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Abstract
We prove a general essential self-adjointness criterion for sub-Laplacians on complete sub-
Riemannian manifolds, defined with respect to singular measures. We also show that, in the
compact case, this criterion implies discreteness of the sub-Laplacian spectrum even though
the total volume of the manifold is infinite. As a consequence of our result, the intrinsic sub-
Laplacian (i.e. defined w.r.t. Popp’s measure) is essentially self-adjoint on the equiregular
connected components of a sub-Riemannian manifold. This settles a conjecture formulated
by Boscain and Laurent (Ann. Inst. Fourier (Grenoble) 63(5), 1739–1770, 2013), under
mild regularity assumptions on the singular region, and when the latter does not contain
characteristic points.
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1 Introduction

It is well known that geometric singularities of a Riemannian structure can act as barriers for
heat diffusion, wave propagation, and the evolution of quantum particles. Most surprisingly,
this occurs even when the underlying Riemannian structure is not complete, and classical
particles, whose trajectories are described by geodesics, can escape from the manifold in
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finite time. One of the simplest cases where this behavior can be observed is the Grushin
structure given by the singular metric

g = dx ⊗ dx + 1

x2
dy ⊗ dy. (1)

This Riemannian structure on R
2 \ {x = 0} is clearly not geodesically complete, as

almost all geodesics cross the singular region Z = {x = 0} in finite time. Moreover, the
associated Riemannian volume 1

|x|dx ∧ dy explodes on Z and hence the corresponding
Laplace-Beltrami operator presents both a degeneration and a singular drift on Z :

� = ∂2
x + x2∂2

y − 1

x
∂x . (2)

It is not hard to show that � with domain Dom(�) = C∞
c (M) is essentially self-adjoint

on L2(M), where M is either R2 \ Z or one of its two connected components. As a conse-
quence, by Stone Theorem, there exists a unique unitary Schrödinger evolution defined for
any initial datum in L2(M), without the need to impose boundary conditions. From a phys-
ical viewpoint this means that quantum particles are naturally confined to stay into M . This
differs from what happens, for example, in the case of the Euclidean Laplacian on R

2 \ Z .
Indeed, this operator is not essentially self-adjoint and its different self-adjoint extensions
correspond to different dynamics, e.g. to complete reflection or transmission of quantum
particles at Z , to be chosen depending on the physics of the problem. Similar considerations
hold for heat diffusion or wave equations.

The Grushin structure belongs to a class of singular Riemannian structures, called
almost-Riemannian structure (ARS), introduced in [5]. The study of essential self-adjoint-
ness of the Laplace-Beltrami operator for ARS has been initiated in [9, 11], for surfaces, and
in [24], for general dimension. In the latter, as a particular instance of a more general crite-
rion, it has been proved that the metric boundary of a non-complete Riemannian manifold
can develop a repulsive effect, quantified in terms of an intrinsic invariant called effective
potential, whose strength can entail the essential self-adjointness of the Laplace-Beltrami
operator [24, Theorem 1].

In this paper we extend the results of [24] to a class of natural (Hörmander-type) hypoel-
liptic operators, the sub-Laplacians, arising in sub-Riemannian geometry as a generalization
of the Riemannian Laplace-Beltrami operator to this setting.

Roughly speaking, a sub-Riemannian structure on a smooth manifold N is defined by
a (possibly rank-varying) smooth distribution D ⊂ T N endowed with a scalar product
g : D × D → R. (For a precise definition, see Section 2.) Since the distribution D is
assumed to satisfy the Lie bracket generating condition, any two points in N can be joined
by curves a.e. tangent to D, of which the scalar product allows to measure the length. As in
the Riemannian case, by minimizing the length of such curves one can define a distance d

on N . Given a measure ω on N , which is smooth outside of some closed set Z ⊂ N , the
associated sub-Laplacian is the Hörmander-type operator on L2(N, ω) defined by

�ω = divω ◦∇, Dom(�ω) = C∞
c (N \ Z), (3)

where the divergence is computed with respect to ω, and ∇ is the sub-Riemannian gradient.
It is well known that if Z = ∅ and the sub-Riemannian structure is complete then �ω is

essentially self-adjoint on L2(N, ω) [30]. Here, we focus on the case of singular measures
ω, that is Z 	= ∅. In this setting, our main result is the following criterion for essential
self-adjointness of sub-Laplacians, that generalizes [24, Theorem 1].
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Theorem 1.1 Let N be a complete sub-Riemannian manifold endowed with a measure ω.
Assume ω to be smooth on N \Z , where the singular setZ is a smooth, embedded, compact
hypersurface with no characteristic points. Assume also that, for some ε > 0, there exists a
constant κ ≥ 0 such that, letting δ = d(Z, · ), we have

Veff =
(

�ωδ

2

)2

+
(

�ωδ

2

)′
≥ 3

4δ2
− κ

δ
, for 0 < δ ≤ ε, (4)

where the prime denotes the derivative in the direction of ∇δ. Then, �ω with domain
C∞

c (M) is essentially self-adjoint in L2(M), where M = N \ Z , or any of its connected
components.

Moreover, if M is relatively compact, the unique self-adjoint extension of �ω has com-
pact resolvent. Therefore, its spectrum is discrete and consists of eigenvalues with finite
multiplicity.

Remark 1.1 The compactness of Z in Theorem 1.1 is not necessary, and it can be replaced
by the weaker assumption that the (normal) injectivity radius from Z is strictly positive.

We stress that, although the blueprint for the proof of Theorem 1.1 follows the idea of
[24], it is not a straightforward adaptation. Indeed, the new aspects of the proof are the
exploitation of subellipticity to obtain regularity properties of weak solutions (Lemma 4.2),
the sub-Riemannian version of the Rellich-Kondrachov theorem (Lemma 4.3), and a sub-
Riemannian tubular neighborhood theorem for smooth hypersurfaces with no characteristic
points (Proposition 3.1). We believe that these results are interesting on their own. In partic-
ular, up to our knowledge, Proposition 3.1 is the first tubular neighborhood result holding for
general sub-Riemannian manifolds. See, e.g., [7, 28], where results of this type are proved
for (possibly higher codimensional) submanifolds in some Carnot groups.

A particularly interesting case, is the one where the measure ω is chosen to be the Popp’s
measure P . This is a measure canonically associated with the sub-Riemannian structure,
which is smooth where the structure is equiregular [8, 22]. In this case, the singular region Z
coincides with the singular region of the sub-Riemannian structure, i.e., the complement of
the equiregular region. We refer to the sub-Laplacian �P associated with P as the intrinsic
(or Popp) sub-Laplacian.

Consider for example the Martinet structure on N = R
3, whose distribution and metric

are defined by the orthonormal vector fields

X1 = ∂y + x2∂z, X2 = ∂x . (5)

The distribution D = span{X1, X2} is then equiregular everywhere except on the hypersur-
face Z = {x = 0}, where Popp’s measure is singular. Indeed,

P = 1

2
√

2|x|dx ∧ dy ∧ dz. (6)

In this case, �P with domain C∞
c (N \ Z) is essentially self-adjoint. This fact has been

proved in [9, Theorem 3] for a compactified version of the Martinet structure on R×S
1×S

1,
using a Fourier decomposition w.r.t. the compact singular region Z � S

1 × S
1.

This result has driven the authors to conjecture that the loss of equiregularity acts as a
general barrier for quantum diffusion, i.e., more precisely, that the intrinsic sub-Laplacian,
when restricted to the equiregular region of a sub-Riemannian manifold, is essentially self-
adjoint. As a consequence of Theorem 1.1, we prove this conjecture under mild regularity
assumptions on the sub-Riemannian structure (Popp-regularity, see Section 5).
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Theorem 1.2 Let N be a complete and Popp-regular sub-Riemannian manifold, with com-
pact singular set Z . Then, the sub-Laplacian �P with domain C∞

c (M) is essentially
self-adjoint in L2(M), where M = N \Z or one of its connected components. Moreover, if
M is relatively compact, the unique self-adjoint extension of �P has compact resolvent.

Remark 1.2 The Popp sub-Laplacian is not the only intrinsic second order diffusion oper-
ator associated with a sub-Riemannian structure. See for example [4, 10, 20] for intrinsic
operators associated with sub-Riemannian random walks. Other possible sub-Laplacians
are related with different choices of intrinsic measures. For example, one might consider
the Hausdorff measure H associated with the metric structure. However, with the excep-
tion of some low dimensional cases, it is unknown whether H is even C1, see [1]. Since
Theorem 1.1 requires smooth measures (actually, C2 is sufficient) we have restricted our
attention to the Popp measure.

