that (2.7) holds. By a partition of
unity argument, it is sufficient to consider Z as defined on a small enough neigh-
borhood U such that both T M and H are trivial. Let η be any one-form on U such
that

|η|g∗
H

= 1, η(Z) = 0.

Let ζ be a one-form such that �H ζ = Z. Define κ by

κ(v)α = η(v)
(
α(Z)η − α(�H η)ζ

)
.

We observe that 〈κ(v)α, α〉g∗
H

= η(v)(α(Z)α(�H η) − α(�H η)α(Z)) = 0. Further-

more, if we choose a local orthonormal basis A1, . . . , An of H such that A1 = �H η,
then η(Aj ) = δ1,j while ζ(A1) = 0. Hence

α(trH κ(×)
ᵀ×) =

n∑
j=1

η(Aj )(α(Z)η(Aj ) − α(�H η)ζ(Aj )) = α(Z),

and so the one-form κ has the desired properties.
(b) For any connection ∇ preserving the Riemannian metric g, we have

divμ Z =
n∑

i=1

〈∇Ai
Z,Ai〉g +

ν∑
s=1

〈∇Zs Z,Zs〉g − β(Z), (2.8)

with respect to local orthonormal bases A1, . . . , An and Z1, . . . , Zν of respectively H

and V .
For any pair of vector fields A and B consider an operator F(A ⊗ B) = �A ⊗ ∇B

on tensors with dual

F(A ⊗ B)∗ = −ι(div B)A − ι∇BA − ιA∇B.
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Extend F to arbitrary sections of T M⊗2 by C∞(M)-linearity and consider the oper-
ator F(g∗

H ). Since ∇ preserves H , its orthogonal complement V and their respectice
metrics, around any point x we can find local orthonormal bases A1, . . . , An and
Z1, . . . , Zν of respectively H and V that are parallel at any arbitrary point x. Hence,
in any local orthonormal basis

F(g∗
H )∗ = ι�H β −

n∑
i=1

ιAi
∇Ai

,

and so

F(g∗
H )∗F(g∗

H ) = −L + ∇�H β = −L∗ + (∇�H β

)∗
.

Remark 2.2 As a result of the proof of Lemma 2.1, we actually know that all second order
operators on the form L(∇0) + Z for some Z ∈ �(H) is given as the rough sub-Laplacian
of some connection compatible with the metric gH .

3 Adjoint Connections and Infinite Lifetime

3.1 A Weitzenböck Formula for Sub-Laplacians

In the case of Riemannian geometry gH = g, one of the central identities involving
the rough Laplacian of the Levi-Civita connection L(∇g) is the Weitzenböck formula
L(∇g)df = Ricg(�df, ·) + dL(∇g)f = Ricg(�df, ·) + d�gf . A similar formula can
be introduced in sub-Riemannian geometry, as was observed in [20] using the concept of
adjoint connections. Adjoint connections were first considered in [15].

If ∇ is a connection on T M with torsion T ∇ , then its adjoint ∇̂ is defined by

∇̂AB = ∇AB − T ∇(A,B).

for any A, B ∈ �(T M). We remark that −T ∇ is the torsion of ∇̂, so ∇ is the adjoint of ∇̂.

Proposition 3.1 (Sub-Riemannian Weitzenböck formula) Let L be any rough sub-
Laplacian of an affine connection. Then there exists a vector bundle endomorphism A :
T ∗M → T ∗M such that for any f ∈ C∞(M),

(L − A )df = dLf (3.1)

if and only if L = L(∇̂) for some adjoint ∇̂ of a connection ∇ that is compatible with g∗
H .

In this case, A = Ric(∇), where

Ric(∇)(α)(v) := trH R∇(×, v)α(×). (3.2)

We note that the bracket-generating assumption is not necessary for this result.

Remark 3.2

(i) Let ∇ be a connection satisfying ∇g∗
H = 0 and let ∇̂ be its adjoint. By [22, Proposi-

tion 2.1] any smooth curve γ in M is a normal sub-Riemannian geodesic if and only
if there is a one-form λ(t) along γ (t) such that

�H λ(t) = γ̇ (t), and ∇̂γ̇ λ(t) = 0.
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See the reference for the definition of normal geodesic. In this sense, adjoints of
compatible connections occur naturally in sub-Riemannian geometry.

(ii) A Weitzenböck formula in the sub-Riemannian case first appeared in [20, Chap-
ter 2.4], see also [19]. This formulation assumes that the connection ∇ can be
represented as a Le Jan-Watanabe connection. For definition and the proof of the
fact that all connections on a vector bundle compatible with some metric there are of
this type, see [20, Chapter 1]. We will give the proof of Proposition 3.1 without this
assumption, in order to obtain an equivalence between existence of a Weitzenböck
formula and being an adjoint of a compatible connection.

Before continuing with the proof, we will need the next lemma.

Lemma 3.3 Let∇ be an affine connection with adjoint ∇̂. Assume that∇ is compatible with
g∗

H and denote L = L(∇), Ric = Ric(∇) and L̂ = L(∇̂). For any endomorphism-valued
one-form κ ∈ �(T ∗M ⊗ End T ∗M) let ∇κ be the connection

∇κ
v := ∇v + κ(v), v ∈ T M. (3.3)

(a) If the horizontal bundle H is a proper subbundle of T M and bracket-generating then
the connection ∇̂ does not preserve H under parallel transport.

(b) Define Lκ = L(∇κ ). Then

Lκ = L + ∇Zκ + 2Dκ + κ(Zκ) + trH (∇×κ)(×) + trH κ(×)κ(×)

where Zκ = trH κ(×)
ᵀ× and Dκ = trH κ(×)∇×. In particular, for any function

f ∈ C∞(M),
Lκf = Lf + Zκf and L̂f = Lf.

(c) The adjoint ∇̂κ of ∇κ is given by ∇̂κ
v = ∇̂v + κ̂(v) where

(κ̂(v)α)(w) := (κ(w)α)(v), for v, w ∈ T M, α ∈ T ∗ M.

In particular, if ∇κ is compatible with g∗
H then κ̂(�H α)α = 0 for any α ∈ T ∗M .

Proof (a) Let A,B ∈ �(H) be any two vector fields such that [A, B] is not contained
in H . Observe that ∇̂AB = ∇BA + [A, B] then cannot be contained in H either.

(b) This follows by direct computation: for any local orthonormal basis A1, . . . , An of H ,
we have

Lκ =
n∑

i=1

(∇Ai
+ κ(Ai)

) (∇Ai
+ κ(Ai)

)

−
n∑

i=1

(
∇∇Ai

Ai−κ(Ai)
ᵀAi

+ κ(∇Ai
Ai − κ(Ai)

ᵀ
Ai)

)

=
n∑

i=1

∇Ai
∇Ai

+
n∑

i=1

∇Ai
κ(Ai) +

n∑
i=1

κ(Ai)∇Ai
+

n∑
i=1

κ(Ai)κ(Ai)

+∇Zκ + κ(Zκ) −
n∑

i=1

(
∇∇Ai

Ai
+ κ(∇Ai

Ai)
)

= L + 2 trH κ(×)∇× + trH (∇×κ)(×) + trH κ(×)κ(×) + ∇Zκ + κ(Zκ).

For the special case of ∇κ = ∇̂, we have κ(v)
ᵀ
w = −T ∇(v,w) and hence Zκ = 0 as

a consequence.
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(c) Follows from the definition and (2.7).

Proof of Proposition 3.1 Notice that ιA∇Bdf = ιB ∇̂Adf . Since ∇ is compatible with g∗
H ,

for any x ∈ M there is a local orthonormal basis A1, . . . , An of H such that ∇Aj (x) = 0.
Hence, for an arbitrary vector field Z ∈ �(T M), with the terms below evaluated at x ∈ M

implicitly,

ιZdL(∇̂)f = ιZdL(∇)f = Z

n∑
i=1

∇Ai
df (Ai) =

n∑
i=1

∇Z∇Ai
df (Ai)

=
n∑

i=1

ιAi
R∇(Z,Ai)df +

n∑
i=1

∇Ai
∇Zdf (Ai) + ∇[Z,Ai ]df (Ai)

= − Ric(df )(Z) +
n∑

i=1

Ai∇Zdf (Ai) − ∇∇̂Ai
Z
df (Ai)

= − Ric(df )(Z) +
n∑

i=1

Ai∇̂Ai
df (Z) − ∇̂Ai

df (∇̂Ai
Z)

= ιZ(− Ric(df ) + L(∇̂)df ).

Since x was arbitrary, it follows that L(∇̂) satisfies (3.1).
Conversely, suppose that L = L(∇′) is an arbitrary rough Laplacian of ∇′. Let ∇ be an

arbitrary connection compatible with g∗
H and define κ such that ∇′

v = ∇̂κ
v = ∇̂v + κ̂(v),

where ∇κ is defined as in (3.3). We introduce the vector field Z = trH κ̂(×)
ᵀ× and

the first order operator D = trH κ̂(×)∇×. Using item (3.3) of Lemma 3.3, modulo zero
order operators applied to df , Ldf − dLf equals −dZf + ∇Zdf + 2Ddf . Furthermore,
−dZf + ∇Zdf = (∇Z − LZ)df and (∇Z − LZ) is a zero order operator. Hence, it fol-
lows that (3.1) holds if and only if Ddf = C df for some zero order operator C and any
f ∈ C∞(M).

Let A1, . . . , An be a local orthonormal basis of H and complete this basis to a full basis
of T M with vector fields Z1, . . . , Zν . Let A∗

1, . . . , A
∗
n, Z

∗
1 , . . . , Z∗

ν be the corresponding
coframe. Observe that Z∗

1 , . . . , Z∗
ν is a basis for Ann(H). For any B ∈ �(T M) and f ∈

C∞(M),

(Ddf )(B) =
n∑

i,k=1

(
κ̂(Ai)A

∗
k(B)

) ∇̂Ai
df (Ak) +

n∑
i=1

ν∑
s=1

(
κ̂(Ai)Z

∗
s (B)

) ∇̂Ai
df (Zs).

In order for this to correspond to a zero order operator, we must have κ̂(Ai)Z
∗
s = 0 and

κ̂(Ai)(A
∗
k) = −κ̂(Ak)(A

∗
i ) which is equivalent to κ̂(�H α)α = 0 for any α ∈ T ∗M . Hence,

∇̂κ is the adjoint of a connection compatible with g∗
H .

3.2 Connections with Skew-symmetric Torsion

For a sub-Riemannian manifold (M,H, gH ) with H strictly contained in T M , there
exists no torsion-free connection compatible with the metric. Indeed, if ∇ is a con-
nection preserving H , then the equality ∇AB − ∇BA = [A, B] would imply that
H could be bracket-generating only if H = T M . For this reason, it has been
difficult to find a direct analogue of the Levi-Civita connection in sub-Riemannian
geometry.
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For a Riemannian metric g, the only compatible connections with the same geodesics
as the Levi-Civita connection ∇g , are the compatible connections with skew-symmetric
torsion, see e.g. [3, Section 2]. These are the connections ∇ compatible with g such that

ζ(v1, v2, v3) := −〈T ∇(v1, v2), v3〉g, v1, v2, v3 ∈ T M,

is a well defined three-form. The connection ∇ is then given by formula ∇AB = ∇g
AB +

1
2T ∇(A,B) = ∇g

AB − 1
2�ιA∧Bζ . Equivalently, the connection ∇ is compatible with g and

of skew-symmetric torsion if and only if we have both ∇g = 0 and ∇̂g = 0. One can not
have a direct analogue for proper sub-Riemannian structures g∗

H , since by Lemma 3.3 (a)
it is not possible for both ∇ and ∇̂ to be compatible with g∗

H . In some cases, however, we
have the following generalization.

