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Abstract Stochastic integration wrt Gaussian processes has raised strong interest in recent
years, motivated in particular by its applications in Internet traffic modeling, biomedicine
and finance. The aim of this work is to define and develop a White Noise Theory-based
anticipative stochastic calculus with respect to all Gaussian processes that have an inte-
gral representation over a real (maybe infinite) interval. Very rich, this class of Gaussian
processes contains, among many others, Volterra processes (and thus fractional Brownian
motion) as well as processes the regularity of which varies along the time (such as multi-
fractional Brownian motion). A systematic comparison of the stochastic calculus (including
Itô formula) we provide here, to the ones given by Malliavin calculus in Aloś (Ann. Probab.
29(2), 766–801 2001), Mocioalca and Viens (J. Funct. Anal. 222(2), 385–434 2005), Nualart
and Taqqu (Stoch. Anal Appl. 24(3), 599–614 2006), Kruk et al. (J. Funct. Anal. 249(1),
92–142 2007), Kruk and Russo (2010), Lei and Nualart (Commun. Stoch. Anal. 6(3), 379–
402 2012) and Sottinen and Viitasaari (2014), and by Itô stochastic calculus is also made.
Not only our stochastic calculus fully generalizes and extends the ones originally proposed
in Mocioalca and Viens (J. Funct. Anal. 222(2), 385–434 2005) and in Nualart and Taqqu
(Stoch. Anal Appl. 24(3), 599–614 2006) for Gaussian processes, but also the ones proposed
in Bender (Stoch. Process. Appl. 104, 81–106 2003), Biagini et al. (2004) and Elliott and
Van der Hoek (Math. Financ. 13(2), 301–330 2003) for fractional Brownian motion (resp.
in Lebovits, Ann. Univ. Buchar. Math. Ser. 4(LXII)(1), 397–413 2013; Lebovits and Lévy
Véhel Stoch. Int. J. Probab. Stoch. Processes 86(1), 87–124 2014; Lebovits et al. Stoch.
Process. Appl. 124(1), 678–708 2014 for multifractional Brownian motion).
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integrals · Itô formula · Varying regularity processes

Mathematics Subject Classification 60G15 · 60H40 · 60H05 · 60G22

1 Introduction

The purpose of this paper is to develop an anticipative stochastic calculus with respect to
Gaussian process G := (Gt )t∈R that can be written under the form:

Gt =
∫
R

gt (u) dBu, (1.1)

whereR denotes the set of real numbers,R denotes a closed interval ofR (that may be equal
toR), B := (Bu)u∈R is Brownian motion onR and (gt )t∈R is a family of a square integrable
functions1 on R. Denote G the set of Gaussian processes that can be written under the form
(1.1). This class of Gaussian processes contains, among many others, Volterra processes
(and thus fractional Brownian motion), Gaussian Fredholm processes as well as processes
the regularity of which varies along the time (such as multifractional Brownian motion). For
every positive real T , the process (Vt )t∈[0,T ] is said to be a Volterra process on [0, T ] (resp.
a Fredholm process), if it can be written under the form:

Vt :=
∫ t

0
K(t, s) dWs;

(
resp. Ft :=

∫ T

0
KT (t, s) dWs

)
, ∀ t ∈ [0, T ]. (1.2)

where (Ws)s∈[0,T ] is a Brownian motion and K belongs to L2([0, T ]2, ds). Note moreover
that G also contains the Gaussian processes that can be written under the form:

Ht :=
∫ t

−∞
K(t, s) dBs; ∀ t ∈ R. (1.3)

Our main result is an Itô formula, that reads:

• for every T > 0 and every C1,2([0, T ] × R) function f , with sub exponential growth:

f (T , GT ) = f (0, 0) +
∫ T

0

∂f
∂t

(t,Gt ) dt +
∫ T

0

∂f
∂x

(t, Gt ) d�Gt + 1
2

∫ T

0

∂2f

∂x2
(t, Gt ) dRt ,

where the equality holds in L2(�) and almost surely, where t �→ Rt denotes the variance
function of G, which will be supposed to be a continuous function, of bounded variations;
the meaning of the different terms will be explained below. The Itô formula we provide here
is, at our best knowledge, one of the most general one for Gaussian processes that are not
semimartingales. Itô stochastic calculus provides a non-anticipative stochastic integral wrt
semimartingales. However, Itô’s theory does not apply anymore when the Gaussian process
considered is not a semimartingale. Two2 main and parallel ways have been developed over

1i.e. such that for all t in R, u �→ gt (u) is measurable on R and such that
∫
R |gt (u)|2 du < +∞.

2The enlargement of filtration technique is a third method to extend Itô integral for non semimartingale (see
[40] and references therein). However we will not discuss it in this paper since it is very rarely used in the
literature.
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the years to build a stochastic calculus with respect to Gaussian processes; the Itô integral
wrt Brownian motion being at the intersection of all these approaches. Precisely, one has
the:

– trajectorial or pathwise extensions,
– functional extensions.

The trajectorial approach, initiated by [54], provides generalizations of the Riemann–
Stieltjes integral that are: the pathwise forward-type Riemann–Stieltjes integral (introduced
in [12]; see also [50] and references therein) and the pathwise generalized Lebesgue–
Stieltjes integrals (introduced in [55]). The reader interested in this approach, that also
provides Itô formulas, will find in [13] a very complete overview. Let us also mention the
stochastic calculus via regularization (see [45] and references therein), that is also a gener-
alization of Itô integral. Since the pathwise extensions of Itô integral require, by their very
definition, that the stochastic integral is built ω by ω, it will clearly appear that they are of
a completely different nature from our definition of stochastic integral (that will be given in
Definition 2 below). For this reason we will not compare, in this work, our approach to the
pathwise ones.

Our main interest here consists in the functional approach. The functional extensions
are rooted in the extension of Itô integral wrt Brownian motion to anticipative integrands
built by Hitsuda in [18, 19] and Skorohod in [48]. In [15] it was proved that the stochas-
tic integral wrt Brownian motion and the adjoint of the derivative operator, on the Wiener
space, coincide. This result led to many developments in (anticipative) stochastic calculus
with respect to Gaussian processes, the most significant of which is [1]. This latter article
provides, using Malliavin calculus, not only a divergence type integral with respect to con-
tinuous Volterra processes but also Itô formulas. In fact, all the functional extensions of Itô
integral developed to build a stochastic integral wrt Gaussian processes so far have been
developed using the divergence type integral. One can divide these functional extensions
into two groups, depending if the assumptions are made on the kernel K (first group) or
on the covariance function R (second group). The first group is composed of [1] and [38],
while the second one is composed of [27, 28, 36, 41, 51]. The stochastic calculus we pro-
pose in this work belongs to the first group since the set of assumptions we make is about
the kernel g; however it does not use the divergence type integral.

The stochastic calculus we provide here allows us to develop a White Noise Theory-
based anticipative stochastic calculus with respect to all Gaussian processes that have an
integral representation over a real (maybe infinite) interval. As stated in the beginning of
this section, this class of Gaussian processes is very rich. Moreover, the stochastic calculus
developed in the present work also allows us to get, not only Itô formulas but also Tanaka
formulas, as well as occupation times formulas for local times of any G in G . While such
results seem to be out of range for most of the intrinsic methods mentioned above, they
are easily obtained using the White Noise Theory-based anticipative stochastic calculus we
present here (note that all the results on Gaussian local times processes obtained using the
present work are presented in [32]).

Outline of the Paper The remaining of this paper is organized as follows. In Section 2,
we recall some basic facts about white noise theory and about the family of operators
(MH )H∈(0,1), which is instrumental for our running example, which is presented at the end
of the section. In Section 3 we define the stochastic integral wrt any G in G . An Itô formula
in L2(�) is established in the first part of Section 4. A complete comparison of our Itô for-
mula with all the Itô formulas for Gaussian processes, provided so far in the literature of
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functional extensions of itô integral ends this section. In Section 5, we compare our stochas-
tic integral with respect to elements ofG , to the divergence type integrals, provided in [1, 38]
and to Itô integral. In particular, we show therein how our integral fully generalizes the one
built in [38].

2 Background on White Noise Theory & on Operators (MH)H∈(0,1)

Introduced by T. Hida in [17], White Noise Theory is, roughly speaking, the stochastic anal-
ogous of deterministic generalized functions (also known as tempered distributions). The
idea is to realize nonlinear functional on a Hilbert space as functions of white noise (which
is defined as being the time derivative of Brownian motion). White Noise theory has now
many application fields, such as quantum dynamics, quantum field theory, molecular biol-
ogy, mathematical finance (e.g. [8]), among many others (see [23] for more details). One
can find very good introductions (and more!) to White Noise Theory in [20, 30, 47] (see
also references therein). One may also refer to [21] for the study, in the white noise theory’s
framework, of stochastic differential equations as well as stochastic partial differential equa-
tions. We recall in this section the standard set-up for classical white-noise theory. Readers
interested in more details about White Noise Theory may refer to [20, 30] and [47].

2.1 The Spaces of Stochastic Test Functions and Stochastic Distributions

Define N (resp. N∗) the set of non negative integers (resp. positive integers). Let
S (R) be the Schwartz space endowed with its usual topology (i.e. a family of func-
tions (fn)n∈N of S (R)N is said to converge to 0 if for all (p, q) in N2 we have

lim
n→+∞ sup{ |xp f

(q)
n (x)|; x ∈ R} = 0). Denote S ′(R) the space of tempered distribu-

tions, which is the dual space ofS (R), and F̂ orF(F ) the Fourier transform of any element
F of S ′(R). For every positive real p, denote Lp(R) the set of measurable functions f

such that
∫
R |f (u)|p du < +∞. When f belongs to L1(R), f̂ is defined on R by setting

f̂ (ξ) := ∫
R e−ixξ f (x) dx. Define the measurable space (�,F) by setting � := S ′(R)

and F := B(S ′(R)), where B denotes the σ -algebra of Borel sets. The Bochner-Minlos
theorem ensures that there exists a unique probability measure μ on (�,F) such that, for
every f in S (R), the map < ., f >: (�,F) → R defined by < ., f > (ω) =< ω, f >

(where < ω, f > is by definition ω(f ), i.e. the action of ω on f ) is a centred Gaus-
sian random variable with variance equal to ‖f ‖2

L2(R)
under μ. The map f �→< ., f >

being an isometry from (S (R),<, >L2(R)) to (L2(�,F , μ),<, >L2(�,F,μ)), it may be
extended to L2(R). One may thus consider the centred Gaussian random variable < ., f >,
for any f in L2(R). In particular, let t be in R, the indicator function 1[0,t] is defined by
setting: 1[0,t](s) := 1 if 0 ≤ s ≤ t , 1[0,t](s) := −1 if t ≤ s ≤ 0 and 1[0,t](s) := 0
otherwise. Then the process (B̃t )t∈R, where B̃t (ω) := B̃(t, ω) := < ω, 1[0,t] > is a
standard Brownian motion with respect to μ. It then admits a continuous version which
will be denoted B. Define, for f in L2(R), I1(f )(ω) := < ω, f >. Then I1(f )(ω) =∫
R f (s) dBs(ω) μ − a.s., where

∫
R f (s) dBs denotes the Wiener integral of f . For every

n in N, let en(x) := (−1)n π−1/4(2nn!)−1/2ex2/2 dn

dxn (e−x2) be the n-th Hermite function.
It is well known (see [52]) that (ek)k∈N is a family of functions of S (R) that forms an
orthonormal basis of L2(R, dt). The following properties about the Hermite functions (the
proof of which can be found in [52]) will be useful.
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Theorem 2.1 There exist positive constants C and γ such that, for every k in N,

|ek(x)| ≤ C
(
(k + 1)−1/12 · 1{|x|≤2

√
k+1} + e−γ x2 · 1{|x|>2

√
k+1}

)
.

Let (| |p)
p∈Z be the family norms defined by |f |2p := ∑+∞

k=0 (2k + 2)2p < f, ek >2
L2(R)

,

for all (p, f ) in Z × L2(R). The operator A, defined on S (R), by setting A := − d2

dx2
+

x2 + 1, admits the sequence (en)n∈N as eigenfunctions and the sequence (2n + 2)n∈N as
eigenvalues. Define, for p in N, the spaces Sp(R) := {f ∈ L2(R), |f |p < +∞} and
S−p(R) as being the completion of L2(R) with respect to the norm | |−p. We summarize
here the minimum background on White Noise Theory, written e.g. in [34, p. 692-693].
More precisely, let (L2) denote the space L2(�,G, μ), where G is the σ - field gener-
ated by (< ., f >)f ∈L2(R). According to Wiener-Itô’s theorem, for every random variable

	 in (L2) there exists a unique sequence (fn)n∈N of functions in L̂2(Rn) such that 	

can be decomposed as 	 = ∑+∞
n=0 In(fn), where L̂2(Rn) denotes the set of all symmet-

ric functions f in L2(Rn) and In(f ) denotes the n−th multiple Wiener-Itô integral of f

with the convention that I0(f0) = f0 for constants f0. For any 	 := ∑+∞
n=0 In(fn) sat-

isfying the condition
∑+∞

n=0 n! |A⊗nfn|20 < +∞, define the element 
(A)(	) of (L2) by

(A)(	) := ∑+∞

n=0 In(A
⊗nfn), where A⊗n denotes the n−th tensor power of the operator

A (see [25, Appendix E] for more details about tensor products of operators). The opera-
tor 
(A) is densely defined on (L2). It is invertible and its inverse 
(A)−1 is bounded. We
note, for ϕ in (L2), ‖ϕ‖20 := ‖ϕ‖2

(L2)
. For n in N, let Dom(
(A)n) be the domain of the n-th

iteration of 
(A). Define the family of norms (‖ ‖p)
p∈Z by:

‖	‖p := ‖
(A)p	‖0 = ‖
(A)p(	)‖(L2), ∀p ∈ Z, ∀	 ∈ (L2)∩Dom(
(A)p).

For p in N, define (Sp) := {	 ∈ (L2) : 
(A)p(	) exists and belongs to (L2)} and define
(S−p) as the completion of the space (L2) with respect to the norm ‖ ‖−p . As in [30], we
let (S) denote the projective limit of the sequence ((Sp))

p∈N and (S)∗ the inductive limit

of the sequence ((S−p))
p∈N. This means in particular that (S) ⊂ (L)2 ⊂ (S)∗ and that

(S)∗ is the dual space of (S). Moreover, (S) is called the space of stochastic test functions
while (S)∗ the Hida distribution space. We will note<<, >> the duality bracket between (S)∗
and (S). If φ, 	 belong to (L2), then we have the equality << 	, ϕ >>= < 	, ϕ >(L2) =
E[	 ϕ]. Besides, denote <, > the duality bracket between S ′(R) and S (R) and recall
that every tempered distribution F can be written as F = ∑+∞

n=0 < F, en > en, where
the convergence holds in S ′(R). The next proposition, that will be used extensively in the
sequel, is a consequence of the definition of (S) and (S)∗.

