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Abstract We study weighted composition operators acting between Fock spaces. The
following results are obtained:

(i) Criteria for the boundedness and compactness.
(ii) Characterizations of compact differences and essential norm.

(iii) Complete descriptions of path connected components and isolated points of the
space of composition operators and the space of nonzero weighted composition
operators.
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1 Introduction

Let X be a space of holomorphic functions on a domain G in C. For a holomorphic self-
map ϕ of G and a holomorphic function ψ on G, the weighted composition operator Wψ,ϕ

is defined by Wψ,ϕ(f ) := ψ(f ◦ ϕ) for f ∈ X. When the function ψ is identically 1, the
operator Wψ,ϕ reduces to the composition operator Cϕ . A main problem in the investigation
of such operators is to relate function theoretic properties of ψ and ϕ to operator theoretic
properties of Cϕ and Wψ,ϕ .

The study of composition operators on various Banach spaces of holomorphic functions
on the unit disk or the unit ball, such as Hardy and Bergman spaces, the space H∞ of all
bounded holomorphic functions, the disk algebra and weighted Banach spaces with sup-
norm, etc. received a special attention of many authors during the past several decades (see
[9, 24] and references therein for more information). Weighted composition operators on
these spaces appeared in some works (see, for instance, [6–8, 12]) with different appli-
cations. There is a great number of topics on operators of such a type: boundedness and
compactness [5, 10], compact differences [22], topological structure [3, 16, 18, 19], dynam-
ical and ergodic properties [1, 2, 27]. On many spaces, these topics are difficult and not yet
solved completely.

Recently, much progress was made in the study of composition operators and weighted
composition operators on Fock spaces. One of the main differences between operators Cϕ

and Wψ,ϕ on Fock spaces and those on the above-mentioned spaces of holomorphic func-
tions on the unit disk or the unit ball is the lack of bounded holomorphic functions in the
Fock space setting. In fact, entire functions ϕ that induce bounded composition operators
Cϕ and weighted composition operators Wψ,ϕ are quite restrictive, in details, they are only
affine functions. We refer the reader to [4, 11] for composition operators on the Hilbert
Fock space F2(Cn), to [15, 20, 26] for weighted composition operators on the Hilbert Fock
space F2(C). It should be noted that in these papers the techniques of adjoint operators in
Hilbert spaces played an essential role.

The question to ask is: how about weighted composition operators acting between gen-
eral Fock spaces Fp(C) and Fq(C) (0 < p, q < ∞). In this paper, we study several
important questions for the operator Wψ,ϕ : boundedness, compactness, essential norm, com-
pact differences and topological structure. Roughly speaking, our main result is to give
complete answers to all these questions by developing an essentially different approach
without adjoint operators.

The paper is organized as follows. Section 2 contains some preliminary results about
the Fock spaces and operators defined on them. Section 3 deals with topological prop-
erties of weighted composition operators. In details, criteria for the boundedness and
compactness of such operators are obtained. Note that in the case when Wψ,ϕ acts from
a larger Fock space into a smaller one, these properties are equivalent. In view of this,
we provide lower and upper estimates for essential norm of only weighted composi-
tion operators acting from Fp(C) into Fq(C) with p ≤ q. In Section 4 we study
the topological structure of the space of all composition operators and the space of all
nonzero weighted composition operators between different Fock spaces endowed with
the operator norm topology. We give complete characterizations of connected path com-
ponents and isolated points in both these spaces. Necessary and sufficient conditions
for the compactness of the difference of two weighted composition operators are also
stated.
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2 Preliminaries

For a number p ∈ (0, ∞), the Fock space Fp(C) is defined as follows

Fp(C) :=
{

f ∈ O(C) : ‖f ‖p =
(

p

2π

∫
C

|f (z)|pe− p|z|2
2 dA(z)

)1/p

< ∞
}

,

where O(C) is the space of entire functions on C with the usual compact open topology
and dA is the Lebesgue measure on C. Furthermore, the space F∞(C) consists of all entire
functions f ∈ O(C) for which

‖f ‖∞ := sup
z∈C

|f (z)|e− |z|2
2 < ∞.

It is well known that Fp(C) with p ≥ 1 and F∞(C) are Banach spaces. When 0 < p <

1, Fp(C) is a complete metric space with the distance d(f, g) := ‖f − g‖p
p.

For each w ∈ C, we define the function

kw(z) = ewz− |w|2
2 , z ∈ C.

These functions play important roles in the study of Fock spaces Fp(C). Obviously,
‖kw‖p = 1 for every w ∈ C and kw converges to 0 in O(C) as |w| → ∞.

We refer the reader to the monograph [28] for more details about Fock spaces. Hereby,
we give only some auxiliary results which will be needed in the sequel.

Lemma 2.1 Let p ∈ (0, ∞) be given. For each function f ∈ Fp(C), the following
assertions are valid:

(i)

|f (z)| ≤ e
|z|2

2 ‖f ‖p, ∀z ∈ C.

(ii)

|f ′(z)| ≤ e2(1 + |z|)e |z|2
2 ‖f ‖p, ∀z ∈ C.

Proof (i) was proved in [28, Corollary 2.8].
(ii). Let f ∈ Fp(C). For |z| ≤ 1, by the classical Cauchy formula and the part (i),

|f ′(z)| ≤ 1

2π

∫
|ζ−z|=1

|f (ζ )|
|ζ − z|2 |dζ | ≤ max

|ζ−z|=1
|f (ζ )|

≤ ‖f ‖p max
|ζ−z|=1

e
|ζ |2

2 ≤ e2‖f ‖p.

On the other hand, for |z| > 1, arguing as above, we get

|f ′(z)| ≤ 1

2π

∫
|ζ−z|=|z|−1

|f (ζ )|
|ζ − z|2 |dζ | ≤ |z| max

|ζ−z|=|z|−1
|f (ζ )|

≤ |z|e (|z|+|z|−1)2

2 ‖f ‖p ≤ e2|z|e |z|2
2 ‖f ‖p.

Combining these estimates yields the desired inequality.

The following result was proved in [28, Theorem 2.10].
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Lemma 2.2 For 0 < p < q < ∞, Fp(C) ⊂ Fq(C), and the inclusion is proper and
continuous. Moreover,

‖f ‖q ≤
(

q

p

) 1
q ‖f ‖p, ∀f ∈ Fp(C).

The following two lemmas give necessary and sufficient conditions for compactness of
an operator acting from one Fock space into another.

Lemma 2.3 Let p, q ∈ (0, ∞) and T be a linear continuous operator fromO(C) into itself
and T : Fp(C) → Fq(C) be well-defined. The following two assertions are equivalent:

(i) T : Fp(C) → Fq(C) is compact.
(ii) For every bounded sequence (fn)n in Fp(C) converging to 0 in O(C), the sequence

(Tfn)n also converges to 0 in Fq(C).

Proof (i) ⇒ (ii). Suppose that T : Fp(C) → Fq(C) is compact and there is a bounded
sequence (fn)n in Fp(C) converging to 0 in O(C) such that (Tfn)n does not converge to 0
in Fq(C).

Without loss of generality, we assume that there is a number c > 0 such that

‖Tfn‖q ≥ c, ∀n ∈ N. (2.1)

Since T : Fp(C) → Fq(C) is compact, there is a subsequence (fnk
)k of (fn)n such that

Tfnk
converges to some function g in Fq(C).

On the other hand, since T is continuous on O(C), then Tfn, and hence Tfnk
converge

to 0 in O(C).
Consequently, the function g must be identically zero which is a contradiction with

Eq. (2.1).
(ii) ⇒ (i). Let B be an arbitrary bounded subset of Fp(C) and (fn)n be a sequence in B.

By Lemma 2.1[(i)] and Montel’s theorem, B is relatively compact in O(C), and then there
exists a subsequence (fnk

)k of (fn)n converging to some function f in O(C). From this and
Fatou’s lemma, we have that f ∈ Fp(C).

Therefore, the sequence (fnk
− f )k is bounded in Fp(C) and converges to 0 in O(C).

By the hypothesis, Tfnk
also converges to Tf in Fq(C).

Consequently, T B is relatively compact in Fq(C).

Note that the assumption that T is a linear continuous operator on O(C) plays an essen-
tial role in the proof of (i) ⇒ (ii). Now, for an arbitrary operator T : Fp(C) → Fq(C) that
would be not defined on O(C), we get the following result.

Lemma 2.4 Let p, q ∈ (1,∞). If the operator T : Fp(C) → Fq(C) is compact, then for
every sequence (wn)n in C with lim

n→∞ |wn| = ∞, the sequence (T kwn)n converges to 0 in

Fq(C).