Let (M,H, gH ) be a sub-Riemannian manifold with taming Riemannian metric g and
V = H⊥. Let LA denote the Lie derivative with respect to the vector field A. Introduce a
vector-valued symmetric bilinear tensor II by the formula

〈II(A,A), Z〉g = −1

2
(LprV Zg)(prH A, prH A) − 1

2
(LprH Zg)(prV A, prV A) (3.4)

for any A, Z ∈ �(T M). Observe that II = 0 is equivalent to the assumption

(LAg)(Z,Z) = 0, (LZg)(A,A) = 0, (3.5)

for any A ∈ �(H) and Z ∈ �(V ).

Proposition 3.4 Let∇ be a connection compatible with g∗
H and with adjoint ∇̂. Assume that

there exists a Riemannian metric g taming gH such that ∇̂g = 0. Then II = 0. Furthermore,
if �H is defined relative to the volume density of g, then(

L(∇̂) − Ric(∇)
)

df = dL(∇̂)f = dL(∇)f = d�H f, f ∈ C∞(M).

Conversely, suppose that g is a Riemannian metric taming gH and satisfying II = 0. Define
R and R̄ as in (2.5) and introduce a three-form ζ by

ζ(v1, v2, v3) = �〈R(v1, v2), v3〉g + �〈R̄(v1, v2), v3〉g, (3.6)

with � denoting the cyclic sum. Then the connection

∇AB = ∇g
AB − 1

2
�ιA∧Bζ (3.7)

is compatible with g∗
H , and both it and its adjoint ∇̂AB = ∇g

AB + 1
2�ιA∧Bζ are compatible

with ∇̂g = 0.
Furthermore, among all such possible choices of connections, ∇ gives the maximal value

with regard to the lower bound of α �→ 〈Ric(∇)α, α〉g∗
H
.

Remark 3.5 (i) Analogy to the Levi-Civita connection: Applying Proportion 3.4 to the
case when gH = g is a Riemannian metric, the Levi-Civita connection can be
described as the connection such that both ∇ and ∇̂ are compatible with g and
that also maximizes the lower bound α �→ 〈Ric(∇)α, α〉g∗ which was observed
in [20, Corollary C.7]. In this sense, the connection in (3.7) is analogous to the
Levi-Civita connection.

(ii) Existence and uniqueness for a Riemannian metrics g taming gH and satisfying (3.5):
Every taming Riemannian metric g with II = 0 is uniquely determined by the orthog-
onal complement V of H and its value at one point [24, Remark 3.10]. Conversely,

228



Stochastic Completeness and Gradient Representations for...

suppose that (M,H, gH ) is a sub-Riemannian manifold and let V be a subbundle
such that T M = H ⊕ V . Then one can use horizontal holonomy to determine if
there exists a Riemannian metric g taming gH , satisfying (3.5) and making H and V

orthogonal. See [14] for more details and examples where no such metric can be
found. Two Riemannian metrics g1 and g2 may tame gH , satisfy (3.5) and have the
same volume density but their orthogonal complements of H may be different, see
[24, Example 4.6] and [14, Example 4.2].

(iii) Geometric interpretation of (3.5): From [22], the condition (3.5) holds if and only
if the Riemannian and the sub-Riemannian geodesic flow commute. See also Sec-
tion 3.7 for more relations to geometry and explanation of the notation II for the tensor
in (3.4).

(iv) If we define ∇ as in (3.7) and assume R̄ = 0, then its adjoint ∇̂ equals the connection
∇ε in [7] with ε = 1

2 .

Proof Let ∇g be the Levi-Civita connection of g. Define the connection ∇0 as in (2.6)
which is compatible with both g∗

H and the Riemannian metric g. Let T be the torsion of ∇0.
Define R and R̄ as in (2.5). We write TZ for the vector valued form TZ(A) = T (Z,A) and
use similar notation for R, R̄ and II. By the definition of the Levi-Civita connection, we
have

TZ = −RZ + 1

2
R∗

Z − R̄Z + 1

2
R̄∗

Z + II∗Z − II∗· Z − 1

2
R∗· Z − 1

2
R̄∗· Z,

with dual

T ∗
Z = −R∗

Z + 1

2
RZ − R̄∗

Z + 1

2
R̄Z + IIZ − II∗· Z + 1

2
R∗· Z + 1

2
R̄∗· Z,

Hence, if we introduce T s
Z := 1

2 (TZ + T ∗
Z) then

2T s
Z = −1

2
(RZ + R∗

Z) − 1

2
(R̄Z + R̄∗

Z) + (II∗Z + IIZ) − 2 II∗· Z.

Let ∇′ be a connection compatible with gH . Define an End T ∗M-valued one-form κ such
that ∇′

v = ∇κ
v = ∇0

v + κ(v), and let ∇̂′
v = ∇̂0

v + κ̂(v) be its adjoint. Define

κ̂s (Z) = 1

2

(
κ̂(Z) + κ̂(Z)∗

)
, κ̂a(Z) = 1

2

(
κ̂(Z) − κ̂(Z)∗

)
.

In order for the adjoint to be compatible with g, we must have

(∇̂κ
Zg)(A,A) = 2〈(TZ + κ̂(Z)

ᵀ
)A, A〉g = 0,

giving us the requirement κ̂s (Z)
ᵀ = −T s

Z . However, since ∇κ is compatible with gH , we
also have κ̂(�H α)α = 0 by Lemma 3.3. The latter condition is equivalent to κ̂(A)

ᵀ∗(A +
B) = 0 for any A ∈ �(H) and B ∈ �(V ). This means that

0 = 〈κ̂(A)
ᵀ∗(A + B),A + B〉g = 〈κ̂s (A)

ᵀ
(A + B),A + B〉g

= −〈T s
A(A + B),A + B〉g = −〈II(A,A), B〉g + 〈A, II(B,B)〉g.

The condition holds for any A ∈ �(H) and B ∈ �(V ) if and only if II = 0. It follows that
4κ̂s (Z)

ᵀ = RZ + R∗
Z + R̄Z + R̄∗

Z .
For the anti-symmetric part, we observe that

0 = −4κ̂(A)
ᵀ∗(A + B) = 4κ̂a(A)

ᵀ
(A + B) − 4κ̂s (A)

ᵀ
(A + B)

= 4κ̂a(A)
ᵀ
(A + B) − R∗

AB
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for any A ∈ �(H), B ∈ �(V ). This relation and anti-symmetry give us

κ̂a(Z)
ᵀ
(A + B) = κ̂a(prV Z)(A + B) − 1

4
(RZ − R∗

Z)(A + B) + �ιZ∧Aβ,

where β is a three-form vanishing on V .
In conclusion, for any Z1, Z2 ∈ �(T M),

∇κ
Z1

Z2 = ∇0
Z1

Z2 − κ̂(Z2)
ᵀ
(Z1)

= ∇0
Z1

Z2 − 1

4
(2R∗

Z2
+ R̄Z2 + R̄∗

Z2
)Z1 + κ̂a(prV Z2)(Z1) + �ιZ1∧Z2β.

Furthermore, since

∇0
Z = ∇g

Z + 1

2
TZ − 1

2
T ∗

Z − 1

2
T ∗Z

= ∇g
Z + 1

2

(
−RZ + 1

2
R∗

Z − R̄Z + 1

2
R̄∗

Z − 1

2
R∗· Z − 1

2
R̄∗· Z

)

−1

2

(
−R∗

Z + 1

2
RZ − R̄∗

Z + 1

2
R̄Z + 1

2
R∗· Z + 1

2
R̄∗· Z

)

−1

2

(
−R∗· Z − 1

2
RZ − R̄∗· Z − 1

2
R̄Z + 1

2
R∗

Z + 1

2
R̄∗

Z

)

= ∇g
Z + 1

2

(
−RZ + R∗

Z − R̄Z + R̄∗
Z

)
,

we get

∇κ
Z = ∇g

Z + 1

2

(
−RZ + R∗

Z − R̄Z + R̄∗
Z − R∗Z1 − R̄∗Z1

)
Z2 +λ(Z2)Z1 + �H ιZ1∧Z2β

where λ(Z)A = 1
4 (R̄Z − R̄∗

Z)A − κ̂a(prV Z)A. It follows that if ∇′ and ∇̂′ are compatible
with g∗

H and g respectively, and ∇ is defined as in (3.7), then II = 0 and

∇′
Z1

Z2 = ∇λ,β
Z1

Z2 := ∇Z1Z2 + λ(Z2)Z1 + �H ιZ1∧Z2β, (3.8)

for some three-form β vanishing on V and some End T M-valued one-form λ vanish-
ing on H and satisfying λ(v)∗ = −λ(v), v ∈ T M . It is straightforward to verify that
tr T ∇λ,β

(v, ·) = 0 for any v ∈ H , and hence L(∇′)f = L(∇̂′)f = �H f by Lemma 2.1.
All that remains to be proven is that

〈α, Ric(∇λ,β)α〉g∗
H

≤ 〈α, Ric(∇)α〉g∗
H
.

If ∇β = ∇0,β then L̂β := L(∇̂β) = L(∇̂λ,β) since λ vanishes on H . If we define L̂ =
L(∇̂), then for any smooth function f and local orthonormal basis A1, . . . , An of H ,

L̂βdf (Z) = L̂df (Z)+2
n∑

i=1

∇̂Ai
df (�ιAi∧Zβ)

+
n∑

i=1

df (�ιAi∧Z(∇̂Ai
β)) +

n∑
i=1

df (�Ai∧�ιAi∧Zββ)

= L̂df (Z)+
n∑

i=1

df (T ∇(Ai, �ιAi∧Zβ))+
n∑

i=1

(∇̂Ai
β)(�df, Ai, Z)−2〈ι�df β, ιZβ〉∧2g∗

H

= L̂df (Z) + 2〈ιRdf, ιZβ〉∧2g∗
H

− trH (∇̂×β)(×, �df, Z) − 2〈ι�df β, ιZβ〉∧2g∗
H
.
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We use that

〈(L̂β − L̂)df, α〉g = 〈(Ric(∇β) − Ric(∇))df, α〉g = 〈(Ric(∇λ,β) − Ric(∇))df, α〉g.
As a consequence, for any α ∈ T ∗M ,

〈α, Ric(∇λ,β)α〉g∗ = 〈α, Ric(∇)α〉g∗ + 2〈ιRα, ι�αβ〉∧2g∗
H

− 2〈ι�αβ, ι�αβ〉∧2g∗
H
.

Denoting αH = pr∗H α, we get

〈α, Ric(∇λ,β)α〉g∗
H

= 〈αH , Ric(∇)αH 〉g∗ − 2|ι�αH
β|2∧2g∗

H
.

The result follows.

3.3 Infinite Lifetime of the Diffusion to the Sub-Laplacian

Assume now that the taming metric g is a complete Riemannian metric. Then both the sub-
Laplacian �H of μ = μg and the Laplacian �g are essentially self-adjoint on compactly
supported functions. We denote their unique self-adjoint extension by the same symbol.