Proposition 2.2 Let F be in in S ′(R). Define < ., F >:= ∑+∞
n=0 < F, en > < ., en >.

Then there exists p0 in N such that that < ., F > belongs to (S−p0), and hence
to (S)∗. Moreover we have ‖ < ., F > ‖2−p0

= |F |2−p0
. Conversely, define 	 :=∑+∞

n=0 bn < ., en >, where (bn)n∈N belongs to RN. Then 	 belongs to (S)∗ if and only if
there exists an integer p0 in N such that

∑+∞
n=0 b2n (2n + 2)−2p0 < +∞. In this latter case

F := ∑+∞
n=0 bnen belongs to S−p0(R) and then to S ′(R). It moreover verifies the equality

|F |2−p0
= ∑+∞

n=0 b2n(2n + 2)−2p0 = ‖	‖2−p0
.
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2.2 (S)∗-process, (S)∗-derivative and (S)∗-integral

Let (R,B(R),m) be a sigma-finite measure space. Through this section, I denotes an ele-
ment of B(R). A measurable function 	 : I →(S)∗ is called a stochastic distribution
process, or an (S)∗-process. An (S)∗-process 	 is said to be differentiable at t0 ∈ I if

lim
r→0

r−1 (	t0+r −	t0) exists in (S)∗. We note
d	t0
dt

the (S)∗- derivative at t0 of the stochas-
tic distribution process 	. 	 is said to be differentiable over I if it is differentiable at every
t0 of I . It is also possible to define an (S)∗-valued integral in the following way (one may
refer to [30, p. 245–246] or [22, Def. 3.7.1 p. 77] for more details).

Theorem-Definition 2.1 (integral in (S)∗) Assume that 	 : I → (S)∗ is weakly in
L1(I,m), i.e. assume that for all ϕ in (S), the mapping u �→ << 	u, ϕ >>, from I to R,
belongs to L1(I,m). Then there exists an unique element in (S)∗, noted

∫
I
	u m(du), such

that, for all ϕ in (S),

<<

∫
I

	(u) m(du), ϕ >> =
∫

I

<< 	u, ϕ >> m(du).

We say in this case that 	 is (S)∗-integrable on I (with respect to the measure m), in
the Pettis sense. In the sequel, when we do not specify a name for the integral (resp. for the
measure m) of an (S)∗-integrable process 	 on I , we always refer to the integral in Pettis’
sense (resp. to the Lebesgue measure).

2.3 S-transform and Wick Product

For f in L2(R), define the Wick exponential of < ., f >, noted : e<.,f > :, as the (L2)

random variable equal to e<.,f >− 1
2 |f |20 . The S-transform of an element 	 of (S∗), noted

S(	), is defined as the function from S (R) to R given by S(	)(η) := <<	,: e<.,η> :>> for
any η in S (R). For any (	, �) ∈ (S)∗×(S)∗, there exists a unique element of (S)∗, called
the Wick product of 	 and �, and noted 	��, such that S(	��)(η) = S(	)(η) S(�)(η)

for every η in S (R). Note that, when 	 belongs to (L2), S	(η) is nothing but E[	 :
e<.,η> :] = e− 1

2 |η|20 E[	 e<.,η>]. The following result will be intensively used in the sequel.

Lemma 2.3 ([33, Lemma 2.3.]) For any (p, q) in N2 and (X, Y ) in (S−p) × (S−q),

|S(X � Y )(η)| ≤ ‖X‖−p ‖Y‖−q e
|η|2max{p;q} .

Some useful properties of S transforms are listed in the proposition below. The proof of
the results stated in this proposition can be found in [30, Chap 5].

Proposition 2.4 (Some properties of S transforms) When 	 is deterministic then 	 � � =
	 �, for all � in (S)∗. Moreover, let 	 = ∑+∞

k=0 ak < ., ek > and � = ∑+∞
n=0 In(fn)

be in (S)∗. Then their S-transform is given, for every η in S (R), by S(	)(η) =∑+∞
k=0 ak < η, ek >L2(R) and S(�)(η) = ∑+∞

k=0 < fn, η
⊗n >. Finally, for every (f, η, ξ)

in L2(R) × S (R) × R, we have the equality:

S(eiξ<.,f >)(η) = e
1
2 (|η|20+2iξ<f,η>−ξ2|f |20). (2.1)
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One may refer to [25, Chap.3 and 16] for more details about Wick product. The following
results on the S-transform will be used extensively in the sequel. See [30, p. 39] and [20, pp.
280–281] for proofs. Denote F(A;B) the set of B-valued functions defined on A.

Lemma 2.5 The S-transform verifies the following properties:

(i) The map S : 	 �→ S(	), from (S)∗into F(S (R);R), is injective.
(ii) Let 	 : I → (S)∗ be an (S)∗process. If 	 is (S)∗-integrable over I wrt m, then

one has, for all η in S (R), S(
∫
I
	(u) m(du))(η) = ∫

I
S(	(u))(η) m(du).

(iii) Let 	 : I → (S)∗ be an (S)∗-process differentiable at t ∈ I . Then, for
every η in S (R) the map u �→ [S	(u)](η) is differentiable at t and verifies
S[ d	

dt
(t)](η) = d

dt

[
S[	(t)](η)

]
.

The next theorems provide a criterion for integrability in (S)∗, in term of S-transform.

Theorem 2.6 ([30, Theorem 13.5]) Let	 : I → (S)∗ be a stochastic distribution such that,
for all η in S (R), the real- valued map t �→ S[	(t)](η) is measurable and such that there
exist a natural integer p, a real a and a function L in L1(I,m) such that |S(	(t))(η)| ≤
L(t) ea|η|2p , for all η of S (R) and for almost every t of I . Then 	 is (S)∗- integrable over
I , wrt to m.

We end this section with the following theorem that will be useful in the next section.

Theorem 2.7 ([4, Theorem 2.17]) For any differentiable map F : I → S ′(R), the element
<., F (t)> is a differentiable stochastic distribution process which satisfies the equality:

d
dt

< ., F (t) > = < ., dF
dt

(t) >.

2.4 Gaussian Processes in G of “reference”

To see in what extent the stochastic calculus wrt Gaussian processes we present here gen-
eralizes the one provided in the literature so far, we will consider, throughout this paper, a
running example, made with elements of G that are Brownian motion and Brownian bridge,
fractional and multifractional Brownian motions as well as Vγ - processes (the last three
processes being defined below).

Fractional and Multifractional Brownian Motions Readers interested in an exhaus-
tive presentation of fBm or mBm may refer to [43] for fBm and to [34] for mBm, as well
as to the references therein. Introduced in [26] and popularized in [39], fBm is a centered
Gaussian process, the covariance function of which is denoted RH and is given by:

RH (t, s) := 1

2
(|t |2H + |s|2H − |t − s|2H ),

where H belongs to (0, 1), and is usually called the Hurst exponent. When H = 1/2,
fBm reduces to standard Brownian motion. Among many other properties, fBm is able to
match any prescribed constant local regularity and to model phenomena that presents long
range dependence. These properties made this process very popular in many fields such as
mathematical finance, Internet traffic modeling, image analysis and synthesis, physics and
more.

MBm, which is a Gaussian extension of fBm, was introduced in [44] and in [6] in order
to match any prescribed non-constant deterministic local regularity and to decouple this
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property from long range dependence (this impossibility of doing so for fBm constitutes
one of the most severe drawbacks of this process). To obtain mBm, the idea is to replace
the constant Hurst parameter H of fBm by a deterministic function t �→ h(t) ranging in
(0, 1). Several definitions of mBm exist and the reader interested in the evolution of these
definitions may refer to [34] and references therein. We will only give here the definition
of mBm given in [34, Definition 1.2], which is not only the most recent but also includes
all previously known ones. A mBm on R, with functional parameter h : R → (0, 1), is a
Gaussian process Bh := (Bh

t )t∈R defined, for all real t , by Bh
t := B(t, h(t)), where B :=

(B(t, H))(t,H)∈R×(0,1) is fractional Brownian field on R × (0, 1) (which means that B is a
Gaussian field, such that, for everyH in (0, 1), the process (B(t, H))t∈R is a fBmwith Hurst
parameter H ). In other words, a mBm is simply a “path” traced on a fractional Brownian
field. Note also that when h is constant, mBm reduces to fBm. The literature on Stochastic
integration wrt fBm is extensive now. The reader interested in an exhaustive overview of the
subject may refer to [10, 37, 43] for divergence type integral and to [4, 7, 11, 42] for integral
in the white noise theory framework. More recent, the literature on Stochastic integration
wrt mBm is less rich. Nevertheless, one may cite [3] for a divergence type integral wrt to
a Volterra-type mBm and [31, 33] for a Wick-Itô multifractional integral (i.e. an integral
wrt to normalized mBm, in the White Noise theory framework). Note moreover that [34]
provides a general method of integration wrt to all classes of mBm, that does not only apply
for divergence type integral and white noise theory integral but also for pathwise integral.

Vγ - Processes [38] provides a stochastic calculus, wrt a particular class of Volterra pro-
cesses, that we will denote Vγ - processes in the sequel. For any deterministic function
γ : R+ → R, Vγ - processes are defined in [38, Proposition 1] as being the processes,
denoted B̃γ := (B̃

γ
t )t∈[0,T ], by setting:

B̃
γ
t :=

∫ t

0
ε(t − s) dWs; ∀t ∈ [0, T ], (2.2)

with γ : R+ → R such that γ 2 is of class C2 everywhere in R+ except in 0; and such that
(γ 2)′ is non increasing. The map ε : R∗+ → R is defined by setting ε := √

(γ 2)′. Subset
of G , the set Vγ contains Gaussian processes, that can be more irregular than any fBm.
However it does not contain fBm itself (nor mBm) since Vγ only contains processes the
regularity of which remains constant along the time). It will be shown in Remark 11 that the
stochastic integral built in [38] is a particular case of the stochastic integral we build in this
work. For notational simplicity we will refer to these processes as the Gaussian processes
of “reference”.

2.5 Operators (MH )H∈(0,1) and a Classical Set of Gaussian Processes in G

The operator MH will be useful in the sequel, not only to provide one with a representation
of fBm and of mBm under the form (1.1), but also to verify that Assumptions (A ) , we will
make in Section 3, hold for both fBm and mBm. Let H belongs to (0, 1); following [11]
and [33, Section 2.2], define the L2(R)-valued operator MH , in the Fourier domain by:

M̂H (u)(y) :=
√
2π

cH
|y|1/2−H û(y), ∀y ∈ R∗,

where cx is defined, for every x in (0, 1) by cx := ( 2π

(2x+1) sin(πx)

) 1
2 . This operator is well

defined on the homogeneous Sobolev space L2
H (R) := {u ∈ S ′(R) : û = Tf ; f ∈

8
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L1
loc(R) and ‖u‖H < +∞}, where the norm ‖ · ‖H derives from the inner product denoted

〈·, ·〉H , which is defined on L2
H (R) by:

〈u, v〉H := 1

c2H

∫
R

|ξ |1−2H û (ξ) v̂ (ξ) dξ,

where the meaning of Tf is explained right above Thorem-Definition 3.2.
MH being an isometry from (L2

H (R), ‖ · ‖H ) into (L2(R), ‖ · ‖L2(R)), it is clear that, for
every (H, t, s) in (0, 1) × R2, < MH (1[0,t]),MH (1[0,s]) >L2(R) = RH (t, s). We will say
that an mBm is normalized when its covariance function, denoted Rh, verifies the equality:

Rh(t, s) = c2ht,s

c(h(t))c(h(s))

[ 1
2

(|t |2ht,s + |s|2ht,s − |t − s|2ht,s
)]

, (2.3)

where ht,s := h(t)+h(s)
2 and cx has been above, right after M̂H (u)(y).

Example 2.8 (Gaussian Processes in G of “reference”) Let H be real in (0, 1) and h : R →
(0, 1) be a deterministic measurable function. Define the processes

B := {< ., 1[0,t] >; t ∈ R};
B̂ := {< ., 1[0,t] − t · 1[0,1] >; t ∈ [0, 1]};
BH := {< .,MH (1[0,t]) >; t ∈ R};
Bh := {< ., Mh(t)(1[0,t]) >; t ∈ R};
B̃γ := {< ., 1[0,t) · ε(t − .)) > if t ∈ R∗+ & B̃

γ

0 := 0}.
We know, thanks to Section 2.1, that B is a Brownian motion on R. Moreover, since for any
gt in L2(R), < ., gt >

a.s.= ∫
R gt (u) dBu, it is clear, in view of the definition of 〈·, ·〉H , that

BH is a fBm of Hurst index H , that Bh is a normalized mBm of functional parameter h,
that B̂ is Brownian bridge on [0, 1] and that B̃γ is a Vγ - process (defined in Eq. 2.2).

A word on notation: BH
. or Bh(t)

. will always denote an fBm with Hurst index H or h(t),
while Bh

. will stand for an mBm. Throughout this paper, unless otherwise specify, we will
neither specify the value of H in (0, 1), when we consider a fBm, nor the (0, 1)-valued
function h when we consider a mBm, nor the function γ of a Vγ - process.

3 Stochastic Integral with Respect to Gaussian Process

The first part of this section is devoted to the definition of the time derivative, in the
Stochastic distribution sense, of any element G := (Gt )t∈R of G . We then compute the
S-transforms of processes G and of its time derivative. The Wiener integral wrt G is pre-
sented in Section 3.4, whereas the stochastic integral wrt G is built in Section 3.5. We keep
the same notations as in Section 2. In particular, the probability space (�,F , μ), described
in the previous section is now fixed. Denote G := (Gt )t∈R the process defined, for every
t in R, by Gt :=< ., gt >, where (gt )t∈R is a family of functions of L2(R). As we saw
in Example 2.8, G is a Gaussian process which fulfills the equality Gt

a.s.= ∫
R gt (u) dBu.

Denote (t, s) �→ Rt,s the covariance function of G. We hence have Rt,s := E[Gt Gs] =
< gt , gs >L2(R), for every (s, t) in R2. We will note in the sequel Rt instead of Rt,t . For

the sake of notational simplicity we assume that G0
a.s.= 0. Moreover, when the Gaussian

process G will admit a continuous modification, we will systematically use it and still call
it G.

