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Abstract We consider the Kirchhoff equation

−
(

1 + λ

∫
|∇u|2

)
�u + V (x)u = f (u) in R

N,

where N ∈ {3, 4}, λ ≥ 0, the potential V is radial and f can be superlinear or aysmptotically
linear at infinity. By using variational methods we obtain, for N = 4, the existence of a
ground state radial solution when λ is small. The same holds for N = 3 with no restriction
on λ. We also prove that, when λ → 0+, the solutions strongly converge to a solution of
−�u + V (x)u = f (u).
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1 Introduction

Consider the equation

−
(
a + b

∫

RN

|∇u|2dx
)
�u + V (x)u = f (u), x ∈ R

N,

with a, b ∈ R, V and f satisfying some suitable conditions. The presence of the term∫
RN |∇u|2dx shows that this equation is not a pointwise identity and therefore the problem

is called nonlocal. Although these feature provides many mathematical difficulties, the main
interest in this problem is due to the fact that it arises in the following physical context: if
we set V ≡ 0 and replace the entire space by � ⊂ R

N , then we get the problem⎧⎨
⎩

−
(
a + b

∫
�

|∇u|2dx
)
�u = f (x, u), x ∈ �

u = 0, x ∈ ∂�,

(1.1)

which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−

(P0

h
+ E

2L

∫ L

0

∣∣∣∂u

∂x

∣∣∣
2
dx

)∂2u

∂x2
= 0.

presented by Kirchhoff in [10]. The above equation is an extension of the classical
d’Alembert wave equation by considering the effects of the changes in the length of the
string during vibrations. Actually, in the physical model, the parameters have the following
meaning: L is the length of the string, h is the area of cross-section, E is the young modu-
lus of the material, ρ is the mass density and P0 is the initial tension. After J.L.Lions [12]
presented an abstract functional analysis framework to the evolution equation related with
Eq 1.1, this kind of problem has been extensively studied (see [1–4, 11] and references there
in).

In this paper we assume, with no loss of generality, that a = 1 and we consider b = λ as
a parameter. We deal with the equation

−
(

1 + λ

∫
|∇u|2

)
�u + V (x)u = f (u) in R

N, (Kλ)

where N ∈ {3, 4}, λ ≥ 0 and the potential V satisfies the following assumptions

(V0) V ∈ C2(RN) and the map x �→ (V (x),∇V (x) · x) is radially symmetric;
(V1) V∞ := lim|x|→+∞ V (x) > 0;
(V2) ∇V (x) · x ≤ 0, for any x ∈ R

N ;

(V3) if we define H(x) :=
(
V (x) + ∇V (x)·x

N

)
then, for any x ∈ R

N, there hold

H(x) ≥ V∞, ∇H(x) · x ≤ 0.

For the subcritical nonlinearity f , we shall suppose that

(f0) f ∈ C(R,R);
(f1) there exist a1, a2 > 0 and 1 < p < (N + 2)/(N − 2) such that, for any s ∈ R,

|f (s)| ≤ a1|s| + a2|s|p;
(f2) lims→0 f (s)/s = 0;
(f3) there exists ζ > 0 such that

∫ ζ

0

(
f (s) − V∞s

)
ds > 0.
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Asymptotically Linear Schrödinger-Kirchhoff Equation

In the main result of this paper we prove the following.

Theorem 1.1 Suppose that N = 4, the potential V satisfy (V0)− (V3) and f satisfy (f0)−
(f3). Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), the problem (Kλ) has a ground
state solution uλ ∈ H 1

rad (R4). Moreover, as λ → 0+, we have that uλ → u0 strongly in
H 1

rad (R4) and u0 is a weak solution of

−�u0 + V (x)u0 = f (u0) in R
4.

If N = 3, the same result holds with λ∗ = +∞.

Since our potential V is radial, the notion of ground state solution stated above is
related with the space of radial funcions H 1

rad (RN). The conditions (V2) − (V3) have
already appeared in [15] for a Schödinger equation with asymptotically linear nonlinear-
ity f . They also appeared, in the Kirchhoff context, in the paper [19], where the authors
considered only the superlinear case. As a model case for the potential, we can take
V (x) = V∞ + (1 + |x|a)−1, with 0 < a ≤ N .