Proof Since p ∈ (1, ∞), for every sequence (wn)n in C with lim
n→∞ |wn| = ∞, the sequence

(kwn)n weakly converges to 0 in Fp(C), and hence, (T kwn)n converges to 0 in Fq(C).

For entire functions ψ and ϕ on C, the following quantities play an important role in the
present paper:

mz(ψ, ϕ) := |ψ(z)|e |ϕ(z)|2−|z|2
2 , z ∈ C,
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and
m(ψ, ϕ) := sup

z∈C
mz(ψ, ϕ).

3 Topological Properties

3.1 Boundedness and Compactness

In this subsection we study the boundedness and compactness for weighted composition
operators acting from a Fock space Fp(C) into an another one Fq(C).

We obtain the following necessary condition.

Proposition 3.1 Let p, q ∈ (0, ∞). If the weighted composition operator Wψ,ϕ :
Fp(C) → Fq(C) is bounded, then ψ ∈ Fq(C) and m(ψ, ϕ) < ∞. In this case,
ϕ(z) = az + b with |a| ≤ 1 and

mz(ψ, ϕ) ≤ ‖Wψ,ϕkϕ(z)‖q ≤ ∥∥Wψ,ϕ

∥∥ , ∀z ∈ C. (3.1)

Proof Obviously, ψ = Wψ,ϕ(1) ∈ Fq(C).
For each w ∈ C, using ‖kw‖p = 1 and Lemma 2.1[(i)], we have

‖Wψ,ϕ‖ ≥ ‖Wψ,ϕkw‖q ≥ |Wψ,ϕkw(z)|e− |z|2
2

= |ψ(z)|∣∣ewϕ(z)− |w|2
2

∣∣e− |z|2
2 , ∀z ∈ C.

In particular, with w = ϕ(z), the last inequality means that

mz(ψ, ϕ) ≤ ‖Wψ,ϕkϕ(z)‖q ≤ ‖Wψ,ϕ‖, ∀z ∈ C.

Then m(ψ, ϕ) ≤ ‖Wψ,ϕ‖. Hence, by [20, Proposition 2.1], ϕ(z) = az+b with |a| ≤ 1.

In view of Proposition 3.1, throughout this paper we always assume that ψ is a nonzero
function in Fq(C) and ϕ(z) = az + b with |a| ≤ 1.

In the case a = 0, from Proposition 3.1 we get

Corollary 3.2 Let p, q ∈ (0, ∞) and ψ be a nonzero function in Fq(C). If a = 0, i.e.,
ϕ(z) = b, then the operator Wψ,ϕ : Fp(C) → Fq(C) is compact and

‖Wψ,ϕ‖ = e
|b|2

2 ‖ψ‖q .

Proof By Lemma 2.1[(i)], for each f ∈ Fp(C),

‖Wψ,ϕf ‖q = |f (b)|‖ψ‖q ≤ e
|b|2

2 ‖ψ‖q‖f ‖p.

In particular, with f = kb we have

‖Wψ,ϕkb‖q = |kb(b)|‖ψ‖q = e
|b|2

2 ‖ψ‖q‖kb‖p.

Thus, the operator Wψ,ϕ : Fp(C) → Fq(C) is bounded and

‖Wψ,ϕ‖ = e
|b|2

2 ‖ψ‖q .

Moreover, Wψ,ϕ has rank 1, and hence, it is compact.
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The case 0 < |a| ≤ 1 is more complicated. At first, we consider weighted compo-
sition operators Wψ,ϕ acting from larger Fock spaces into smaller ones. In this case the
boundedness and compactness of Wψ,ϕ are equivalent (see, Theorem 3.3 below).

To show this we will use the Berezin type integral transform

Bψ,ϕ,q(w) := q

2π

∫
C

|ψ(z)|q ∣∣ewϕ(z)− |w|2
2

∣∣qe− q|z|2
2 dA(z) = ‖Wψ,ϕkw‖q

q, w ∈ C.

Since ϕ(z) = az + b with 0 < |a| ≤ 1, we define the following positive pull-back
measure μψ,ϕ,q on C with

μψ,ϕ,q(E) := q

2π

∫
ϕ−1(E)

|ψ(z)|qe− q|z|2
2 dA(z)

for every Borel subset E of C.
We recall, for the reader’s convenience, that for p, q ∈ (0,∞) a positive Borel mea-

sure μ on C is called a (p, q)-Fock Carleson measure, if the embedding operator i :
Fp(C) → Lq(C, dμ) is bounded, i.e. there exists a constant C > 0 such that for every
f ∈ Fp(C), (∫

C

|f (z)|qe− q|z|2
2 dμ(z)

) 1
q ≤ C‖f ‖p.

We will write ‖μ‖ for the operator norm of i from Fp(C) into Lq(C, dμ) and refer the
reader to [17, Section 3] for more information about (p, q)-Fock Carleson measure.

Theorem 3.3 Let 0 < q < p < ∞, ψ a nonzero function in Fq(C), and ϕ(z) = az + b

with 0 < |a| ≤ 1. The following assertions are equivalent:

(i) The operator Wψ,ϕ : Fp(C) → Fq(C) is bounded.
(ii) The operator Wψ,ϕ : Fp(C) → Fq(C) is compact.

(iii) mz(ψ, ϕ) ∈ L
pq

p−q (C, dA).

In this case, for some positive constant C independent of ψ and ϕ,

C−1|a| 2(p−q)
pq ‖mz(ψ, ϕ)‖

L
pq

p−q
≤ ‖Wψ,ϕ‖ ≤ C|a|− 2

p ‖mz(ψ, ϕ)‖
L

pq
p−q

.

Proof (ii) ⇒ (i) is obvious.
(i) ⇒ (iii). Assume that the operator Wψ,ϕ : Fp(C) → Fq(C) is bounded. Then for

each f ∈ Fp(C),

‖Wψ,ϕ‖‖f ‖p ≥ ‖Wψ,ϕf ‖q =
(

q

2π

∫
C

|ψ(z)|q |f (ϕ(z))|qe− q|z|2
2 dA(z)

) 1
q

=
(∫

C

|f (z)|qdμψ,ϕ,q(z)

) 1
q =

(∫
C

|f (z)|qe− q|z|2
2 dλψ,ϕ,q(z)

) 1
q

,

where dλψ,ϕ,q(z) = e
q|z|2

2 dμψ,ϕ,q(z). The last inequality means that λψ,ϕ,q is a (p, q)-Fock
Carleson measure. Then by [17, Theorem 3.3], we get

λ̃ψ,ϕ,q(w) :=
∫
C

|kw(z)|qe− q|z|2
2 dλψ,ϕ,q(z) ∈ L

p
p−q (C, dA).
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Clearly, for all w ∈ C,

λ̃ψ,ϕ,q(w) =
∫
C

|kw(z)|qe− q|z|2
2 dλψ,ϕ,q(z) =

∫
C

|kw(z)|qdμψ,ϕ,q(z)

= q

2π

∫
C

|ψ(z)|q |kw(ϕ(z))|qe− q|z|2
2 dA(z) = Bψ,ϕ,q(w).

Consequently, Bψ,ϕ,q(w) ∈ L
p

p−q (C, dA).
On the other hand, using Lemma 2.1[(i)], we have that, for all w, z ∈ C,

Bψ,ϕ,q(w) = ‖Wψ,ϕkw‖q
q ≥ |Wψ,ϕkw(z)|qe− q|z|2

2

= |ψ(z)|q ∣∣ewϕ(z)− |w|2
2

∣∣qe− q|z|2
2 .

In particular, with w = ϕ(z), we have

Bψ,ϕ,q(ϕ(z)) ≥ mz(ψ, ϕ)q, ∀z ∈ C,

and hence ∫
C

mz(ψ, ϕ)
pq

p−q dA(z) ≤
∫
C

Bψ,ϕ,q(ϕ(z))
p

p−q dA(z)

= |a|−2
∫
C

Bψ,ϕ,q(w)
p

p−q dA(w) < ∞. (3.2)

Thus, mz(ψ, ϕ) ∈ L
pq

p−q (C, dA).
Moreover, by [17, Theorem 3.3], for some constant C1 > 0,

‖Wψ,ϕ‖q = ‖λψ,ϕ,q‖q ≥ C1‖λ̃ψ,ϕ,q‖
L

p
p−q

= C1‖Bψ,ϕ,q‖
L

p
p−q

.