1.1 Structure of the Paper

The necessary preliminaries of sub-Riemannian geometry are discussed in Section 2.
Section 3 is devoted to the proof of regularity properties of the distance function from the
singular region. In Section 4 we prove Theorems 1.1 and 1.2. In Section 5 we discuss the
case of the intrinsic sub-Laplacian. We close the paper with examples of non-Popp-regular
structures where Theorem 1.2 does not apply, but Theorem 1.1 does, and hence the intrin-
sic sub-Laplacian is essentially self-adjoint. We also provide examples where both results
do not apply, and we are not able to determine whether the sub-Laplacian is essentially
self-adjoint.

2 Preliminaries on Sub-Riemannian Geometry

Definition 2.1 Let N be a connected smooth manifold. A sub-Riemannian structure on N

is a triple
(
U, ξ, (·|·)q

)
, where

• πU : U → N is an Euclidean bundle with base N and Euclidean fiber Uq = π−1(q),
in particular for every q ∈ N , Uq is a vector space equipped with a scalar product (·|·)q ,
smooth with respect to q.

• ξ : U → T N is a vector bundle morphism, i.e., ξ is a fiber-wise linear map such that,
letting π : T N → N be the canonical projection, the following diagram commutes:

U

πU
����

��
��

��
ξ

�� T N

π

��

N

• The Lie bracket generating condition holds true, i.e.,

Lie(ξ(
(U)))|q = TqN, ∀q ∈ N, (7)

where 
(U) denotes the C∞(N)-module of smooth sections of U and Lie(ξ(
(U)))|q
denotes the smallest Lie algebra containing ξ(
(U)) ⊆ 
(T N), evaluated at q.

The subspace of horizontal directions at q ∈ N is Dq = ξ(Uq) ⊆ TqN and the set of
horizontal vector fields is 
(D) = ξ(
(U)).
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Consider a local frame for U , i.e., a set {σ1, . . . , σm}, with m = rank(U), of smooth
local sections of U , defined on some neighborhood O ⊆ N , and which are orthonormal
with respect to the scalar product on U . The vector fields Xi := ξ ◦ σi constitute a local
generating family. On O, condition (7) reads

Lie(X1, . . . , Xm)|q = TqN, ∀q ∈ O. (8)

Let r(q) = dim(Dq) be the rank of the distribution at q ∈ N . Moreover, for k ∈ N, let

Dk
q = span{[X1, . . . , [Xj−1, Xj ]]q : Xi ∈ 
(D), j ≤ k}. (9)

By Eq. 7, we call the step of the sub-Riemannian structure at q the minimal integer
s = s(q) ∈ N such that Ds

q = TqN .

Definition 2.2 Let A ⊆ N . We say that a sub-Riemannian structure on N is equiregular on
A if dim(Dk

q) is constant for q ∈ A and for any k ∈ N.

Notice that even r(q) = dim(D1
q) can be non-constant. For instance, this is the case of

almost-Riemannian manifolds, where there exists a closed set Z ⊂ N such that dim(D1
q) =

dim N for every q ∈ N \ Z .
In this paper, N is a smooth manifold without boundary, endowed with a sub-Riemannian

structure. Moreover, we let Z ⊂ N be a set satisfying

Z ⊆ N is a smooth, embedded hypersurface. (H0)

The set Z will be called the singular region when defined in association with a measure ω

on N , smooth on N \ Z .

Definition 2.3 Let Z ⊆ N be a smooth embedded hypersurface. We say that q ∈ Z is a
characteristic (or tangency) point if Dq ⊆ TqZ .

We will also assume that:

The singular region Z does not contain characteristic points. (H1)

Assumption (H1) implies that there are no abnormal minimizers between p ∈ N \ Z
and Z (see Proposition 2.7). However, we do not exclude the presence of other abnormal
minimizers. (See [2] for a definition of abnormal minimizers.)

2.1 Metric Structure

Let q ∈ N and v ∈ Dq . We define the sub-Riemannian norm as

|v|2 = inf{(u|u)q : u ∈ Uq, ξ(u) = v}. (10)

One can check that the above norm satisfies the parallelogram law, and hence it is defined
by a scalar product on Dq , denoted with the symbol gq .

An horizontal curve is an absolutely continuous curve γ : [0, 1] → N such that there
exists an L1 curve η : [0, 1] → U satisfying πU(η) = γ and

γ̇ (t) = ξ(η(t)), for a.e. t ∈ [0, 1]. (11)

In particular, γ̇ (t) ∈ Dγ (t) for a.e. t ∈ [0, 1]. In this case, we define the length of γ as

�(γ ) =
∫ 1

0
|γ̇ (t)| dt . (12)
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Since � is invariant by reparametrization of γ , when dealing with minimization of length
we consider only intervals of the form [0, 1]. We define the sub-Riemannian distance as

d(p, q) := inf{�(γ ) : γ is horizontal, γ (0) = p, γ (1) = q}. (13)

Under the bracket-generating condition (7), the Chow-Rashevskii Theorem implies that any
couple of points p, q ∈ N can be connected by means of horizontal curves. That is, d :
N × N → R is finite. Moreover, d is a continuous map and the metric space (N, d) has the
same topology as N .

Definition 2.4 The sub-Riemannian (or horizontal) gradient of a smooth function f is the
smooth vector field ∇f ∈ 
(D) such that

g(∇f,W) = df (W), ∀W ∈ 
(D). (14)

Remark 2.1 In terms of a local generating family X1, . . . , Xr for the sub-Riemannian
structure, we have

∇f =
r∑

i=1

Xi(f )Xi, |∇f |2 =
r∑

i=1

Xi(f )2. (15)

Formula (15) holds also if X1, . . . , Xr are not independent, in particular it holds on Z .

2.1.1 Sub-Laplacians

Let ω be a measure on N , smooth and positive on N \ Z . The sub-Laplacian �ω is the
operator

�ωu := divω(∇u), ∀u ∈ C∞
c (N \ Z), (16)

where the divergence divω is computed with respect to the measure ω, and ∇ is the sub-
Riemannian gradient. Equivalently, �ω can be defined as the operator associated with the
quadratic form

E(u, v) :=
∫

M

g(∇u,∇v̄) dω, ∀u, v ∈ C∞
c (N \ Z). (17)

In terms of a local generating family of vector fields X1, . . . , Xr ⊂ 
(D), we have

�ω =
k∑

i=1

X2
i + divω(Xi)Xi . (18)

As a consequence of the Lie bracket generating assumption, �ω is hypoelliptic [21]. Finally,
it is well-known that if Z = ∅ and the sub-Riemannian structure is complete then �ω is
essentially self-adjoint on L2(N) [30].

2.1.2 Geodesics and Hamiltonian Flow

We recall basic notions on minimizing curves in sub-Riemannian geometry. A geodesic is
a horizontal curve γ : [0, 1] → N that locally minimizes the length between its endpoints,
and is parametrized by constant speed.
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Definition 2.5 The sub-Riemannian Hamiltonian is the smooth function H : T ∗N → R,

H(λ) := 1

2

r∑
i=1

〈λ, Xi〉2, λ ∈ T ∗N, (19)

where X1, . . . , Xr is a local generating family for the sub-Riemannian structure, and 〈λ, ·〉
denotes the action of covectors on vectors. Associated with H we define the Hamiltonian
vector field �H on T ∗N as �H : C∞(T ∗N) → C∞(T ∗N) such that σ(·, �H) = dH . Here,
σ ∈ �2(T ∗N) is the canonical symplectic form on T ∗N .

Solutions λ : [0, 1] → T ∗N of Hamilton equations

λ̇(t) = �H(λ(t)) (20)

are called normal extremals. Their projections γ (t) := π(λ(t)) on N , where π : T ∗N → N

is the canonical projection, are locally minimizing curves parametrized by constant speed,
and are called normal geodesics. It is easy to show that if λ(t) is a normal extremal, and
γ (t) = π(λ(t)) is the corresponding normal geodesic, then

γ̇ (t) =
r∑

i=1

〈λ(t), Xi(γ (t))〉Xi(γ (t)), (21)

and its speed is given by |γ̇ | = √
2H(λ). In particular

�(γ |[0,t]) = t
√

2H(λ(0)) ∀t ∈ [0, 1]. (22)

Definition 2.6 The exponential map expq : Dq → N , with base q ∈ N is

expq(λ) := π ◦ e
�H (λ), λ ∈ Dq, (23)

where Dq ⊆ T ∗
q N is the set of covectors such that the solution t �→ et �H (λ) of Eq. 20 with

initial datum λ is well defined up to time 1.

We say that a sub-Riemannian structure on N is complete if (N, d) is a complete metric
space. In a complete sub-Riemannian structure, the sub-Riemannian version of Hopf-Rinow
theorem implies that Dq = T ∗

q N for every q ∈ N .
There is another class of minimizing curves in sub-Riemannian geometry, called abnor-

mal minimizers. These curves can still be lifted to extremal curves λ(t) on T ∗N , but which
may not follow the Hamiltonian dynamic of Eq. 20. Here we only observe that an extremal
λ(t) ∈ T ∗N is abnormal if and only if it satisfies:

〈λ(t),Dπ(λ(t))〉 = 0 ∀t ∈ [0, 1] (24)

with λ(t) 	= 0 for any t ∈ [0, 1] (see [2, Theorem 3.53]), that is H(λ(t)) ≡ 0. Notice also
that a curve may be abnormal and normal at the same time.