Let ∇ be a connection compatible with g∗
H and let Xt( ·) be the stochastic flow of 1

2L(∇)

with explosion time τ( ·). For any x ∈ M , let //t = //t (x) : TxM → TXt (x)M be parallel
transport along Xt(x) with respect to ∇. Using arguments similar to [24, Section 2.5], we
know that the anti-development Wt(x) at x determined by

dWt(x) = //−1
t ◦ dXt (x), Wt (0) = 0 ∈ TxM,

is a Brownian motion in the inner product space (Hx, 〈·, ·〉gH (x)) with lifetime τ(x).
Consider the semigroup Pt on bounded Borel measurable functions corresponding to Xt( ·)

Ptf (x) = E[1t<τ(x)f (Xt (x))].
We search for statements about the explosion time τ( ·) using connections that are com-
patible with g∗

H . Let C∞
b (M) denote the space of smooth bounded functions. For a vector

bundle endomorphism A of T ∗M write A//t (x) = //−1
t A (Xt (x))//t and let /̂/t denote the

parallel transport along Xt with respect to ∇̂.
We make the following three assumptions:

(A) If II is defined as in (3.4), then II = 0.
(B) Consider the two-form C ∈ �(

∧2
T ∗M) defined by

C(v,w) = tr R̄(v,R(w, ·)) − tr R̄(w,R(v, ·)), v,w ∈ T M. (3.9)

We suppose that δC = 0 where δ is the codifferential with respect to g.
(C) Let ∇ be defined as in (3.7). We assume that there exists a constant K ≥ 0 such that

for Ric = Ric(∇),

〈Ric α, α〉g∗ ≥ −K|α|2g∗ .

Theorem 3.6 Assuming that (3.3), (3.3) and (3.3) hold, we have the following results.

(a) �g and �H spectrally commute.
(b) τ(x) = ∞ a.s. for any x ∈ M .
(c) Define Q̂t = Q̂t (x) ∈ End T ∗

x M as solution to the ordinary differential equation

d

dt
Q̂t = −1

2
Q̂t Ric

/̂/t
, Q̂0 = id .
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Then, for any f ∈ C∞
b (M) with ‖df ‖L∞(g∗) < ∞, we have

dPtf (x) = E[Q̂t /̂/
−1
t df (Xt (x))]

and

‖dPtf ‖L∞(g∗) ≤ eKt‖df ‖L∞(g∗).

In particular,

sup
t∈[0,t1]

‖dPtf ‖L∞(g∗) ≤ eKt1‖df ‖L∞(g∗) < ∞

whenever ‖df ‖L∞(g∗) < ∞.

Remark that since ∇ preserves H under parallel transport, and hence also Ann(H), we
have Ric α = 0 for any α ∈ Ann(H). For this reason it is not possible to have a positive
lower bound of 〈Ric α, α〉g∗ unless H = T M . The results of Theorem 3.6 appear as neces-
sary conditions for the �2-calculus on sub-Riemannian manifolds, see e.g. [11, 12, 25] . We
will use the remainder of this section to prove this statement.

3.4 Anti-symmetric Part of Ricci Curvature

Let ζ and ∇ be as in (3.6) and (3.7), respectively. The operator Ric(∇) is not symmetric in
general. We consider its anti-symmetric part. Letting Ric = Ric(∇) we define

Rics = 1

2

(
Ric + Ric∗) , Rica = 1

2

(
Ric − Ric∗) . (3.10)

Lemma 3.7 For any α, β ∈ T ∗M ,

2〈Rica α, β〉g∗ = trH (∇×ζ )(×, �α, �β) = trH (∇×ζH )(×, �α, �β),

where ζH (v1, v2, v3) = �〈R(v1, v2), v3〉g and � denotes the cyclic sum. In particular,

〈β, Rica α〉g∗ = 〈pr∗V β, Rics α〉g∗ − 〈pr∗V α, Rics β〉g∗ ,

so if Rics has a lower bound then Rica is a bounded operator. Furthermore, if we define C
by (3.9), then whenever the L2 inner product is finite,

2〈Rica df, dφ〉L2(g∗) = 〈C, df ∧ dφ〉L2(∧2g∗) for any f, φ ∈ C∞(M).

The first part of this result is also found in [20, Proposition C.6]. When R̄ = 0, the
condition Rica = 0 is called the Yang-Mills condition. For more details, see Remark 3.16.

Proof of Lemma 3.7 For the proof, we will use the first Bianchi identity

�R∇(B1, B2)B3 = �(∇B1T )(B2, B3) + �T (T (B1, B2), B3) (3.11)

and the identity 〈R(B1, B2)A,A〉g = 0 which follows from the compatibility of ∇ with g.
We first compute,

2〈Rica α, β〉g∗ =
n∑

i=1

〈Ai, R
∇(Ai, �β)�α − R∇(Ai, �α)�β〉g

= −
n∑

i=1

〈Ai,�R∇(Ai, �α)�β〉g = −
n∑

i=1

〈Ai,�(∇Ai
T )(�α, �β) + �T (T (Ai, �α), �β)〉g
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= −
n∑

i=1

〈Ai, (∇Ai
T )(�α, �β) + T (T (Ai, �α), �β) + T (T (�β, �Ai), �α)〉g

=
n∑

i=1

(∇Ai
ζ )(Ai, �α, �β) −

n∑
i=1

〈T (Ai, �α), T (�β, Ai)〉g −
n∑

i=1

〈T (�β,Ai), T (�α,Ai)〉g

= trH (∇×ζ )(×, �α, �β).

Write ζ = ζH + ζV where ζH (v1, v2, v3) = �〈v1,R(v2, v3)〉g and ζV (v1, v2, v3) =
�〈v1, R̄(v2, v3)〉g . Recall that Ric α = 0 whenever α vanishes on H . Hence, for α, β ∈
Ann(H),

2〈Rica α, β〉g∗ = 0 = trH (∇×ζ )(×, �α, �β) = trH (∇×ζV )(×, �α, �β),

and so we can write 2〈Rica α, β〉 = trH (∇×ζH )(×, �α, �β). We remark for later pur-
poses that by reversing the place of V and H and writing gV = g|V , we have also
trgV

(∇×ζH )(×, �α, �β) = 0 by the same argument.
We note that

2〈Rica α, β〉g∗ = trH (∇×ζH )(×, �α, �β)

= trH (∇×ζH )(×, prH �α, prV �β) + trH (∇×ζH )(×, prV �α, prH �β).

We again use that Ric vanishes on Ann(H) to get

2〈Rica α, β〉g∗ = 2〈Rica pr∗H α, pr∗V β〉g∗ + 2〈Rica pr∗V α, pr∗H β〉g∗

= 〈Ric α, pr∗V β〉g∗ − 〈pr∗V α, Ric β〉g∗

= 2〈Rics α, pr∗V β〉g∗ − 2〈pr∗V α, Rics β〉g∗ .

Continuing, if A1, . . . , An and Z1, . . . , Zν are local orthonormal bases of H and V ,
respectively, observe that since ∇ preserves the metric g, for any one-form η, we have

dη =
n∑

i=1

�Ai ∧ ∇Ai
η +

ν∑
i=1

�Zν ∧ ∇Zν η + ιT η,

where ιT η = η(T ( ·, ·)). The formula above becomes valid for arbitrary forms η if we
extend ιT by the rule that ιT (α ∧ β) = (ιT α) ∧ β + (−1)kα ∧ ιT β for any k-form α and
form β. Observe that tr T (v, ·) = 0 for any v ∈ T M . Hence, by arguments similar to the
proof of Lemma 2.1 (b), we obtain a local formula for the codifferential

δη = −
n∑

i=1

ιAi
∇Ai

η −
ν∑

i=1

ιZν ∇Zν η + ι∗T η. (3.12)

By the relation trgV
(∇×ζH )(×, �α, �β) = 0, we finally have

trH (∇×ζH )(×, �α, �β) = (ι∗T ζH )(�α, �β) − (δζH )(�α, �β) = 〈C − δζH , α ∧ β〉g∗ .

Inserting α ∧ β = df ∧ dφ = d(f dφ) and integrating over the manifold, we obtain the
result.

3.5 Commutation Relations Between the Laplacian and the Sub-Laplacian

Let (M,H, gH ) be a sub-Riemannian manifold and let g be a taming Riemannian metric
with II = 0. Define �g as the Laplacian of g and let �H be defined relative to the volume
density of g.
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Proposition 3.8 We keep the definition of C as in (3.9).

(a) We have �g�H f = �H �gf for all f ∈ C∞(M) if and only if δC = 0.
(b) Assume δC = 0 and that Ric(∇) is bounded from below by some constant −K . Then

�g and �H spectrally commute.

See Example 3.12 for a concrete example where C �= 0 while δC = 0. Before starting
the proof, we shall need the following lemmas.

Lemma 3.9 ([33, Proposition], [11, Proposition 4.1]) Let A be equal to the Laplacian �g

or sub-Laplacian�H defined relative to a complete Riemannian or sub-Riemannian metric,
respectively. Let M × [0, ∞), (x, t) �→ ut (x) be a function in L2 of the solving the heat
equation

(∂t − A)ut = 0, u0 = f,

for an L2-function f . Then ut (x) is the unique solution to this equation in L2.

Lemma 3.10 Let (M,H, gH ) be a sub-Riemannian manifold and define �H as the sub-
Laplacian with respect to a volume form μ. Let g be a taming metric of gH with volume
form μ. Assume that ∇ and its adjoint ∇̂ are compatible with g∗

H and g, respectively. If

L̂ = L(∇̂), then with respect to g,

L̂∗ = L̂ = −(∇̂prH )∗∇̂prH .

In particular, L̂f = �H f for any f ∈ C∞(M).

Proof Define F̂ (A ⊗ B) = �A ⊗ ∇̂B and extend it by linearity to all sections of T M⊗2.
Again we know that for any point x, there exists a basis A1, . . . , An such that ∇Ai(x) = 0.
This means that ∇̂ZAi(x) = T ∇(Ai, Z)(x) for the same basis, and hence locally

F̂ (g∗
H )∗ = −ι

�H β̂
−

n∑
i=1

ιAi
∇̂Ai

, β̂(v) = tr T ∇̂(v, ·).

However, since ∇̂ is the adjoint of a connection compatible with g∗
H we have β̂ = 0 since

∇̂ has to be on the form (3.8). Hence F̂ (g∗
H )∗F̂ (g∗

H ) = −L̂ and the result follows.

Proof of the Proposition 3.8

(a) It is sufficient to prove the statement for compactly supported functions. Note that
for f, φ ∈ C∞

c (M), 〈�H �gf, φ〉L2 = 〈f, �g�H φ〉L2 . Hence, we need to show that
�g�H is its own dual on compact supported forms.

Let ∇ be as in (3.7) with adjoint ∇̂. Define L = L(∇), L̂ = L(∇̂), Ric = Ric(∇)

and introduce Rica = 1
2

(
Ric − Ric∗). By Lemma 3.10 we have L̂∗ = L̂. In addition,

〈�g�H f, φ〉L2 = −〈dLf, dφ〉L2(g∗)

= −〈(L̂ − Ric)df, dφ〉L2(g∗)

= −〈df, (L̂ − Ric)dφ〉L2(g∗) + 2〈Rica df, dφ〉L2(g∗)
= 〈f,�g�H φ〉L2 + 2〈Rica df, dφ〉L2(g∗).