9
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3.1 White Noise Derivative of G

Define the map g : R → S ′(R) by setting g(t) := gt . When g is differentiable at point t ,
one denotes g′

t its derivative. Denote λ the Lebesgue measure on R and define L1
lõc(R) :=

{f : R → R is measurable ; f ∈ L1((a, b)), for all finite interval (a, b) s.t. [a, b] ⊂ R}.
In this section and in the next one (namely in Sections 3 and 4), we will make the following
assumption:

A

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) The map g is continuous on R,

(ii) The map g is differentiable λ − almost everywhere on R,

(iii) There exists q in N∗ such that t �→ |g′
t |−q belongs to L1

lõc(R),

(iv) For every (a, b) in R2 such that a ≤ b, one has, in S ′(R), the equality:
gb − ga = ∫ b

a
g′

u du.

(Ea,b)
Proposition 3.1 below will provide an easy way to check whether Assumption (A ) holds

or not. Besides, define the set RD by setting RD := {t ∈ R; g is differentiable at point t}.
Of course L1

lõc(R) contains in particular all measurable functions f : RD → R such that
f ∈ L1((a, b) ∩ RD) (that we will denote L1((a, b)) in the sequel, by abuse of notation),
for every finite interval (a, b) s.t. [a, b] ⊂ R. For the sake of notational simplicity we will
write A(i), (resp. A(ii), A(iii) or A(iv)), in the sequel, when one wants to refer to statement
(i) (resp. to (ii), (iii) or (iv)) of Assumption (A ).

Making Assumptions A(i) and A(ii) seems reasonable since we want to “differentiate”,
with respect to t , the Gaussian process G, which trajectories are, in general, not differen-
tiable in the strong sense (e.g. the Brownian motion). The interest of Assumptions A(iii) and
A(iv) will be explained when it will be needed (in Section 3.4, right after Definition 1).

Remark 1 1. A first consequence of Assumption (A ) is that g is “weakly” locally abso-
lutely continuous on R; that is that the map t �→< gt , η > is absolutely continuous on
every finite interval [a, b] of R, for every η in S (R).

2. If g would have been a real-valued function, Assumption (A ) would have been nothing
but the local absolute continuity of g on R. However, g is S ′(R)-valued. Thus, and
even if a notion of absolute continuity exists for S ′(R)-valued functions (see [22, Def-
initions 3.6.2 & 3.2.4]), the absolute continuity of g on an interval [a, b] of R does not
entail the differentiability of g in general (see an example that illustrates this fact in
[22], right above Theorem 3.8.6).

An easy way to see if Assumption (A ) holds is to check if the sufficient condition
provided in the following proposition, and that will be used a lot in the sequel, holds.

Proposition 3.1 A sufficient condition for Assumption (A ) to be verified is that:

(D)

{
(i)The map g is continuous onR and differentiable on every finite interval (a,b)s.t. [a, b]⊂R,

(ii) There exists q in N∗ such that t �→ |g′
t |−q belongs to L1

lõc(R).

Proof Indeed, these two conditions obviously entail that Assumptions A(i) to A(iii) hold.
Moreover, these two conditions also entail Equality (Ec,d), for every [c, d] in RD . R being
a closed interval of R, and in view of (ii) of Assumption (D), there can be 0,1 or 2 points,
at the maximum, that belong to R but not to RD . Let us treat this latter case only and
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denote a and b these two points. The continuity of g at points a and b, from one hand, and
the Lebesgue dominated convergence theorem, from the other hand, give us the equality
(Ea,b).

As previously, and for the sake of notational simplicity we will write D(i) (resp. D(ii))
when one wants to refer to (i) or to (ii) of Assumption (D). Assumption A(ii), Proposition
2.2 and Theorem 2.7 lead to the following definition of Gaussian white noise.

Theorem-Definition 3.1 (Gaussian White Noise) Define for every t in RD ,

W
(G)
t := < ., g′

t >, (3.3)

where the equality holds in (S)∗. Then (W
(G)
t )t∈RD

is a (S)∗-process and is the (S)∗-
derivative of the process (Gt )t∈RD

. We will sometimes note dGt

dt
instead of W(G)

t .

Using Proposition 2.2 one easily sees that (3.3) also reads, for every t in RD:

W
(G)
t =

+∞∑
k=0

< g′
t , ek >< ., ek > =

+∞∑
k=0

(
d
dt

< gt , ek >
)

< ., ek > .

Proposition 3.2 The map t �→ ‖W(G)
t ‖−p is continuous if and only if t �→ |g′

t |−p is
continuous.

Proof Thanks to Proposition 2.2, one can write ‖W(G)
t ‖−p = |g′

t |−p, ∀ (p, t) in N∗ ×
RD.

As the next example shows Assumptions (D) (and therefore Assumption (A )) holds in
the case of all Gaussian processes in G of “reference”. Denote, for every n in (1/2, +∞),

Rn :=
+∞∑
k=0

(2k + 2)−2n. (3.4)

Example 3.3 1. (Brownian motion on R& Brownian bridge on [0, 1]). For the Brownian
motion on R (resp. the Brownian bridge on [0, 1]), one has R = RD = R, and, for
every real t , g′

t = δt (resp. R = RD = [0, 1] and g′
t = δt − 1[0,1]). Both maps g

clearly fulfills Asumption D(i). Moreover, for every p in N∗, the maps t �→ |g′
t |−p

are continuous and bounded on R, which shows that D(ii) holds. Indeed, using both:

the relation e′
k(x) =

√
k
2ek−1(x) −

√
k+1
2 ek+1(x), valid for all positive integer k, and

Theorem 2.1, we get the existence of a real C′, independent of t and p, such that:
∀(p, t) ∈ N∗ × R, |δ′

t |2−p = ∑+∞
k=0 e2k(t) (2k + 2)−2p ≤ C′ · Rp.

2. (Fractional & Multifractional Brownian motions on R) In both these cases, one has
R = RD = R. Thanks to [33, Remark 4.3 and Proposition 4.10], we know that

Asumption D(i), as well as the fact that t �→ ‖W(BH )
t ‖−p (resp. t �→ ‖W(Bh)

t ‖−p) is
continuous and bounded on any compact set of R, are verified for every p ≥ 2 and H

in (0, 1) (resp. h differentiable with locally bounded derivative).
3. (The process B̃γ ) In this case, R = R+ and RD = R∗+ := R\{0}. Moreover

Assumption (D) is also fulfiled, as Theorem 3.4 below shows.

11
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The following theorem, the proof of which can be found in Appendix B, shows that Vγ

- processes fulfill Assumption (D). This will be crucial to show, in Section 5.1.2, that the
stochastic integral wrt Vγ - processes, developed in [38], is a particular case of the one we
build in this work. Let us first define the two maps E : R+ → R and E : R+ → R by
setting:

E(x) :=
{ ∫ x

0 ε(u) du, if x ∈ R∗+,

0 if x = 0,
& E (x) :=

∫ x

0
E(u) du.

For every � in S ′(R), � ′ will denote the derivative of �, in the sense of tempered
distributions.3

Theorem 3.4 The map 	 : R+ → S ′(R) defined by setting:

	(t) := 	t :=
{
1[0,t) · ε(t − ·) if t ∈ R∗+,

0 if t = 0,

fulfill Assumption (A ). More precisely, it is differentiable on R∗+ and, for all t in R∗+,

	′(t) := d

dt
[	(t)] = Ft − (Gt )

′ + (Ht )
′′, (3.5)

where Ft ,Gt and Ht all belong to S ′(R) and are defined by setting, for all t in R∗+ :

• Ft := ε(t−·)
t

1[0,t) + (
ε(t)− E(t)

t

)
δ0; • Ht := ((t − ·) · E(t − ·) − E (t − ·))

t
· 1[0,t);

• Gt := (
E(t) − E (t)

t

)
δ0 + u �→

(
u ε(t − u) − E(t − u)

t

)
1[0,t)(u).

Furthermore, the map t �→ |	′(t)|−q belongs to ∩
b∈R∗+

L2((0, b)), for every integer

q ≥ 3.

3.2 Generalized Functionals of G

In order to establish easily that the map t �→ f (Gt ) is (S)∗-integrable and integrable with
respect to itself, when f is function of polynomial growth, we introduce here the generalized
functionals of G, using [30, Section 7.1]. We identify, here and in the sequel, any function
f of L1

loc(R) with its associated tempered distribution, denoted noted Tf , when it exists. In
particular, one notes in this case: < f, φ > = ∫

R f (t) φ(t) dt , for every φ in S (R). In this
latter case we say that the tempered distribution T := Tf is of function type. Define the sets
ZR := {t ∈ R; Rt = 0} and Zc

R := {t ∈ R; Rt > 0}.

Theorem-Definition 3.2 Let F be a tempered distribution. For every t in Zc
R , define

F(Gt) := 1√
2πRt

+∞∑
k=0

1

k! Rk
t

< F, ξt,k > Ik

(
gt

⊗k
)

,

where, for every (x, k) in R × N, ξt,k(x) := π1/4(k!)1/2Rk/2
t exp{− x2

4Rt
}ek(x/(

√
2Rt)).

Then for all real t , F(Gt) is a Hida distribution, called generalized functional of Gt .

Proof This is an immediate consequence of [30, pp. 61–64], by taking f := gt .

3One therefore has < (Gt )
′, ϕ >= − < Gt , ϕ

′ >, for every (t, ϕ) in R∗+ × S (R).
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Remark 2 As shown in [4], when F = f is of function type, F(Gt) coincides with f (Gt ).

The following theorem yields an estimate of ‖F(Gt)‖2−p which will be useful in the
sequel.

Theorem 3.5 Let p be in N. Then there is a constant Dp , such that:

∀ F ∈ S−p(R), ∀ t ∈ Zc
R, ‖F(Gt )‖2−p ≤ max{R−2p

t ; R
2p
t } R

−1/2
t Dp |F |2−p. (3.6)

Proof This is a simple consequence of the following more general result: let f be a nonzero
function in L2(R), p ∈ N and F ∈ S−p(R). There exists a constant Dp , independent of F

and f , such that ‖F(< ., f >)‖2−p ≤ max{|f |−4p
0 ; |f |4p0 } |f |−1

0 Dp |F |2−p. The line of

the proof is the same as in [4, Theorem 3.3] by replacing there t2H by |f |20.

3.3 S-Transform of G and W(G)

The following theorem makes explicit the S-transforms of G, of the Gaussian white noise
W(G) and of generalized functionals of G. Denote γ the heat kernel density on R+ ×R i.e.

γ (t, x) := 1√
2πt

exp {−x2

2t } if t �= 0 and 0 if t = 0. (3.7)

The results provided in Theorem 3.6 below will be used a lot in the sequel, and in
Section 3.4.

Theorem 3.6 For every η in S (R) one has the following equalities:
(i) S(Gt )(η) = < gt , η >L2(R), for every t in R,

(ii) S(W
(G)
t )(η) = < g′

t , η > = d
dt

[< gt , η >L2(R)], for every t in RD;
(iii) For p ∈ N, F ∈ S−p(R), and t in Zc

R , S(F (Gt ))(η) = 〈F, γ (Rt , . − < gt , η >)〉.
Furthermore, there exists a constant Dp , independent of F, t and η, such that:

∀t ∈ Zc
R, |S(F (Gt ))(η)|2 ≤ max{R−2p

t ; R
2p
t } R

−1/2
t Dp |F |2−p exp{|η|2p}.

Proof (i) Obvious in regard of Proposition 2.4. Point (ii) is a straightforward consequence
of (iii) in Lemma 2.5, and of Eq. 3.3. The equality in (iii) results from [30, Theorem 7.3
p. 63] with f = gt . The inequality results from Eq. 3.6 as in [4, Theorem 3.8].

Before giving the general result on stochastic integral wrt G we deal, in the next
subsection, with Wiener integral wrt G.

3.4 Wiener Integral with Respect to G

In all this subsection one denotes I a Borel set ofR and f : R → R a deterministic and
measurable function We want to define the integral of f , on I , with respect to G. Since the
map s �→ Gs is (weakly) differentiable on I , one may think to define formally the Wiener
integral wrt G, denoted

∫
I

f (s) d�Gs , by setting:∫
I

f (s) d�Gs :=
∫

I

f (s) · dGs

ds
ds =

∫
I

f (s) · W(G)
s ds, (3.8)

assuming s �→ f (s) · W
(G)
s is (S)∗-integrable on I . More precisely we have the following

definition.
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Definition 1 (Wiener integral with respect to G) For any Borel set I of R and any deter-
ministic measurable function f : I �→ R such that s �→ f (s) W

(G)
s is (S)∗-integrable on

I , one says that
∫
I
f (s) d�Gs , defined by Eq. 3.8, is the Wiener integral of f on I , with

respect to G, if
∫
I
f (s) d�Gs belongs to (L2).

Even if, in practice, there will often exist an integer q in N such that the map t �→ |g′
t |−q

is bounded (as it was the case in Example 3.3), it seems more than reasonable to expect,
even if t �→ |g′

t |−q is not bounded, that, for any finite interval [a, b] of R,
∫

(a,b)

1 d�Gs is well-defined and such that:
∫

(a,b)

1 d�Gs = Gb − Ga, in (S)∗. (3.9)

Thanks to Equality (3.8) and Theorem 3.6, it is clear that (3.9) entails, among other
consequences, that:

• The map s �→< g′
s , η > belongs to L1

lõc(R), for every η in S (R), (3.10)

•
∫

(a,b)

<g′
s , η>ds =< gb, η>−<ga, η>, for every η in S (R) and (a, b) in R2. (3.11)

Besides, using Proposition 2.2, it is easy to establish that:

| < F, ϕ > | ≤ |F |−q |ϕ|q ; ∀(F, ϕ, q) ∈ S ′(R) × S (R) × N. (3.12)

In view of Eq. 3.12, it appears that Assumption A(iii) is almost necessary to get (3.9),
if one deals with Pettis integrals, and necessary if one deals with Bochner integral.4 More-
over, and by the very definition of the space S ′(R) as the inductive limit of the sequence
(S−p(R))

p∈N, Assumption A(ii) entails that, for every compact set K of RD , there exists
an integer q in N such that |g′

t |−q < +∞, for every t in K. Thus A(iii) appears to be
only a slight reinforcement of A(ii). Besides, it is clear that (3.11) is nothing but Assump-
tion A(iv). Thus, the simple considerations given in Eq. 3.9, as well as the ones given right
above Remark 1 (about A(i) & A(ii)), entail that Assumption (A ) is almost minimal (i.e.
necessary) to get a reasonable notion of Wiener integral. We will show further that these
assumptions are also sufficient to provide us with a general non-anticipative stochastic
integral. Denote E(R) the set of step functions on R. We have the following property.