Proposition 2.7 Consider a sub-Riemannian structure on a smooth manifold N . Let Z ⊂
N be a closed embedded hypersurface. Let γ : [0, 1] → N be a minimizer such that
γ (0) ∈ Z , γ (1) = p ∈ N \ Z and

�(γ ) = inf{d(q, p), q ∈ Z}. (25)

Then γ (0) ∈ Z is a characteristic point if and only if γ is abnormal.
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Proof By assumption, there exists an extremal t ∈ [0, 1] �→ λ(t) such that γ (t) = π(λ(t)).
On the other hand, γ minimizes also the distance from Z , hence, by [6, Theorem 12.4] the
following transversality condition holds true:

〈λ(0), v〉 = 0, ∀v ∈ Tγ (0)Z . (26)

If γ (0) is a characteristic point, the above implies H(λ(0)) = 0. Hence, λ(t) cannot be nor-
mal, and is thus abnormal. On the other hand, if λ(t) is abnormal, it satisfies H(λ(0)) = 0,
that is Eq. 24. We deduce that γ (0) is a characteristic point. In fact, if Dγ (0) were transversal
to Tγ (0)Z , Eqs. 26 and 24 would imply λ(0) = 0 yielding a contradiction.

2.2 Popp’s Measure

On equiregular neighborhoods of a sub-Riemannian manifold, it is possible to define an
intrinsic smooth measure P , called Popp’s measure. This measure was introduced first in
[22] and then used in [3] to define an intrinsic sub-Laplacian in the sub-Riemannian setting.
In the following, we recall the explicit formula for Popp’s measure given in [8] in terms of
adapted frames, which will be used in Section 5.

Let O ⊆ N be an equiregular neighborhood of an n-dimensional sub-Riemannian man-
ifold N . A local frame X1, . . . , Xn on O is said to be adapted to the sub-Riemannian
structure if X1, . . . , Xki

is a local frame for Di , where ki = dim(Di ) is constant on O. In
particular r(q) ≡ r is constant on O. Notice that, the equiregularity assumption means that,
on O, Di are “true” distributions, and hence that there always exists a local adapted frame.
Define the smooth functions b�

i1...ij
∈ C∞(N) as

[Xi1 , [Xi2 , . . . , [Xij−1 , Xij ]]] =
kj∑

�=kj−1+1

b�
i1i2...ij

X� mod Dj−1, (27)

where 1 ≤ i1, . . . , ij ≤ m = dim(D1). Consider the kj −kj−1 dimensional square matrices

(Bj )
h� =

r∑
i1,...,ij =1

bh
i1,...,ij

b�
i1,...,ij

, ∀j = 1, . . . , s, (28)

where s is the step of the structure. Then, denoting by ν1, . . . , νn the dual frame to
X1, . . . , Xn, the Popp’s measure reads

P = 1√∏s
j=1 det Bj

|ν1 ∧ · · · ∧ νn|. (29)

One can check that the measure defined by Eq. 29 does not depend on the choice of
the local adapted frame, and can be taken as the definition of Popp’s measure. It is not
hard to see, using the very definition, that if q ∈ Ō is a non equiregular point, then
lim

√∏
det Bj = 0, and hence the Radon-Nikodym derivative of Popp’s measure computed

with respect to any globally smooth measure on N diverges to +∞ on the singular region
Z . Uniform estimates of this divergence can be found in [19].

3 Sub-Riemannian Distance from an Hypersurface

We recall that N is a smooth (connected) manifold endowed with a sub-Riemannian struc-
ture, and that Z ⊂ N is a closed, embedded hypersurface with no characteristic points.
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We stress that Z is not necessarily the complement of the equiregular region of the
sub-Riemannian structure. The distance from the singular region δ : N → [0,∞) is

δ(p) = inf{d(q, p) | q ∈ Z}, ∀p ∈ N . (30)

In the following we resume some fundamental facts about δ. (See Fig. 1.)

Proposition 3.1 Let N be a smooth sub-Riemannian manifold and Z ⊂ N be a smooth,
embedded, compact hypersurface with no characteristic points. Then:

i) δ : N → [0, ∞) is Lipschitz w.r.t. the sub-Riemannian distance and |∇δ| ≤ 1 a.e.;
ii) there exists ε > 0 such that δ : Mε → [0, ∞) is smooth, where Mε = {0 < δ(p) <

ε};
iii) letting Xε = {δ(p) = ε}, there exists a smooth diffeomorphism F : (0, ε) × Xε →

Mε , such that

δ(F (t, q)) = t and F∗∂t = ∇δ, for (t, q) ∈ (0, ε) × Xε . (31)

Moreover, |∇δ| ≡ 1 on Mε .

Remark 3.1 The statement and the proof can be simplified if Z is two-sided (e.g. when
N and Z are orientable). In this case, Mε = (−ε, 0) × Z � (0, ε) × Z and there is no
need to introduce Xε . However, this is not true if Z is one-sided. (For example, think at a
Grushin-like structure on the Möbius strip, where Z is the central line.)

Proof We prove i). Let p, q ∈ N . By the triangle inequality we have δ(p) ≤ d(p, q) +
δ(q), thus proving that δ is 1-Lipschitz with respect to the sub-Riemannian distance. By
[16, Theorem 8] (see also [17, Proposition 2.9], [18, Theorem 1.3]) this implies that the
sub-Riemannian gradient satisfies |∇δ| ≤ 1 almost everywhere.

To prove ii), we follow the same strategy presented in [24, Lemma 7.7]. We first define
the annihilator bundle of the singular set

AZ := {(q, λ) ∈ T ∗N | λ(TqZ) = 0}, (32)

which is a rank 1 vector bundle with base Z . The map i0 : Z → AZ , i0(q) = (q, 0)

is an embedding of Z onto the zero section of AZ . The bundle AZ plays the role of the
Riemannian normal bundle usually employed in the construction of a tubular neighborhood.

Fig. 1 Tubular neighborhood of the singular region

On the Essential Self-Adjointness of Singular Sub-Laplacians 97



Let 0 	= λ ∈ AqZ . Since q is not a characteristic point, we have λ(Dq) 	= 0. Hence
H(λ) > 0, and the vector

vλ = π∗ �H(λ) =
r∑

i=1

〈λ, Xi〉Xi(q), (33)

where X1, . . . , Xr is a local generating frame of D, is a non-zero horizontal vector transver-
sal to TqZ . Observe that |vλ|2 = 〈λ, vλ〉 = 2H(λ) > 0, even if X1, . . . , Xr are not
independent at q.

Let D ⊆ T ∗N be the set of (q, λ) such that expq(λ) is well defined. Indeed, D is open
and so is D ∩ AZ as a subset of AZ . Consider the map E : AZ ∩ D → N , given by

E(q, λ) := expq(λ) = π ◦ e
�H (λ). (34)

Claim 1. Given q ∈ Z , E is a diffeomorphism on a neighborhood U(q) ⊆ D ∩ AZ of
i0(q) = (q, 0) ∈ AZ .
To prove Claim 1, we first notice that i0(Z) ⊆ D, and E ◦ i0 = idZ . Moreover, dE has
full rank on i0(Z). In fact, identifying T(q,0)AZ � TqZ ⊕AqZ , we have d(q,0)E|TqZ =
idTqZ and for δλ ∈ AqZ

d(q,0)E(δλ) =
r∑

i=1
〈δλ, Xi〉Xi = vδλ 	= 0. (35)

Claim 1 now follows from the inverse function theorem and from the fact that
dim(AZ) = dim(N). Moreover, since Z is embedded, and 2H , restricted to the fibers
of AZ , is a well defined norm, the neighborhood U(q) can be taken of the form

U(q) = U�(q) = {(q ′, λ′) | d(q, q ′) < �,
√

2H(λ′) < �}, � > 0. (36)

For any q ∈ Z , let

ε(q) := sup{� > 0 | E : U�(q) → E(U�(q)) is a diffeomorphism} > 0. (37)

Claim 2. The function ε : Z → R+ is continuous, since

|ε(q) − ε(q ′)| ≤ d(q, q ′), ∀q, q ′ ∈ Z . (38)

To prove it, assume without loss of generality that ε(q) ≥ ε(q ′). If d(q, q ′) ≥ ε(q), then
Eq. 38 holds. On the other hand, if d(q, q ′) < ε(q), the triangle inequality for d implies
that that U�(q ′) ⊆ Uε(q)(q) for � = ε(q) − d(q, q ′), implying Claim 2.