From this and Eq. (3.2) it follows that

‖mz(ψ, ϕ)‖
L

pq
p−q

≤
(

|a|−2
∫
C

Bψ,ϕ,q(z)
p

p−q dA(z)

) p−q
pq

≤ C
− 1

q

1 |a|− 2(p−q)
pq ‖Wψ,ϕ‖. (3.3)

(iii) ⇒ (ii). For each function f ∈ Fp(C), using Hölder’s inequality, we obtain

‖Wψ,ϕf ‖q
q = q

2π

∫
C

mz(ψ, ϕ)q |f (ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

≤ q

2π

(∫
C

|f (ϕ(z))|pe− p|ϕ(z)|2
2 dA(z)

) q
p

(∫
C

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

≤ q

2π

(
2π

p|a|2
) q

p ‖f ‖q
p

(∫
C

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

≤ q

2π

(
2π

p|a|2
) q

p ‖f ‖q
p

(
‖mz(ψ, ϕ)‖

L
pq

p−q

)q

.

The last inequality means that Wψ,ϕ : Fp(C) → Fq(C) is bounded and

‖Wψ,ϕ‖ ≤
( q

2π

) 1
q

(
2π

p|a|2
) 1

p ‖mz(ψ, ϕ)‖
L

pq
p−q

. (3.4)
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Next, let (fn)n be an arbitrary bounded sequence in Fp(C) converging to 0 in O(C). For
each n ∈ N and R > 0,

‖Wψ,ϕfn‖q
q = q

2π

∫
C

|ψ(z)|q |fn(ϕ(z))|qe− q|z|2
2 dA(z)

= q

2π

(∫
|z|≤R

+
∫

|z|>R

)
|ψ(z)|q |fn(ϕ(z))|qe− q|z|2

2 dA(z)

= I(n, R) + J (n, R).

Obviously,

I(n, R) ≤ q

2π
max|z|≤R

|fn(ϕ(z))|q
∫

|z|≤R

|ψ(z)|qe− q|z|2
2 dA(z) ≤ ‖ψ‖q

q max|z|≤R
|fn(ϕ(z))|q .

For J (n, R), again using Hölder’s inequality, we get

J (n, R) = q

2π

∫
|z|>R

mz(ψ, ϕ)q |fn(ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

≤ q

2π

(∫
|z|>R

|fn(ϕ(z))|pe− p|ϕ(z)|2
2 dA(z)

) q
p

(∫
|z|>R

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

≤ q

2π

(
2π

p|a|2
) q

p ‖fn‖q
p

(∫
|z|>R

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

≤ Mq

(∫
|z|>R

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

,

where

Mq := q

2π

(
2π

p|a|2
) q

p

sup
n

‖fn‖q
p < ∞.

Consequently, for every R > 0, letting n → ∞, we obtain

lim sup
n→∞

‖Wψ,ϕfn‖q
q ≤ lim sup

n→∞
(
I(n, R) + J (n, R)

)

≤ Mq

(∫
|z|>R

mz(ψ, ϕ)
pq

p−q dA(z)

) p−q
p

.

Since mz(ψ, ϕ) ∈ L
pq

p−q (C, dA), letting R → ∞, we conclude that Wψ,ϕfn converges to 0
in Fq(C) as n → ∞.

Consequently, by Lemma 2.3, the operator Wψ,ϕ : Fp(C) → Fq(C) is compact.
Moreover, the desired estimates for ‖Wψ,ϕ‖ follow from Eqs. (3.3) and (3.4).

For weighted composition operators Wψ,ϕ acting from smaller Fock spaces into larger
ones, we get the following result.

Theorem 3.4 Let 0 < p ≤ q < ∞ and ψ be a nonzero function in Fq(C) and ϕ(z) =
az + b with 0 < |a| ≤ 1.

(a) The operator Wψ,ϕ : Fp(C) → Fq(C) is bounded if and only if m(ψ, ϕ) < ∞.
Moreover,

m(ψ, ϕ) ≤ ∥∥Wψ,ϕ

∥∥ ≤
(

q

p |a|2
) 1

q

m(ψ, ϕ).
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(b) The operator Wψ,ϕ : Fp(C) → Fq(C) is compact if and only if lim|z|→∞ mz(ψ, ϕ) = 0.

Proof For p = q, the results were proved in [14]. Hereby we sketch the proof in the case
p ≤ q for the sake of the completeness.

(a) The necessity follows from Proposition 3.1. Now assume that m(ψ, ϕ) < ∞. Then
using Lemma 2.2, we have that for every f ∈ Fp(C),

‖Wψ,ϕf ‖q ≤ m(ψ, ϕ)

(
q

2π

∫
C

|f (ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

) 1
q

= m(ψ, ϕ)
1

|a| 2
q

‖f ‖q ≤ m(ψ, ϕ)

(
q

p|a|2
) 1

q ‖f ‖p.

Consequently, Wψ,ϕ : Fp(C) → Fq(C) is bounded and

∥∥Wψ,ϕ

∥∥ ≤
(

q

p |a|2
) 1

q

m(ψ, ϕ),

which and Eq. (3.1) imply the desired estimates for ‖Wψ,ϕ‖.
(b) Necessary. Suppose that Wψ,ϕ : Fp(C) → Fq(C) is compact. For every sequence

(zn)n in C converging to ∞, we have that kϕ(zn) converges to 0 in O(C). Therefore, by
Eq. (3.1) and Lemma 2.3,

mzn(ψ, ϕ) ≤ ‖Wψ,ϕkϕ(zn)‖q → 0 as n → ∞.

From this, lim|z|→∞ mz(ψ, ϕ) = 0.
Sufficiency. By part (a), the operator Wψ,ϕ : Fp(C) → Fq(C) is bounded.
Let (fn)n be an arbitrary bounded sequence in Fp(C) converging to 0 in O(C). Then

for each n ∈ N and R > 0, using Lemma 2.2, we have

‖Wψ,ϕfn‖q
q = q

2π

∫
C

|ψ(z)|q |fn(ϕ(z))|qe− q|z|2
2 dA(z)

= q

2π

(∫
|z|≤R

+
∫

|z|>R

)
|ψ(z)|q |fn(ϕ(z))|qe− q|z|2

2 dA(z)

≤ q

2π
max|z|≤R

|fn(ϕ(z))|q
∫

|z|≤R

|ψ(z)|qe− q|z|2
2 dA(z)

+ q

2π
sup

|z|>R

mz(ψ, ϕ)q
∫

|z|>R

|fn(ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

≤ ‖ψ‖q
q max|z|≤R

|fn(ϕ(z))|q + ‖fn‖q
q

|a|2 sup
|z|>R

mz(ψ, ϕ)q

≤ ‖ψ‖q
q max|z|≤R

|fn(ϕ(z))|q + qMq

p|a|2 sup
|z|>R

mz(ψ, ϕ)q,

where M := supn ‖fn‖p < ∞.
From this, letting n → ∞, and then R → ∞, we get that the sequence Wψ,ϕfn converges

to 0 in Fq(C).
Therefore, by Lemma 2.3, Wψ,ϕ is a compact operator from Fp(C) into Fq(C).

From Theorems 3.3 and 3.4 we can get a complete characterization for the boundedness
and compactness of composition operators Cϕ .
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Corollary 3.5 Let 0 < p ≤ q < ∞.

(a) The operator Cϕ : Fp(C) → Fq(C) is bounded if and only if

ϕ(z) =
{

az + b, if |a| < 1,

az, if |a| = 1.
(3.5)

(b) The operator Cϕ : Fp(C) → Fq(C) is compact if and only if ϕ(z) = az + b with
|a| < 1.

Proof Clearly, m(1, ϕ) < ∞ if and only if ϕ as in Eq. 3.5. Then the assertion immediately
follows from Theorem 3.4 and Corollary 3.2.

Corollary 3.6 Let 0 < q < p < ∞. The following assertions are equivalent:

(i) The operator Cϕ : Fp(C) → Fq(C) is bounded.
(ii) The operator Cϕ : Fp(C) → Fq(C) is compact.

(iii) ϕ(z) = az + b with |a| < 1.

Proof We can easily show that for each affine function ϕ(z) = az + b as in Eq. 3.5,

m(1, ϕ) ∈ L
pq

p−q (C, dA) if and only if |a| < 1. Then the assertion follows from Theorem 3.3
and Corollary 3.2.

Before going to study essential norm we summarize all situations of the function ϕ(z) =
az+b with |a| ≤ 1 for both composition operators Cϕ and weighted composition operators
Wψ,ϕ .