Proposition 3.7 For any f in E(R),
∫
Rf (u) d�Gu is a Wiener integral with respect to G.

Moreover, let [a, b] be a finite interval of R, then
∫ b

a
d�Gu = Gb − Ga almost surely.

Proof Fix η in S (R). From (ii) of Theorem 3.6, t �→ S(f (t) W
(G)
t )(η) is measurable on

R. Moreover we have, thanks to Lemma 2.3, |S(f (t) W
(G)
t )(η)| ≤ |g′

t |−q sup
t∈R

|f (t)| e|η|2−q ,

where q is the integer given by Assumption A(iii). Theorem 2.6 then applies and entails
that f is dG-integrable on (a, b). Furthermore, thanks to Lemma 2.5, one has the equality:
S(

∫ b

a
dGu)(η) = ∫ b

a
S(W

(G)
u )(η) du = [S(Gu)(η)]ba = S(Gb − Ga)(η). The equality, in

(S∗), follows from the injectivity of the S-transform. Finally, since Gb − Ga belongs to
(L2), the equality

∫ b

a
d�Gu = Gb − Ga holds in (L2) and hence almost surely.

4See Appendix A for precisions about Bochner integrals.
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The following theorem gives a sufficient condition for an integral, of the form (3.8), to
be a Wiener integral. Denote� the equality in law.

Theorem 3.8 Assume that there exists q0 in N such that the map s �→ f (s) · |g′
s |−q0

belongs to L1(R). Then Z := ∫
R f (s) d�Gs is an element of (S)∗, which verifies,

Z = ∑+∞
k=0(

∫
R f (s) < g′

s , ek > ds) < ., ek > in (S)∗. Moreover Z is a Gaussian random

variable if and only if
∑+∞

k=0

( ∫
R f (s) < g′

s , ek > ds
)2

< +∞. In this latter case, on has:

Z � N
(
0,

+∞∑
k=0

( ∫
R

f (s) < g′
s , ek > ds

)2)
.

Proof In order to show that equality
∫
R f (s) d�Gs = ∑+∞

k=0

(∫
R f (s) < g′

s , ek > ds
)

< ., ek > holds in (S)∗, let us establish points a), b) and c) below.

a) s �→ f (s)·W(G)
s is (S)∗-integrable overR. One can use Thm. 2.6 since one has, ∀(η, s)

in S (R)×RD and using Lemma 2.3, |S(f (s)W
(G)
s )(η)| ≤ |f (s)| ‖W(G)

s ‖−q0
e
|η|2q0 ≤

|f (s)| |g′
s |−q0

e
|η|2q0 .

b) �f := ∑+∞
k=0

(∫
R f (s) < g′

s , ek > ds
)
< ., ek > belongs to (S−p0), as soon as

p0 ≥ q0 + 1. Let p0 be in N such that p0 ≥ q0 + 1. Recall the definition
of Rn given in Eq. 3.4. Proposition 2.2 and Eq. 3.12 entail that ‖�f ‖2−p0

≤
‖s �→ f (s) · |g′

s |−q0
‖2
L1(R)

Rp0−q0 < +∞.

c) 	f := ∫
R f (s) d�Gs is equal to �f in (S)∗. Define the (S)∗-process τ and the fam-

ily of (S)∗-processes (τN)N∈N by setting, for every real s, τ(s) := ∑+∞
k=0 f (s) <

g′
s , ek > < ., ek >, and τN(s) := ∑N

k=0 f (s) < g′
s , ek > < ., ek >. Obviously

we have 	f = ∫
R τ(s) ds, �f = lim

N→+∞
∫
R τN(s) ds in (S)∗. It then remains

to show that 	f = lim
N→+∞

∫
R τN(s) ds in (S)∗. For this purpose, we use The-

orem A.2. Let (p0, n) be a couple of integers with p0 ≥ q0 + 1. It is easily
seen that τN and τ are weakly measurable on R (see Definition 3) and, using the
same upper-bound we used in b), that τN(s) and τ(s) belong to (S−p0) for every
real s. Moreover, using Proposition 2.2 and, again, the upper-bound we used in b),
it is clear that both functions s �→ ‖τN(s)‖−p0

and s �→ ‖τ(s)‖−p0
belong to

L1(R, ds) since ‖τN(s)‖2−p0
≤ ‖τ(s)‖2−p0

≤ f 2(s) |g′
s |2−q0

Rp0−q0 . We hence have
shown that both functions τN(.) and τ(.) are Bochner integrable on R. Besides, for
every (n,m) in N2 with n ≥ m, we have, thanks to the previous upper bound,∫
R ‖τn(s) − τm(s)‖−p0

ds ≤ ∫
R ‖

+∞∑
k=m+1

f (s) < g′
s , ek >< ., ek >‖−p0 ds ≤ Rp0−q0 ·

‖s �→ f (s)|g′
s |−q0

‖
L1(R)

. It is then clear that the left hand side of the previous inequal-

ity tends to 0 as (n,m) tends to (+∞,+∞). Theorem A.2 (see Appendix A) applies
and establishes c). Finally, Z is the (L2)-limit of a sequence of independent Gaus-
sian variables if

∑+∞
k=0 (

∫
R f (s)< g′

s , ek > ds)
2

< +∞. The equality E[Z2] =∑+∞
k=0

( ∫
R f (s) < g′

s , ek > ds
)2 then becomes obvious.
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Example 3.9 1. If G is a Brownian motion, point 1 of Example 3.3, Theorem 3.8 as well

as the equality
∑+∞

k=0

(∫
R f (s) < δs, ek > ds

)2 = ‖f ‖2
L2(R)

, allow us to define the

Wiener integral of f , in sense of Definition 1, for any f in L2(R). This shows that
our definition of Wiener integral wrt Brownian motion and the usual one both coincide
exactly. Besides, it is clear that If := ∫ 1

0 f (s)�B1 ds is an (L2) random variable if and
only if f belongs to L2([0, 1]). Therefore Theorem 2.6 allows us to define the Wiener
integral of f wrt Brownian bridge, in sense of Definition 1, if and only if f belongs to
L2([0, 1]).

2. The case of Wiener integral wrt fBm (resp. wrt mBm) has been treated in [33, Section
4] (resp. in [33, Sections 2.3 & 4]). In view of, the previous point of this exam-
ple, Example 3.3 and Theorem 3.8, one can extend [33, Proposition 4.31] and claim
that

∫
R f (s) d�BH

s is the Wiener integral of f , wrt BH , for every function f in
L1(R)∩L2

H (R), whereL2
H (R) has been defined in Section 2.5. The fonctions for which

one can defined a Wiener integral wrt mBm are included into E(R)
<,>h , where <, >h

denotes the inner product, defined (in [33, Sections 2.3 & Proposition 3.1.]) by setting
< 1[0,t], 1[0,s] >h = Rh(t, s), and where Rh has been defined in Eq. 2.3.

3. In the case of Vγ - processes, one can improve Proposition 14 of [38]. Indeed, denote
H the set of all functions for which [38, Section 3] define a Wiener integral. For any
η : [0, T ] → R+, continuous and increasing in a neighborhood of 0 and such that
lim0+ η = 0, define the set Cη := {f ∈ L2([0, T ]), sup

0≤r<s≤T

|f (s)−f (r)|/η(s − r) <

+∞}. In order to show that H contains Cη, [38, Proposition 14] has to require an
additional assumption on η. No such assumption is required here. Using only Theorem
3.8, one easily sees that, for every T > 0, the process (Zt )t∈[0,T ], defined by Zt :=∫ t

0f (s) d�Gs , where f belongs to Cη, is a Gaussian process. One just needs to see that,
|f (s)| · |	′(s)|−q0

≤ (M + |f (r0)|) (1 + |	′(s)|−q0
), for every (f, s) in Cη × [0, T ],

where M := sup
0≤u≤T

η(u) · sup
0≤r<s≤T

|f (s)−f (r)|/η(s − r), 	 and 	′ have been defined

in Theorem 3.4 and r0 is any real in (0, T ] such that |f (r0)| < +∞. Using Theorem
3.4, one concludes that s �→ |f (s)| · |	′(s)|−q0

belongs to L1((0, T )) and one then uses
Theorem 3.8.

Remark 3 In fact one can extend the notion of Wiener integral wrt any G in G in two ways.
The first way, which is also the more general one, is given in Point 1. of Remark 10. The
second way it is the following: If the bilinear form <, >R , defined on E(R) × E(R) by
setting < 1[0,t], 1[0,s] >R := R(t, s) is an inner product; assuming there exists an isometry,
denoted M : (E(R),<,>R) → (L2(R),<,>L2(R)), such that gt := M(1[0,t]), then one

can extend the notion of Wiener integral to any elements of E(R)
<>R . This latter space

contains in general not only functions but also tempered distributions. This general method
applies to fBm and mBm (see [33, Section 3]), as well as to Volterra processes.

Remark 4 As it is explained in [51, Example 3.3.] the Brownian bridge admits several
representations, among which are the orthogonal one, the Fredholm one and the canonical
one. It is clear that both the orthogonal and the canonical representations of the Brownian
bridge on [0, T ] fulfill Assumption (D) on R := [0, T ] (since there exists q inN∗ such that
t �→ |g′

t |−q belongs to L1([0, b], dt), for every b in [0, T ). This result can be extended to
Gaussian bridges (see [14] for more details about this latter notion), assuming the Gaussian
process G := (Gt )t∈[0,T ] fulfills Assumption A .
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3.5 The Wick-Itô Integral with Respect to Gaussian Processes

We still assume in this section that Assumption (A ) holds. We are now able to define, and
give the main properties, of the Wick-Itô integral wrt G. We still denote I a Borel set of
R and let X := (Xt )t∈R be an (S)∗-valued process. Because the belonging to (S)∗ is not
stable by ordinary product, one can not generalize (3.8) to any (S)∗-valued process X, by
simply setting: ∫

I

Xs d�Gs :=
∫

I

Xs · dGs

ds
ds =

∫
I

Xs · W(G)
s ds.

However, since the belonging to (S)∗ is stable by Wick product one may extend the
integral (3.8) to (S)∗-valued processes X in the following manner.

Definition 2 (Wick-Itô integral wrt Gaussian process) Let X : R → (S)∗ be a process
such that the process t �→ Xt � W

(G)
t is (S)∗-integrable on R. The process X is then said

to be dG-integrable on R (or integrable on R), wrt the Gaussian process G. The Wick-Itô
integral of X wrt G, on R, is defined by setting:

∫
R

Xs d�Gs :=
∫

R
Xs � W(G)

s ds. (3.13)

For any Borel set I of R, define
∫
I
Xs d�Gs := ∫

R 1I (s) Xs d�Gs .

The Wick-Itô integral of an (S∗)-valued process, wrt G is then an element of (S)∗. It is
easy to see that Wick-Itô integration wrt G, is linear and that Definition 2 is coherent with
Definition 1, of Wiener integral, we gave in the previous subsection. Moreover, and as it
will be stated in Proposition 3.11 below, one of the advantages of Definition 2 is that our
integral wrt G is centered, assuming it belongs to (L2). Used a lot in the sequel of this paper,
the following condition ensures the integrability, on I , of an (S)∗-valued process X, wrt G.

Let X : I → (S)∗ be an (S)∗-valued process. Denote the following condition:

I
{

(i) : t �→ S(Xt )(η) is measurable on I, for all η in S (R)

(ii) : ∃(p, q) ∈ N2 such that the map t �→ ‖Xt‖−p‖W(G)
t ‖−q belongs to L1(I, dt).

When the processes X and G satisfy condition (I) on I , we will say that (X,G) satisfies
(I) or (Ip,q), when we want to specify the value of p and q in (ii) of Condition (I). We
will use the following theorem a lot in the sequel.

Theorem 3.10 If (X,G) satisfies condition (Ip,q) on I , then
∫
I
Xs d�Gs is well-defined

and belongs to (S−r ) for every r ≥ 2 + max{p; q}. Moreover there exists a real constant
C, independent of X and G , such that:

∀ r ≥ 2 + max{p; q}; ∥∥
∫

I

Xt d�Gt

∥∥
−r

≤ C

∫
I

‖Xt‖−p ‖W(G)
t ‖−q dt.

Proof ∀η ∈ S (R), the measurability on I of t �→ S(Xt � W
(G)
t )(η) is clear since S(Xt �

W
(G)
t )(η) = S(Xt )(η) < g′

t , η >. Condition (I) being verified, we use Lemma 2.3 to get,

for all η in S (R), |S(Xt � W
(G)
t )(η)| ≤ e

|η|2max{p;q} ‖Xt‖−p ‖W(G)
t ‖−q , where p and q are

given by condition (I). Theorem 2.6 then clearly applies. The upper-bound in the theorem,
as well as the existence of r and C, results from [30, Thm. 13.5].
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We can now give the first properties of the Wick-Itô integral wrt G.

Proposition 3.11 (i) Let I be a Borel subset of R and X :I →(S)∗ a dG-integrable
process over I . Assume that

∫
I
Xs d�Gs belongs to (L2). Then E[∫

I
Xs d�Gs] = 0.

(ii) Let [a, b] ⊂ R. The (S∗)-process � defined by �(t) := ∫ t

a
Xs d�Gs is continuous

on [a, b], as soon as (X,G) satisfies condition (I) on [a, b].

Proof (i) That S(
∫
I

Xs d�Gs)(0) = ∫
I
S(Xs)(0) S(W

(G)
s )(0) ds = 0 is clear since

S(W
(G)
s )(0) = < g′

s , 0 > = 0. Now, it sufficient to note that E[U ] = S(U)(0) for every
r.v. U in (L2).

(ii) The integrability of X wrt G is proved by Theorem 3.10. Let t0 be fixed in (a, b).
In order to establish the continuity of � in t0 we are going to use [30, Theorem 8.6]. By
symmetry one may assume that t0 ≥ t . [30, Theorem 8.6] applies since we clearly have:

a) |S(�(t) − �(t0))(η)| ≤ e
|η|2max{p;q}

∫ t0
t

‖Xu‖−p ‖W(G)
u ‖−q du −→ 0

t→t0ze
;

b) |S(�(t))(η)| ≤ e
|η|2max{p;q}

∫
[a,b] ‖Xu‖−p ‖W(G)

u ‖−q du.