Concernig the nonlinearity f , we notice that condition (f3) was introduced in the
celebrated paper of Berestycki and Lions [5]. It permits to deal with superlinear or aysmp-
totically linear nonlinearities f . Indeed, a straightforward computation shows that (f3) is a
consequence of each one of the conditions below

(f4) lim
s→+∞ f (s)/s = +∞;

(f5) lim
s→+∞ f (s)/s = l > V∞, for some l ∈ R.

In a recent paper [2], the author considered the condition (f3) and obtained existence of
solution for an autonomous version of the problem (Kλ). Except for [2], we do not know
any paper which deals with superlinear and asymptotically linear functions in a unified way.

In what follow we quote some results for the superlinear case. They are in some sense
related with ours. We start with [19], where the authors considered a possible non-randial
potential V ∈ C2(RN) verifying (V1) − (V3). They also assumed that V is bounded from
above by V∞ plus a quantity related with the ground-state solution of the limit problem asso-
ciated with (Kλ). Under (f0) − (f2), a superlinear condition slightly weaker than (f4) and

(M) s �→ f (s)/s is non decreasing,

they obtained the existence of a positive solution (with high level energy) for N = 3. With
the same monotonicity condition, in [11] (see also [9]), the authors considered the homoge-
neous case f (u) = |u|p−1u but with different conditions on V . In particular, they assumed

(R) V (x) ≤ lim inf|y|→+∞ V (y) = V∞, for any x ∈ R
N .

This same condition was used in [8], in the nonhomogeneous case, but also considering
(M). Is is worth to mention that the above hypothesis has first appeared in the paper of
Rabinowitz [18] and it is a sufficient condition to recover compactness for problems in
unbounded domains. Nnotice that here the conditions (V2) − (V3) imply that V (x) ≥ V∞,
and therefore we need a different approach. We would also like cite the paper [16], where
the authors do not impose monotonicity conditions but considered the autonomous case.

The literature for the asymptotically linear case is not vast. We first quote the paper [13],
where the authors considered a nonautonomous nonlinearity f satisfying a sort of condition
(f5), but with 0 < l < V∞. Under some technical assumptions they obtained a positive
solution. We also cite the papers [6, 17], where some multiplicity results were proved in a
different (and not comparable) setting of hypotheses on V .
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In the proof of our main theorem we apply variational methods. Actually, the weak solu-
tions of problem (Kλ) are the critical points of the energy functional Iλ : H 1(RN) → R

given by

Iλ(u) := 1

2

∫

RN

(
|∇u|2 + V (x)u2

)
dx − λ

2

( ∫

RN

|∇u|2dx
)2 −

∫

RN

F (u)dx,

where F(s) := ∫ s

0 f (t)dt . In some of the aforementioned works the authors take advantage
of the condition (M) for minimizing Iλ constrained to its Nehari manifold {u ∈ H 1(RN) \
{0} : I ′

λ(u)u = 0}. Since in our case the ratio f (s)/s is not supposed to be monotonic we
need a different approach. Thus, we follow [2] and notice that the solutions of (Kλ) verify

N − 2

2
‖∇u‖2

L2(RN )

(
1 + λ‖∇u‖2

2

)
= N

∫ (
F(u) − H(x)

u2

2

)
dx.

Hence, we can define the Pohozaev manifold Pλ as being the collection of the nonzero
functions satisfying above equality. After a carefull analysis of the fibration maps θ �→
Iλ(u(·/θ)), we prove that this set is a natural constraint for Iλ and that it is possible to
minimize Iλ constrained to Pλ.

The paper contains two more sections. In the next one, we present some auxiliar results
and present a detailed study of the fibration maps. In the final section we prove our main
theorem.