Furthermore, 2〈Rica df, dφ〉L2(g∗) = 〈C, df ∧ dφ〉L2(∧2g∗) = 〈δC, f dφ〉L2(g∗). Since
all one-forms can we written as sums of one-forms of the type f dφ, it follows that
(�g�H )∗f = �g�H f for f ∈ C∞

c (M) if and only if δC = 0.
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(b) Write �g = �H + �V and df = dH f + dV f , with dH f = pr∗H df and dV f =
pr∗V df . Then 〈�H f, φ〉L2 = −〈dH f, dH φ〉L2(g∗) and similarly for �V .

Observe that for any compactly supported f ,

‖�gf ‖L2‖�H f ‖L2 ≥ 〈�gf,�H f 〉L2

= −〈df, (L̂ − Ric)df 〉L2(g∗)

= ‖∇̂df ‖2
L2(g∗⊗2)

+ 〈df, Ric dH f 〉L2(g∗)

≥ 1

n
‖�H f ‖2

L2 − K‖df ‖L2(g∗)‖dH f ‖L2(g∗).

and ultimately

‖�H f ‖2
L2 ≤ n

√‖�gf ‖L2‖�H f ‖L2

(√‖�gf ‖L2‖�H f ‖L2 + K‖f ‖L2

)
. (3.13)

By approaching any f ∈ Dom(�g) by compactly supported functions, we conclude
from (3.13) that any such function must satisfy ‖�H f ‖L2 < ∞. As a consequence,
Dom(�g) ⊆ Dom(�H ).

Let Qt = et�g/2 and Pt = et�H /2 be the semigroups of �g and �H , which exists
by the spectral theorem. For any f ∈ Dom(�H ), ut = �H Qtf is an L2 solution of

(
∂

∂t
− 1

2
�g

)
ut = 0, u0 = �H f.

By Lemma 3.9 we obtain �H Qtf = Qt�H f . Furthermore, for any s > 0 and f ∈
L2, we know that Qsf ∈ Dom(�g) ⊆ Dom(�H ), and since

(
∂

∂t
− 1

2
�H

)
QsPtf = 0,

it again follows from Lemma 3.9 that PtQsf = QsPtf for any s, t ≥ 0 and f ∈ L2.
The operators consequently spectrally commute, see [38, Chapter VIII.5].

Remark 3.11 The results of Lemma 2.1 and Lemma 3.10 do not require the bracket gener-
ating assumptions. The result of L̂ being symmetric is also found in [20, Theorem 2.5.1] for
the case when ∇ and ∇̂ preserves the metric.

Example 3.12 (C nonzero and coclosed) For j = 1, 2, define gj = su(2) with basis
Aj , Bj , Cj satisfying

[Aj ,Bj ] = Cj , [Bj , Cj ] = Aj , [Cj ,Aj ] = Bj .

Let g denote the direct sum g = g1 ⊕ g2 as Lie algebras and give it a bi-invariant inner
product such that A1, A2, B1, B2, C1, C2 form an orthonormal basis. Consider the elements
A± ∈ g where A± = A1 ± A2 and define B± and C± analogously. As vector spaces, write

g = h ⊕ v = span{A+, B+, C1} ⊕ span{A−, B−, C2},
Consider the Lie group M = SU(2) × SU(2) with a Riemannian metric g defined by
left translation of the inner product on its Lie algebra g. Furthermore, define H and V

as the left translation of respectively h and v. Then the condition II = 0 follows from
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bi-invariance. Furthermore, observe that if we use the same symbol for elements in g and
their corresponding left invariant vector fields, then

R A+ B+ C1

A+ 0 C2 − 1
2B−

B+ −C2 0 1
2A−

C1 1
2B− − 1

2A− 0

R̄ A− B− C2

A− 0 C1 1
2B+

B− −C1 0 − 1
2A+

C2 − 1
2B+ 1

2A+ 0

We then have

2 Rica : A+ �→ A−, B+ �→ B−, C1 �→ 2C2

A− �→ −A+, B− �→ −B+, C2 �→ −2C1

and C = 1
2 �C2∧�C1. The form C is in fact coclosed. To see this, let ∇ l denote the connection

defined such that all left invariant vector fields are parallel and let T l denote its torsion. If A

and B are left invariant, then T l(A,B) = −[A, B]. Bi-invariance of the inner product gives
us tr T l(v, · ) = 0, so formula (3.12) is still valid when using the connection ∇ l . Hence
δC = 1

2 ιT ∗�C2 ∧ �C1 = − 1
2 �[C2, C1] = 0.

3.6 Proof of Theorem 3.6

We consider the assumptions that δC = 0 and that the symmetric part Rics of the Ric is
bounded from below. By Lemma 3.7, the anti-symmetric part Rica is a bounded operator.
Furthermore, the operators �g and �H spectrally commute by Proposition 3.8.

Let Xt(x), /̂/t and Q̂t be as in the statement of the theorem. If

Nt = Q̂t /̂/
−1
t α(Xt (x))

for an arbitrary α ∈ �(T ∗M), then by Itô’s formula

dNt
loc. m.= 1

2
Q̂t /̂/

−1
t (L̂ − Ric)α(Xt (x))dt

where
loc. m.= denotes equivalence modulo differential of local martingales. Consider

L2(T ∗M) as the space of L2-one-forms on M with respect to g. Since g is complete and
Rics bounded from below, the operator L̂ − Rics is essentially self-adjoint by Lemma 3.10
and Lemma A.1. Hence, by Lemma A.4, there is a strongly continuous semigroup P

(1)
t on

L2(T ∗M) with generator (L̂ − Ric, Dom(L̂ − Rics)) such that

P
(1)
t α(x) = E[1t<τ(x)Nt ] = E[1t<τ(x)Q̂t /̂/

−1
t α(Xt (x))].

We want to show that for any compactly supported function f , P
(1)
t df = dPtf where

Ptf (x) = E[f (Xt (x))1t<τ(x)]. Following the arguments in [17, Appendix B.1], we have
Ptf = et�H /2f where the latter semigroup is the L2-semigroup defined by the spectral
theorem and the fact that �H is essentially self-adjoint on compactly supported functions.
To this end, we want to show that dPtf is contained in the domain of the generator of P

(1)
t .

This observation will then imply P
(1)
t df = dPtf , since P

(1)
t df is the unique solution to

∂

∂t
αt = 1

2
Lαt , α0 = df,

with values in Dom(L̂ − Rics) by strong continuity, [21, Chapter II.6].
We will first need to show that dPtf is indeed in L2. Let �g denote the Laplace-Beltrami

operator of g, which will also be essentially self-adjoint on compactly supported functions
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since g is complete. Denote its unique self-adjoint extension by the same symbol. Since
the operators spectrally commute, es�g et�H = et�H es�g for any s, t ≥ 0 which implies
�ge

t�H f = et�H �gf for any f in the domain of �g . In particular,

〈dPtf, dPtf 〉L2(g∗) = −〈�gPtf, Ptf 〉L2(g∗) = −〈Pt�gf, Ptf 〉L2(g∗) < ∞.

Next, since 〈(L̂ − Rics)α, α〉L2(g∗) ≥ −K‖α‖2
L2(g∗), the domain Dom(L̂ − Rics) coin-

cides with the completion of compactly supported one-forms �c(T
∗M) with respect to the

quadratic form

q(α, α) = (K + 1)〈α, α〉L2(g∗) − 〈(L̂ − Rics)α, α〉L2(g∗)

= (K + 1)〈α, α〉L2(g) − 〈(L̂ − Ric)α, α〉L2(g∗).

Since Ptf is in the domain of both �g and �H for any compactly supported f , we have
that for any fixed t , there is a sequence of compactly supported functions hn such that
hn → Ptf , �H hn → �H Ptf and �ghn → �gPtf in L2. From the latter fact, it follows
that dhn converges to dPtf in L2 as well. Furthermore,

q(dhn, dhn) = (K + 1)〈dhn, dhn〉L2(g) − 〈(L̂ − Ric)dhn, dhn〉L2(g)

= −(K + 1)〈hn,�ghn〉L2(g) − 〈d�H hn, dhn〉L2(g)

= −(K + 1)〈hn,�ghn〉L2(g) + 〈�H hn,�ghn〉L2(g),

which has a finite limit as n → ∞. Hence, dPtf ∈ Dom(L̂ − Rics) and P
(1)
t df = dPtf .

Using that 〈Ric α, α〉g∗ ≥ −K|α|2g∗ , Gronwall’s lemma and the fact that ∇̂ preserves the
metric means that

|1t<τ(x)Q̂t /̂/
−1
t α(Xt (x))|g∗ ≤ eKt/21t<τ(x)|α|g∗(Xt (x)).

Hence,

|P (1)
t α(x)|g∗ ≤ eKt/2Pt |α|g∗(x). (3.14)

We assumed that g was complete, so we know that there exists a sequence of compactly sup-
ported functions gn such that gn ↑ 1 and such that ‖dgn‖2

L∞(g∗) → 0. Since |dPtgn|g∗ → 0
uniformly by (3.14) and we know that Ptgn → Pt1, we obtain dPt1 = 0. Hence, we know
that Pt1 = 1, which is equivalent to τ(x) = ∞ almost surely.

It is a standard argument to extend the formulas from functions of compact support to
bounded functions with ‖df ‖L∞(g∗) < ∞.

3.7 Foliations and a Counter-example

Let (M,H, gH ) be a sub-Riemannian manifold and let g be a Riemannian metric taming
gH and satisfying II = 0 with II as in (3.4). Write V for the orthogonal complement of H .
Define the Bott connection, by

∇̊Z1Z2 = prH ∇g
prH Z1

prH Z2 + prV ∇g
prV Z1

prV Z2

+ prH [prV Z1, prH Z2] + prV [prH Z1, prV Z2] (3.15)

where ∇g denote the Levi-Civita connection. Its torsion T̊ := T ∇̊ equals T̊ = −R−R̄ and
∇̊g = 0 is equivalent to requiring II = 0. Since ∇̊ is compatible with the metric, we have

∇̊Z = ∇g
Z + 1

2
T̊Z − 1

2
T̊ ∗

Z − 1

2
T̊ ∗· Z, TZ(A) = T (Z,A).
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If ζ and ∇ are as in (3.6) and (3.7), respectively, then

ζ(v1, v2, v2) = −�〈T̊ (v1, v2), v3〉g, and ∇Z = ∇̊Z + T̊ ∗· Z.

The connection ∇̊ does not have skew-symmetric torsion, however, it does have the
advantage that ∇̊AB is independent of g|V if either A or B takes its values in H , see
[24, Section 3.1].