Thanks to the compactness1 of Z , we define the open neighborhood of i0(Z):

U := {(q, λ) ∈ AZ | √2H(λ) < ε0}, ε0 := min{ε(q)/2 | q ∈ Z} > 0. (39)

Claim 3. The restriction of E to U is injective.
This follows from the fact that for (q1, λ1), (q2, λ2) ∈ U , if ε(q1) ≤ ε(q2), then
(q1, λ1) ∈ Uε(q2)(q2) (on which E is a diffeomorphism by Claim 1).

By Claim 3, E : U → E(U) is a smooth diffeomorphism and E(U) ⊆ {δ < ε0}. Up
to taking a smaller ε0, we can assume that E(U) ⊆ {δ < ε0} ⊆ K , where K is compact.

Claim 4. E(U) = {δ < ε0} and, on E(U), the sub-Riemannian distance from Z satisfies

δ(E(q, λ)) = √
2H(λ). (40)

1In view of Remark 4.1, we notice that the function ε(q) is the sub-Riemannian version of the normal injec-
tivity radius from Z at q, and thus infq ε(q) is the normal injectivity radius from Z . Hence, if Z is not
compact, we can still proceed by assuming that the normal injectivity radius from Z is strictly positive.

V. Franceschi et al.98



To prove Claim 4, let p ∈ {δ < ε0} ⊆ K . Since K is compact, there exists at least one
horizontal curve γ : [0, 1] → N minimizing the sub-Riemannian distance between Z and
p. By Proposition 2.7, this must be a normal geodesic, that is p = E(q, λ), with q ∈ Z and
λ ∈ T ∗

q N . Since γ is minimizing, transversality conditions (26) imply that λ(TqZ) = 0, that
is (q, λ) ∈ AZ . Moreover,

√
2H(λ) = �(γ ) = δ(p) < ε0. This implies that (q, λ) ∈ U ,

that is p = E(q, λ) ∈ E(U), and δ(E(q, λ)) = √
2H(λ), as claimed. Since

√
2H(λ) is a

smooth function for H(λ) 	= 0, δ is smooth on {0 < δ < ε}, for all ε ≤ ε0.
We prove statement iii). Let 0 < ε < ε0 and let F : (0, ε) × Xε → Mε be defined by

F(t, q) = E

(
q0,

t√
2H(λ)

λ

)
(41)

where, for q ∈ Xε , we are using Claim 4 to write q = E(q0, λ) for a unique (q0, λ) ∈ U

such that
√

2H(λ) = ε. The function F is a smooth diffeomorphism, with inverse

F−1(p) =
(√

2H(ν),E
(
p0,

ε√
2H(ν)

ν
))

, for p = E(p0, ν) ∈ Mε, (p0, ν) ∈ U .

(42)
Moreover, by Eq. 40 and the definition of F

δ(F (t, q)) =
√

2H

(
t√

2H(λ)
λ

)
= t, ∀(t, q) ∈ (0, ε) × Xε . (43)

Notice that F is the gradient flow of δ on Mε . Now, for q ∈ Xε , the curves t �→ F(t, q)

are the unique normal geodesics with speed 1 that minimize the sub-Riemannian distance
from Z . Hence, F∗∂t is a horizontal vector field and |F∗∂t | = 1. We conclude the proof by
showing that that ∇δ = F∗∂t . In fact, by Cauchy-Schwarz inequality, if ∇δ is not parallel
to F∗∂t , then 1 = |g(F∗∂t , ∇δ)| < |∇δ| at some point F(t̄, q̄). On the other hand, the
unit-speed curve γ (s) = es∇δ/|∇δ|F(t̄, q̄) satisfies, for T small enough,

δ(γ (T )) − δ(γ (0)) = ∫ T

0
d

ds
δ(γ (s))

∣∣∣
s=t

dt = ∫ T

0 g(∇δ(γ (t)), γ̇ (t))dt

= ∫ T

0 g
(
∇δ, ∇δ

|∇δ|
)

dt = ∫ T

0 |∇δ| > T = �(γ |[0,T ]),
(44)

leading to a contradiction, and implying the statement.

Remark 3.2 In Proposition 3.1, one can replace the smoothness of Z by its Ck-regularity,
k ≥ 2, obtaining in (ii) the Ck-regularity of δ, and in (iii) the Ck−1-regularity of F . More-
over, taking into account the observation of the footnote above, the argument of the proof
can be adapted to yield a generalization of the co-dimension 1 case in [28, Theorem. 4.2].
This can be done by exploiting the Ball-Box Theorem [2, Theorem. 10.62] to estimate
Reach(S,K) of [28, Theorem. 4.2] in terms of the ε given by Proposition 3.1 applied to
Z = {p ∈ S : d(p,K) < r}, for sufficiently small r > 0.

4 Main Quantum Completeness Criterion

Let N be a complete sub-Riemannian manifold and Z ⊂ N be a smooth embedded hyper-
surface with no characteristic points. Let ω be a measure on N , smooth on M = N \ Z or
one of its connected components. We are interested in the essential self-adjointness of the
operator

H = −�ω = − divω ◦∇, Dom(H) = C∞
c (M). (45)
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In the following, we denote with L2(M) the complex Hilbert space of (equivalence
classes of) functions u : M → C, with scalar product

〈u, v〉 =
∫

M

uv̄ dω, u, v ∈ L2(M), (46)

where the bar denotes complex conjugation. The corresponding norm is ‖u‖2 = 〈u, u〉.
Similarly, given a coordinate neighborhood U ⊆ M and denoting by dx the Lebesgue
measure on it, we denote by L2(U, dx) the complex Hilbert space of square-integrable
functions u : U →C satisfying (46) with dω replaced by dx and M by U .

Our main result is the following.

Theorem 4.1 (Main quantum completeness criterion) LetN be a complete sub-Riemannian
manifold endowed with a measure ω. Assume ω to be smooth on N \Z , where the singular
set Z is a smooth, embedded, compact hypersurface with no characteristic points. Assume
also that, for some ε > 0, there exists a constant κ ≥ 0 such that, letting δ = d(Z, · ), we
have

Veff =
(

�ωδ

2

)2

+
(

�ωδ

2

)′
≥ 3

4δ2
− κ

δ
, for 0 < δ ≤ ε, (47)

where the prime denotes the derivative in the direction of ∇δ. Then, �ω with domain
C∞

c (M) is essentially self-adjoint in L2(M), where M = N \ Z , or any of its connected
components.

Moreover, if M is relatively compact, the unique self-adjoint extension of �ω has com-
pact resolvent. Therefore, its spectrum is discrete and consists of eigenvalues with finite
multiplicity.

Remark 4.1 The compactness of Z in Theorem 4.1 can be replaced by the weaker assump-
tion that the (normal) injectivity radius from Z is strictly positive. Indeed, in this case,
Proposition 3.1 and the forthcoming Proposition 4.6 still hold true. (See footnote in the
proof of Proposition 3.1.)

We start by showing two functional theoretic results holding on any sub-Riemannian
manifold M equipped with a smooth measure ω.

We denote by W 1(M) the Sobolev space of functions in L2(M) with distributional (sub-
Riemannian) gradient ∇u ∈ L2(D), where the latter is the complex Hilbert space of sections
of the complexified distribution X : M → DC ⊆ T MC, with scalar product

〈X, Y 〉 =
∫

M

g(X, Y ) dω, X, Y ∈ L2(D). (48)

The Sobolev space W 1(M) is a Hilbert space when endowed with the scalar product

〈u, v〉W 1 = 〈∇u,∇v〉 + 〈u, v〉. (49)
Similarly, given a coordinate neighborhood U ⊆ M and denoting by dx the Lebesgue mea-
sure on it, we denote by W 1(U, dx) the Sobolev space of functions in L2(U, dx), with
distributional (sub-Riemannian) gradient in L2(D|U , dx), that is the complex Hilbert space
of sections of the complexified distribution X : U → DC ⊆ T MC, with the scalar prod-
uct defined in Eq. 48 where dω is replaced by dx. Moreover, we denote by L2

loc(M) and
W 1

loc(M) the space of functions u : M → C such that, for any relatively compact domain
� ⊆ M , their restriction to � belongs to L2(�) and W 1(�), respectively. Finally, we let
W 1

0 (M) be the closure of C∞
c (M) w.r.t. the norm given in Eq. 49.
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Lemma 4.2 Let M be a sub-Riemannian manifold equipped with a smooth measure ω.
Then Dom(H ∗) ⊆ W 1

loc(M).

Proof If u ∈ Dom(H ∗), then �ωu ∈ L2
loc(M). Let f = �ωu (in the weak sense) and let U

be a relatively compact coordinate domain of M . Then, f ∈ L2(U), and, since ω is a smooth
measure on M , f ∈ L2(U, dx), where dx denotes the Lebesgue measure on U . Notice that
�ω can be written in the form L = ∑r

i=1 X2
i + X0 where X1, . . . , Xr is a local generating

family and X0 is a horizontal vector field. Then, by Rotschild and Stein subellipticity theory
for L (see [29, Theorem 18.d]), u ∈ W 1

loc(U, dx), implying u ∈ W 1
loc(U). We deduce that

u ∈ W 1
loc(M). In fact, if K ⊆ M is a relatively compact domain, we can cover it with a finite

number of coordinate charts U1, . . . , Um, with K ∩ Ui relatively compact. In particular,
u ∈ W 1(K ∩ Ui) for any i = 1, . . . , m, implying u ∈ W 1

loc(M).