2 Some Preliminary Results

In this section we state and prove some technical results. For any 2 ≤ q ≤ ∞, we denote
by ‖u‖q the Lq -norm of a function u ∈ Lq(RN). To simplify notation, we write only

∫
u

instead of
∫
RN u(x)dx. We denote by X the Sobolev space H 1(RN) endowed with the norm

‖u‖2 :=
∫ (

|∇u|2 + V (x)u2
)
, u ∈ X.

It is easy to use (V1) − (V3) to prove that this norm is well defined.
The proof of the following Pohozaev identity can be found in [7] (see also [14, Proposi-

tion 2.1]).

Lemma 2.1 Let g ∈ C(RN × R), G(x, t) := ∫ t

0 g(x, s)ds and u ∈ H 1(RN) ∩ H 2
loc(R

N)

be a weak solution of the problem

−�u = g(x, u) in R
N .

If G(·, u(·)) and xi
∂G
∂xi

(·, u(·)) are in L1(RN), then

(N − 2)

2

∫
|∇u|2 = N

∫
G(x, u) +

N∑
i=1

∫
xi

∂G

∂xi

(x, u).

By using this result we conclude that, if u ∈ H 1(RN) ∩ H 2
loc(R

N) weakly solves

−
(

1 + λ‖∇u‖2
2

)
�u + V (x)u = f (u) in R

N,

then
N − 2

2
‖∇u‖2

2

(
1 + λ‖∇u‖2

2

)
= N

∫ (
F(u) − H(x)

u2

2

)
.
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Hence, all the nonzero solutions of the problem (Kλ) belong to the set

Pλ :=
{
u ∈ X\{0} : Jλ(u) = 0

}
,

where Jλ ∈ C1(X,R) is given by

Jλ(u) := N − 2

2
‖∇u‖2

2

(
1 + λ‖∇u‖2

2

)
− N

∫ (
F(u) − H(x)

u2

2

)
. (2.1)

We first present some conditions on the parameter λ which guarantee that set Pλ is non
empty.

Lemma 2.2 If N = 3, then Pλ �= ∅ for any λ > 0. If N = 4, then there exists λ∗ > 0 such
that the same conclusion holds for λ ∈ [0, λ∗).

Proof If N = 3, it follows from [5] that the problem

−�u + V∞u = f (u) in R
3

has a solution ω1 ∈ X such that

3
∫ (

F(ω1) − V∞
ω2

1

2

)
= 1

2
‖∇ω1‖2

2 > 0. (2.2)

Let gλ : R+ → R be given by

gλ(θ) := I (ω1(·/θ)) = θ

2
‖∇ω1‖2

2 + λθ2

4
‖∇ω1‖4

2 − θ3
∫ (

F(ω1) − V (xθ)
ω2

1

2

)
.

By (V1), Lebesgue Dominate Convergence Theorem and EqE 2.2 we get

lim
θ→+∞

∫ (
F(ω1) − V (xθ)

ω2
1

2

)
=

∫ (
F(ω1) − V∞

ω2
1

2

)
> 0,

and therefore limθ→+∞ gλ(θ) = −∞. By using (V1) again, we obtain

gλ(θ) ≥ θ

2
‖∇ω1‖2

2 + λθ2

4
‖∇ω1‖4

2 − θ3
∫ (

F(ω1) − cV

ω2
1

2

)
,

and therefore gλ(θ) > 0, for θ > 0 small. It follows that gλ attains its maximum at some
θ0 > 0. Since g′

λ(θ0)θ0 = 0, we can use (2.1) and a straightforward calculation to conclude
that ω1(·/θ0) ∈ Pλ.

If N = 4 we consider v0 ∈ X \ {0} such that −�v0 + V∞v0 = f (v0) in R
4. As proved

in [4], for any λ ∈ [0, ‖∇v0‖−2
2 ), the problem

−
(

1 + λ‖∇u‖2
2

)
�u + V∞u = f (u) in R

4,

has a solution ω2 ∈ X such that

4
∫ (

F(ω2) − V∞
ω2

2

2

)
dx − λ‖∇ω2‖4

2 = ‖∇ω2‖2
2 > 0.