3.7.1 Totally Geodesic, Riemannian Foliations

Assume that R̄ = 0, i.e. assume that the orthogonal complement V of H is integrable. Let
F be the corresponding foliation of V that exists from the Frobenius theorem. We have the
following way of interpreting the condition II = 0. The tensor II(prV ·, prV ·) equals the
second fundamental form of the leaves, i.e. prH ∇g

ZW = II(Z,W) for any Z,W ∈ �(V ).
Hence, II(prV ·, prV ·) = 0 is equivalent to the leaves of F being totally geodesic immersed
submanifolds. On the other hand, the condition 0 = −2〈II(A,A), Z〉 = (LZg)(A,A) for
any A ∈ �(H), Z ∈ �(V ) is the definition of F being a Riemannian foliation. Locally,
such a foliation F consists of the fibers of a Riemannian submersion. In other words, every
x0 ∈ M has a neighborhood U such that there exists a surjective submersion between two
Riemannian manifolds,

π : (U, g|U) → (M̌U , ǧU ), (3.16)

satisfying
T U = H |U ⊕⊥ ker π∗, F |U = {π−1(x̌) : x̌ ∈ M̌U }

and that π∗ : Hx → Tπ(x)M̌U is an isometry for every x ∈ U .
Let Xt( ·) be a stochastic flow with generator 1

2�H where the latter is defined rela-
tive to the volume density of g. The following result is found in [18] for totally geodesic
Riemannian foliations.

Theorem 3.13 If (M, g) is a stochastically complete Riemannian manifold, then Xt(x) has
infinite lifetime.

In particular, if the Riemannian Ricci curvature Ricg is bounded from below, Xt(x) has
infinite lifetime. We want to compare this result using the entire Riemannian geometry with
our result using Ric(∇), an operator only defined by taking the trace over horizontal vectors.
For this special case, it turns out that Ricg being bounded from below is actually a weaker
condition than Ric(∇) being bounded from below.

Proposition 3.14 Let (M,H, gH ) be a sub-Riemannian manifold with H bracket-
generating. Let F be a foliation of M corresponding to an integrable subbundle V such
that T M = H ⊕ V . Let g be any Riemannian metric taming gH such that II = 0, making
F a totally geodesic Riemannnian foliation. Assume finally that g is complete. For x ∈ M ,
let Fx denote the leaf of the foliation F containing x. Write RicFx for the Ricci curvature
tensor of Fx .

(a) For any x, y ∈ M , there exist neighborhoods x ∈ Ux ⊆ Fx and y ∈ Uy ⊆ Fy , and an
isometry

� : Ux → Uy, �(x) = y.

As a consequence, if we define RicF such that

RicF (v,w) = RicFx (prV v, prV w), for any v, w ∈ TxM,
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then RicF is bounded.
(b) Let Ricg be the Ricci curvature of the Riemannian metric g. Let ∇ be defined as in

(3.7). Then for any v ∈ TxM , x ∈ M and for any local orthonormal basis A1, . . . , An

of H about x,

Ricg(v, v)=Ric(∇)(�v)(v) + 1

2

n∑
i=1

|R(Ai, v)|2g + 1

4

n∑
i=1

|R∗
Ai

v|2 + RicF (v, v).

(3.17)
In particular, Ricg has a lower bound if Ric(∇) has a lower bound.

Before presenting the proof we need the next lemma. Let (M, g) be a complete Rie-
mannian manifold and let F be a Riemannian foliation with totally geodesic leaves. Let
V be the integrable subbundle of T M corresponding to F and define H as its orthogonal
complement. Write n for the rank of H and ν for the rank of V . Define

O(n) → O(H)
p→ M

as the orthonormal frame bundle of H . Introduce the principal connection E on p cor-
responding to the restriction of ∇̊ to H . In other words, E is the subbundle of T O(H)

satisfying T O(H) = E⊕ker p∗, Eφ ·a = Eφ·a , φ ∈ O(H), a ∈ O(n) and defined such that
a curve φ(t) in O(H) is tangent to E if and only if the frame is ∇̊-parallel along p(φ(t)).
For any u = (u1, . . . , un) ∈ R

n, define Âu as the vector field on O(H) taking values in E

uniquely determined by the property

p∗Âu(φ) =
n∑

j=1

ujφj , for any φ = (φ1, . . . , φn) ∈ O(H).

For any φ ∈ O(H)x , define F̂φ as all points that can be reached from φ by an E-horizontal
lift of a curve in Fx starting in x. We then have the following result, found in [18], see also
[43, Chapter 10] and [35].

Lemma 3.15 The collection F̂ = {F̂φ : φ ∈ O(H)} gives a foliation of O(H) with ν-
dimensional leaves such that for each φ ∈ O(H) the map

p|F̂φ : F̂φ → Fp(φ)

is a cover map. Furthermore, giving each leaf of F̂ a Riemannian structure by pulling back

the metric from the leaves of F , then for any u ∈ R
n and t ∈ R, the flow �u(t) = etÂu

maps F̂φ onto F̂�u(t)(φ) isometrically for each φ ∈ O(H).

Note that the reason for using the connection ∇̊ in the definition of F̂ , is that
R∇̊(Z,W)A = 0 for any Z,W ∈ �(V ) and A ∈ �(H).

Proof of Proposition 3.14

(a) For any x ∈ M , choose a fixed element φ0 in O(H)x . With the notation of
Lemma 3.15, define

Oφ0 = {
�uk

(tk) ◦ · · · ◦ �u1(t1)(φ) : tj ∈ R, uj ∈ R
n, k ∈ N

}
.
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Clearly, by definition of the set, for any φ ∈ Oφ0 , there is an isometry �̂ : F̂φ0 → F̂φ

such that �̂(φ0) = φ. Consider the vector bundle Ĥ = span{Âu : u ∈ R
n} and define

Lieφ Ĥ := span
{
[B1, [B2, · · · , [Bk−1, Bk]] · · · ]∣∣

φ
: Bj ∈ �(Ĥ ), k ∈ R

}

= span
{
[Âu1 , [Âu2 , · · · , [Âuk−1 , Âuk

]] · · · ]∣∣
φ

: uj ∈ R
n, k ∈ R

}
,

for any φ ∈ O(H). By the Orbit Theorem, see e.g. [2, Chapter 5], Oφ0 is an immersed
submanifold of O(H), and furthermore,

Lieφ Ĥ ⊆ TφOφ0 , for any φ ∈ Oφ0 .

Since p∗Ĥ = H and since H is bracket-generating, we have that p∗ Lieφ Ĥ =
Tp(φ)M . It follows that p(Oφ0) = M . Hence, for any y ∈ M , there is an isometry
�̂ : F̂φ0 → F̂φ with �̂(φ0) = φ for some φ ∈ O(H)y . As a consequence, there is a
local isometry � taking x to y.

(b) Recall that ∇AB = ∇g
AB+ 1

2T (A,B) = ∇g
AB− 1

2�ιA∧Bζ . Hence, if Rg is the curvature
of the Levi-Civita connection, then

Rg(Z1, Z2)B1 = R∇(Z1, Z2)B1 − 1

2
(∇Z1T )(Z2, B1) + 1

2
(∇Z2T )(Z1, B1)

− 1

2
T (T (Z1, Z2), B1)+ 1

4
T (Z1, T (Z2, B1))− 1

4
T (Z2, T (Z1, B1))

and we can write

〈Rg(Z1, Z2)B1, B2〉g = 〈R∇(Z1, Z2)B1, B2〉g + 1

2
(∇Z1ζ )(Z2, B1, B2)

−1

2
(∇Z2ζ )(Z1, B1, B2) − 1

2
〈T (Z1, Z2), T (B1, B2)〉g

−1

4
〈T (Z1, B2), T (Z2, B1)〉 + 1

4
〈T (Z1, B1), T (Z2, B2)〉

for Zj , Bj ∈ �(T M). Since all the leaves of the foliation are totally geodesic, we have
〈Rg(Z1, Z2)B1, B2〉 = 〈RF (Z1, Z2)B1, B2〉 whenever all vector fields take values
in V . Using any local orthonormal bases A1, . . . , An and Z1, . . . , Zν of H and V ,
respectively, then

〈Rg(Ai, v)v, Ai〉g = 〈R∇(Ai, v)v, Ai〉g + 1

4
|T (Ai, v)|2g

= 〈R∇(Ai, v)v, Ai〉g + 1

4
|R(Ai, v)|2g + 1

4
|R∗

Ai
v|2g

and

〈Rg(Zs, v)v, Zs〉g = 〈R∇(Zs, v)v, Zs〉g + 1

4
|T (Zs, v)|2g

= 〈R∇(Zs, prH v) prH v, Zs〉g + 1

4
|R∗

vZs |2g.
Here we have used the first Bianchi identity (3.11) to obtain

〈R∇(Zs, v)v, Zs〉g = 〈R∇(Zs, prH v) prV v, Zs〉 + 〈R∇(Zs, prV v) prV v, Zs〉
= 〈�R∇(Zs, prH v) prV v, Zs〉 + 〈R∇(Zs, prV v) prV v, Zs〉
= 〈R∇(Zs, prV v) prV v, Zs〉.
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In summary

Ricg(v, v) =
n∑

i=1

〈Rg(Ai, v)v, Ai〉g +
ν∑

s=1

〈Rg(Zs, v)v, Zs〉g.

= Ric(∇)(�v)(v) + 1

2

n∑
i=1

|R(Ai, v)|2g + 1

4

n∑
i=1

|R∗
Ai

v|2 + RicF (v, v).

The result now follows from (a).

Remark 3.16

(a) Let g be any metric taming gH such that II = 0. Let ∇̊ be the Bott connection defined
in (3.15). Write V for the orthogonal complement of H . Then for any ε > 0, the scaled
Riemannian metric

gε(v, w) = g(prH v, prH w) + 1

ε
g(prV v, prV w),

also tames gH and satisfies II = 0. Since ∇̊AB is independent of g|V whenever at least
one of the vector fields takes values only in H , it behaves better with respect to the
scaled metric. Such scalings of the extended metric are important for sub-Riemannian
curvature-dimension inequalities, see [8, 10–12, 24, 25].

(b) If R̄ = 0 then we have that trH (∇×R)(×, ·) = trH (∇̊×R)(×, ·). If this map vanishes,
i.e. if Ric(∇) is a symmetric operator, then H is said to satisfy the Yang-Mills condi-
tion. One may consider subbundles H satisfying this condition as locally minimizing
the curvature R. See [25, Appendix A.4] for details.

3.7.2 Regular Foliations

We give a short remark on the case in Section 3.7.1 when the foliation is also regular,
i.e. when there is a global Riemannian submersion π : (M, g) → (M̌, ǧ) with foliation
F = {Fy = π−1(y) : y ∈ M̌}. We can rewrite (3.17) as

Ricg(v, v) = Ric(∇̊)(�v)v − 1

2
|R(v, ·)|2g∗⊗g + 1

4
|R∗· v|2g∗⊗g

+〈v, trH (∇̊×R)(×, v)〉g + RicF (prV v, prV v).

Furthermore, as Ric(�v)v = Ric(� prH v) prH v, requiring that Ric(∇̊) is bounded from
below is even weaker than requiring this for Ricg . This weaker condition is a sufficient
requirement for infinite lifetime for the case of regular foliations.