Remark 3.7 (1) If a = 0, then by Corollary 3.2, both Cϕ and Wψ,ϕ are compact from Fp(C)

to Fq(C) for every p, q ∈ (0, ∞) and ψ ∈ Fq(C).
(2) If 0 < |a| < 1, then by Corollaries 3.5 and 3.6, Cϕ : Fp(C) → Fq(C) is compact

for every p, q ∈ (0, ∞), while there are nonzero functions ψ ∈ Fq(C), say ψ(z) = e
αz2

2

in Fq(C) with 1 − |a|2 < α < 1, which induce unbounded operators Wψ,ϕ : Fp(C) →
Fq(C), because in this case,

m(ψ, ϕ) = sup
z∈C

mz(ψ, ϕ) = sup
z∈C

e
(|a|2−1)|z|2+αRe(z2)+2Re(azb)+|b|2

2 = ∞.

Also, there are nonzero functions ψ ∈ Fq(C) such that Wψ,ϕ : Fp(C) → Fq(C) is

bounded but not compact when 0 < p ≤ q < ∞. Indeed, for b = 0 and ψ(z) = e
(1−|a|2)z2

2 ∈
Fq(C), we have

lim sup
|z|→∞

mz(ψ, ϕ) = lim sup
|z|→∞

e(|a|2−1)(Imz)2 = 1.

Then by Theorem 3.4, Wψ,ϕ : Fp(C) → Fq(C) is bounded but not compact.
(3) If |a| = 1 and b = 0, then by Corollaries 3.5 and 3.6, Cϕ : Fp(C) → Fq(C) is not

bounded for every p, q ∈ (0, ∞).
In this case, by [20, Proposition 2.1], m(ψ, ϕ) < ∞ if and only if ψ(z) = ψ(0)e−baz;

and hence, mz(ψ, ϕ) = |ψ(0)|e |b|2
2 for all z ∈ C. Then, when 0 < p ≤ q < ∞, by

Theorem 3.4, Wψ,ϕ : Fp(C) → Fq(C) is bounded if and only if ψ(z) = ψ(0)e−baz.
Moreover, by Theorem 3.3, when 0 < q < p < ∞ there is no bounded operator

Wψ,ϕ : Fp(C) → Fq(C).
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(4) If |a| = 1 and b = 0, then by Corollaries 3.5 and 3.6, Cϕ : Fp(C) → Fq(C) is
bounded and not compact when 0 < p ≤ q < ∞, and unbounded when 0 < q < p < ∞.

Also, again by [20, Proposition 2.1], m(ψ, ϕ) < ∞ if and only if ψ is a constant function.
So, by Theorems 3.3 and 3.4, there is no non-constant function ψ ∈ Fq(C) such that
Wψ,ϕ : Fp(C) → Fq(C) is bounded, and there is no nonzero function ψ ∈ Fq(C) such
that Wψ,ϕ : Fp(C) → Fq(C) is compact for every p, q ∈ (0, ∞).

3.2 Essential Norm

In a general setting, let X, Y be Banach spaces, and K(X, Y ) be the set of all compact
operators from X into Y . The essential norm of a bounded linear operator L : X → Y ,
denoted as ‖L‖e, is defined as

‖L‖e = inf{‖L − K‖ : K ∈ K(X, Y )}.
Clearly, L is compact if and only if ‖L‖e = 0.

In view of Corollary 3.2, Theorem 3.3 and Lemma 2.4, we study essential norm of Wψ,ϕ :
Fp(C) → Fq(C) when 1 < p ≤ q < ∞ and ϕ(z) = az + b with 0 < |a| ≤ 1.

The main result is stated as follows.

Theorem 3.8 Let 1 < p ≤ q < ∞ and Wψ,ϕ : Fp(C) → Fq(C) be a bounded weighted
composition operator induced by a nonzero entire function ψ ∈ Fq(C) and an affine
function ϕ(z) = az + b with 0 < |a| ≤ 1. Then

lim sup
|z|→∞

mz(ψ, ϕ) ≤ ‖Wψ,ϕ‖e ≤ 2

(
q

p|a|2
) 1

q

lim sup
|z|→∞

mz(ψ, ϕ).

Proof It is clear, by Eq. (3.1), that lim sup
|z|→∞

mz(ψ, ϕ) is finite.

Lower estimate. We prove the lower estimate for ‖Wψ,ϕ‖e by contradiction. Assume in
contrary that

‖Wψ,ϕ‖e < lim sup
|z|→∞

mz(ψ, ϕ).

Then there are positive constants A < B and a compact operator T acting from Fp(C) into
Fq(C) such that

‖Wψ,ϕ − T ‖ < A < B < lim sup
|z|→∞

mz(ψ, ϕ).

We can find a sequence (zn) with |zn| ↑ ∞ so that

lim
n→∞ mzn(ψ, ϕ) = lim sup

|z|→∞
mz(ψ, ϕ) > B. (3.6)

On the other hand, using Eq. (3.1), for each n ∈ N , we have

‖Wψ,ϕ − T ‖ ≥ ‖Wψ,ϕkϕ(zn) − T kϕ(zn)‖q ≥ ‖Wψ,ϕkϕ(zn)‖q − ‖T kϕ(zn)‖q

≥ mzn(ψ, ϕ) − ‖T kϕ(zn)‖q .

Since a = 0, ϕ(zn) → ∞ as n → ∞, by Lemma 2.4, ‖T kϕ(zn)‖q → 0 as n → ∞.
From this and Eq. (3.6), we obtain

A > ‖Wψ,ϕ − T ‖ ≥ lim
n→∞ mzn(ψ, ϕ) > B,

which is a contradiction.
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Upper estimate. For each k ∈ N, we consider the dilation operator Urkf (z) := f (rkz)

with rk := k/(k + 1). Then by Corollary 3.5 and Theorem 3.4, Urk is a compact operator
on Fp(C) and

‖Urk‖ ≤ r
− 2

p

k , ∀k ∈ N.

Take and fix a number R > 0. For every k ∈ N, we have

‖Wψ,ϕ‖e ≤ ‖Wψ,ϕ − Wψ,ϕ ◦ Urk‖ = sup
‖f ‖p≤1

‖Wψ,ϕ ◦ (I − Urk )f ‖q

= sup
‖f ‖p≤1

(
q

2π

∫
C

|Wψ,ϕ ◦ (I − Urk )f (z)|qe− q|z|2
2 dA(z)

) 1
q

≤ sup
‖f ‖p≤1

(
q

2π

∫
|z|≤R

|Wψ,ϕ ◦ (I − Urk )f (z)|qe− q|z|2
2 dA(z)

) 1
q

+ sup
‖f ‖p≤1

(
q

2π

∫
|z|>R

|Wψ,ϕ ◦ (I − Urk )f (z)|qe− q|z|2
2 dA(z)

) 1
q

= I(R, k) + J (R, k),

where I is the identity operator on Fp(C).
On one hand, using Lemma 2.2 we observe that

J (R, k) ≤ sup
|z|>R

mz(ψ, ϕ) sup
‖f ‖p≤1

(
q

2π

∫
|z|>R

|(I − Urk )f (ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

) 1
q

≤ |a|− 2
q sup

|z|>R

mz(ψ, ϕ) sup
‖f ‖p≤1

‖(I − Urk )f ‖q

≤
(

q

p

) 1
q |a|− 2

q sup
|z|>R

mz(ψ, ϕ) sup
‖f ‖p≤1

‖(I − Urk )f ‖p

=
(

q

p

) 1
q |a|− 2

q ‖I − Urk‖ sup
|z|>R

mz(ψ, ϕ)

≤
(

q

p

) 1
q |a|− 2

q

(
1 + r

− 2
p

k

)
sup

|z|>R

mz(ψ, ϕ).

On the other hand, we have

I(R, k)≤ sup
|z|≤R

mz(ψ, ϕ) sup
‖f ‖p≤1

(
q

2π

∫
|z|≤R

|(I −Urk )f (ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

) 1
q

≤
(

q

2π

∫
|z|≤R

e− q|ϕ(z)|2
2 dA(z)

) 1
q

sup
|z|≤R

mz(ψ, ϕ) sup
‖f ‖p≤1

sup
|z|≤R

∣∣(I −Urk )f (ϕ(z))
∣∣

≤|a|− 2
q m(ψ, ϕ) sup

‖f ‖∞≤1
sup

|z|≤R

∣∣(I −Urk )f (ϕ(z))
∣∣,

where the last inequality is based on the fact that ‖f ‖∞ ≤ ‖f ‖p for every f ∈ Fp(C).
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For each f (z) =
∞∑

j=0

aj z
j with ‖f ‖∞ ≤ 1, we have

|aj | = |f (j)(0)|
j ! ≤ 1

ρj
max|ζ |=ρ

|f (ζ )| ≤ e
ρ2

2

ρj
, ∀j ≥ 1, ρ > 0,

which gives

|aj | ≤ inf
ρ>0

e
ρ2

2

ρj
=

(
e

j

) j
2

, for all j ≥ 1.