The result follows as in the case N = 3 by considering the function θ �→ I (ω2(·/θ). We
omit the details.

From now on we assume that N = 3 or N = 4 and the number λ belongs to the interval
(0, λ∗) of the above lemma. With this assumption, the set Pλ is non empty.
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Lemma 2.3 There exists c0 > 0, independent of λ ≥ 0, such that

‖∇u‖2
2 ≥ c0, ∀ u ∈ Pλ.

Proof Let 2∗ := 2N/(N − 2) and α ∈ (0, 1) be such that

1

p + 1
= α

2
+ (1 − α)

2∗ .

For any u ∈ Pλ, the interpolation inequality provides

‖u‖p+1
p+1 ≤ ‖u‖(p+1)α

2 ‖u‖(p+1)(1−α)

2∗ .

Recall that, if a, b ≥ 0 and s > 1 then, for any ε > 0, there exists cε > 0 such that
ab ≤ εas + cεb

s′
, where (1/s) + (1/s′) = 1. Since

(p + 1)α

2
+

(
2 − (p + 1)α

)

2
= 1,

we can use the last inequality with a = ‖u‖(p+1)α

2 , b = ‖u‖(p+1)(1−α)

2∗ and s = 2/(p + 1)α,
to obtain

‖u‖p+1
p+1 ≤ ε‖u‖2

2 + cε‖u‖k(p,α)

2∗ , (2.3)

where

k(p, α) := 2(p + 1)(1 − α)

2 − (p + 1)α
. (2.4)

It follows from EqE 2.1 and (V3) that

N − 2

2
‖∇u‖2

2 ≤ N

∫ (
F(u) − H(x)

u2

2

)
≤ N

∫ (
F(u) − V∞

u2

2

)
. (2.5)

Given δ > 0, the hypotheses (f0) − (f2) provide Cδ > 0 such that

|F(s)| ≤ δ

2
s2 + Cδ

p + 1
|s|p+1, ∀ s ∈ R.

Thus, by EqE 2.3 and the embedding D1,2(RN) ↪→ L2∗
(RN), we obtain c > 0 satisfying

N − 2

2
‖∇u‖2

2 ≤ c‖∇u‖k(p,α)

2 + N

∫ (
(δ − V∞)

2
+ Cδε

p + 1

)
u2.

By choosing 0 < δ < V∞ and ε > 0 small, we can discard the last term on the right-hand
side above and obtain

N − 2

2
‖∇u‖2

2 ≤ c1‖∇u‖k(p,α)

2 .

Since k(p, α) > 2, the lemma is proved.

We now recall that the weak solutions of (Kλ) are the critical points of the energy
functional Iλ ∈ C1(X,R) given by

Iλ(u) := 1

2
‖u‖2 + λ

4
‖∇u‖4 −

∫
F(u).

Given u ∈ Pλ, we can use (2.1) to obtain

Iλ(u) = 1

2
‖∇u‖2

2 + λ

4
‖∇u‖4

2 −
∫ (∇V (x) · x

N

)
u2

2

− (N − 2)

2N
‖∇u‖2

2 − λ(N − 2)

2N
‖∇u‖4

2.
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This, (V2) and straightforward calculations provide

Iλ(u) ≥ 1

N
‖∇u‖2

2 + λ(4 − N)

4N
‖∇u‖4

2 ≥ 1

N
c2

0 > 0. (2.6)

Hence, as consequence of the previous lemma, we have that

pλ := inf
u∈Pλ

Iλ(u) > 0.

We shall obtain a solution for the problem (Kλ) by showing that the above infimum is
attained. We first prove that the set Pλ is a regular manifold, in such way that we can use
the Lagrange Multiplier Theorem.

Lemma 2.4 The set Pλ is a C1-manifold.