Proposition 3.12 Let (X,G) be a couple of processes that satisfies condition (I) on R.
Define, for every n in N, the process G(n) := (G

(n)
t )t∈R by setting G

(n)
t :=< ., g

(n)
t >,

where g
(n)
t belongs to L2(R) and let (X(n))n∈N := {(X(n)

t )t∈R; n ∈ N} denote a sequence
of (S)∗-valued processes. Let us write the following conditions:

a1) (X,G(n)) satisfies condition (I) on I , uniformly5 in q.
a2) ∃ (r, r1) ∈ N × (0, +∞] such that: ‖G(n)

. − G.‖−r −→ 0
n→+∞,

where the convergence holds both pointwisely on I , and in Lr1(I ),
a3) X is (S)∗-differentiable on I and there exist (a, l) ∈ N × R and a function L ∈

Lr2(I, dt) s.t.

| d
ds

[S(Xs)(η)]| ≤ L(s) ea|η|2l ,
for all η of S (R) and for a.e. s of I , where r2 ∈ (0, +∞] is such that r−1

1 +r−1
2 = 1,

a′
2) ∃(r1, r2) ∈ (0, +∞]2 with r−1

1 + r−1
2 = 1, such that:

(i) ‖s �→ |g′(n)
s − g′

s |−q‖Lr1 (I ) −→ 0
n→+∞ ; (ii) s �→ ‖Xs‖−p belongs to

Lr2(I ).

If conditions (ai)i∈{1;2;3} or both conditions (a1) and (a′
2) are fulfilled, then one has the

convergence: ∫
I

Xs d�G(n)
s −→

n→+∞

∫
I

Xs d�Gs in (S)∗.

Besides, denote the following conditions:

b1) (X(n),G) satisfies condition (I) on I , uniformly in p.
b2) ∃ r ∈ N such that: ‖X(n)

. − X.‖−r −→ 0
n→+∞ pointwise.

5i.e. ∃ (p, q) ∈ N2, such that s �→ ‖Xs‖−p‖W(G(n))
s ‖−q belongs to L1(I, ds), for every n in N.
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b3) Both X and (X(n))n∈N are (S)∗-differentiable on I . Moreover, ∃(l, a, r2) ∈ N×R×
(0, +∞] and a function L in Lr2(I, dt) such that, for every (n, η) in N× S (R) and
a.e. s ∈ I ,

| d

ds
[S(X(n)

s )(η)]| + | d

ds
[S(Xs)(η)]| ≤ L(s) ea|η|2l ,

b4) (i) ∃ r ′ ∈ N, s.t. ‖s �→ ‖ d
ds

[Xs − X
(n)
s ]‖−r ′ ‖Lr2 (I ) −→ 0

n→+∞ and (ii)

s �→ |gs |−q belongs to Lr1(I ), where r1 ∈ (0, +∞] is such that r−1
1 +

r−1
2 = 1.

b′
2) ∃(r1, r2) ∈ (0, +∞]2 with r−1

1 + r−1
2 = 1, such that:

(i) ‖s �→ ‖Xs − X
(n)
s ‖−p‖Lr2 (I ) −→ 0

n→+∞ to Lr2(I ) (ii) s �→ |g′
s |−q ∈

Lr1(I ).

If conditions (bi)i∈{1;2;3;4} or both conditions (b1) and (b′
2) are fulfilled, then one has

the convergence: ∫
I

X(n)
s d�Gs −→

n→+∞

∫
I

Xs d�Gs, in (S)∗.

Proof The scheme of the proof is “symmetric in G(n) and X(n)”; we will then only show the
convergence

∫
I
Xs d�G(n)

s −→
n→+∞

∫
I
Xs d�Gs. Denote An := ∫

I
Xs d�Gs − ∫

I
Xs d�G(n)

s ;

let us show that assumptions of [30, Theorem 8.6] are fulfilled. The existence of all
following integrals come form Theorem 2.6.

• Case where a1) & a′
2) are fulfilled:

|S(An)(η)|r1r2 = (| ∫
I
S(Xs)(η) S(W

(G(n))
s − W

(G)
s )(η) ds|)r1r2≤ (

∫
I
‖Xs‖r2−p ds)(

∫
I
|g′(n)

s − g′
s |

r1

−q ds.

• Case where (ai)i∈{1;2;3} are fulilled : Let us assume that I = [0, t]. An integration by

parts yields:

|S(An)(η)| = |
∫

I

S(Xs)(η) S(W(G(n))
s −W(G)

s )(η) ds| = |
∫

I

S(Xs)(η)<(g(n)
. )′s −g′

s , η > ds|

= < g
(n)
t − gt , η > S(Xt )(η) −

∫
I

< g(n)
s − gs, η > d

ds
[S(Xs)(η)] ds

≤ e
(1+a)|η|2

(p+r+l) (‖Xt‖−p‖G(n)
t − Gt‖−r +

∫
I

‖G(n)
s − Gs‖−r L(s) ds).

The Hölder inequality then allows one to establish the two conditions of [30, Theorem
8.6] and therefore achieves the proof.

Remark 5 1. The advantage of condition (I) is that it allows us to make assumptions on
both elements of the couple (X,G) instead of making assumptions only on X or only on
G. Thus, the more informations on the “regularity” of X (resp. of G) one gets, the less
informations one needs on the “regularity” of G (resp. of X).

2. It is clear, in a2) of (iii) of Proposition 3.12, that one can also choose the pointwise
convergence in (L2) or in probability instead of convergence in (S−r ).

3. When G is an fBm (resp. an mBm), the Wick-Itô integral wrt G given by Definition
2 is nothing but the fractional (resp. multifractional) Wick-Itô integral defined in [4, 7,
11] (resp. in [31, 33, 34]).
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It is of interest to have also a criterion of integrability for generalized functionals of G.
This will provide a very simple proof of the fact that both

∫ b

a
f (Gt ) dt and

∫ b

a
f (Gt )d

�Gt

exist in (S)∗.

Theorem 3.13 Let p be in N, [a, b] be an interval of Zc
R and let F be in S−p(R). If

t �→ max{R−p−1/4
t ; R

p−1/4
t } belongs to L1([a, b]) (resp. there exists an integer q such

that the map t �→ |g′
t |−q max{R−p−1/4

t ;R
p−1/4
t } belongs to L1([a, b])), then the stochas-

tic distribution process F(Gt) is (S)∗-integrable (resp. dG-integrable) on [a, b] (resp. on
(a, b)).

Proof Lemma 2.3 and Equality (3.6) both apply and allow us to use Theorem 2.6.

Remark 6 Of course conditions of Theorem 3.13 are obviously verified when the infimum
of t �→ Rt on [a, b] is positive and when its supremum is upper-bounded on [a, b]. More-
over, in the particular case where these latter conditions hold, Theorem 3.13 entails that
both quantities

∫ b

a
f (Gt ) dt and

∫ b

a
f (Gt ) d�Gt exist in (S)∗, as soon as f is a function

of polynomial growth.

Example 3.14 (Computation of
∫ T

0 Gt d�Gt ) Let T > 0. Assume that [0, T ] ⊂ R and that
t �→ Rt is upper-bounded on [0, T ], then the following equality holds almost surely and in
(L2).

∫ T

0
Gt d�Gt = 1

2 (G2
T − RT ). (3.14)

This result will be obtained as a direct consequence of Itô formulas provided in Section 4.
The direct proof is therefore left to the reader.

Remark 7 In the previous example, we could have replaced the assumption t �→ Rt is
upper-bounded on [0, T ] by ∫ T

0 Rt · |g′
t |−q dt < +∞.

To end this section, we present a simple but classical stochastic differential equation,
driven by a Gaussian process. We need first to generalize the definition of the Wick expo-
nential, given at the beginning of Section 2.3, to the case where 	 belongs to (S)∗. For any
	 in (S)∗and k in N∗ let 	�k denotes the Wick product of 	, taken k times. For any 	 in

(S)∗such that the sum
∑+∞

k=0
	�k

k! converges in (S)∗, define the Wick-exponential of 	, and

denote exp� 	, the element of (S)∗defined by exp� 	 := ∑+∞
k=0

	�k

k! . For f in L2(R) and
	 :=< ., f >, it is easy to verify that exp� 	 =: e<.,f > :.

Example 3.15 (The Gaussian Wick exponential) Let R = R+ and let us consider the
following Gaussian SDE:

(E) :
{

dXt = α(t)Xt dt + β(t)Xt d�Gt

X0 ∈ (S)∗,
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where α : R+ → R and β : R+ → R are two deterministic continuous functions. Of course
(E) is a shorthand notation for Xt = X0 + ∫ t

0 α(s) Xs ds + ∫ t

0 β(s) Xs d�Gs . As in [21],
it is easy to guess the solution. Let us define the process Z by setting:

Zt := X0 � exp�
(∫ t

0
α(s) ds +

∫ t

0
β(s) d�Gs

)
, t ∈ R+, (3.15)

Theorem 3.16 The process Z defined by Eq. 3.15 is the unique solution, in (S)∗, of (E).

Proof This is a straightforward application of [21, Theorem 3.1.2].

4 Itô Formula

The main result of this section is Theorem 4.4, which provides an Itô Formula in (L2), for
C1,2 functions, with sub-exponential growth. This latter result is given in Section 4.1, while
the end of this section is devoted to a complete comparison between our Itô formula and
all the Itô formulas for Gaussian processes provided so far in the literature of functional
extensions of itô integral that are: [1, Thms 1 & 2], [38, Thm 31], [41, Thm 1], [28, Cor.
8.13], [27, Prop. 11.7], [36, Thm. 3.2]. It will, in particular, show the generality of the Itô
formula for Gaussian processes of the form Eq. 1.1 we establish here.

Let us first recall a few basic facts about Lebesgue-Stieljes & Riemann-Stieljes integrals,
that will be used extensively in the remaining part of this work. Let [a, b] be an interval
of R and j : [a, b] → R be a function of bounded variation. Denote αj the signed mea-
sure such that j (t) = αj ([a, t]), for every t in [a, b]. For any function f : [a, b] → R,
denote

∫ b

a
f (s) dj (s) or

∫ b

a
f (s) dαj (s) the Lebesgue-Stieljes integral of f with respect to

j , assuming it exists. In this latter case, we will write that f ∈ L1(I, dj (t)) or L1(I, αj ). In
the particular case where the function f is continuous on [a, b], the Lebesgue-Stieljes inte-
gral of f exists and is also equal to the Riemann-Stieljes integral of f , which is denoted
and defined by:

(R.S.)
∫ b

a

f (s) dj (s) := lim
π→0

n∑
i=1

f (ξ
(n)
i ) (j (xi) − j (xi−1)), (4.1)

where the convergence holds uniformly on all finite partitions P(n)
π := {a := x0 ≤ x1 ≤

· · · ≤ xn := b} of [a, b] such that max
1≤i≤n

(xi − xi−1) ≤ π and such that ξ
(n)
i belongs to

[xi−1, xi]. The following result, will be used extensively in the sequel of this section.

Lemma 4.1 Let [a, b] be a finite interval of R, I (resp. J ) an interval of R+ (resp. of R)
and let L : [a, b] × I × J be a C1-function. Let f : [a, b] → I and j : [a, b] → J be two
continuous functions of bounded variation on [a, b]. Then one has the following equality:

L(b, f (b), j (b)) − L(a, f (a), j (a)) =
∫ b

a

∂L

∂u1
(s, f (s), j (s)) ds +

∫ b

a

∂L

∂u2
(s, f (s), j (s)) df (s)

+
∫ b

a

∂L

∂u3
(s, f (s), j (s)) dj (s). (4.2)
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Proof All the integrands in the right hand side of Eq. 4.2 are continuous. Thus the Lebesgue-
Stieljes integrals in the right hand side of Eq. 4.2 are also Riemann-Stieljes integrals. It is
then easy to deduce (4.2), using (4.1).

In view of Theorem-Definition 2.1, it is clear that we can extend the notion of integral
in (S)∗to the case where m is a signed measure (the notation remaining the same). We will
therefore keep the same notations for this integral, whatever the measure m is (signed or
positive). In the remaining of this paper, and unless otherwise specify, the measure m denote
a measure, that may be σ -finite or signed.

4.1 Itô Formula in (L2) for C1,2 Functions with Sub-exponential Growth

Let us begin with the following lemma, the proof of which is an immediate consequence of
[53, Theorems 1,2 p.88-89].

Lemma 4.2 Let T > 0 and v : [0, T ] × R → R be a continuous function such that there
exists a couple (CT , λT ) of R × R∗+ such that max

t∈[0,T ]
|v(t, y)| ≤ CT eλT y2 for all real y.

Define; for every a > λT , the map Jv : R+ × (0, 1/4a) × R → R by setting:

Jv(t, u1, u2) :=
∫
R

v(t, x) · γ (u1, x − u2) dx. (4.3)

Then Jv is well defined. Moreover lim
(t,u1,u2)→(t0,0+,l0)

Jv(t, u1, u2) = v(t0, l0), ∀ (t0, l0) in

[0, T ] × R.

It is easy to extend [5, Thm. 2.8] to the case of a Borel measurem instead of the Lebesgue
measure. The next result, which constitutes this extension, is more suitable that Thm. 2.6,
when one deals with L2-valued integrands. The proof being obvious, is then left to the
reader.

Theorem 4.3 Let m be a positive measure on (R,B(R)) and X : R → (L2) be such that
the function t �→ S(Xt )(η) is measurable, for all η in S (R), and such that t �→ ‖Xt‖0
belongs to L1(R,m). Then X is (S)∗-integrable over R and verifies:

∥∥
∫

R
Xt m(dt)

∥∥
0

≤
∫

R
‖Xt‖0 m(dt).

Through this subsection, we assume that T > 0 and define R := [0, T ]. We can now
give the main result of this section. Denote C1,2([0, T ] × R,R) the set of functions of two
variables which belongs to C1([0, T ],R) as function of their first variable and to C2(R,R)

as function of their second variable. The main result of this section is the following.