Lemma 4.3 (Sub-Riemannian Rellich-Kondrachov theorem) Let M be a sub-Riemannian
manifold equipped with a smooth measure ω. Let � ⊆ M be a compact domain with
Lipschitz boundary. Then W 1(�) is compactly embedded into L2(�).

Proof Step 1. Let U ⊆ M be a coordinate neighborhood such that U ∩ � has Lipschitz
boundary and let wj be a sequence bounded in W 1(�). Since ω is smooth, this is equiv-
alent to say that wj is bounded in W 1(U ∩ �, dx), where dx denotes the Lebesgue
measure on U . By [29, Theorem 13] (and estimates therein), if s denotes the step of
the sub-Riemannian structure on �, W 1(U ∩ �, dx) is compactly embedded into the
isotropic fractional Sobolev space W

1/s,2
iso (U ∩ �, dx). This is defined considering frac-

tional derivatives in every coordinate direction (and not just in the horizontal ones). Then,
by the classical Rellich-Kondrachov theorem applied to set U ∩ �, whose boundary is
Lipschitz, we can extract a subsequence wj�

of wj converging in L2(U ∩ �, dx), hence
in L2(� ∩ U).

Step 2. Let uj be a sequence bounded in W 1(�) and let � = ⋃N
�=1 U� be a covering of

� where each U� is a coordinate domain. Then uj is bounded in W 1(U�) for every �.
Without loss of generality we can assume U� ∩ � to have Lipschitz boundary for every
�. By Step 1, we can extract from uj a subsequence uj1(k) converging in L2(� ∩ U1).
Similarly, from uj1(k) we extract a subsequence uj2(k) converging in L2(� ∩ U2). By
repeating this procedure for every � we obtain a subsequence ujN (k) of uj converging in
L2(� ∩ U�) for every � = 1, . . . , N . This implies that ujN (k) converges in L2(�), as
claimed.

4.1 Agmon-Type Estimates andWeak Hardy Inequality

Recall that the symmetric bilinear form associated with H is

E(u, v) =
∫

M

g(∇u,∇v) dω, u, v ∈ C∞
c (M). (50)

We use the same symbol to denote the above integral for all functions u, v ∈ W 1
loc(M),

when it is convergent. We also let, for brevity, E(u) = E(u, u) ≥ 0.
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Lemma 4.4 Let M be a sub-Riemannian manifold equipped with a smooth measure ω. Let
f be a real-valued function, Lipschitz w.r.t. the sub-Riemannian distance. Let u ∈ W 1

loc(M),
and assume that f or u have compact support K ⊂ M . Then, we have

E(f u, f u) = Re E(u, f 2u) + 〈u, |∇f |2u〉. (51)

Moreover, if ψ ∈ Dom(H ∗) satisfies H ∗ψ = Eψ , and f has compact support, we have

E(f ψ, f ψ) = E‖f ψ‖2 + 〈ψ, |∇f |2ψ〉. (52)

Proof Observe that |∇f | is essentially bounded by [16, Theorem 8] (see also [17, Proposi-
tion 2.9], [18, Theorem 1.3]). Hence f u ∈ W 1

0 (M). By using the fact that f is real-valued,
a straightforward application of Leibniz rule yields

〈∇u,∇(f 2u)〉 = 〈f ∇u,∇(f u)〉 + 〈∇u, f u∇f 〉 (53)

= 〈∇(f u),∇(f u)〉 − 〈u∇f,∇(f u)〉 + 〈∇u, f u∇f 〉 (54)

= 〈∇(f u),∇(f u)〉 − 〈u∇f, u∇f 〉 − 〈u∇f, f ∇u〉 + 〈f ∇u, u∇f 〉 (55)

= 〈∇(f u),∇(f u)〉 − 〈u, |∇f |2u〉 + 2i Im〈f ∇u, u∇f 〉. (56)

Thus, by definition of E , we have

Re E(u, f 2u) = 〈∇(f u),∇(f u)〉 − 〈u, |∇f |2u〉 = E(f u, f u) − 〈u, |∇f |2u〉, (57)

completing the proof of Eq. 51.
To prove (52), recall that, by Lemma 4.2, Dom(H ∗) ⊆ W 1

loc(M). Then we obtain

E(u, f 2u) = 〈∇u,∇(f 2u)〉 = 〈−�ωu, f 2u〉 = 〈H ∗u, f 2u〉. (58)

Setting u = ψ , we obtain E(ψ, f 2ψ) = E‖f ψ‖2, yielding the statement.

We show how to compute Veff through the diffeomorphism F given by Proposition 3.1.

Proposition 4.5 Using the diffeomorphism of Proposition 3.1 to identify Mε � (0, ε)×Xε,
we have

dω(t, q) = e2θ(t,q)dt dμ(q), (t, q) ∈ Mε, (59)

where dμ is a fixed smooth measure on Xε , and θ is a smooth function. Moreover,

Veff = (∂t θ)2 + ∂2
t θ . (60)

Proof We prove (60). Through the identification Mε � (0, ε) × Xε we have ∇δ(t, q) = ∂t .
Then, by definition of divω we have

(�ωδ(t, q))ω = divω(∂t )ω = L∂t ω = L∂t (e
2θ(t,q)dt dμ(q))

= 2∂t θ(t, q)dω + e2θL∂t (dt dμ(q)) = 2∂t θ(t, q)dω,
(61)

where we used L∂t (dt dμ(q)) = 0. Moreover, in these coordinates, derivation in the
direction of ∇δ amounts to the derivation w.r.t. t , hence

(�ωδ(t, q))′ = 2∂2
t θ . (62)

Proposition 4.6 (Weak Hardy Inequality) Let N be a complete sub-Riemannian manifold
endowed with a measure ω. Assume ω to be smooth on M = N \ Z , where the singular set
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Z is a smooth, embedded, compact hypersurface with no characteristic points. Assume also
that there exist κ ≥ 0 and ε > 0 such that

Veff ≥ 3

4δ2
− κ

δ
, for δ ≤ ε. (63)

Then, there exist η ≤ 1/κ and c ∈ R such that

∫
M

|∇u|2 dω ≥
∫

Mη

(
1

δ2
− κ

δ

)
|u|2 dω + c‖u‖2, ∀u ∈ W 1

0 (M), (64)

where Mη = {0 < δ < η}. In particular, the operator H = −�ω is semibounded on
C∞

c (M).

Proof By Proposition 3.1 there exists ε > 0 such that δ is smooth on Mε = {0 < δ < ε}.
First we prove (64) for u ∈ W 1

0 (M), and with η = ε, possibly not satisfying η ≤ 1/κ .
Then, we extend it for u ∈ W 1

0 (M), choosing η ≤ 1/κ .

Step 1. Let u ∈ W 1
0 (Mε). By Proposition 3.1, we identify Mε � (0, ε) × Z in such a

way that δ(t, q) = t . By Proposition 4.5, fixing a reference measure dμ on Z , we have
dω(t, q) = e2ϑ(t,q)dt dμ(q) on Mε , for some smooth function ϑ : Mε → R. Consider
the unitary transformation T : L2(Mε, dω) → L2(Mε, dt dμ) defined by T u = eϑu. By
Proposition 3.1 ∂t is a unit horizontal vector field. Hence |∇u| ≥ |∂tu|. Letting v = T u,
an integration by parts yields

∫
M

|∇u|2 dω ≥
∫

Mε

|∂tu|2 dω =
∫

Mε

(
|∂tv|2 +

(
(∂tϑ)2 + ∂2

t ϑ︸ ︷︷ ︸
=Veff

)
|v|2

)
dt dμ, (65)

where the expression for Veff is in Proposition 4.5. Recall the 1D Hardy inequality:

∫ ε

0
|f ′(s)|2 ds ≥ 1

4

∫ ε

0

|f (s)|2
s2

ds, ∀f ∈ W 1
0 ((0, ε)). (66)

Since u ∈ W 1
0 (Mε) and ϑ is smooth, for a.e. q ∈ Xε , the function t �→ v(t, q) is

in W 1
0 ((0, ε)) (see [14, Theorem 4.21]). Then, by using Eq. 63, Fubini’s Theorem and

Eq. 66, we obtain (64) for functions u ∈ W 1
0 (Mε) with η = ε and c = 0.