Proof Given u ∈ Pλ, we claim that J ′
λ(u)ϕ �= 0, for some ϕ ∈ X. Indeed, if this is not true,

then

(N − 2)

∫
(∇u · ∇)ϕ + (N − 2)2λ‖∇u‖2

2

∫
(∇u · ∇)ϕ = N

∫ (
f (u) − H(x)u

)
ϕ,

for all ϕ ∈ X. Hence, we can use (V0) and the Principle of Symmetric Criticality to conclude
that u ∈ H 1(RN) weakly solves

−(N − 2)
(

1 + 2λ‖∇u‖2
2

)
�u = N

(
f (u) − H(x)u

)
in R

N .

It follows from Lemma 2.1 that

(N − 2)2

2
‖∇u‖2

2

(
1 + 2λ‖∇u‖2

2

)
= N2

∫ (
F(u) − H(x)

u2

2

)
− N

∫ (
∇H(x) · x

)u2

2
.

Since u ∈ Pλ, we can use EqE 2.1 and (V3) to get

(N − 2)2

2
‖∇u‖2

2

(
1 + 2λ‖∇u‖2

2

)
≥ N

{N − 2

2
‖∇u‖2

2

(
1 + λ‖∇u‖2

2

)}
,

that is
−2‖∇u‖2

2 + λ(N − 4)‖∇u‖4
2 ≥ 0.

This and N ∈ {3, 4} provide ‖∇u‖2
2 = 0, which contradicts Lemma 2.3. Therefore, for any

u ∈ Pλ, we have that J ′
λ(u) �= 0 and the conclusion follows from the Implicit Function

Theorem.

Lemma 2.5 If u ∈ Pλ, then

Iλ(u) = max
θ>0

Iλ(u(·/θ)).

Proof If N = 3 and u ∈ Pλ, it follows from EqE 2.5 and Lemma 2.3 that
∫ (

F(u) − V∞
u2

2

)
> 0.

Hence, we can argue as in the proof of Lemma 2.2 to conclude that the function gλ(θ) :=
Iλ(u(·/θ)), defined for θ > 0, attains its maximum value at θ0 > 0 such that

1

2
θ0‖∇u‖2

2

(
1 + λθ0‖∇u‖2

2

)
= 3θ3

0

∫ (
F(u) − H(xθ0)

u2

2

)
. (2.7)
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It follows from the second inequality of (V3) that θ d
dθ

H(xθ) ≤ 0, and therefore the map
θ �→ H(xθ) is nonincreasing in (0, +∞). Thus, if θ0 > 1, since

1

2
θ0‖∇u‖2

2

(
θ0 + λθ0‖∇u‖2

2

)
>

1

2
θ0‖∇u‖2

2

(
1 + λθ0‖∇u‖2

2

)
,

we can use Eq 2.7 and u ∈ Pλ to get

1

2
‖∇u‖2

2

(
1 + λ‖∇u‖2

2

)
> 3θ0

∫ (
F(u) − H(xθ0)

u2

2

)
> 3

∫ (
F(u) − H(x)

u2

2

)
,

which contradicts u ∈ Pλ. Analogously, we cannot have θ0 < 1. Thus, θ0 = 1 and the
lemma is proved.

If N = 4 and u ∈ Pλ we can use (V3) to obtain

‖∇u‖2
2 = 4

∫ (
F(u) − H(x)

u2

2

)
− λ‖∇u‖4

2 ≤ 4
∫ (

F(u) − V∞
u2

2

)
− λ‖∇u‖4

2.

As in the case N = 3, the function θ �→ Iλ(u(x/θ)) attains its maximum value at θ0 = 1
and the conclusion follows.

Lemma 2.6 If u ∈ Pλ satisfies

I (u) = inf
v∈Pλ

Iλ(v),

then I ′
λ(u)ϕ = 0, for any ϕ ∈ H 1(RN).

Proof If I constrained to Pλ attains its maximum value at u ∈ Pλ then, by Lemma 2.4,
there is a multiplier μ ∈ R such that I ′

λ(u) + μJ ′
λ(u) = 0. Using this equality and arguing

as in the proof of Lemma 2.4, we conclude that u ∈ H 1(RN) weakly solves

−c�u = (1 + μN)(f (u) − V (x)u) − μ(∇V (x) · x)u, in R
N,

with
c :=

{
1 + μ(N − 2) +

(
λ + μλ2(N − 2)

)
‖∇u‖2

2

}
.