Theorem 4.4 Let T > 0. Let f be a C1,2([0, T ] × R,R) function. Furthermore, assume
that there are constants C ≥ 0 and λ < (4 max

t∈[0,T ]
Rt)

−1 such that for all (t, x) in [0, T ]×R,

max
t∈[0,T ]

{∣∣f (t, x)
∣∣, ∣∣ ∂f

∂t
(t, x)

∣∣, ∣∣ ∂f
∂x

(t, x)
∣∣, ∣∣ ∂2f

∂x2
(t, x)

∣∣} ≤ Ceλx2 . (4.4)
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Assume moreover that Assumption (A ) holds and that the map t �→ Rt is both
continuous and of bounded variations on [0, T ]. Then the following equality holds in (L2):

f (T , GT ) = f (0, 0) +
∫ T

0

∂f
∂t

(t, Gt ) dt +
∫ T

0

∂f
∂x

(t, Gt ) d�Gt + 1
2

∫ T

0

∂2f

∂x2
(t, Gt ) dRt .

(4.5)

Proof The general technique of proof of the Itô formula via the S-transform can be traced
back to [29]. The general structure of this proof is similar to the proof of [5, Theorem 5.3].
However, one can not follow this latter completely since one does not assume (as it is the
case for fBm) that ZT

R
= {0}, where we set ZT

R
:= ZR ∩ [0, T ]. Equality (4.5) may be

rewritten as:∫ T

0

∂f
∂x

(t, Gt ) d�Gt = f (T , GT ) − f (0, 0) −
∫ T

0

∂f
∂t

(t, Gt ) dt − 1
2

∫ T

0

∂2f

∂x2
(t, Gt ) dRt .

(4.6)

Thanks to Eq. 4.4 we may write, for every K in
{
f,

∂f
∂t

,
∂f
∂x

,
∂2f

∂x2

}
and t in [0, T ], that

E
[
K(t, Gt )

2] ≤ M2, where we set M2 := C2 (1 − 4λR)
−1/2

and R := sup{Rt ; t ∈
[0, T ]}. Moreover, t �→ ‖K(t, Gt )‖0 belongs to L1([0, T ], dt) while t �→ ‖ ∂2f

∂x2
(t, Gt )‖0

belongs to L1([0, T ], dRt ). The measurability of the maps t �→ S(K(t,Gt )(η) will become
clear thanks to Eq. 4.7. A simple application of Theorem 4.3 then yields that all members
on the right hand side of Eq. 4.6 exist and are in (L2). Moreover, Lemma 2.3 provides the

upper-bound |S(
∂f
∂x

(t, Gt ) � W
(G)
t )(η)| ≤ M |g′

t |−q e|η|2q , for all (η, t) in S (R) × [0, T ],
where q is given by Assumption A(iii). A straightforward application of Theorem 2.6 then

shows that
∫ T

0
∂f
∂x

(t, Gt ) d�Gt belongs to (S)∗. In order to prove the theorem, it then just
remains to show that the S-transform of both sides of Eq. 4.6 are equal. For this purpose, we
first give an integral representation of the S-transform of K(t, Gt ). Since E[: e<.,η> :] = 1,
for every η in S (R), one can define a probability measure Qη on the space (�,F) by set-

ting dQη

dμ

def=: e<.,η> :, where dQη

dμ
denotes the Radon-Nikodym derivative ofQη with respect

to μ. To make computations easier we use the following obvious fact: Lμ

X+S (X)(η) = LQη

X ,

for every centered Gaussian random variable X and η in S (R), and where Lρ
Y denotes the

law of a random variable Y under the probability measure ρ. In view of this fact, it is clear
that Gt is a Gaussian variable with mean < gt , η > and variance Rt , under the probability
measure Qη. One then gets, for every t in [0, T ] and η in S (R):

S(K(t,Gt ))(η) = EQη
[K(t, Gt )]=

∫
R

K
(
t, u R

1/2
t +<gt , η>

) 1√
2π

e−u2/2 du. (4.7)

Denote 
R := [0, T ]\ZT
R
and let η be in S (R). In view of Eq. 4.7 we get:

S(K(t, Gt ))(η)=
{ ∫

R K
(
t, v) γ (Rt , v−<gt , η>) dv, ∀ t ∈ 
R, (4.8)

K(t, 0), ∀ t ∈ ZT
R

.(4.9)

Let a be a real in (λ, (4R)
−1

). Thanks to Lemma 4.2, we know that the map JK is well
defined on �a := [0, T ] × (0, 1/4a) × R and we clearly have:

S(K(t,Gt ))(η) = JK(t, Rt ,< gt , η >), ∀ t ∈ 
R. (4.10)

Moreover, it is clear that Jf is a C1-function on �a . Denote, for every η in S (R),
jη : [0, T ] → R the map defined by jη(t) :=< gt , η >. According to Point 1 of Remark 1,
jη is absolutely continuous on [0, T ]. We first have the following result.
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Lemma 4.5 Let a be a real in (λ, (4R)
−1

) and J be the map, defined on �a by Eq. 4.3.
For every (t, η) in 
R × S (R), one has the following equalities:

J∂2f

∂x2

(t, Rt , jη(t)) = 2
∂Jf

∂u1
(t, Rt , jη(t));

J∂f
∂x

(t, Rt , jη(t)) = ∂Jf

∂u2
(t, Rt , jη(t)); J∂f

∂t

(t, Rt , jη(t)) = ∂Jf

∂t
(t, Rt , jη(t)).

Proof of Lemma 4.5 Using from one hand the equality ∂γ
∂t

= 1
2

∂2γ

∂x2
, valid on R∗+ × R, and,

form the other hand the theorem of differentiation under the integral sign, in a neighborhood
of every (t, u1, u2) in �a , provide equalities stated in Lemma 4.5 on each (t, u1, u2) of �a

and then allows us to conclude.

Using Lemma 4.5, one gets, for every η in S (R),

I (1)
η :=

∫ T

0
S(

∂2f

∂x2
(t, Gt ))(η) dRt =

∫

R

J ∂2f

∂x2

(t, Rt , jη(t)) dRt =2
∫


R

∂Jf

∂u1
(t, Rt , jη(t)) dRt , (4.11)

I (2)
η :=

∫ T

0
S(

∂f
∂x

(t,Gt ))(η) S(W
(G)
t )(η) dt =

∫

R

∂Jf

∂u2
(t, Rt , jη(t)) djη(t), (4.12)

I (3)
η :=

∫ T

0
S(

∂f
∂t

(t,Gt ))(η) dt =
∫


R

∂Jf

∂t
(t, Rt , jη(t)) dt +

∫
ZT

R

∂f
∂t

(t, 0) dt. (4.13)

Thus, in order to end the proof, one just has to establish the following equality:

S(f (T ,GT ))(η)−S(f (0, 0))(η)=
∫


R

∂Jf

∂t
(t, Rt , jη(t)) dt+

∫

R

∂Jf

∂u1
(t, Rt , jη(t)) dRt

+
∫


R

∂Jf

∂u2
(t, Rt , jη(t)) djη(t)+

∫
ZT

R

∂f
∂t

(t, 0) dt. (4.14)

Since 
R is an open set of [0, T ], that does not contain 0, it can be written under the form

R =

⊔
i∈N

(ai, bi) � (b, T ], (4.15)

where all the intervals in Eq. 4.15 are disjoint and where, by convention, (x, y) = (x, y] =
∅, for every reals x and y such that x ≥ y. Note moreover that every element of {ai, bi, i ∈
N} (as well as b, if (b, T ] �= ∅) belongs to ZT

R
. We need to distinguish between two cases:

First case: ∃ (a′, b′) ∈ (0, T )2 with a′ < b′ s.t. (0, a′) and (b′, T ] are both subsets of 
R .

Define a := sup{a′ ∈ [0, T ], s.t. (0, a′) ⊂ 
R} and b := inf{b′ ∈ [0, T ], s.t. (b′, T ] ⊂

R}. Even if one has to consider a subset I of N, one may assume, and we will in the
sequel, that (ai, bi) �= ∅, for every i in N. One can find ρ in R∗+ such that (ρ, a − ρ) �=
∅, (b + ρ, T − ρ) �= ∅. Moreover, for every i in N, one can find ρi in R∗+ such that
(ai +ρi, bi −ρi) �= ∅. Since all these intervals belong to 
R , one can apply Lemma 4.1, with
L = Jf , on each one of them. We then get, for every interval (x, y) in the set of intervals
ϒ := {(ρ, a − ρ), (b + ρ, T − ρ), (ai + ρi, bi − ρi); i ∈ N},

Jf (y, Ry, jη(y))−Jf (x, Rx, jη(x))

=
∫ y

x

∂Jf

∂t
(t, Rt , jη(t)) dt+

∫ y

x

∂Jf

∂u1
(t, Rt , jη(t)) dRt +

∫ y

x

∂Jf

∂u2
(t, Rt , jη(t)) djη(t). (�x,y )
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For any interval (x′, y′) which belongs to {(0, a), (b, T ), (ai, bi); i ∈ N}, there exists
a sequence of elements (xn, yn)n∈N in ϒN such that (xn, yn) → (x′, y′), as n → +∞
and such that [xn, yn] ⊂ (x′, y′). Lemma 4.2 then provides the convergence of the left
hand side of (�xn,yn) to f (y′, 0) − f (x′, 0), if (x′, y′) belongs to {(0, a), (ai, bi); i ∈ N},
and to S(f (T , GT ))(η) − f (b, 0), if (x′, y′) = (b, T ). Besides, the Lebesgue’s dominated
convergence theorem applies to each integrand of the right hand side of (�xn,yn), since
they are all continuous. This provides the convergence of the right hand side of (�xn,yn)

to
∫ y′
x′

∂Jf

∂t
(t, Rt , jη(t)) dt + ∫ y′

x′
∂Jf

∂u1
(t, Rt , jη(t)) dRt + ∫ y′

x′
∂Jf

∂u2
(t, Rt , jη(t)) djη(t), for

any (x′, y′) in {(0, a), (b, T ), (ai, bi); i ∈ N}. In view of Eqs. 4.9 and 4.10, and making
the summation of (�ai ,bi

), over all i ∈ N, we then get:

S(f (T , GT ))(η)−S(f (0, 0))(η)−(f (b, 0)−f (a, 0)−
∑
i∈N

(f (bi, 0)−f (ai, 0)))

=
∫


R

∂Jf

∂t
(t, Rt , jη(t)) dt+

∫

R

∂Jf

∂u1
(t, Rt , jη(t)) dRt +

∫

R

∂Jf

∂u2
(t, Rt , jη(t)) djη(t). (4.16)

Denote � := ∫
ZT

R

∂f
∂t

(t, 0) dt , one has the equality:

� =
∫

[0,T ]
∂f
∂t

(t, 0) dt−
∫


R

∂f
∂t

(t, 0) dt =
∫

[0,T ]\(0,a]�(b,T ]
∂f
∂t

(t, 0) dt−
∑
i∈N

∫ bi

ai

∂f
∂t

(t, 0) dt

= f (b, 0)−f (a, 0)−
∑
i∈N

(f (bi , 0)−f (ai, 0)). (4.17)

Using (4.17), Equality (4.16) then reads:

S(f (T ,GT ))(η)−S(f (0, 0))(η)−
∫
ZT

R

∂f
∂t

(t, 0) dt

=
∫


R

∂Jf

∂t
(t, Rt , jη(t)) dt+

∫

R

∂Jf

∂u1
(t, Rt , jη(t)) dRt +

∫

R

∂Jf

∂u2
(t, Rt , jη(t)) djη(t),

which is nothing but (4.14) and therfore ends the proof in this case.

Second case: There is no (a′, b′) in (0, T )2 with a′ < b′ s.t. both (0, a′) & (b′, T ] are
subsets of 
R .

Since the cases of 0 and T can be treated in the same manner, we only treat here the case
of T . We then assume that there is no b′ in (0, T ) such that (b′, T ] ⊂ 
R . We need to distin-
guish between two cases. If there exists b′ in (0, T ) such that (b′, T ] ⊂ ZT

R
then the problem

can be reduced to establish (4.5) between 0 and b̂, where b̂ := inf{b ∈ (0, T ); [b′, T ] ⊂
ZT

R
}. Otherwise, one can find an increasing sequence (Tn)n∈N of 
N

R
, which converge to

T . For every n in N, denote (a
(n)
i , b

(n)
i ) the interval (ai, bi) of 
R which contains Tn. For

every integer n, (a
(n)
i , Tn] is a non empty subset of 
R . Therefore, one can use first case

to establish (4.5) between 0 and Tn. To establish the equality of S-transform of both sides
of Eq. 4.5, (between 0 and Tn), it then remains to apply, from one hand Lemma 4.2 to
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Jf (Tn, RTn, jη(Tn)) and, form the other hand, Lebesgue’s dominated convergence theorem
to the following integrals:

I (1)
η,n :=

∫ Tn

0
S(

∂2f

∂x2
(t, Gt ))(η) dRt = 2

∫



(n)
R

∂Jf

∂u1
(t, Rt , jη(t)) dRt ,

I (2)
η,n :=

∫ Tn

0
S(

∂f
∂x

(t,Gt ))(η) S(W
(G)
t )(η) dt =

∫



(n)
R

∂Jf

∂u2
(t, Rt , jη(t)) djη(t),

I (3)
η,n :=

∫ Tn

0
S(

∂f
∂t

(t,Gt ))(η) dt =
∫



(n)

R

∂Jf

∂t
(t, Rt , jη(t)) dt +

∫
ZT ,(n)

R

∂f
∂t

(t, 0) dt,

where 

(n)

R denotes 
R ∩ [0, Tn] and ZT ,(n)

R denotes ZT
R

∩ [0, Tn]. This result and the fact that
Jf is a C1 function on �a allows us to apply [30, Theorem 8.6] and thus to conclude.

4.2 Comparison with other Itô Formulas for Gaussian Processes

Since [1], many Itô formula for Gaussian processes have been established. If one excepts Itô
formula for Gaussian semimartingales, that are well known, all the Itô formulas provided,
for Gaussian processes in general, in the literature of functional extensions so far, namely:
[1, Theorems 1 & 2], [38, Theorem 31], [41, Theorem 1], [28, Corollary 8.13], [27, Propo-
sition 11.7] and [36, Theorem 3.2], are established using the divergence type integral. A
requirement of all these previous references is that the variance function t �→ Rt is, at least,
continuous and with bounded variations on [0, T ]. Assuming the continuity of R seems rea-
sonable. Indeed, otherwise, as the anonymous referee noticed, Equality (4.5) may fail for
very simple functions f , such as f (x) := x4. If one excepts [28, Corollary 8.13], another
requirements of theses references above is that the function f is of class C2 and, together
with all its derivatives, with sub-exponential growth (i.e. fulfills (4.4)). In view of this fact,
it appears that the assumptions made in Theorem 4.4 are minimal. However, to see to what
extent Theorem 4.4 generalizes Itô formulas for Gaussian processes that already exist, let
us make a detailed comparison.