Step 2. Let u ∈ W 1
0 (M), and let χ1, χ2 be smooth functions on [0, +∞) such that

• 0 ≤ χi ≤ 1 for i = 1, 2;
• χ1 ≡ 1 on [0, ε

2 ] and χ1 ≡ 0 on [ε, +∞);
• χ2 ≡ 0 on [0, ε

2 ] and χ2 ≡ 1 on [ε, +∞);
• χ2

1 + χ2
2 = 1.

Consider the functions φi : M → R defined by φi := χi ◦ δ. We have φ1 ≡ 1 on Mε/2,
Mε/2 ⊆ supp(φ1) ⊆ Mε , moreover 0 ≤ φ1 ≤ 1, and φ2

1 + φ2
2 = 1. Notice that φ2 ≡ 1

and φ1 ≡ 0 on M \ Mε , and so ∇φi ≡ 0 there. Moreover, since by Proposition 3.1 i)
there holds |∇δ| ≤ 1 a.e., we have

c1 = sup
M

2∑
i=1

|∇φi |2 ≤ sup
[0,ε]

2∑
i=1

|χ ′
i |2 < +∞. (67)
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By Eq. 51 of Lemma 4.4, we obtain

E(u) =
2∑

i=1

E(φiu) −
2∑

i=1

∫
M

|∇φi |2|u|2dω ≥ E(φ1u) − c1‖u‖2, (68)

where we used that E(φ2u) ≥ 0, that φ2
1 + φ2

1 = 1 and the inequality (67). In particular,
applying the statement proved in Step 1 to φ1u ∈ W 1

0 (Mε), we get

E(u) ≥
∫

Mε

(
1

δ2
− κ

δ

)
|φ1u|2dω − c1‖u‖2. (69)

Letting η = min{ ε
2 , 1/κ}, we have

E(u) ≥
∫

Mη

(
1

δ2
− κ

δ

)
|u|2dω −

∫
Mε\Mη

∣∣∣∣ 1

δ2
− κ

δ

∣∣∣∣ |φ1u|2dω − c1‖u‖2 (70)

≥
∫

Mη

(
1

δ2
− κ

δ

)
|u|2dω −

(
c1 + sup

η≤δ≤ε

∣∣∣∣ 1

δ2
− κ

δ

∣∣∣∣
)

‖u‖2, (71)

which concludes the proof.

Proposition 4.7 (Agmon-type estimate) Let N be a complete sub-Riemannian manifold
endowed with a measure ω. Assume ω to be smooth on M = N \ Z , where the singular set
Z is a smooth embedded hypersurface with no characteristic points. Assume also that there
exist κ ≥ 0, η ≤ 1/κ and c ∈ R such that,

∫
M

|∇u|2 dω ≥
∫

Mη

(
1

δ2
− κ

δ

)
|u|2dω + c‖u‖2, ∀u ∈ W 1

0 (M). (72)

Then, for all E < c, the only solution of H ∗ψ = Eψ is ψ ≡ 0.

Notice that the requirement η ≤ 1/κ ensures the non-negativity of the integrand in
Eq. 72. The proof follows the ideas of [13, 23].

Proof Let f : M → R be a bounded Lipschitz function w.r.t. the sub-Riemannian distance
with supp f ⊆ M \ Mζ , for some ζ > 0, and ψ be a solution of (H ∗ − E)ψ = 0 for some
E < c. We start by claiming that

(c − E)‖f ψ‖2 ≤ 〈ψ, |∇f |2ψ〉 −
∫

Mη

(
1

δ2
− κ

δ

)
|f ψ |2dω. (73)

If f had compact support, then f ψ ∈ W 1
0 (M), and hence (73) would follow directly from

Eqs. 52 and 72. To prove the general case, let θ : R → R be the function defined by

θ(s) =
⎧⎨
⎩

1 s ≤ 0,

1 − s 0 ≤ s ≤ 1,

0 s ≥ 1.
(74)

Fix q ∈ M and let Gn : M → R defined by Gn(p) = θ(dg(q, p) − n). Notice that Gn is
Lipschitz w.r.t. the sub-Riemannian distance, and hence its sub-Riemannian gradient satis-
fies |∇Gn| ≤ 1, see [16, Theorem 8], [17, Proposition 2.9], [18, Theorem 1.3]. Moreover
supp(Gn) ⊆ B̄q(n + 1). Observe that

supp Gnf ⊆ (M \ Mζ ) ∩ Bq(n + 1). (75)
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Even if (M, d) is a non-complete metric space (and hence, its closed balls might fail to be
compact), the set on the right hand side of Eq. 75 is compact, being uniformly separated
from the metric boundary. This can be proved with the same argument of [12, Proposition
2.5.22] and exploiting the completeness of (N, d). Hence, the support of fn := Gnf is
compact, and Eq. 73 holds with fn in place of f . The claim now follows by dominated
convergence. Indeed, fn → f point-wise as n → +∞ and fn ≤ f . Hence ‖fnψ‖ →
‖f ψ‖. Thus, since supp fn ⊆ M \ Mζ , we have

lim
n→+∞

∫
Mη

(
1

δ2
− κ

δ

)
|fnψ |2 dω =

∫
Mη

(
1

δ2
− κ

δ

)
|f ψ |2 dω. (76)

Finally, since |∇fn| ≤ C, and ∇fn → ∇f a.e. we have 〈ψ, |∇fn|2ψ〉 → 〈ψ, |∇f |2ψ〉,
yielding the claim.

We now plug a particular choice of f into Eq. 73. Set

f (p) :=
{

F(δ(p)) 0 < δ(p) ≤ η,

1 δ(p) > η,
(77)

where F is a Lipschitz function to be chosen later. Recall that |∇δ| ≤ 1 a.e. on M . In
particular, a.e. on Mη, we have |∇f | = |F ′(δ)||∇δ| ≤ |F ′(δ)|. Thus, by Eq. 73, we have

(c − E)‖f ψ‖2 ≤
∫

Mη

[
F ′(δ)2 −

(
1

δ2
− κ

δ

)
F(δ)2

]
|ψ |2dω. (78)

Let now 0 < 2ζ < η. We choose F for τ ∈ [2ζ, η] to be the solution of

F ′(τ ) =
√

1

τ 2
− κ

τ
F (τ), with F(η) = 1, (79)

to be zero on [0, ζ ], and linear on [ζ, 2ζ ]. Observe that the assumption η ≤ 1/κ implies that
Eq. 79 is well defined. We first consider the case κ = 0. The function F , together with its
derivative reads

F(τ) =

⎧⎪⎨
⎪⎩

0 τ ∈ [0, ζ ],
2
η
(τ − ζ ) τ ∈ [ζ, 2ζ ],

1
η
τ τ ∈ [2ζ, η),

F ′(τ ) =

⎧⎪⎨
⎪⎩

0 τ ∈ [0, ζ ],
2
η

τ ∈ [ζ, 2ζ ],
1
η

τ ∈ [2ζ, η).
(80)

The global function defined by Eq. 77 is a Lipschitz function with support contained in
M \ Mζ and such that F ′ ≤ K on [ζ, 2ζ ], for some constant independent of ζ (K = 2/η).
Therefore, from Eq. 78 we get

(c − E)‖f ψ‖2 ≤
∫

M2ζ \Mζ

[
F ′(δ)2 − 1

δ2
F(δ)2

]
|ψ |2dω ≤ K2

∫
M2ζ \Mζ

|ψ |2dω. (81)

If we let ζ → 0, then f tends to an almost everywhere strictly positive function. Recalling
that E < c, and taking the limit, Eq. 81 implies ψ ≡ 0. When κ > 0 the solution to Eq. 79,
on the interval [2ζ, η], is

F(τ) = C(κ, η)
1 − √

1 − κτ

1 + √
1 − κτ

e2
√

1−κτ , τ ∈ [2ζ, η], (82)

for a constant C(κ, η) such that F(η) = 1. By construction of F on [ζ, 2ζ ], we obtain

F ′(τ ) = F(2ζ )

ζ
, τ ∈ [ζ, 2ζ ]. (83)

Hence we have F(2ζ ) = C(κ, η)e2κζ/2 + o(ζ ), which yields the boundedness of F ′ on
[ζ, 2ζ ] by a constant not depending on ζ . Moreover the global function defined by Eq. 77

On the Essential Self-Adjointness of Singular Sub-Laplacians 105



is Lipschitz with support contained in M \ Mζ . Thus, by Eq. 78, we conclude that ‖ψ‖ = 0
as in the case κ = 0.

Remark 4.2 (The role of the Hardy constant in the proof) If Eq. 72 is replaced with∫
M

|∇u|2 dω ≥ a

∫
Mη

(
1

δ2
− κ

δ

)
|u|2dω + c‖u‖2, ∀u ∈ W 1

0 (M) (84)

for 3
4 < a < 1, then the arguments in the previous proof cannot be applied. To see this, let

us consider the case κ = 0. The function F satisfying a suitably modified version of Eq. 79
reads in this case

F(τ) =
(

τ

η

)√
a

, τ ∈ [2ζ, η]. (85)

Then, by construction, the function F satisfies

F(τ) =
(

2

η

)√
a

ζ
√

a−1(τ − ζ ) for [ζ, 2ζ ]. (86)

In particular, if a < 1, we cannot find a constant K independent of ζ such that F ′(τ ) =
(2/η)

√
aζ

√
a−1 ≤ K . On the other hand, for a ≥ 1, we have F ′(τ ) = (2/η)

√
aζ

√
a−1 ≤

2
√

a/η2−√
a = K(η) and the previous argument works exactly in the same way.