Lemma 2.1 provides

(N − 2)

2
c‖∇u‖2

2 = N(1 + μN)

∫ (
F(u) − H(x)

u2

2

)
− Nμ

∫ (
∇H(x) · x

)u2

2
.

If μ > 0, the above equality, Eq 2.1, the second inequality of (V3) and the definition of
c imply that

μ
(N − 2)

2
‖∇u‖2

2

(
2 + λ(4 − N)‖∇u‖2

2

)
≤ 0.

Recalling that N ∈ {3, 4}, we conclude that ‖∇u‖2
2 = 0, which contradicts Lemma 2.3.

Since an analogous argument discards the inequality μ < 0, we conclude that μ = 0 and
this implies that I ′

λ(u) = 0.

In our last lemma we take advantage of the radiality of the functions in X to obtain the
following convergence result.

Lemma 2.7 If f satisfis (f0) − (f2) and (un) ⊂ X is such that un ⇀ u weakly in X, then

lim
n→+∞

∫
F(un) =

∫
F(u).
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Proof Given ε > 0, we can use (f0) − (f2) to obtain cε > 0 such that∣∣∣F(un) − F(u)

∣∣∣ ≤ ε
(
|un|2 + |u|2

)
+ cε

(
|un|p + |u|p

)
. (2.8)

Since the embedding X ↪→ Lp(RN) is compact we may suppose that, for a.e. x ∈ R
N , we

have that un(x) → u(x) and |un(x)| ≤ ψ(x), for some ψ ∈ Lp(RN). Hence, if we set

gn := max
{∣∣∣F(un) − F(u)

∣∣∣ − ε
(
|un|2 + |u|2

)
, 0

}
,

it follows from the Lebesgue Dominate Convergence Theorem that
∫

gn → 0. The
definition of gn and Eq 2.8 provide n0 ∈ N such that∫ ∣∣∣F(un) − F(u)

∣∣∣ < ε

∫ (
|un|2 + |u|2

)
+ ε,

for n ≥ n0. The result follows from the boundedness of (un) in L2(RN).

3 Proof of Theorem 1.1

In this section we prove our main theorem. Let (un) ⊂ Pλ be such that

Iλ(un) → pλ.

We claim that (un) is bounded. Indeed, since (Iλ(un)) is bounded, it follows from Eq 2.6
that the sequence (‖∇un‖2) is bounded, the same holding for (‖un‖2∗) due to the Sobolev
embedding. Given ε, δ > 0, we can use (f0) − (f2), (V1), Eq 2.3 and the argument of the
proof of Lemma 2.3 to otbain∫

1

2

(
V∞ − δ − 2εCδ

p + 1

)
u2

n ≤ Iλ(un) − 1

2
‖∇un‖2

2 + c‖un‖k(p,α)

2∗ ,

with k(p, α) > 2 given in Eq 2.4. By choosing ε, δ small we infer from the above inequality
that (‖un‖2) is bounded. Hence, (un) is bounded in X.

Up to a subsequence, we may assume that un ⇀ u weakly in X. Hence,

‖u‖2 ≤ lim inf
n→∞ ‖un‖2, ‖∇u‖2 ≤ lim inf

n→∞ ‖∇un‖2 and ‖u‖2
2 ≤ lim inf

n→∞ ‖un‖2
2. (3.1)

By using Eq 2.5 and Lemma 2.3, we obtain c1 > 0 such that

0 < c1 <
N − 2

2N
‖∇un‖2

2 ≤
∫ (

F(un) − V∞
u2

n

2

)
.

By taking the limit, using (3.1) and Lemma 2.7 we conclude that
∫
(F (u) − V∞u2/2) > 0.

Hence, as in the proof of Lemma 2.2, we obtain θ > 0 such that u(·/θ) ∈ Pλ. Thus, using
(3.1), Fatou’s lemma and Lemma 2.7, we get

Iλ(u(·/θ)) ≤ lim inf
n→∞ Iλ(un(·/θ)).