Putting Rϕ := max|z|≤R
|ϕ(z)|, we obtain

I(R, k) ≤ |a|− 2
q m(ψ, ϕ) sup

‖f ‖∞≤1
sup

|z|≤R

∣∣(I − Urk )f (ϕ(z))
∣∣

≤ |a|− 2
q m(ψ, ϕ) sup

‖f ‖∞≤1
sup

|z|≤Rϕ

∣∣(I − Urk )f (z)
∣∣

≤ |a|− 2
q m(ψ, ϕ) sup

‖f ‖∞≤1
sup

|z|≤Rϕ

∞∑
j=1

|aj |
(

1 − kj

(k + 1)j

)
|z|j

≤ |a|− 2
q

k + 1
m(ψ, ϕ)

∞∑
j=1

jRj
ϕ

(
e

j

) j
2

.

Consequently,

‖Wψ,ϕ‖e ≤ lim sup
k→∞

‖Wψ,ϕ − Wψ,ϕ ◦ Urk‖ ≤ lim sup
k→∞

I(R, k) + lim sup
k→∞

J (R, k)

≤ 2

(
q

p|a|2
) 1

q

sup
|z|>R

mz(ψ, ϕ),

from which the upper estimate of ‖Wψ,ϕ‖e follows by letting R → ∞.

In the case |a| = 1 we have the following simplified estimates for the essential norm of
a bounded weighted composition operator Wψ,ϕ .

Corollary 3.9 Let p, q and Wψ,ϕ be as in Theorem 3.8. If |a| = 1, then

|ψ(0)|e |b|2
2 ≤ ‖Wψ,ϕ‖e ≤

(
q

p

) 1
q |ψ(0)|e |b|2

2 .

In particular, ‖Wψ,ϕ‖e = |ψ(0)|e |b|2
2 whenever p = q.

Proof The hypothesis and [20, Proposition 2.1] imply that ψ(z) = ψ(0)e−baz; in this case

mz(ψ, ϕ) = |ψ(0)|e |b|2
2 for all z ∈ C. Thus, the lower estimate follows directly from

Theorem 3.8.
For the upper estimate, using Theorem 3.4 we have

‖Wψ,ϕ‖e ≤ ‖Wψ,ϕ‖ ≤
(

q

p

) 1
q |ψ(0)|e |b|2

2 .
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Remark 3.10 Ueki [26] showed that the essential norm of Wψ,ϕ on Hilbert space F2(C) is
equivalent to lim sup

|z|→∞
Bϕ(|ψ |2)(z), where Bϕ(|ψ |2)(z) is the integral transform

Bϕ(|ψ |2)(z) = 1

π

∫
C

|ψ(ζ )|2
∣∣∣e〈ϕ(ζ ),z〉

∣∣∣2
e−|ζ |2e−|z|2dA(ζ ).

However, this result is difficult to use, even for composition operators, that is, when ψ is a
constant function.

Our Theorem 3.8 is simpler and more effective for essential norm of Wψ,ϕ acting from
smaller general Fock spaces Fp(C) into larger ones Fq(C). Moreover, Theorem 3.8 also
give an answer to T. Le’s question in [20, Remark 2.5].

4 Topological Structure

One of the recent main subjects in the study of (weighted) composition operators is related
to the topological structure of the space of such operators endowed with the operator norm
topology.

In a general setting, let X and Y be two spaces of holomorphic functions on a domain
G. For every bounded weighted composition operator Wψ,ϕ : X → Y , we can easily
show that Wψ,ϕ and the zero operator 0 belong to the same path connected component in
the space of all weighted composition operators acting from X into Y via the path Tt :=
Wtψ,ϕ for t ∈ [0, 1]. Then researchers study the topological structure for the space of only
nonzero weighted composition operators from X into Y . We write C(X, Y ) for the space
of composition operators and Cw(X, Y ) for the space of nonzero weighted composition
operators acting from X into Y under the operator norm topology. According to [25], the
important problems in this topic were raised as follows:

(i) Characterize the components of C(X, Y ) and Cw(X, Y ).
(ii) Characterize isolated points C(X, Y ) and Cw(X, Y ).

(iii) Characterize compact differences of (weighted) composition operators.

These questions have been intensively investigated on Bergman spaces [23], on Hardy
spaces [13, 19], on the space H∞ of bounded holomorphic functions [18, 21], on weighted
Banach spaces of holomorphic functions with sup-norm [3, 22], on Hilbert Fock space
F2(Cn) [11].

In this section we investigate the topological structure for both spaces C
(
Fp(C),Fq(C)

)
and Cw

(
Fp(C),Fq(C)

)
with p, q ∈ (0, ∞) and give complete answers to all the

mentioned-above questions.

4.1 Compact Differences

In view of Theorem 3.3 we will study the compactness of the difference of two bounded
weighted composition operators acting from a smaller Fock space Fp(C) into another larger
one Fq(C).

Theorem 4.1 Let 0 < p ≤ q < ∞ and Wψ1,ϕ1 and Wψ2,ϕ2 be two weighted composition
operators in Cw

(
Fp(C),Fq(C)

)
induced respectively by nonzero entire functions ψ1, ψ2 ∈

Fq(C) and affine functions ϕ1(z) = a1z + b1, ϕ2(z) = a2z + b2 with |a1| ≤ 1, |a2| ≤ 1.
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Then the difference Wψ1,ϕ1 − Wψ2,ϕ2 : Fp(C) → Fq(C) is compact if and only if either of
the following conditions is satisfied:

(i) Both Wψ1,ϕ1 and Wψ2,ϕ2 are compact operators from Fp(C) into Fq(C).
(ii) ϕ1 = ϕ2 := ϕ and lim|z|→∞ mz(ψ1 − ψ2, ϕ) = 0.

Proof Since Wψ1,ϕ − Wψ2,ϕ = Wψ1−ψ2,ϕ , the sufficiency follows from Theorem 3.4.
For the necessity, suppose that the difference Wψ1,ϕ1 − Wψ2,ϕ2 : Fp(C) → Fq(C) is

compact. Then both Wψ1,ϕ1 and Wψ2,ϕ2 must be either compact or non-compact from
Fp(C) into Fq(C) simultaneously.

Consider the case when both Wψ1,ϕ1 and Wψ2,ϕ2 are non-compact. From Theorem 3.4 it
follows that

ck = lim sup
|z|→∞

mz(ψk, ϕk) > 0 (k = 1, 2).

Then for say c1, there exists a sequence (zn) with |zn| ↑ ∞ as n → ∞, such that

lim
n→∞ mzn(ψ1, ϕ1) = lim sup

|z|→∞
mz(ψ1, ϕ1) = c1.

By Lemma 2.1[(i)], for all w, z ∈ C,

‖Wψ1,ϕ1kw − Wψ2,ϕ2kw‖q ≥ ∣∣Wψ1,ϕ1kw(z) − Wψ2,ϕ2kw(z)
∣∣ e− |z|2

2

=
∣∣∣∣ψ1(z)e

wϕ1(z)− |w|2+|z|2
2 − ψ2(z)e

wϕ2(z)− |w|2+|z|2
2

∣∣∣∣ .
In particular, with w = ϕ1(z), the last inequality gives

‖Wψ1,ϕ1kϕ1(z) − Wψ2,ϕ2kϕ1(z)‖q ≥
∣∣∣∣∣∣ψ1(z)e

|ϕ1(z)|2−|z|2
2

∣∣ − ∣∣ψ2(z)e
ϕ1(z)ϕ2(z)− |ϕ1(z)|2+|z|2

2
∣∣∣∣∣∣

=
∣∣∣∣mz(ψ1, ϕ1) − mz(ψ2, ϕ2)e

− |ϕ1(z)|2+|ϕ2(z)|2−2Re(ϕ1(z)ϕ2(z))
2

∣∣∣∣
=

∣∣∣∣mz(ψ1, ϕ1) − mz(ψ2, ϕ2)e
− |ϕ1(z)−ϕ2(z)|2

2

∣∣∣∣ ,∀z ∈ C.

(4.1)

There are two cases for complex numbers a1 and a2.
Case 1: a1 = a2. In this case,

lim
n→∞ e− |ϕ1(zn)−ϕ2(zn)|2

2 = 0.

From this, taking into account the inequality mzn(ψ2, ϕ2) < m(ψ2, ϕ2), for every n ∈ N, it
follows that

lim
n→∞ mzn(ψ2, ϕ2)e

− |ϕ1(zn)−ϕ2(zn)|2
2 = 0.