4.2 Proof of the Criterion

Proof of Theorem 4.1 We divide the proof of the theorem in two steps.

Part 1: essential self-adjointness. By Proposition 4.6, the operator H is semibounded.
Thus, by a well-known criterion (see [26, Theorem X.I and Corollary]), H is essentially
self-adjoint if and only if there exists E < 0 such that the only solution of H ∗ψ = Eψ

is ψ ≡ 0. This is guaranteed by the Agmon-type estimate of Proposition 4.7, whose
hypotheses are satisfied again by Proposition 4.6.

Part 2: compactness of the resolvent. The proof follows the same steps as in [24, Propo-
sition 3.7], but makes use of the sub-Riemannian version of the Rellich-Kondrachov
theorem (Lemma 4.3). For the sake of completeness, we sketch here the proof.

First of all notice that it suffices to show that there exists z ∈ R such that the resolvent
(H ∗ − z)−1 is compact on L2(M). This follows by the first resolvent formula (see [25,
Theorem VIII.2]) and by the fact that compact operators are an ideal of the algebra of
bounded ones. Moreover, by Proposition 4.6, H is a semibounded operator, i.e.,

〈Hu, u〉 ≥ c‖u‖2, ∀u ∈ C∞
c (M). (87)

Hence, by [27, Theorem XIII.64] its spectrum consists of discrete eigenvalues with finite
multiplicity.

Notice that Eq. 87, together with the fact that H ∗ is self-adjoint, imply that (H ∗ − z)−1

is well defined for every z ≤ c and ‖(H ∗ −z)−1‖ ≤ 1/(c−z). To prove compactness of the
operator (H ∗−z)−1 : L2(M) → Dom(H ∗) for z < c we need to show that for any bounded
sequence ψn ∈ L2(M), say ‖ψn‖ ≤ (c − z), the image sequence un = (H ∗ − z)−1ψn ∈
Dom(H ∗) has a subsequence converging in L2(M). Notice that ‖un‖ ≤ 1.

In order to extract a converging subsequence of un, we prove estimates for the functions
un localized close and far away from the singular region. We provide such estimates for any
function u ∈ Dom(H ∗) ⊆ W 1

loc(M) (see Lemma 4.2), setting ψ = (H ∗ − z)u, and we will
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then apply them to the elements of the sequence un, to extract a converging subsequence.
To this purpose let χ1, χ2 : [0, +∞] → R be real valued Lipschitz functions such that

• 0 ≤ χi ≤ 1 for i = 1, 2;
• χ1 ≡ 1 on [0, η/2] and χ1 ≡ 0 on [η, +∞);
• χ2 ≡ 0 on [0, η/2] and χ2 ≡ 1 on [η, +∞);
• they interpolate linearly elsewhere.

Consider the functions φi := χi ◦ δ, which are Lipschitz w.r.t. the sub-Riemannian distance.
Notice that φ1 + φ2 = 1. Since M is relatively compact in N , φ2 is compactly supported in
M , implying by Eq. 51

E(φ2u, φ2u)= Re E(u, φ2
2u)+〈u, |∇φ2|2u〉=Re〈H ∗u, φ2

2u〉+〈u, |∇φ2|2u〉 (88)

= z‖φ2u‖2+Re〈ψ, φ2
2u〉+〈u, |∇φ2|2u〉≤z‖u‖2+‖ψ‖‖u‖+4‖u‖2η−2, (89)

where in the last estimate we used the fact that χ2 is linear between η/2 and η hence φ2 =
χ2 ◦δ satisfies |∇φ2| ≤ |χ ′

2||∇δ| ≤ 2/η. We deduce the following estimate “far away” from
the singular region:∫

M\Mη/2

|∇(φ2u)|2 dω = E(φ2u, φ2u) ≤ z‖u‖2 + ‖ψ‖‖u‖ + 4‖u‖2η−2. (90)

We now consider the localization of u close to the metric boundary. Since H is essentially
self-adjoint and H ∗ = H̄ , we can choose a sequence uk ∈ C∞

c (M) such that uk converges
to u in the graph norm of H ∗, i.e., ‖H ∗(uk − u)‖ + ‖uk − u‖ → 0 as k → ∞. We deduce
an upper bound for φ1u in Mη from the following bounds on the elements uk as follows.
First, we use Eq. 64 to obtain

∫
Mη

|uk|2 dω =
∫

Mη

δ2

1 − δκ

1 − δκ

δ2
|uk|2 dω ≤ η2

1 − ηκ

∫
Mη

(
1

δ2
− κ

δ

)
|uk|2 dω (91)

≤ η2

1 − ηκ

(
E(uk, uk) − c‖uk‖2

)
= η2

1 − ηκ

(
〈H ∗uk, uk〉 − c‖uk‖2

)
. (92)

Then, passing to the limit k → ∞, and recalling that φ1 ≤ 1, we get∫
Mη

|φ1u|2 dω ≤
∫

Mη

|u|2 dω (93)

≤ η2

1 − ηκ

(
〈H ∗u, u〉 − c‖u‖2

)
= η2

1−ηκ

(
(z−c)‖u‖2+‖ψ‖‖u‖

)
. (94)

We apply the latter construction to each element un = (H ∗ − z)−1ψn ∈ Dom(H ∗),
setting un = un,1 + un,2 with un,i = φn,iun. Recalling that ‖un‖ ≤ 1, Eq. 90 applied to
u = un, ψ = ψn, implies

‖un,2‖2
W 1(M)

=
∫

M\Mη/2

|∇un,2|2 dω + ‖un,2‖2 ≤ c + 4η−2 + 1. (95)

That is, un,2 is bounded in W 1(M). Moreover, by construction, un,2 ∈ W 1
0 (�) where

� = {δ ≥ η/2} ⊂ M is a compact domain with smooth boundary by Proposition 3.1.
This implies that un,2 converges up to subsequences in L2(�) (thus in L2(M)) by the
sub-Riemannian Rellich-Kondrachov theorem, see Lemma 4.3.
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On the other hand, Eq. 93 implies that for some constant C independent of η, we have

‖un,1‖2 =
∫

Mη

|un,1|2 dω ≤ η2

1 − ηκ
2(c − z) ≤ Cη2, (96)

Since η in the Hardy inequality (64) can be arbitrarily small, say η̃2
k = 1/k, we actually

proved that for all k ∈ N, there is a subsequence n �→ γk(n) such that uγk(n) = ∑2
i=1 uγk(n),i

with ‖uγk(n),1‖ ≤ C/k and uγk(n),2 convergent in L2(M). Exploiting this fact, we extract
a Cauchy subsequence of un, yielding the compactness of (H ∗ − z)−1, and concluding the
proof. Details on the extraction are in [24, Proposition 3.7].

5 Applications to the Intrinsic Sub-Laplacian

The main interest of our result is in its application to the study of sub-Riemannian
manifolds endowed with the intrinsic Popp’s measure. More precisely, given a complete
sub-Riemannian manifold N , we are interested in studying essential self-adjointness of the
sub-Laplacian � = �P , where P is the Popp’s measure. As discussed in Section 2.2, P is
smooth on the equiregular region of N (the largest open set on which the sub-Riemannian
structure is equiregular), and blows up on its complement: the singular region Z . We assume
that Z is a smooth embedded hypersurface with no characteristic points, and that Z is com-
pact (or, at least, that it has strictly positive injectivity radius, see Remark 4.1). Furthermore,
Dom(�) = C∞

c (M) with M = N \ Z or any of its connected components.
We start by considering a family of structures generalizing the Martinet structure, which

has been presented in the introduction. These are complete sub-Riemannian structures on
R

3, equiregular outside a hypersurface Z ⊂ R
3, on which the distance from Z is explicit.

Using Theorem 4.1 (and Remark 4.1) we deduce essential self-adjointness of � = �P
defined on C∞

c (R3 \ Z).