Comparison with the Conditions on Function f The function f (i.e. f (t, x) := f (x))
is assumed to be of class C∞ in [38, Theorem 31] and in [27, Proposition 11.7], and of
class C7 in [41, Theorem 1]. In [28, Corollary 8.13] f is assumed to be of class C2 but not
with sub-exponential growth; the second derivative of f therein is assumed to be bounded.
However, since the stochastic calculus for Gaussian processes, developed in [28] requires
that the covariance function has a planar bounded variation, which corresponds to “regular”
processes (such as fBm for H > 1/2), one easily sees that the price to pay for relaxing the
assumption on the growth of f is that one can not deal with irregular Gaussian processes
(that is precisely to overcome this limitation on the regularity ofG that [27] has been written.
However, as we stated above, this latter reference requires much more than the growth
condition we make on f ).

Comparison with the Assumptions Made on G

• Comparison with the assumptions made on R

The variance function t �→ Rt is assumed to: be continuous and of bounded variations on
[0, T ] in [28, Corollary 8.13], be of classC2 onR∗+ in [38, Theorem 31], fulfill Assumptions
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(3) et (4) in [41, Theorem 1], fulfill Assumptions (A), (B) and (C) in [27, Proposition 11.7]
and, in [36, Theorem 3.2], to verify the two following conditions:

(i) for every s in [0, T ], the map t �→ R(t, s) is absolutely continuous on [0, T ];
(ii) there exists α > 1 such that: sup

t∈[0,T ]
∫ T

0

∣∣ ∂R
∂s

(s, t)
∣∣α ds < +∞.

• Other assumptions

In [1, Theorems 1 & 2], in addition to the assumptions made in Theorem 4.4, the kernel
K has to fulfill Assumptions (K1) to (K3), in the singular case, and (K1) to (K4), in the
regular case. Other assumptions on the process G are difficult to compare in general. As
it is stated in Remark 1, a key propoerty in our construction of integral is that the maps
t �→ E[Gt

∫
R η(s) dBs] are absolutely continuous w.r.t. the Lebesgue measure for every

η in S (R). A related assumption in other papers is that the functions t �→ E[GtGs] or
t �→ E[GtBs] are absolutely continuous or of bounded variations for every s, see [1, 36].
However These assumptions do not, in general, imply each other. In an another class of
papers, namely [28], some quadratic variation type conditions are imposed onG, e.g. in [28]
or in [41]. These assumptions are even more difficult to compare with the present setting
and would lead us too far from the goal of this present work. We therefore postpone a more
detailed comparison to a future work.

Note also that he Itô formula provided in [36] is extended in this work, while the other
results presented in [36] are extended in [32].

In view of the arguments developed above, it appears that the Itô formula we present
here offers improvements on the ones presented in [1, 9, 27, 36, 38, 41], by allowing one to
have less restrictive hypotheses. Of course all the Gaussian processes in G of “reference”
fulfill assumptions of Theorem 4.4. In the case of mBm one needs to assume that h is a
C1 function with its derivative bounded on RD . Note moreover that, applying Theorem 4.4
when G is a fBm (resp. a mBm) allows one to recover [4, Theorem 4.1 & Rk. 4.6] (resp.
[33, Theorem 5.5]). When G is a Vγ - process one recovers and extends, as we showed
above, [38, Theorem 31].

5 Comparison with other Stochastic Integrals

Forewords In order to define the divergence integral of a continuous Gaussian process G

in the way of [1] and then of [38], it is essential to first know a representation of G on a
compact set of the form [0, T ]. In general, [16, Theorem 4.1] ensures that any Gaussian
process may be written as a sum of two terms; one of them being

∑N
i=1

∫ t

0Ki(t, u) dWi(u),
where N is a positive integer (possibly infinite) and W is a Brownian motion. However
it is not an easy task to obtain such a decomposition for a given process G. For instance,
although a kernel is known for fBm, this is not the case of bifractional motion [24]. Like-
wise, writing the moving average and harmonizable multifractional Brownian motion under
this form remains an open problem (see [34, Section 5] for more details). Moreover, Gaus-
sian bridges in general are an example of Gaussian processes which do not admit “proper”
Volterra representation, i.e. that can not be written under the form Eq. 1.2 (see [51, Ex. 3.3]).
Thus, there is no hope to use [1] nor [38] in order to build a stochastic integral wrt Gaus-
sian processes of the form (1.1), for which one does not know any integral representation
on a compact set included in [0, T ]. To overcome this deficiency one then might consider
[27, 28, 36, 41, 51]. As we stated above, in these latter references one needs that the covari-
ance function fulfills some requirements. However, it happens sometimes that one has to
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deal with Gaussian processes, given under the form (1.1), for which one does not know
how to compute the covariance function, such as the one where gt is defined by setting
gt (u) = 1[0,t](u) Kh(t)(t, u), where h : [0, T ] → (0, 1) is a continuous deterministic func-
tion and where the family of Kernel (KH )H∈(0,1) is the one defined in [43, (5.8)] in the case
where H ∈ (1/2, 1) and in [43, Proposition 5.1.3] in the case where H ∈ (0, 1/2). As a
consequence our stochastic calculus it is the only one available when the Gaussian process
G can be written under the form (1.1) but not under any of the form (1.2) nor (1.3); or when
the stochastic calculus provided in [27, 28, 36] does not apply. The work provided in [28]
offers an alternative to the previous methods to build a stochastic integral wrt continuous
Gaussian processes, for which one knows the covariance function. Introducing the concept
of covariance measure structure, the authors built and developed a stochastic calculus wrt
“regular” processes (such as fBm with H ≥ 1/2). This work has been extended to the “sin-
gular” case in [27]. This approach is particularly suitable when the kernel is not explicitly
known, under any of the representations (1.1) to (1.3), (like in the case of bifractional motion
[24]). However, the Itô formula in [27] is quite restrictive. The conditions required in [28]
are not so restrictive but they do not allow one to deal with “irregular” Gaussian processes,
by the very essence of covariance measure structure.

In this section we make first, in Section 5.1, a comparison of the Wick-Itô stochastic
integral we developed above with the functional extensions of stochastic integrals developed
in [1, 38] and then, in Section 5.2, with the Itô integral.

5.1 Comparison with Malliavin Calculus or Divergence Type Integrals

We start by making the comparison between our Wick-Itô integral and the divergence type
integral developed in [1]. We will then show, in Section 5.1.2, that the Wick-Itô integral
fully generalizes the (extended) Skorohod integral developed in [38]. Let T > 0 be fixed
and let us take R = [0, T ]. Let G := (Gt )t∈[0,T ] be a Volterra process.

5.1.1 Comparison with Divergence Type Integral of [1]

The goal of this section is to compare the Wick-Itô integral wrt G to the divergence integral
wrt G, defined in [1] and in [38] and studied in [1, 42] and in [38]. In [1] G is a assumed to
be a continuous process while it is not assumed to be continuous in [38]. One therefore will
assume (in Section 5.1.1 only) that G is continuous on [0, T ]. G being a Volterra process,
it can be written, for any real t in [0, T ],

Gt =
∫ t

0
K(t, s) dWs,

where the kernel K(t, s), defined on [0, T ]2, is such that K(t, s) = 0 on the set
[0, T ]2\{(u, v) ∈ (0, T ] × [0, T ] : v < u} and verifies for any t ≥ 0, K̂t :=∫ t

0K(t, s)2ds < ∞.
Denote L2(�,L2([0, T ])) the set of random process u such that ‖u‖2

L2(�,L2([0,T ])) :=
E[∫ T

0 u2t dt] < +∞. The main result of this section is Theorem 5.3, which states that every
process u which belongs to L2(�, L2([0, T ])) and that belongs to the domain of the diver-
gence of G is also Wick-Itô integrable wrt G, on [0, T ]. Moreover, one has the equality∫ T

0 us δGs = ∫ T

0 us dGs , where
∫ T

0 us δGs denotes the divergence integral on [0, T ], asso-
ciated to G, that has been defined in [1]. In order to state rigorously this result we briefly
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recall some elements and notations of stochastic calculus of variations wrt G (for a presen-
tation of Malliavin calculus, see e.g. [2, 43]), as well as the approach of [1] and [42] for the
construction of a stochastic integral wrt to Volterra processes. The real T > 0 being fixed,
one still note G the process (Gt )t∈[0,T ] since there is no risk of confusion. G being a cen-
tered Gaussian process, denoteHT the reproducing kernel Hilbert space (R.K.H.S.) defined
as the closure of the set ET := span{1[0,t], t ∈ [0, T ]}, with respect to the inner product
<, >HT

, that has been defined by setting < 1[0,t], 1[0,s] >HT
:= Rt,s . Denote H1 the first

Wiener chaos of G and G(ϕ) the image in H1 of an element ϕ of HT by the isometry,
betweenHT and H1, that associates 1[0,t] to Gt .

Remark 8 It is not always true that the bilinear form <, >HT
defined by

< 1[0,t], 1[0,s] >HT
:= Rt,s is an inner product. For example, for the Brownian bridge

B̂ := (B̂t )t∈[0,1] on [0, 1], one has ‖1[0,1]‖HT
= 0. For this reason we will assume in

the sequel that <, >HT
, defined above, is really an inner product. The reader interested

in details on Reproducing Kernels Hilbert Spaces may refer to [25, Chap.8] as well as to
[33, Appendix B] in the case of mBm.

Define S := {
V = f (G(ϕ1),G(ϕ2), . . . ,G(ϕn)) , f ∈ C∞

b (Rn), ϕi ∈ HT , i = 1, . . . , n
}
.

For an element V of S , one defines the derivative operator DG as:

DGV :=
n∑

i=1

∂f
∂xi

(G(ϕ1),G(ϕ2), . . . , G(ϕn)) ϕn.

The derivative operator DG is a closable unbounded operator from L2(�) into
L2(�;HT ). We note DG the closure of S with respect to the norm defined by ‖V ‖G,1,2 :=
(E[V 2]+E[‖DGV ‖2

L2(�;HT )
]) 1

2 . We denote by δG, and call divergence integral with respect

to G, the adjoint of the derivative operator DG. The domain of δG in L2, denoted Dom(δG),
is the set of the elements u in L2(�;HT ) such that there exists a constant c verifying,
for all V in S , |E(< DGV, u >HT

)| ≤ c ‖V ‖2, where ‖ ‖2 denotes the norm in L2(�).
If u belongs to Dom(δG), δG(u) is the element of L2(�) defined by the duality relation-
ship: E(V δG(u)) = E(< DGV, u >HT

), for all V in DG. We will simply denote, in the
sequel, D,D, δ and ‖ ‖1,2 when G is a Brownian motion. Define now the linear operator
K− : ET → L2([0, T ]) by K−(1[0,t]) := K(t, .) and denote ‖ ‖HT

the norm on HT which
derives from the inner product <, >HT

. Since ‖ϕ‖HT
= ‖K−(ϕ)‖L2([0,T ]), for every ϕ in

ET , it is clear that the operator K− can be extended to a linear isometry, still denoted K−,
between (HT , ‖ ‖HT

) and a closed subset of L2([0, T ]). Besides, one can show, [1, (12)],
that Dom(δG) = (K−)−1(Dom(δ)). Moreover, for a process v in Dom(δG) one has:

δG(v) =
∫ T

0
(K−v)(s) δWs. (5.1)

In other words, δG(v), the divergence integral of v wrt G, also noted
∫ T

0 v(s) δGs , verifies

the equality
∫ T

0 v(s) δGs = ∫ T

0 (K−v)(s) δWs . In order to prove Theorem 5.3 below, one
needs to define the adjoint of the operator K−, that we will denote K+, not only on the set
ET but also on S (R). For this reason we recall the two following hypotheses, given in [42]
for fBm, that we will make in the sequel on the kernel K(t, s).
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H1) K(t, s) is continuously differentiable on {0 < s < t ≤ T } and its partial derivative
verify the following integrability condition:

sup
ε≤t≤T

∫ T

t

| ∂K
∂r

(r, t)|(r − t) dr +
∫ t

0
| ∂K

∂t
(t, s)|(t − s) ds < ∞,

for any ε in (0, T ). Moreover, t �→ ∫ t∧b

0
∂K
∂t

(t, s)(t ∧ b − s ∨ a)+ ds is continuous
on (0, T ], for all 0 ≤ a ≤ b.

H2) The function k(t) := ∫ t

0K(t, s) ds is continuously differentiable on (0, T ].
We present here the arguments given in [42, Section 2] for fBm about the operator K+,
but in a slightly different manner. Denote C1

b (R) the set of differentiable functions which
are bounded together with its derivatives. Hypotheses H1) and H2) allow us to define the
operator K+ on ET ∪ C1

b (R) by setting, for every t in [0, T ], (K+ϕ)(t) := k′(t) ϕ(t) +∫ t

0
∂K
∂t

(t, r) (ϕ(r) − ϕ(t)) dr .
In view of [42, p.116], it is easy to check that we have, for any (ψ, ϕ) in ET × ET , the

equality
< K+(ϕ), ψ >L2([0,T ]) = < ϕ, K−(ψ) >L2([0,T ]). (5.2)

It is clear that one has, in this section, gt := K−(1[0,t]), for every t in [0, T ]. It is established
in [42, Propostion 2] that g′

t exists and that g
′
t = K+(.)(t) for every t in (0, T ]. However it is

not possible to establish that t �→ W
(G)
t is (S∗)-integrable on [0, T ] without any additional

assumption. Moreover one needs to be able to establish that
∫ T

0 us dGs exist for a reasonable
class of processes u. Thus, following [42, Proposition 7], we will assume in the sequel the
following condition:

H3) The function C : t �→ |k′(t)| + ∫ t

0 | ∂K
∂t

(t, r)| (t − r) dr belongs to L2([0, T ]).

Remark 9 It is clear that H1), H2) and H3) entail that Assumptions D(i) and D(ii) hold. We
will show, in the next subsection (Remark 11), that they are not always necessary.

The following result will be useful in the proof of Theorem 5.3 below.

Lemma 5.1 If Assumptions H1), H2) and H3) hold, any process u in L2(�,L2([0, T ])) is
Wick-Itô integrable with respect to G.

Proof The proof of this lemma, which consists on verifying that Condition (I) is verified
with p = q = 2, can be found in [42, Proposition 7].