To prove this, we need a result in [29]. Fix a point y0 ∈ M̌ and let σ : [0, 1] → M̌ be a
smooth curve with σ(0) = y0. Define F = Fy0 and write σx for the H -horizontal lift of σ

starting at x ∈ F . Then the map

�σ(t) : F → Fσ(t), �σ(t)(x) := σx(t),

is an isometry, so all leaves of F are isometric. Write G for the isometry group of F and
Qy for the space of isometries q : F → Fy . Then Q = ∐

y∈M̌
Qy can be given a structure

of a principal bundle, such that

p : Q × F → M ∼= (Q × F)/G, (q, z) �→ q(z).
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In the above formula, φ ∈ G acts on F on the right by z · φ = φ−1(z). Finally, if we define

E =
{

d

dt
�σ(t) ◦ φ : σ ∈ C∞([0, 1], M̌)

σ (0) = y0, φ ∈ G, t ∈ [0, 1]
}

⊆ T Q,

then E is a principal connection on Q and p∗E = H .
One can verify that if Yt (y) is the Brownian motion in M̌ starting at y ∈ M̌ with horizon-

tal lift Ỹt (q) to q ∈ Qy with respect to E, then Xt(x) = p(Ỹt (q), z) is a diffusion in M with
infinitesimal generator 1

2�H starting at x = p(q, z). Hence, if Yt (y) has infinite lifetime so
does Xt(x), as a process and its horizontal lifts to principal bundles have the same lifetime
[39]. Since a lower bound of Ric(∇̊) is equivalent to a lower bound of the Ricci curvature
of M̌ by [24, Section 2], this is a sufficient condition for infinite lifetime of Xt(x).

The above argument does not depend on H being bracket-generating. However, in the
case of H bracket-generating, F is a homogeneous space by a similar argument to that of
the proof of Proposition 3.14.

3.7.3 A Counter-example

We will give an example showing that the assumption R̄ = 0 is essential for the conclusion
of Proposition 3.14.

Example 3.17 Consider M = SU(2) × SU(2) with vector fields A±, B±, C± as in defined
in Example 3.12. Consider R with coordinate c and introduce M̃ = M × R. Let f be an
arbitrary smooth function on M that factors through the projection to R, i.e. f (x, y, c) =
f (c) for (x, y, c) ∈ SU(2) × SU(2) × R. We write ∂cf simply as f ′. Let Zj , j = 1, 2, 3
be the vector fields on M given by

Z1 = ef A+, Z2 = ef B+, Z3 = ef A−,

and define a Riemannian metric g on M̃ such that Z1, Z2, Z3, C+, B−, C−, ∂c form an
orthonormal basis. Define a sub-Riemannian manifold (M̃, H, gH ) such that H is the span
of Z1, Z2, Z3 and ∂c with gH the restriction of g to this bundle. Defining II and C as in
respectively (3.4) and (3.9), we have II = 0 and C = 0, even though R̄ �= 0. If ∇ is as in
(3.7), then Ric(∇) is given by

Ric(∇) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Z1 �→
(
f ′′ − e2f (e2f − 1) − 3(f ′)2

)
�Z1,

�Z2 �→
(
f ′′ − 2e2f (e2f − 1) − 3(f ′)2

)
�Z2,

�Z3 �→
(
f ′′ − e2f (e2f − 1) − 3(f ′)2

)
�Z3,

�∂c �→ 3
(
f ′′ − (f ′)2

)
�∂c.

However, one can also verify that if Ricg is the Ricci curvature of g, then

Ricg(B
−, B−) = 2 − e−f .

Hence, if f ′ and f ′′ are bounded and f is bounded from above but not from below, then
Ric(∇) has a lower bound, but not Ricg . For example, one may take f (c) = −c tan−1 c.
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4 Torsion, Integration by Parts and a Bound for the Horizontal Gradient
on Carnot Groups

4.1 Torsion and Integration by Parts

For a function f ∈ C∞(M) on a sub-Riemannian manifold define the horizontal gradient
∇H f = �H df . The fact that the parallel transport /̂/t in Theorem 3.6 does not preserve the
horizontal bundle, makes it difficult to bound ∇H Ptf by terms only involving the horizontal
part of the gradient of f and not the full gradient. We therefore give the following alternative
stochastic representation of the gradient.

Let (M, g∗
H ) be a sub-Riemannian manifold and let ∇ be compatible with g∗

H . Let g be
a Riemannian metric taming gH and assume that ∇ is compatible with g as well. Introduce
a zero order operator

A (α) := Ric(∇)α − α(trH (∇×T ∇)(×, ·)) − α(trH T ∇(×, T ∇(×, ·)))
= Ric(∇̂)α + α(trH T ∇(×, T ∇(×, ·))). (4.1)

Let Xt( ·) be the stochastic flow of 1
2L(∇) with explosion time τ( ·). Write //t = //t (x) :

TxM → TXt (x)M for parallel transport with respect to ∇ along Xt(x). Observe that this
parallel transport along ∇ preserves H and its orthogonal complement. Let Wt = Wt(x)

denote the anti-development of Xt(x) with respect to ∇ which is a Brownian motion in
(Hx, 〈·, ·〉gH (x)).

Theorem 4.1 Assume that τ(x) = ∞ a.s. for any x ∈ M and that for any t1 > 0 and
any f ∈ C∞

b (M) with bounded gradient, we have supt∈[0,t1] ‖dPtf ‖L∞(g∗) < ∞. Further-
more, assume that |T ∇|∧2g∗⊗g < ∞ and that A is bounded from below. Define stochastic
processes Qt = Qt(x) and Ut = Ut(x) taking values in End T ∗

x M as follows:

d

dt
Qt = −1

2
QtA//t Q0 = id,

resp.

Utα(v) =
∫ t

0
αT ∇

//s
(dWs,Q

ᵀ
s v), T ∇

//t
(v, w) = //−1

t T (//tv, //tw).

Then for any f ∈ C∞
b (M),

dPtf (x) = E

[
(Qt + Ut)//

−1
t df (Xt (x))

]
. (4.2)

For a geometric interpretation of A for different choices of ∇, see Section 4.2. Equality
(4.2) allows us to choose the connection ∇ convenient for our purposes and gives us a bound
for the horizontal gradient on Carnot groups in Section 4.3.

For the proof of this result, we rely on ideas from [17]. A multiplication m of T ∗M is a
map m : T ∗M ⊗T ∗M → T ∗M . Corresponding to a multiplication and a connection ∇, we
have a corresponding first order operator

Dmα = m(∇·α).

Lemma 4.2 Let ∇ be a connection compatible with g∗
H and with torsion T . Define L =

L(∇), Ric = Ric(∇) and T = T ∇ . Then for any f ∈ C∞(M),

Ldf − dLf = −2Dmdf + A (df ),

where m(β ⊗ α) = α(T (�H β, ·)) and A as in (4.1).

243



E. Grong and A. Thalmaier

Proof Recall that if ∇̂ is the adjoint of ∇ and L̂ = L(∇̂), then

(L̂df − dLf ) = Ric df.

The result now follows from Lemma 3.3 and the fact that for any A ∈ �(H),

∇̂A = ∇A + κ(A),

where κ(A)α = α(T (A, ·)) = m(�A ⊗ α).

Proof of Theorem 4.1 Let x ∈ M be fixed. To simplify notation, we shall write Xt(x) sim-
ply as Xt . Define //t as parallel transport with respect to ∇ along Xt . Define Qt as in
Theorem 4.1. For any t1 > 0, consider the stochastic process on [0, t1] with values in T ∗

x M ,

Nt = //−1
t dPt1−t f (Xt ).

By Lemma 4.2 and Itô’s formula

dNt = //−1
t ∇//t dWt dPt1−t f (Xt ) − //−1

t DmdPt1−t f (Xt )dt + 1

2
//−1

t A (dPt1−t f (Xt ))dt,

and so
dQtNt = Qt//

−1
t ∇//t dWt dPt1−t f (Xt ) − Qt//

−1
t DmdPt1−t (Xt ) dt.

Since Wt is a Brownian motion in Hx and //t preserves H and its inner product, the
differential of the quadratic covariation equals

d[Ut ,Nt ] = Qt//
−1
t DmdPt1−t f (Xt ) dt.

Hence, (Qt + Ut)Nt is a local martingale which is a true martingale from our assumptions.
The result follows.

4.2 Geometric Interpretation

We will look at some specific examples to interpret Theorem 4.1 and the zero order operator
A in (4.1).

4.2.1 Totally Geodesic Riemannian Foliation and its Generalizations

Assume that condition (3.5) holds, so that we are in the case of Section 3.2. Define ∇ as in
(3.7) and let ∇̊ be the Bott connection defined as in (3.15). Recall that its torsion T̊ equals
T̊ = −R − R̄ and that ∇Z = ∇̊Z + T̊ ∗· Z. It can then be computed that A is given by

〈A pr∗H α, pr∗H β〉g∗ = 〈Ric(∇̊)α, β〉g∗ ,

〈A pr∗H α, pr∗V β〉g∗ = C(�V β, �H α)

〈A pr∗V α, pr∗H β〉g∗ = C(�V α, �H β) + α(trH ∇̊×R)(×, �β)

〈A pr∗V α, pr∗V β〉g∗ = 〈R∗· �α,R∗· �α〉g∗⊗g + 〈R̄(�α, ·), R̄(�β, ·)〉g∗⊗g.

4.2.2 Lie Groups of Polynomial Growth

Let G be a connected Lie group with unit 1 of polynomal growth. Consider a subspace h

that generates all of g. Equip h with an inner product and define a sub-Riemannian structure
(H, gH ) by left translation of h and its inner product. Let g be any left invariant metric
taming gH . Let ∇ be the connection defined such that any left invariant vector field on G is
∇-parallel. Then ∇ is compatible with g∗

H and g. Let Xt( ·) be the stochastic flow of 1
2L(∇),
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which has infinite lifetime by [26]. Furthermore, ‖dPtf ‖L∞(g∗) < ∞ for any bounded
f ∈ C∞

b (G) by [42]. Hence we can use Theorem 4.1.
Let lx : G → G denote left multiplication on G and write x · v := dlxv. Notice that

since we have a left invariant system, Xt(x) = x · Xt(1) =: x · Xt . Furthermore, parallel
transport with respect to ∇ is simply left translation so

//t (x)v = (x · Xt · x−1) · v.

If Wt(x) is the anti-development of Xt(x) with respect to ∇ then

Wt(x) = x · Wt(1) =: x · Wt.

As ∇ is a flat connection and since

T ∇(A1, A2) = −[A1, A2],
for any pair of left invariant vector fields A1 and A2, we have that A in (4.1) equals

A = −α(trH T (×, T (×, ·))).
In other words, if we define a map ψ : g → g, by

ψ = trH1 ad(×) ad(×), (4.3)
then

A α = −l∗
x−1ψ

∗l∗xα, α ∈ T ∗
x G.

Both A and T ∇ are bounded in g. Hence, we can conclude that for any v ∈ g and x ∈ G,

dPtf (x · v) = E

[
df

(
(x · Xt) ·

(
Q

ᵀ
t v +

∫ t

0
ad(Q

ᵀ
s v)dWs

))]

where
Qt = exp

(−tψ∗/2
)
.

Note that Qt is deterministic in this case.

4.3 Carnot Groups and a Gradient Bound

Let G be a simply connected nilpotent Lie group with Lie algebra g and identity 1. Assume
that there exists a stratification g = g1 ⊕ · · · ⊕ gk into subspaces, each of strictly positive
dimension, such that [g1, gj ] = g1+j for any 1 ≤ j ≤ k with convention gk+1 = 0. Write
h = g1 and choose an inner product on this vector space. Define the sub-Riemannian struc-
ture (H, gH ) on G by left translation of h and its inner product. Then (G,H, gH ) is called
a Carnot group of step k. Carnot groups are important as they are the analogue of Euclidean
space in Riemannian geometry in the sense that any sub-Riemannian manifold has a Carnot
group as its metric tangent cone at points where the horizontal bundle is equiregular. See
[13] for details and the definition of equiregular.