Obviously, Wψ1,ϕ1 −Wψ2,ϕ2 is a linear continuous operator on O(C). Then, by Lemma 2.3,

lim
n→∞ ‖Wψ1,ϕ1kϕ1(zn) − Wψ2,ϕ2kϕ1(zn)‖q = 0.
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Consequently, by Eq. (4.1), we get

c1 = lim
n→∞

(
mzn(ψ1, ϕ1) − mzn(ψ2, ϕ2)e

− |ϕ1(zn)−ϕ2(zn)|2
2

)

≤ lim
n→∞

∣∣∣∣mzn(ψ1, ϕ1) − mzn(ψ2, ϕ2)e
− |ϕ1(zn)−ϕ2(zn)|2

2

∣∣∣∣
≤ lim

n→∞ ‖Wψ1,ϕ1kϕ1(zn) − Wψ2,ϕ2kϕ1(zn)‖q = 0,

which is impossible.
Case 2: a1 = a2 = a. In this case, Eq. (4.1) gives

‖Wψ1,ϕ1kϕ1(z) − Wψ2,ϕ2kϕ1(z)‖q ≥
∣∣∣∣mz(ψ1, ϕ1) − mz(ψ2, ϕ2)e

− |b1−b2 |2
2

∣∣∣∣ , ∀z ∈ C.

Moreover,

lim inf
n→∞ mzn(ψ2, ϕ2) ≤ lim sup

n→∞
mzn(ψ2, ϕ2) ≤ lim sup

|z|→∞
mz(ψ2, ϕ2) = c2.

Therefore,

c1 − c2e
− |b1−b2 |2

2 ≤ lim sup
n→∞

(
mzn(ψ1, ϕ1) − mzn(ψ2, ϕ2)e

− |b1−b2 |2
2

)
≤ lim

n→∞ ‖Wψ1,ϕ1kϕ1(zn) − Wψ2,ϕ2kϕ1(zn)‖q = 0.

Hence,

c1 ≤ c2e
− |b1−b2 |2

2 .

Interchanging the role of ϕ1 and ϕ2 in the proofs above, we also obtain

c2 ≤ c1e
− |b1−b2 |2

2 .

Combining the last two inequalities yields

c2 ≤ c2e
−|b1−b2|2 ≤ c2,

which gives b1 = b2.
Thus ϕ1(z) = ϕ2(z) = ϕ(z) = az + b, which gives Wψ1,ϕ1 − Wψ2,ϕ2 = Wψ1−ψ2,ϕ . By

Theorem 3.4, lim|z|→∞ mz(ψ1 − ψ2, ϕ) = 0.

From this theorem we immediately get the following result for compact differences of
two composition operators.

Corollary 4.2 Let 0 < p ≤ q < ∞. Then the difference of two distinct composition oper-
ators acting from Fp(C) into Fq(C) is compact if and only if both composition operators
are compact.

4.2 The Space C
(
Fp(C),Fq(C)

)

In this subsection we give a complete description of path connected and connected
components and isolated points of the space C

(
Fp(C),Fq(C)

)
.

Proposition 4.3 Let p, q ∈ (0,∞) andCϕ be a compact composition operator fromFp(C)

into Fq(C) induced by entire function ϕ(z) = az + b with |a| < 1. Then Cϕ and Cϕ(0)

belong to the same path connected component of C
(
Fp(C),Fq(C)

)
.
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Proof If a = 0 then the assertion is trivial. So we assume that 0 < |a| < 1.
For each s ∈ [0, 1], put ϕs(z) := ϕ(sz), z ∈ C. Then, by Corollaries 3.5 and 3.6,

composition operators Cϕs are all compact from Fp(C) into Fq(C), and Cϕ = Cϕ1 and
Cϕ(0) = Cϕ0 . We will show that the map

[0, 1] → C(Fp(C),Fq(C)), s �→ Cϕs ,

is continuous, that is,

lim
s→s0

‖Cϕs − Cϕs0
‖ = 0, ∀s0 ∈ [0, 1].

Case 1: s0 < 1. In this case fix some s1 ∈ (s0, 1). For each s < s1 and each f ∈ Fp(C)

with ‖f ‖p ≤ 1, we have

‖Cϕs f − Cϕs0
f ‖q

q = q

2π

∫
C

|f (ϕ(sz)) − f (ϕ(s0z))|qe− q|z|2
2 dA(z)

= q

2π

∫
C

∣∣∣∣
∫ s

s0

z(Cϕf )′(tz)dt

∣∣∣∣
q

e− q|z|2
2 dA(z)

≤ q

2π

∫
C

|s − s0|q |z|q max
t∈<s0,s>

|(Cϕf )′(tz)|qe− q|z|2
2 dA(z)

≤ e2q q

2π

∫
C

|s − s0|q |z|q max
t∈<s0,s>

(
(1 + |tz|)e |tz|2

2 ‖Cϕf ‖q

)q

×e− q|z|2
2 dA(z)

(due to Lemma 2.1[(ii)])

≤ e2q |s − s0|q‖Cϕf ‖q
q

q

2π

∫
C

|z|q(1 + |z|)qe− q(1−s2
1 )|z|2
2 dA(z)

≤ Mq‖Cϕ‖q‖f ‖q
p|s − s0|q

≤ Mq‖Cϕ‖q |s − s0|q,

where < s0, s > is the closed interval connecting s0 and s and

Mq := e2q q

2π

∫
C

|z|q(1 + |z|)qe− q(1−s2
1 )|z|2
2 dA(z) < ∞.

From this it follows that, for every s < s1,

‖Cϕs − Cϕs0
‖ = sup

‖f ‖p≤1
‖Cϕs f − Cϕs0

f ‖q ≤ M‖Cϕ‖|s − s0|,

and the desired limit follows.
Case 2: s0 = 1. Fix an arbitrary number R > 0. We have that, for every f ∈ Fp(C) with
‖f ‖p ≤ 1 and every s ∈ [1/2, 1],

‖Cϕs f − Cϕ1f ‖q
q = q

2π

(∫
|z|≤R

+
∫

|z|>R

)
|f (ϕ(sz)) − f (ϕ(z))|qe− q|z|2

2 dA(z)

= I(R, s) + J (R, s).
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Estimate I(R, s): Arguing as above in Case 1, we get

I(R, s) = q

2π

∫
|z|≤R

∣∣∣∣∣
∫ 1

s

z(Cϕf )′(tz)dt

∣∣∣∣∣
q

e− q|z|2
2 dA(z)

≤ q

2π

∫
|z|≤R

|1 − s|q |z|q max
t∈[s,1]

|(Cϕf )′(tz)|qe− q|z|2
2 dA(z)

≤ e2q |1 − s|q q

2π

∫
|z|≤R

|z|q max
t∈[s,1]

(
(1 + |tz|)e |tz|2

2 ‖Cϕf ‖q

)q

×e− q|z|2
2 dA(z)

≤ e2q |1 − s|q‖Cϕf ‖q
q

q

2π

∫
|z|≤R

|z|q(1 + |z|)qdA(z)

≤ M
q
R‖Cϕ‖q |1 − s|q,

where

M
q
R := e2q q

2π

∫
|z|≤R

|z|q(1 + |z|)qdA(z) < ∞.

Estimate J (R, s): For every f ∈ Fp(C) with ‖f ‖p ≤ 1 and every s ∈ [1/2, 1], using the
standard inequality (x + y)q ≤ 2q(xq + yq) for arbitrary positive numbers x, y, q, we have

J (R, s) = q

2π

∫
|z|>R

|f (ϕ(sz)) − f (ϕ(z))|qe− q|z|2
2 dA(z)

≤ 2q q

2π

∫
|z|>R

(|f (ϕ(sz))|q + |f (ϕ(z))|q)
e− q|z|2

2 dA(z)

≤ 2q q

2π

∫
|z|>R

|f (ϕ(sz))|qe− q|sz|2
2 dA(z)

+2q q

2π

∫
|z|>R

|f (ϕ(z))|qe− q|z|2
2 dA(z)

≤ 2q q

2πs2

∫
|z|>sR

|f (ϕ(z))|qe− q|z|2
2 dA(z)

+2q q

2π

∫
|z|>R

|f (ϕ(z))|qe− q|z|2
2 dA(z)

≤ Dq

q

2π

∫
|z|>R/2

|f (ϕ(z))|qe− q|z|2
2 dA(z),

where Dq := 5.2q .
We consider the following possibilities.
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If 0 < p ≤ q < ∞ then for every function f ∈ Fp(C) with ‖f ‖p ≤ 1, by Lemma 2.2,

J (R, s)≤Dq

q

2π
sup

|z|>R/2
mz(1,ϕ)q

∫
|z|>R/2

|f (ϕ(z))|qe−
q|ϕ(z)|2

2 dA(z)

≤Dq

‖f ‖q
q

|a|2 sup
|z|>R/2

mz(1, ϕ)q

≤Dq

q

p|a|2 ‖f ‖q
p sup

|z|>R/2
mz(1, ϕ)q

≤Dq

q

p|a|2 sup
|z|>R/2

mz(1, ϕ)q .