Example 5.1 (k-Martinet distribution) Let k ∈ N. We consider the sub-Riemannian
structure on R

3 defined by the following global generating family of vector fields:

X1 = ∂x, X2 = ∂y + x2k∂z. (97)

The singular region is Z = {x = 0} and the distance from Z is δ(x, y, z) = |x|. Using
formula (29), the associated Popp’s measure turns out to be

P = 1

2
√

2k|x|2k−1
dx ∧ dy ∧ dz. (98)

The case k = 1 is the standard Martinet structure considered in the introduction. Notice
that the injectivity radius from Z is infinite, hence even if Z is not compact we can apply
Theorem 4.1. We compute the effective potential Veff using Eq. 60. Indeed we have

θ = θ(x) = 1

2
log

1

2
√

2kx2k−1
, (99)

and thus, using Eq. 60, we have

Veff(x) = 4k2 − 1

4x2
≥ 3

4x2
, ∀k ≥ 1. (100)

Hence (47) is satisfied, and �P with domain C∞
c (R3 \ Z) is essentially self-adjoint.
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The study of condition (47) is a difficult task, because it requires the explicit knowledge
of the distance from the singular set. In the following we define a class of sub-Riemannian
structures, to which Theorem 4.1 applies, without knowing an explicit expression for δ. Let
� be a reference measure, smooth and positive on the whole N and let P denote Popp’s
measure, smooth on M = N \ Z. We define the function ρ : N → R by setting

ρ(p) =
{ (

dP
d�

)−1
(p) if p ∈ N \ Z,

0 if p ∈ Z .
(101)

This is the unique continuous extension to Z of the reciprocal of the Radon-Nikodym
derivative of P with respect to � . Notice that ρ is smooth on N \ Z .

Definition 5.1 We say that a sub-Riemannian manifold N is Popp-regular if it is equireg-
ular outside a smooth embedded hypersurface Z containing no characteristic points, and
there exists k ∈ N such that, for all q ∈ Z there exists a neighborhood O of q and a smooth
submersion ψ : O → R such that the function ρ defined in Eq. 101 satisfies ρ|O = ψk .

Definition 5.1 generalizes the notion of regular almost Riemannian structure given in
[24, Def. 7.10]. Notice that the sub-Riemannian structure in Example 5.1 is Popp-regular.

Proposition 5.2 Let N be a complete and Popp-regular sub-Riemannian manifold, with
compact singular set Z . Then, the sub-Laplacian �P with domain C∞

c (M) is essentially
self-adjoint in L2(M), where M = N \Z or one of its connected components. Moreover, if
M is relatively compact, the unique self-adjoint extension of �P has compact resolvent.

Proof We start by noticing that the proof of Claim iii) in Proposition 3.1 can be modified
in such a way that, for any q ∈ Z , we construct local coordinates (t, x) ∈ (−ε, ε) × R

n−1,
defined in a neighborhood O ⊂ N of q, with respect to which we have

Z ∩ O = {t = 0}, δ(t, x) = t, ∇δ(t, x) = ∂t . (102)

In fact, given a coordinate neighborhood V ⊆ Z around q we can choose λ : V → AZ to
be a smooth non-vanishing local section of the annihilator bundle AZ defined in Eq. 32 with
constant Hamiltonian equal to 1/2. Then, the map E(x, tλ(x)) is a smooth diffeomorphism
satisfying (102), where E is defined as in Eq. 34.

Let now � be a smooth measure on N and consider the function ρ defined in Eq. 101.
By assumption, we have ρ = ψk , for a smooth submersion ψ . Thus, since in the coordinates
just defined we have ρ(0, x) = 0, we must also have ∂tψ(0, x) 	= 0. This implies ρ =
tkφ(t, x) for a smooth never vanishing function. Notice that the expression of φ depends on
the choice of the reference measure � , but the fact that φ never vanishes does not depend
on this choice. We compute the effective potential as

Veff|O\Z =
(

�|t |
2

)2

+ ∂t

(
�|t |

2

)
(103)

= k(k + 2)

4t2
+ k2

2|t |
∂tφ(t, x)

φ(t, x)
+ k(k + 2)

4

∂tφ(t, x)2

φ(t, x)2
− k

2

∂2
t φ(t, x)

φ(t, x)
. (104)

Up to restricting to a smaller, compact subset O′ � [−ε′, ε′] × [−1, 1]n−1, we get the
estimate Veff|O′\Z ≥ 3/(4t2) − κ ′/|t | for some constant κ ′ > 0. By compactness of Z , and
up to choosing a sufficiently small ε, we can cover Mε = {0 < δ < ε} with a finite number

On the Essential Self-Adjointness of Singular Sub-Laplacians 109



of coordinate neighborhoods O′ and we obtain the global estimate Veff ≥ 3/(4δ2) − κ/δ on
Mε . We conclude by applying Theorem 4.1.

Remark 5.1 The compactness of Z , used to produce uniform lower bounds for the Veff, is
not a necessary condition. For instance, the singular regions of Martinet-type structures of
Example 5.1 are not compact. Nonetheless, the k-Martinet structures are Popp-regular and,
as we have seen, Theorem 4.1 still yields the essential self-adjointness of �P .

We generalize Example 7.2 in [24], showing a family of non-Popp-regular sub-Riemann-
ian structures to which Theorem 4.1 might apply or not.

Example 5.2 (non-Popp-regular sub-Riemannian structure) Consider the sub-Riemannian
structure on R

4 given by the following generating family of vector fields:

X1 = ∂1 + x3∂4, X2 = x1(x
2�
1 + x2

2)∂2, X3 = ∂3. (105)

The singular region is Z = {x1 = 0}. The following set of vector fields is an adapted frame
on R

4 \ Z .

X1, X2, X3︸ ︷︷ ︸
D1

, X4 = [X3, X1] = ∂4︸ ︷︷ ︸
D2/D1

. (106)

Using formula (29), we have the following expression for Popp’s measure

P = 1√
2x1(x

2�
1 + x2

2)
dx1 ∧ dx2 ∧ dx3 ∧ dx4, (107)

or, equivalently, P = x
a(x)
1 e2ϕ(x)dx1 ∧ dx2 ∧ dx3 ∧ dx4, where

a(x) =
{−(2� + 1) x2 = 0,

−1 x2 	= 0,
ϕ(x) =

{− 1
2 log

√
2 x2 = 0,

− 1
2 log

(√
2(x2�

1 + x2
2 )
)

x2 	= 0.
(108)

Noticing that δ(x1, x2, x3, x4) = x1, the effective potential reads

Veff = a(x)(a(x) − 2)

4x2
1

+ R(x), with R(x) = a(x)

x1
∂1ϕ(x) + (∂1ϕ(x))2 + ∂2

1 ϕ(x). (109)

We have

R(x) =
⎧⎨
⎩

0 x2 = 0,
�x2�−2

1

(x
2�+x2

2
1 )2

[
(� + 2)x2�

1 + (2 − 2�)x2
2

]
x2 	= 0. (110)

Combining (108)-(110) we deduce that Veff = 3/(4x2
1)+R(x) if x2 	= 0, and it is easy to see

that the behavior of R(x) depends on the choice of the parameter �. In particular, if � = 1,
R(x) ≥ 0 and we deduce essential self-adjointness of � = �P by Theorem 4.1. On the
other hand, if � > 1, along any sequence xi = (1/i, 1/i, 0, 0), we have xi

1R(xi) → −∞.
Hence, we cannot apply Theorem 4.1.

We show an example of a non-Popp regular sub-Riemannian structure, to which Theorem
4.1 applies only on one connected component of N \ Z . Indeed, the sub-Laplacian �P is
essentially self-adjoint on one connected component and not on the other one.
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Example 5.3 Let f : R → R be the function

f (t) =
{√

2e
− 1

t2 for t > 0,

0 for t ≤ 0,
(111)

and consider the sub-Riemannian structure on R
3 given by the global generating family:

X1 = ∂1, X2 = ∂2 + x1∂3, X3 = f (x1)∂3, (112)

where x = (x1, x2, x3) denote the coordinates in R
3 and ∂i denotes the derivative with

respect to the i-th coordinate. The singular region is the set Z = {x1 = 0}. Observe that,
on R− = {x1 < 0}, this is the Heisenberg sub-Riemannian structure on R

3, while, for
R+ = {x1 > 0}, this is a Riemannian structure. In particular, using the explicit formula
(29), we obtain that the Popp’s measure P is

P = e2θ

√
2
dx1 ∧ dx2 ∧ dx3, where θ(x1) =

{
0 if x1 < 0,

1
2x2

1
otherwise. (113)

Although the above computation shows that the function ρ defined in Eq. 101 is not
a submersion, we can nevertheless compute the effective potential on both sides of the
singular region, exploiting the fact that the distance from the singular region is δ(x) = |x1|.
(Here, the reference measure � is taken to be the Lebesgue measure.)

On R+ we have Veff = (∂1θ)2+∂2
1 θ ∼ 1/x6

1 , which is greater than 3/(4x2
1) in an uniform

neighborhood of Z ∩R+, leading to essential self-adjointness of �P defined on C∞
c (R+).

On the other hand, on R− we have Veff ≡ 0, and Theorem 4.1 does not apply. One can check
that �P is not essentially self-adjoint on C∞

c (R−) by, e.g., applying a Fourier transform on
the (x2, x3) variables and analysing the resulting one-dimensional operator.
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