Let (G,H, gH ) be a Carnot group with n = rank H . Let �H be defined with respect
to left Haar measure on G, which equals the right Haar measure since nilpotent groups are
unimodular. Consider the commutator ideal k = [g, g] = g2 ⊕ · · · ⊕ gk with corresponding
normal subgroup K . Define the corresponding quotient map

π : G → G/K ∼= h,

and write |π | : x �→ |π(x)|gH (1).
It is known from [16] and [34] that for each p ∈ (1,∞), there exists a constant Cp such

that |∇H Ptf |gH
≤ Cp(Pt |∇H f |gH

)1/p pointwise for any f ∈ C∞(G). We want to give a
more explicit description of constants satisfying this inequality.
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Theorem 4.3 Let ψ be defined as in (4.3) and assume that ψ |h = 0. Let pt (x, y) denote
the heat kernel of �H and define �(x) = p1(1, x). Define a probability measure P on G by
dP = �dμ. Let Q be the homogeneous dimension of G,

Q :=
k∑

j=1

j (rank gj ). (4.4)

(a) Consider the function ϑ(x) = n + |π |(x) · |∇H log �|gH
(x) and for any p ∈ (1,∞],

the constant

Cp =
(∫

G

�(y) · ϑq(y) dμ(y)

)1/q

,
1

p
+ 1

q
= 1. (4.5)

Then the constants Cp are finite and for any x ∈ G and t ≥ 0, we have

|∇H Ptf |gH
(x) ≤ Cp(Pt |∇H f |pgH

(x))1/p, f ∈ C∞(G).

Furthermore, C2 < n + (nQ − 2 CovP[|π |2, log �])1/2 where CovP is the covariance
with respect to P.

(b) For any n and q ∈ [2, ∞), define

cn,q =
(

2(q+n+1)/2π(n−1)/2

√
n

�(
n+q

2 )

�(n
2 )

)1/q

.

Then for p ∈ (2, ∞), we have

|∇H Ptf | ≤ (n + cn,q

√
Q)

(
Pt |df |p)1/p

,
1

q
+ 1

p
= 1

2
.

The condition ψ |h = 0 is actually equal to the Yang-Mills condition in the case of Carnot
groups, see Remark 4.6. In the definition of �, the choices of t = 1 and x = 1 are arbitrary.
For any fixed t and x, if we replace � by �t,x(y) := pt (x, y) in (4.5), we would still
obtain the same bounds. Taking into account [34, Cor 3.17], we get the following immediate
corollary.

Corollary 4.4 For any smooth function f ∈ C∞(G) and t ≥ 0, we have

Ptf
2 − (Ptf )2 ≤ t C2

2Pt |∇H f |2gH

with C2 as in Eq. (4.5).

We introduce the theory necessary for the proof of Theorem 4.3. Let g be a left invariant
metric on G taming gH . Let ∇ be the connection on M defined such that all left invariant
vector fields are parallel. As

β(v) = tr T ∇(v, ·) = 0, v ∈ T G

we have that L(∇)∗ = L(∇) by Lemma 2.1. Furthermore, if A1, . . . , An is a basis of g,
then L(∇)f = ∑n

i=1 A2
i f by [1]. Let Xt := Xt(1) be a 1

2�H -diffusion starting at the
identity 1 and let //t denote the corresponding parallel transport along Xt with respect to ∇.
Let π : G → h denote the quotient map.

(i) For any v, w ∈ H we have 〈v, w〉gH
= 〈π∗v, π∗w〉gH (1). Hence we can consider our

sub-Riemannian structure as obtained by choosing a principal Ehresmann connection
H on π and lifting the metric on h. It follows by [24, Section 2] that �H is the

246



Stochastic Completeness and Gradient Representations for...

horizontal lift of the Laplacian of (h, 〈·, ·〉gH (1)) and so we have that Wt = π(Xt ) is
a Brownian motion in the inner product space h. Since

π∗v = prh x−1 · v, v ∈ TxG,

we may identify Wt with the anti-development of Xt .
(ii) Since �H is left invariant, Xt(x) := x · Xt is a 1

2�H -diffusion starting at x, and
Ptf (x) = Pt (f ◦ lx)(1) where lx denotes left translation. In particular, if �t (x) :=
pt (1, x) then

pt (x, y) = �t (x
−1y).

(iii) Since the Lie algebra g has a stratification, for any s > 0, the map (Dils)∗ : g �→ g

given by
(Dils)∗A ∈ gj �→ sjA (4.6)

is a Lie algebra automorphism. It corresponds to a Lie group automorphism Dils of
G since G is simply connected. These automorphisms are called dilations. It can be
verified that if A ∈ gj and we use the same symbol for the corresponding left invariant
vector field then

A(f ◦ Dils) = sj (Af ) ◦ Dils .

(iv) As a consequence of item (4.3) we have

�H (f ◦ Dils) = s2(�H f ) ◦ Dils ,

and hence
Pt (f ◦ Dils) = (Ps2t f ) ◦ Dils .

Also, for any function f , we have |df |g∗
H

◦ Dils = s−1|d(f ◦ Dils)|g∗
H

.

(v) Let Q be the homogeneous dimension of G as in (4.4). By definition Dil∗s μ = sQμ,
and considering (4.3), the heat kernel has the behavior

�s2t (Dils(x)) = s−Q�t (x).

(vi) Clearly R∇ = 0 and ∇T = 0 since the torsion takes left invariant vector fields
to left invariant vector fields. Hence, for any left invariant vector field A, we have
A ᵀ

A = ψA with ψ as in (4.3). If ψ |h = 0, we can apply Theorem 4.1. We obtain
that for any v ∈ h,

dPtf (v) = E

[
//−1

t df (Xt )
(
v + ad(Wt )v

)]
.

Theorem 4.3 now follows as a result of the next Lemma. Note that for any function
f ∈ C∞(M), we have |∇H f |gH

= |df |g∗
H

.

Lemma 4.5 Assume that ψ |h = 0. For every t > 0, define

ϑt = n + |π ||d log �t |g∗
H

where |π |(x) = |π(x)|gH (1). For any p ∈ (1, ∞], let q ∈ [1, ∞) be such that 1
p

+ 1
q

= 1
and consider

Ct,p := E
[
ϑt (Xt )

q
]1/q

. (4.7)

Then

(a) Ct,p = C1,p = Cp for any t > 0.
(b) The constants Cp are finite. Furthermore, we have the inequality

C2 ≤ n+
(

nQ + 2
∫

G

(n − |π |2)� log � dμ

)1/2

= n+(nQ−2 CovP[|π |2, log �])1/2.
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Proof To keep the notation simple, we write 〈·, ·〉L2(∧j g∗) as 〈·, ·〉 and let r = |π |2.

(a) We use dilations to prove the statement. Observe that r ◦ Dils = s2r and that
|d log �t |g∗

H
◦ Dils = s−1|d log �t/s2 |g∗

H
, and so ϑt ◦ Dils = ϑt/s2 . It follows that

(Ct,p)q =
∫

G

�tϑ
q
t dμ

Dil∗√
t=
∫

G

(�t ◦ Dil√t )
(
ϑt ◦ Dil√t

)q

tQ/2 dμ

=
∫

G

�1ϑ
q

1 dμ = (Cp)q .

(b) We only need to show that for any 1 < q < ∞,∫
G

�(r1/2|d log �|g∗
H
)qdμ =

∫
G

rq/2�1−q |d�|q
g∗
H
dμ < ∞.

Define d(x) = dgH
(1, x). Then π is distance decreasing, so r(x) ≤ d(x)2. By [44,

Theorem 1], for any 0 < ε < 1
2 there is a constant kε such that

1

�(x)
≤ kε exp

(
d2(x)

2 − ε

)
.

Furthermore, by [45, Theorem IV.4.2], for every ε′ > 0 there are constants kε′ such
that

|d�|g∗
H
(x) ≤ kε′ exp

(
− d2(x)

2 + ε′

)
.

Since we can always find appropriate values of ε and ε′ such that

q − 1

q
≤ 2 − ε

2 + ε′ ,

it follows that
∫
G

rq/2�1−q |d�|q
g∗
H
dμ < ∞.

Next, define the vector field D by Df = d
ds

(f ◦ Dil1+s)|s=0 for any function f .
If f satisfies f ◦ Dilε = εkf , then by definition Df = kf . By item (v), we have
div D = Q since

LDμ = d

ds
Dil∗1+s μ|s=0 = d

ds
(1 + s)Qμ|s=0 = Qμ.

Furthermore, again by item (v),

−Q�t = d

ds
(1 + s)−Q�t |s=0

= d

ds
�(1+s)2t ◦ Dil1+s |s=0 = 2t · 1

2
�H �t + D�t ,

so
(t�H + D + Q)pt = (t�H − D∗)pt = 0.

This equality along with the observation that

�H (�t log �t ) = (log �t + 1)�H �t + �t |d log �t |2g∗
H

allows us to compute

(C2 − n)2 ≤ 〈r, �|d log �|2g∗
H
〉 = 〈r, �H (� log �) − (log � + 1)�H �〉

= 〈�H r, � log �〉 + 〈r, (log � + 1)D�〉 + Q〈r, (log � + 1)�〉
= 2n〈�, log �〉 + 〈r, (D + Q)� log �〉 + Q〈r, �〉
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= 2n〈�, log �〉 − 〈Dr, � log �〉 + Qn

= 2〈(n − r), � log �〉 + Qn

which equals to the covariance since
∫
G

r�dμ = n.

Proof of Theorem 4.3 Again, for simplicity, we write 〈·, ·〉L2(∧j g∗) as 〈·, ·〉 and r = |π |2.

(a) By left invariance, it is sufficient to prove the inequality at the point x = 1. Let v ∈
H1 = h be arbitrary. We will use Theorem 4.1 and item (4.3). For every x ∈ G we have
�dr(x) = 2x · π(x). Let us consider the form αv defined by αv(x) = �(x · v). Then

dPtf (v) = E

[
//−1

t df (Xt ) (v − R(Wt , v))
]

= E[//−1
t df (Xt )(v)] − E

[
df (Xt )R(//t (π(Xt ) ∧ v))

]

= E[//−1
t df (Xt )(v)] − 1

2
E

[
dfR(�dr, �αv)(Xt )

]
.

Define F(A,B) = �A ∧ ∇B and extend F to general sections of T G⊗2 by C∞(G)-
linearity. Consider FH = F(g∗

H ) and notice that

FH f = dH f = pr∗H df, F 2
H f = dfR( · , · ).

Hence

E
[〈dfR(�dr, �αv)(Xt )

] = 〈F 2
H f, �tdr ∧ αv〉

= 〈FH f, F ∗
H (�tdr ∧ αv)〉

= −〈dH f, ι�H d�t
dr ∧ αv〉 − 〈dH f, �t (�g∗

H
r)αv〉 + 〈dH f, �t∇�H αdr〉

since ∇αv = 0. Using the identities �H r = 2n and ∇Adr = 2� prH A, we obtain

E

[〈
F 2

H f, dr ∧ αv
〉
g∗ (Xt )

]
= −〈dH f, ι�H d�t

dr ∧ αv〉 − 2(n − 1)〈dH f, �tα
v〉

= −E

[〈
dH f, ι�H d log �t

dr ∧ αv
〉
g∗ (Xt )

]
− 2(n − 1)E

[
//−1

t dH f (Xt )(v)
]
.