Consequently, for every s ∈ [1/2, 1],
‖Cϕs − Cϕ1‖q ≤ sup

‖f ‖p≤1
(I(R, s) + J (R, s))

≤ M
q
R‖Cϕ‖q |1 − s|q + Dq

q

p|a|2 sup
|z|>R/2

mz(1, ϕ)q .

Letting s → 1−, we obtain

lim sup
s→1−

‖Cϕs − Cϕ1‖q ≤ Dq

q

p|a|2 sup
|z|>R/2

mz(1, ϕ)q .

Since |a| < 1, lim|z|→∞ mz(1, ϕ) = 0. Then, letting R → ∞, we get

lim sup
s→1−

‖Cϕs − Cϕ1‖q ≤ Dq

q

p|a|2 lim
R→∞ sup

|z|>R/2
mz(1, ϕ)q = 0.

If 0 < q < p < ∞ then arguing as in Theorem 3.3 and using Hölder inequality, we have
that, for every f ∈ Fp(C) with ‖f ‖p ≤ 1,

J (R, s)≤Dq

q

2π

∫
|z|>R/2

|f (ϕ(z))|qe− q|z|2
2 dA(z)

=Dq

q

2π

∫
|z|>R/2

mz(1, ϕ)q |f (ϕ(z))|qe− q|ϕ(z)|2
2 dA(z)

≤Dq

q

2π

(∫
|z|>R/2

|f (ϕ(z))|pe− p|ϕ(z)|2
2 dA(z)

) q
p

×
(∫

|z|>R/2
m

pq
p−q
z (1, ϕ)dA(z)

) p−q
p

≤Dq

q

2π

(
2π

p|a|2
) q

p ‖f ‖q
p

(∫
|z|>R/2

m

pq
p−q
z (1, ϕ)dA(z)

) p−q
p

≤Dq

q

2π

(
2π

p|a|2
) q

p
(∫

|z|>R/2
m

pq
p−q
z (1, ϕ)dA(z)

) p−q
p

.
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Consequently, for every s ∈ [1/2, 1],
‖Cϕs − Cϕ1‖q ≤ sup

‖f ‖p≤1
(I(R, s) + J (R, s))

≤ M
q
R‖Cϕ‖q |1 − s|q + Dq

q

2π

(
2π

p|a|2
) q

p

×
(∫

|z|>R/2
m

pq
p−q
z (1, ϕ)dA(z)

) p−q
p

.

Letting s → 1− in the last inequality, we obtain

lim sup
s→1−

‖Cϕs − Cϕ1‖q ≤ Dq

q

2π

(
2π

p|a|2
) q

p

×
(∫

|z|>R/2
m

pq
p−q
z (1, ϕ)dA(z)

) p−q
p

.

Since Cϕ is compact from Fp(C) into Fq(C), by Theorem 3.3, mz(1, ϕ) ∈ L
pq

p−q (C, dA).
Then, letting R → ∞, we get

lim sup
s→1−

‖Cϕs −Cϕ1‖q ≤Dq

q

2π

(
2π

p|a|2
) q

p

× lim
R→∞

(∫
|z|>R/2

m

pq
p−q
z (1,ϕ)dA(z)

)p−q
p =0.

The proof is completed.

Theorem 4.4 For every p, q ∈ (0, ∞), the set of all compact composition operators from
Fp(C) into Fq(C) is path connected in the space C

(
Fp(C),Fq(C)

)
.

Proof Let Cϕ1 and Cϕ2 be two compact composition operators from Fp(C) into Fq(C).
By Proposition 4.3, Cϕ1 and Cϕ1(0) belong to the same path connected component and
so do Cϕ2 and Cϕ2(0). We show that Cϕ1(0) and Cϕ2(0) are in the same path connected
component.

For each s ∈ [0, 1], put

βs := (1 − s)ϕ1(0) + sϕ2(0),

and

B1 := ϕ2(0) − ϕ1(0), B2 := |ϕ1(0)| + |ϕ2(0)|.
Obviously, |βs | ≤ |B2| for every s ∈ [0, 1]. Moreover, Cϕ1(0) = Cβ0 and Cϕ2(0) =
Cβ1 and the composition operators Cβs are compact from Fp(C) into Fq(C) for all
s ∈ [0, 1].

We now prove that the map

[0, 1] → C(Fp(C),Fq(C)), s �→ Cβs
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is continuous. Fix s0 ∈ [0, 1]. For every s ∈ [0, 1] and every f ∈ Fp(C) with ‖f ‖p ≤ 1,
using Lemma 2.1[(ii)], we have

‖Cβs f − Cβs0
f ‖q

q = q

2π
|f (βs) − f (βs0)|q

∫
C

e− q|z|2
2 dA(z)

=
∣∣∣∣
∫ s

s0

(
B1f

′(βt )
)
dt

∣∣∣∣
q

≤ |s − s0|q max
t∈<s0,s>

∣∣B1f
′(βt )

∣∣q
≤ |s − s0|q |B1|q max

t∈<s0,s>
|f ′(βt )|q

≤ |s − s0|q |B1|q
(

‖f ‖pe2(1 + B2)e
B2

2
2

)q

≤ Mq |s − s0|q,

where, as above, < s0, s > is the closed interval connecting s0 and s, and

M := e2|B1|(1 + B2)e
B2

2
2 .

From this it follows that, for every s ∈ [0, 1],
‖Cβs − Cβs0

‖ = sup
‖f ‖p≤1

‖Cβs f − Cβs0
f ‖q ≤ M|s − s0|.

It implies that

lim
s→s0

‖Cβs − Cβs0
‖ = 0.

Consequently, Cϕ1 and Cϕ2 are in the same path connected component of
C(Fp(C),Fq(C)) via a path belonging to the set of all compact composition operators
from Fp(C) into Fq(C), which completes the proof.

From Theorem 4.4 and Corollary 3.6 we get

Corollary 4.5 If 0 < q < p < ∞, then the space C(Fp(C),Fq(C)) is path connected.

Next for 0 < p ≤ q < ∞ we give the following result about the characterization of
isolated composition operators Cϕ in the space C(Fp(C),Fq(C)).

Theorem 4.6 Let 0 < p ≤ q < ∞ and Cϕ be a bounded composition operator from
Fp(C) into Fq(C) induced by ϕ(z) = az + b with |a| ≤ 1. The following assertions are
equivalent:

(i) Cϕ is isolated in C
(
Fp(C),Fq(C)

)
;

(ii) Cϕ is non-compact, that is, |a| = 1 and b = 0;
(iii) ‖Cϕ − Cφ‖ ≥ 1 for all affine functions φ(z) = cz + d = ϕ(z) such that Cφ ∈

C
(
Fp(C),Fq(C)

)
.

Proof (i) =⇒ (ii). By Theorem 4.4, if Cϕ is an isolated composition operator in
C(Fp(C),Fq(C)), then Cϕ must be non-compact. Hence, by Corollary 3.5, |a| = 1 and
b = 0.
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(ii) =⇒ (iii). Assume that |a| = 1 and b = 0. In this case, for every affine function
φ(z) = cz+d = ϕ(z) such that Cφ ∈ C

(
Fp(C),Fq(C)

)
, by Lemma 2.1[(i)], we have that,

for all w, z ∈ C,

‖Cϕkw − Cφkw‖q ≥ ∣∣Cϕkw(z) − Cφkw(z)
∣∣ e− |z|2

2

=
∣∣∣∣ewϕ(z)− |w|2+|z|2

2 − ewφ(z)− |w|2+|z|2
2

∣∣∣∣ .
In particular, with w = ϕ(z), the last inequality gives

‖Cϕkϕ(z) − Cφkϕ(z)‖q ≥
∣∣∣1 − ∣∣eaz(cz+d)−|z|2 ∣∣∣∣∣

=
∣∣∣1 − eRe (ac−1)|z|2+Re (daz)

∣∣∣ ,∀z ∈ C.

Since Cφ ∈ C
(
Fp(C),Fq(C)

)
and ϕ(z) = φ(z), then |c| ≤ 1 and c = a. Hence, Re (ac) <

1. From this it follows that

‖Cϕ − Cφ‖ ≥ lim sup
|z|→∞

‖Cϕkϕ(z) − Cφkϕ(z)‖q

≥ lim sup
|z|→∞

∣∣∣1 − eRe (ac−1)|z|2+Re (daz)
∣∣∣ = 1.