Since (un) ⊂ Pλ, Lemma 2.5 gives Iλ(un(·/θ)) ≤ Iλ(un(·)). Hence,

pλ ≤ Iλ(u(·/θ)) ≤ lim inf
n→∞ Iλ(un(·/θ)) ≤ lim inf

n→∞ Iλ(un(·)) = pλ,

and we conclude that the function uλ := u(·/θ) ∈ Pλ satisfies

I (uλ) = inf
v∈Pλ

Iλ(v).

It follows from Lemma 2.6 that uλ is a solution of problem (Kλ).
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In what follows we prove the concentration result. For each λ ∈ (0, λ∗) (suppose λ∗ =
+∞ if N = 3), let uλ ∈ Pλ be a solution such that pλ = Iλ(uλ). By using Eq 2.1, (V2) and
N ∈ {3, 4} we obtain

Npλ = ‖∇uλ‖2
2 + λ(4 − N)

4
‖∇uλ‖4

2 −
∫

(∇V (x) · x)
u2

λ

2
≥ ‖∇uλ‖2

2. (3.2)

For any fixed u ∈ Pλ, it follows from Lemma 2.5 that

pλ = Iλ(uλ) = min
v∈Pλ

Iλ(v) = min
v∈Pλ

max
θ>0

Iλ(v(·/θ))

≤ max
θ>0

Iλ(u(·/θ))

≤ max
θ>0

Iλ∗(u(·/θ)).

Since u ∈ Pλ, we infer from Eq 2.5 that
∫
(F (u) − V∞u2/2) > 0. Thus, arguing as in the

proof of Lemma 2.2, we obtain

lim
θ→∞ Iλ∗(u(·/θ)) = −∞.

It follows that (pλ)λ∈(0,λ∗) is bounded. By Eq 3.2, the sequence (‖∇uλ‖2)λ∈(0,λ∗) is also
bounded.

Given 0 < δ < 1, we can use (f0) − (f2) to obtain cδ > 0 satisfying

‖uλ‖2 ≤ ‖uλ‖2 + λ‖∇uλ‖4
2 =

∫
f (uλ)uλ ≤ δ

∫
u2

λ + Cδ

∫
|uλ|p+1.

By using Eq 2.3 and the Sobolev embedding we obtain

‖uλ‖2 ≤ (δ + εCδ)‖uλ‖2 + c‖∇uλ‖k(p,α)

2 .

By picking ε small, we can use the above expression and the boundedness of (‖∇uλ‖2) to con-
clude that (uλ)λ∈(0,λ∗) is bounded in X. Hence, up to a subsequence, uλ ⇀u0 weakly in X.

Since I ′(uλ)(uλ − u0) = 0, we have that∫
f (uλ)(uλ − u0) = 〈uλ, uλ − u0〉H 1 + λ〈uλ, uλ − u0〉D1,2(RN )‖∇uλ‖2

2.

Arguing as in the proof of Lemma 2.7, we can prove that
∫

f (uλ)(uλ−u0) → 0, as λ → 0+.
Hence, taking the limit in the above expression and recalling the weak convergence of (un),
we get

lim
λ→0+〈uλ, uλ − u0〉H 1 = 0.

This and the weak convergence imply that uλ → u0 strongly in X.
The strong convergence and Lemma 2.3 imply that ‖∇u0‖2

2 ≥ c > 0, and therefore
u0 �= 0. Finally, if ϕ ∈ X, then

(
1 + λ‖∇uλ‖2

2

) ∫
(∇uλ · ∇ϕ) +

∫
V (x)uλϕ =

∫
f (uλ)ϕ.

By taking the limit as λ → 0+ and arguing as above we conclude that∫
(∇u0 · ∇ϕ) +

∫
V (x)u0ϕ =

∫
f (u0)ϕ,

that is, u0 is a weak solution of

−�u + V (x)u = f (u) in R
N .

The theorem is proved. �
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