Hence, if we define Nt : T ∗
1 G → T ∗

1 G by

Nt β = nβ + 1

2
//−1

t ι�dr(Xt )(d log �t (Xt ) ∧ //tβ),

then dPtf (v) = E[Nt //
−1
t df (v)] for any v ∈ H .

Observe that |Nt β|g∗
H

≤ ϑt |β|g∗
H

. Using Hölder’s inequality, this leads us to the
conclusion

|dPtf |g∗
H
(1) = sup

v∈h,|v|gH
=1

dPtf (v)

= sup
v∈h,|v|gH

=1
E[Nt //

−1
t df (Xt )(v)]

≤ E[ϑq
t ◦ Xt ]1/q

E[|df |p
g∗
H

◦ Xt ]1/p

≤ Ct,p(Pt |df |p
g∗
H
(1))1/p.

(b) Using dPtf (v) = E[Nt //
−1
t df (v)], for p ∈ (2, ∞], q ∈ [2, ∞) satisfying

1

q
+ 1

p
+ 1

2
= 1,

249



E. Grong and A. Thalmaier

we have

|dP1f |g∗
H
(1) ≤ nE[|df |gH

(X1)] + E

[
(|π || log �|g∗

H
|df |g∗

H
)(X1)

]

≤ nP1|df |g∗
H

+ E
[|π |q(X1)

]1/q
E

[
| log �|2g∗

H
(X1)

]1/2
E

[
|df |p

g∗
H
(X1)

]1/p

.

As observed in [9, page 9], we have

E

[
|d log �|2g∗

H
(X1)

]
=

∫
G

�|d log �|2g∗
H
dμ

=
∫

G

(�H (� log �) − (log � + 1)�H �) dμ

=
∫

G

(log � + 1)(D + Q)� dμ

=
∫

G

D(� log �)dμ + Q

∫
G

(log � + 1)� dμ

=
∫

G

(D + Q)(� log �)dμ + Q

∫
G

� dμ = Q

while

E[|π |q(X1)] = E[|W1|q ] = 2(q+n+1)/2π(n−1)/2

√
n

�(
n+q

2 )

�(n
2 )

.

The result follows.

Remark 4.6 Consider a Carnot group (G,H, gH ) and let V be the complement of V defined
by left translation of g2⊕· · ·⊕gk . Since this is an ideal, we obtain the same subbundle using
right translation. We extend the gH to a Riemannian metric g by defining a right invariant
metric on V . Then condition (3.5) holds, but if ∇ is defined as in (3.7), then Ric(∇) does
not have a lower bound for k ≥ 3. However, the Yang-Mills condition trH (∇×R)(×, ·) = 0
of Remark 3.16 equals exactly the condition ψ |h = 0.

Appendix A: Feynman-Kac Formula for Perturbations of Self-Adjoint
Operators

A.1 Essentially Self-Adjoint Operator on Forms

Let M be a manifold with a sub-Riemannian structure (H, gH ) with H bracket-generating.
Consider the rough sub-Laplacian L = L(∇) relative to some affine connection ∇ on T M .
Let g be a complete sub-Riemannian metric taming gH such that ∇g = 0. Assume that

L∗ = L = −(∇prH )∗(∇prH ).

We then have the following statement for operators of the type L − C where C ∈
�(End(T ∗M)). To simplify notation, we denote 〈·, ·〉L2(∧j g∗) as simply 〈·, ·〉 for the rest
of this section.
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Lemma A.1 Assume that C ∗ = C . If A = L − C is bounded from above on compactly
supported forms, i.e. if

λ0 = λ0(A) = sup

{ 〈Aα, α〉
〈α, α〉 : α ∈ �c(T

∗M)

}
< ∞,

thenA is essentially self-adjoint on compactly supported one-forms.

We follow the argument of [40, Section 2]. We begin by introducing the following
lemma.

Lemma A.2 [37, Section X.1] Let A be any closed, symmetric, densely defined operator
on a Hilbert space with domain Dom(A). Assume that A is bounded from above by λ0(A)

on its domain. Then A = A∗ if and only if there are no eigenvectors in the domain of A∗
with eigenvalue λ > λ0(A).

Proof of Lemma A.1 Let prH be the orthogonal projection to H . Since L =
−(∇prH )∗(∇prH ), we have −〈C α, α〉 ≤ λ0〈α, α〉. Denote the closure of A|�c(T

∗M) by A
as well. Assume that there exists a one-form α in L2 satisfying A∗α = λα with λ > λ0. We
know that α is smooth, since L is hypoelliptic. To see the latter, consider any point x ∈ M ,
and let U be a neighborhood of x such that we can trivialize T ∗M . Recalling the definition
of step from Section 2.1, let r denote the step of H at x. Relative to the trivialization, we
have that L equals �H along with terms of lower order derivatives in horizontal directions
in each component, so by possibly shrinking U , we have that L is maximal hypoelliptic of
degree 1/r and hence hypoelliptic on this neighborhood, see [28, Chapter 1] for details. As
it is a local property, L is hypoelliptic globally. Let f be an arbitrary function of compact
support and write dH f = pr∗H df . Then

λ〈f 2α, α〉 = 〈f 2α,A∗α〉 = 〈A(f 2α), α〉
= −〈f 2∇prH· α, ∇prH· α〉 − 〈f 2C α, α〉 − 2〈f dH f ⊗ α, ∇prH· α〉
≤ −‖f ∇prH· α‖2

L2(g∗) + λ0〈f 2α, α〉 − 2〈dH f ⊗ α, f ∇prH· α〉.

Since (λ − λ0)〈f 2α, α〉 ≥ 0, we have

∥∥f ∇prH· α
∥∥2

L2(g∗) ≤ −2〈dH f ⊗ α, f ∇prH· α〉,
and hence

∥∥f ∇prH· α
∥∥2

L2(g∗) ≤ 2‖dH f ‖L∞(g∗)‖α‖L2(g∗)‖f ∇prH· α‖L2(g∗). (A.1)

Since we assumed that g was complete, there exists a sequence of smooth functions fj ↑ 1
of compact support satisfying ‖dfj‖L∞(g∗) → 0. By inserting fj in (A.1) and taking the
limit we obtain ‖∇prH· α‖2

L2(g∗) = −〈Lα, α〉 = 0. However, this contradicts our initial

hypothesis A∗α = λα for λ > λ0. Hence, we obtain our result.

Remark A.3 By replacing the sequence fj in the proof of Lemma A.1 with (an appropriately
smooth approximation of) the sequence found in [41, Theorem 7.3], we can deduce essential
self-adjointness of L − C just by assuming completeness of dgH

.
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A.2 Stochastic Representation of a Semigroup

Let (M,H, gH ) be a sub-Riemannian manifold and let g be a complete Riemannian metric
taming gH . Define L2(T ∗M) as the space of all one-forms in L2 relative to g. Let ∇ be a
connection satisfying ∇g = 0 and L∗ = L. Relative to L(∇), consider the stochastic flow
Xt( ·) with explosion time τ( ·). Define //t (x) as parallel transport along Xt(x) with respect
to ∇.

Let C be a zero order operator on M , with

C s = 1

2
(C + C ∗), C a = 1

2
(C − C ∗).

Lemma A.4 Assume that L − C s is bounded from above and assume that C a is bounded.
For each x, let Qt(x) ∈ EndT ∗

x M be a continuous process adapted to the filtration of
Xt(x) such that for any α ∈ �c(T

∗
x M), we have

d
(
Qt(x)//−1

t α(Xt (x))
)

loc. m.= Qt(x)//−1
t (L − C )α(Xt (x))dt,

where
loc. m.= denotes equality modulo differentials of local martingales.

Then there exists a strongly continuous semigroup P
(1)
t on L2(T ∗M) such that for any

α ∈ L2(T ∗M),

P
(1)
t α(x) = E

[
1t<τ(x)Qt (x)//−1

t α(Xt )(x)
]
,

and such that limt↓0
d
dt

P
(1)
t α = (L − C )α for any α ∈ �c(T M).

For the proof, we need to consider a special class of Volterra operators. To this end, we
follow the arguments of [21, Section III.1]. Let B be a Banach space and let L (B) be
the space of all bounded operators on B with the strong operator topology. Consider any
strongly continuous semigroup R≥0 → L (B), t �→ St and let A : B → B be a bounded
operator. We define the corresponding Volterra operator V(S;A ) on continuous functions
R≥0 → L (B), (t, α) �→ Ftα by

(V(S;A )F )tα =
∫ t

0
St−rA Frα dr,

and introduce the operator T(S;A ) by

T(S;A )F =
∞∑

n=0

V(S;A )nF.

The operator T(S;A ) is well defined, and if St has generator (L, Dom(L)) then S̃t :=
(T(S;A )S)t defines a strongly continuous semigroup with generator (L + A , Dom(L)).

Proof By Lemma A.1 the operator L − C s is essentially self-adjoint. Let P s
t be the

corresponding semigroup on L2(T ∗M) with domain Doms = Dom(L − C s).
Let Dn be an exhausting sequence of M of relative compact domains, see e.g.

[17, Appendix B.1] for construction. Consider the Friedrichs extension (�n, Dom(�n))

of L − C s restricted to compactly supported forms on Dn and let P̃ n
t be the corre-

sponding semigroup defined by the spectral theorem. Since the operators �n are bounded
from above by assumption, the semigroups P̃ n are strongly continuous by [21, Chapter
II.3 c]. Define P s

t similarly with respect to the unique self-adjoint extension of L − C s

restricted to compactly supported forms. Let (�, Dom(�)) denote the generator of P s
t
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and note that for any compactly supported forms α, we have that P̃ n
t α converge to P s

t α

in L2(T ∗M), by e.g. [31, Chapter VIII.3.3]. Define P n
t = (T(P̃ n;A )P̃ n)t and finally

P
(1)
t = (T(P s;C a)P s)t . These semigroups are strongly continuous with respective gener-

ators (�n +C a, Dom(�n)) and (� +C a, Dom(�)). Furthermore, P n
t α converge to P

(1)
t α

in L2(T M) by [31, Theorem IV.2.23 (c)].
For x ∈ M , let τn(x) denote the first exist time for Xt(x) of the domain Dn. For any

form α with support in Dk , we have that for S > 0 and n ≥ k,

Nn
t = Qt(x)//−1

t (P n
S−t α)|Xt (x)

is a bounded local martingale, giving us

P n
t α(x) = E

[
1t<τ(x)Qt (x)//−1

t α(Xt (x))
]
.

Taking the limit, and using that P n
t converges to P

(1)
t , we obtain

P
(1)
t α(x) = E

[
1t<τ(x)Qt (x)//−1

t α(Xt (x))
]
.
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6. Bakry, D., Ledoux, M.: Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion
generator. Invent. Math. 123(2), 259–281 (1996)

7. Baudoin, F.: Stochastic analysis on sub-Riemannian manifolds with transverse symmetries. Ann. Probab.
45(1), 56–81 (2017)

8. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized
curvature dimension inequality. J. Funct Anal. 262(6), 2646–2676 (2012)
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