(iii) =⇒ (i) is obvious.

From Theorems 4.4 and 4.6, we immediately get the following result.

Corollary 4.7 Let 0 < p ≤ q < ∞. The connected component and path connected compo-
nent in C

(
Fp(C),Fq(C)

)
are the same and they are only the set of all compact composition

operators from Fp(C) into Fq(C).

4.3 The Space Cw

(
Fp(C),Fq(C)

)

In this subsection using the results in Subsection 4.2 we obtain a complete characterization
of the component structure of Cw

(
Fp(C),Fq(C)

)
.

For p, q ∈ (0, ∞) and ϕ(z) = az + b with |a| ≤ 1 we denote by F(ϕ, p, q) the set of
all nonzero functions ψ ∈ Fq(C) such that Wψ,ϕ : Fp(C) → Fq(C) is bounded. Then

Cw

(
Fp(C),Fq(C)

) = {Wψ,ϕ : ψ ∈ F(ϕ, p, q), ϕ(z) = az + b, |a| ≤ 1}.

Lemma 4.8 Let p, q ∈ (0, ∞), ϕ(z) = az + b with |a| ≤ 1 and ψ1, ψ2 ∈ F(ϕ, p, q).
Then Wψ1,ϕ and Wψ2,ϕ are in the same path connected component of Cw

(
Fp(C),Fq(C)

)
.

Proof We can easily show that there is a complex valued continuous function α(t) on [0, 1]
such that α(0) = 0, α(1) = 1 and ut := (1 − α(t))ψ1 + α(t)ψ2 are all nonzero functions
in F(ϕ, p, q) for all t ∈ [0, 1].

Indeed, if ψ2(z) = λψ1(z) for some λ ∈ C \ {0, 1} and all z ∈ C, we can take any
continuous function α(t) so that α(t) = 1/(1 − λ) for all t ∈ [0, 1]. Otherwise, we put
α(t) = t . Moreover, for each t ∈ [0, 1], Wut ,ϕ = (1 − α(t))Wψ1,ϕ + α(t)Wψ2,ϕ , and hence,
ut ∈ F(ϕ, p, q).

Obviously,

Wψ1,ϕ = Wu0,ϕ,Wψ2,ϕ = Wu1,ϕ,
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and, for every s, t ∈ [0, 1] and f ∈ Fp(C),

Wus,ϕf − Wut ,ϕf = (us − ut )f ◦ ϕ = (α(s) − α(t))Wψ2−ψ1,ϕf.

From this it follows that, for every t ∈ [0, 1],
lim
s→t

‖Wus,ϕ − Wut ,ϕ‖ = 0.

This means that the map

[0, 1] → Cw(Fp(C),Fq(C)), t �→ Wut ,ϕ,

is continuous. The proof is completed.

Let

S0 := {ϕ(z) = az + b : |a| < 1} and S1 := {ϕ(z) = az + b : |a| = 1},
and

Cw,0(Fp(C),Fq(C)) := {Wψ,ϕ : ϕ ∈ S0, ψ ∈ F(ϕ, p, q)}.

Theorem 4.9 Let p, q ∈ (0, ∞) be given.

(a) If 0 < q < p < ∞, then the space Cw

(
Fp(C),Fq(C)

)
is path connected.

(b) If 0 < p ≤ q < ∞, then the space Cw

(
Fp(C),Fq(C)

)
has the following path

connected components

Cw

(
Fp(C),Fq(C)

) = Cw,0(Fp(C),Fq(C))
⋃ ⋃

ϕ∈S1

{Wψ,ϕ : ψ ∈ F(ϕ, p, q)}.

Proof (a) First we note that for every Wψ,ϕ ∈ Cw(Fp(C),Fq(C)), by Proposition 3.1 and
Theorem 3.3,

m(ψ, ϕ) < ∞ and mz(ψ, ϕ) ∈ L
pq

p−q (C, dA).

It implies that ϕ(z) = az + b with |a| < 1. Indeed, if |a| = 1, then ψ(z) = ψ(0)e−baz and

mz(ψ, ϕ) = |ψ(0)|e |b|2
2 for all z ∈ C which is impossible.

Then, by Corollary 3.6, W1,ϕ = Cϕ also belongs to Cw(Fp(C),Fq(C)). Hence,
by Lemma 4.8, Wψ,ϕ and Cϕ are in the same path connected component of
Cw

(
Fp(C),Fq(C)

)
.

From this and Corollary 4.5 it follows that Cw

(
Fp(C),Fq(C)

)
is path connected.

(b) We will prove that all sets Cw,0
(
Fp(C),Fq(C)

)
and {Wψ,ϕ : ψ ∈ F(ϕ, p, q)} with

ϕ ∈ S1 are path connected and closed in the space Cw

(
Fp(C),Fq(C)

)
. Also, clearly, they

are disjoint. Hence, all these sets are path connected components in Cw

(
Fp(C),Fq(C)

)
.

First we fix an arbitrary pair of weighted composition operators Wψ1,ϕ1 and Wψ2,ϕ2 in
Cw,0

(
Fp(C),Fq(C)

)
. Then, by Corollary 3.5, W1,ϕ1 = Cϕ1 and W1,ϕ2 = Cϕ2 are com-

pact from Fp(C) into Fq(C). Hence, by Lemma 4.8, Wψ1,ϕ1 and Cϕ1 belong to the same
path connected component of Cw

(
Fp(C),Fq(C)

)
via a path in Cw,0

(
Fp(C),Fq(C)

)
, and

so do Wψ2,ϕ2 and Cϕ2 . From this and Theorem 4.4 it follows that Wψ1,ϕ1 and Wψ2,ϕ2

belong to the same path connected component of Cw

(
Fp(C),Fq(C)

)
via a path in

Cw,0
(
Fp(C),Fq(C)

)
. This means that the set Cw,0

(
Fp(C),Fq(C)

)
is path connected in

the space Cw

(
Fp(C),Fq(C)

)
.

Now we show that the set Cw,0
(
Fp(C),Fq(C)

)
is also closed in the space

Cw

(
Fp(C),Fq(C)

)
. Let (Wψn,ϕn)n be an arbitrary sequence in Cw,0

(
Fp(C),Fq(C)

)
con-
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verging to Wψ,ϕ in Cw

(
Fp(C),Fq(C)

)
. Suppose that ϕ(z) = az + b with |a| ≤ 1 and

ϕn(z) = anz + bn with |an| < 1 for all n ∈ N. By contradiction, assume that |a| = 1.
Then

ψ(z) = ψ(0)e−baz and mz(ψ, ϕ) = |ψ(0)|e |b|2
2 , ∀z ∈ C.

Similarly to Eq. (4.1), for every z ∈ C and n ∈ N, we have

‖Wψ,ϕ − Wψn,ϕn‖ ≥ ‖Wψ,ϕkϕ(z) − Wψn,ϕnkϕ(z)‖q

≥
∣∣∣∣mz(ψ, ϕ) − mz(ψn, ϕn)e

− |ϕ(z)−ϕn(z)|2
2

∣∣∣∣
≥ |ψ(0)|e |b|2

2 − m(ψn, ϕn)e
− |ϕ(z)−ϕn(z)|2

2 .

Since a = an, ϕ(z) − ϕn(z) → ∞ as z → ∞. Hence, letting z → ∞ in the last inequality
we get that for every n ∈ N,

‖Wψ,ϕ − Wψn,ϕn‖ ≥ |ψ(0)|e |b|2
2 > 0,

which is a contradiction. Thus, |a| < 1, that is, Wψ,ϕ belongs to Cw,0
(
Fp(C),Fq(C)

)
.

Next for each ϕ(z) = az + b ∈ S1, ψ ∈ F(ϕ, p, q) if and only if ψ(z) = ψ(0)e−baz.
Then

{Wψ,ϕ : ψ ∈ F(ϕ, p, q)} = {
Wcψ0,ϕ : c ∈ C \ {0}} with ψ0(z) := e−baz.

Thus, for each ϕ ∈ S1, the set {Wψ,ϕ : ψ ∈ F(ϕ, p, q)} is path connected and closed in
Cw

(
Fp(C),Fq(C)

)
.

The proof is completed.

Finally, it should be noted that in the space Cw(Fp(C),Fq(C)) there does not exist an
isolated weighted composition operator. Indeed, for every weighted composition operator
Wψ,ϕ ,

lim
s→1

‖Wsψ,ϕ − Wψ,ϕ‖ = lim
s→1

|s − 1|‖Wψ,ϕ‖ = 0.
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