Since one has: |(K+η)(t)| ≤ |k′(t)|‖η‖∞+‖η′‖∞
∫ t

0 | ∂K
∂t

(t, r)| (t−r) dr , for every (η, t)

in S (R) × [0, T ], Hypothesis H3) implies in particular that K+(η) belongs to L2([0, T ]).
Note moreover that, for every η in S (R),

K+(η)(t) = < δt ,K+(η) > = d
dt

< K−(1[0,t]), η >L2([0,T ]). (5.3)
The following result, which is a consequence of results given in [42, Section 2 and

Proposition 7], will be essential in order to prove Theorem 5.3 below. Denote ET
‖ ‖T the

closure of the set ET with respect to the norm ‖ ‖T := ‖ ‖HT
+ ‖ ‖L2([0,T ]). Note that

ET
‖ ‖T ⊂ HT ∩ L2([0, T ]).

Lemma 5.2 For any function ψ in ET
‖ ‖T and η in S (R), one has:

< K+(η), ψ >L2([0,T ]) = < η, K−(ψ) >L2([0,T ]). (5.4)
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Proof It is easy to check (5.4) directly in the case where ψ is in ET and η in S (R), using
(5.3). The fact that, for every ψ ∈ ET , < ψ,K+(.) >L2([0,T ]) belongs to S−p(R), for every
p in N

∗ is also clear. Thus, for every p in N
∗, one easily sees that the map �p : ψ �→

< ψ,K+(.) >L2([0,T ]) is uniformly continuous from (ET , ‖ ‖HT
) to (S−p(R), | |−p) and

can then be extended uniquely to ET
‖ ‖T (we will denote �p :=< ψ,K+(.) > this exten-

sion). The same argument can be applied to the map 	p : ψ �→ < ., K−(ψ) >L2([0,T ]).
The equality of �p and 	p on ET

‖ ‖T from one hand, and the fact that < ψ,K+(.) > =
< ψ,K+(.) >L2([0,T ]) for any ψ in ET

‖ ‖T from the other hand allow us to conclude.

The main result of this section is the following.

Theorem 5.3 Assume that H1), H2) and H3) hold. Let u be a process in L2(�, ET
‖ ‖T

),
then u belongs to the domain of the divergence of G, and u is Wick-Itô integrable on [0, T ]
wrt G. Moreover one has the equality∫ T

0
us δGs =

∫ T

0
us d�Gs. (5.5)

Proof The proof we give here is a generalization, to Volterra processes, of the proof pro-
vided, in the particular case of fBm, in [42, Proposition 8]. We however write it down here
for reader’s convenience. The fact that

∫ T

0 us d�Gs is well-defined has been established

in Lemma 5.1. Besides, for every fixed η in S (R), one has: L1 := S(
∫ T

0 us δGs)(η) =
S(

∫ T

0 (K−u)(s) δWs)(η) = ∫ T

0 S[(K−u)(s)](η) η(s) ds. Note that the last equality results
from the fact that the Wick-Itô integral wrt Brownian motion generalizes the Hitsuda-
Skorohod integral (see for example [21, Theorem 2.5.9] or [30, (13.8)]). Using the previous
equality, Fubini’s theorem and Lemma 5.2, one gets:

L1 = ∫ T

0 E[(K−u)(s) : e<.,η> :] η(s) ds = E[: e<.,η> : < K−u, η >L2([0,T ])]
= E[: e<.,η> : < u,K+(η) >L2([0,T ])] = ∫ T

0 E[us : e<.,η> :] K+(η)(s) ds.

It then remains to use (ii) of Theorem 3.6 as well as (5.3) to obtain:

L1 =
∫ T

0
S(us)(η) S(W(G)

s )(η) ds = S(

∫ T

0
us � W(G)

s ds)(η).

We hence have shown, for every η in S (R), the equality S(
∫ T

0 us δGs)(η) =
S(

∫ T

0 us d�Gs)(η).
The injectivity of S-transform (see (i) of Lemma 2.5) allows us to conclude.

Example 5.4 (The case of fBm) Let T > 0. For any H in (0, 1), define BH
t :=∫ t

0KH (t, s) dWs , where the kernel KH is defined in [42, (13)]. BH is an fBm of Hurst index
H . Moreover the process BH fulfills H1), H2) and H3). This implies in particular that the
Wick-Itô integral

∫ T

0 BH
s d�BH

s exists, for any H in (0, 1). We know moreover, thanks to

Example 3.14, that the equality
∫ T

0 BH
s d�BH

s
a.s.= 1

2 ((BH
T )

2 − T 2H ) is true for any H in
(0, 1). On the other hand, the divergence integral wrt BH is only defined and developed in
[1, Section 8] or in [43, Section 6] for H > 1/4, as we mentioned in the introduction. One
moreover knows that BH does not belong to Dom(δBH ) when H < 1/4 and one has to use
the extended divergence integral wrt fBm developed in [9].
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Corollary 5.5 The set {∫ T

0 f (s) δGs, f ∈ HT } of Wiener divergence integral wrt G,

coincide with the set �G := {∫ T

0 f (s) d�Gs, f ∈ ET }
(L2)

ofWick-Itô Wiener integralswrtG.

Proof The equality {∫ T

0 f (s) d�Gs, f ∈ ET } = {∫ T

0 f (s) δGs, f ∈ ET } is

obvious, in view of Eq. 5.5. Besides, the equality {∫ T

0 f (s) δGs, f ∈ HT } =
{∫ T

0 f (s) δGs, f ∈ ET }
(L2)

results from Meyer inequalities (see [1, (5)] for example).

Remark 10 1. In many cases (such as for fBm) the equality ET
‖ ‖T = HT ∩ L2([0, T ]) is

clear. In these situations Theorem 5.3 clearly shows how the wick Itô integral wrt G gener-

alizes the divergence one. Indeed, when equality ET
‖ ‖T = HT ∩ L2([0, T ]) holds one just

has to assume that H1), H2) and H3) hold. Hence, for any process u in L2(�,L2([0, T ])),
if u belongs to the domain of the divergence of G, then u is Wick-Itô integrable on [0, T ]
wrt G. Moreover Equality (5.5) holds.

2. In view of the previous corollary, we see that one just has to extend the notion of Wiener
integral given in Definition 1, and call Wiener integral wrt G in G , any element of �G,
if one wants that our set of Wiener integrals is the same that the one of [1].

3. If Theorem 5.3 clearly states that the Wick-Itô integral has a bigger set of integrands
than the divergence type integral developed in [1], assuming they both belong to

L2(�, ET
‖ ‖T

), one may wonder if this fact remains true outside L2(�, ET
‖ ‖T

). While
this remains an open problem, here is what we can still say about it. The set HT may
contains generalized functions (for example, one can see [43, p.280] or [33, Proposition
2.11] in the case where G is a fBm). When this happens (i.e. when, for almost every ω

in �, u(ω) is a generalized function which belongs toHT and which is not a function),∫ T

0 us δGs has still a meaning and belongs to L2(�). On the contrary,
∫ T

0 us d�Gs can
only be defined if s �→ us is a function (an (S∗)-valued function but still a function).
Define the space

� := {
u ∈ L2(�;HT ); u is Wick-Itô integrable wrt G and such that

∫ T

0
us d�Gs ∈ L2(�)

}
.

A consequence of what we stated above is that the inclusion Dom(δG) ⊂ � is
not true. Note that the inclusion � ⊂ Dom(δG) does not hold either. Indeed, if one
considers again, as process G, the fBm BH , as we did in Example 5.4, we know that
BH belongs to � for every H in (0, 1), while BH does not belong to Dom(BH ) if H

is in (0, 1/4). Finally, the only thing one can say in general is that we have the dense
inclusion L2(�,L2([0, T ])) ∩ Dom(δG) ⊂ �.

5.1.2 Comparison with the Divergence Type Integral of [38]

The comparison between Wick-Itô stochastic integral and the one defined in [38] is easier,
in view of Theorems 3.4 and 5.3. Indeed, one has the following result.

Theorem 5.6 For any process u such that the (extended) Skorohod integral wrtG, on [0, T ],
defined in [38], exists, then u is also Wick-Itô integrable wrt G, on [0, T ]. Moreover one has
the equality

[38] −
∫ T

0
us δGs =

∫ T

0
us d�Gs, (5.6)
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where [38] -
∫ T

0 us δGs denotes the (extended) Skorohod integral of u wrtG, defined in [38].

Remark 11 Note that, in this case, one does not have to make any additional assumptions

(such as H1, H2 or H3) nor that the equality ET
‖ ‖T = HT ∩ L2([0, T ]) holds. Moreover,

and as we stated in the introduction, this theorem as well as Theorem 3.4 show that the
stochastic integral wrt to Vγ - processes, built in [38], is a particular case of the Wick-Itô
stochastic integral we provide here. This means that for every Vγ - process B̃γ , and every
stochastic process X, such that the integral of X wrt B̃γ exists in the sense defined in [38],
the Wick-Ito stochastic integral of X wrt B̃γ exists. Moreover they are equal. Finally, this
also allows us to deal with non continuous Gaussian processes, as it is the case in [38].

Proof Using notations of Theorem 3.4, Lemma 2.3 and Cauchy-Schwarz inequality one
gets, for every η in S (R) and every integer q ≥ 3:
∫ T

0
|S(us)(η) S(W(G)

s )(η)| ds ≤
(∫ T

0
‖us‖20 ds

)1/2 (∫ T

0
|	′(s)|2−q ds

)1/2

e|η|2q .

Since both quantities ‖u‖2
L2(�,L2([0,T ])) and

∫ T

0 |	′(s)|2−q ds are finite (by assumption
for the first one and as a consequence of Theorem 3.4 ofr the second one), Theorem 2.6
applies and establishes the existence of

∫ T

0 us d�Gs . Besides, since in this case the extended
domain of the [38] - Skorohod integral is, by its very definition (see [38, Def. 27]) a subset
of L2(�, L2([0, T ]), one can use the exact same proof as the one of Theorem 5.3; one just
has to change therein K− (resp. K+) by K∗

γ (resp. K∗,a
γ ) and note that the equality given

in [38, Remark 12] has now the role played by Equality (5.4), in the proof of Theorem
5.3. The only thing which remains to be shown is that S (R) ⊂ H′, where H′ := {f ∈
L2([0, T ]), K∗,a

γ f ∈ L2([0, T ])}. This latter inclusion results from [38, Proposition 15]
(one just has to take therein η(s) := sα on R∗+, with α ∈ (1/2, 1) and η(0) := 0 and then
show that S (R) ⊂ Cη, where Cη has been defined in Example 3.9.

Note that the results provided in both Thm. 5.6 and Thm. 3.16 allow us to think that
one could solve some linear stochastic evolution equations driven by infinite dimensional
Gaussian processes.

In [38] the set of Gaussian processes is smaller than G . In [41] the class of Gaussian
processes considered is a little bit restrictive,6 (see [41, (2), (3) & (4)]). Moreover, since
our stochastic calculus is carried out within the framework of the White Noise Theory, our
stochastic integral does not have to be extended,7 once it has been built, in order that the set
of integrands is not empty or not too small, as it is the case for divergence type integral (see
[38, Remark 25 & p.407] and [9]). Indeed, it happens that the Gaussian process is not even
itself integrable i.e. that

∫
Gs δGs does not exist, (e.g. in [1] whenG is a fBmwithH ≤ 1/4

or whenG is the process considered in [38]). Note that the same phenomenon happens also9

in [36]. A general way to extend the divergence integral for Volterra processes, assuming

6Moreover, while the Wick product is used to define a stochastic integral in [41], the space of stochastic
distributions (which is the natural set on which one can use Wick product) is not used at all. This latter is
crucial to derive occupation time formulas for local times, as we will show in [32].
7Besides, if [9] provides a method (that has been used in [38]) to extend the divergence type integral wrt
fBm, this leads to require much more regularity on the function f , to provide an Itô formula8.
9In this latter case, the extended domain and the initial one are not comparable (see [36, p. 383]).

33



J. Lebovits

it exists, has been provided in [35]. However,10 an Itô formula for extended divergence
integral has not been provided in the same time for general Volterra processes. Finally, our
stochastic calculus is an extension to general Gaussian processes of the stochastic calculus
built, wrt fBm in [4, 7, 11] and wrt mBm in [31, 33, 34].

5.2 Comparison with Itô Integral

The goal of this section is to compare the Wick-Itô integral wrt G to the Itô integral wrt G,
when G is a (Gaussian) semimartingale. In this subsection we still assume that R = [0, T ].
Since the line of reasoning we are following would be similar if t �→ Gt would not be
continuous, we will assume, in this subsection, that G is continuous. Denote, for every t

in [0, T ], Ut the complete11 σ -field defined by Ut := σ({Gs; 0 ≤ s ≤ t}) and denote
U the filtration (Ut )t∈[0,T ]. In this subsection one then assumes that G = (Gt )t∈[0,T ] is a
continuous centered Gaussian U -semimartingale of the form (1.1), which fulfills Assump-
tion (A ). Let us recall first the following result, that describes the structure of Gaussian
semimartingales.

Proposition 5.7 ([49, Prop. 2 & Thm 1]) The Gaussian U -semimartingale G is a special
U -semimartingale: i.e. for almost every (t, ω) in [0, T ] × �, one can write:

Gt = Mt + At , (5.7)

where M := (Mt )t∈[0,T ] is a centered U -martingale and A := (At )t∈[0,T ] is a centered
U -predictable process of bounded variations. Moreover, M and A both belong to the same
Gaussian Hilbert space as G. In addition, the function of quadratic variation of G, denoted
t �→ <G>t , is deterministic and M is bounded in Lp , for every positive real p.

Denote T := (Tt )t∈[0,T ] the filtration, defined by Tt := σ({Bs; 0 ≤ s ≤ t}), which we
suppose complete (if it is not the case we complete it and still denote it Tt ). Through this

subsection, we will denote IG(X) :=
∫ T

0
Xs dGs the Itô (resp. JG(X) :=

∫ T

0
Xs d�Gs

the Wick-Itô) integral of X wrt G on [0, T ], when it exists. For any continuous martingale
M := (Mt )t∈[0,T ], bounded in (L2) and such that M0 = 0, denote L2(M) := L2([0, T ] ×
�,P, dμ d< M >s) the space of progressively measurable processes K such that:

‖K‖2
L2(M)

:= E[
∫ T

0
K2

s d<M>s],
where P denote the progressive σ -field with respect to U . The following result will be used
in order to establish Point (i) of Proposition 5.9 below.

Lemma 5.8 Let G be a Gaussian martingale that fulfills Assumption (A ) and let f be a
C1,2([0, T ] × R,R) function. Denote F(t, x) := ∂f

∂x
(t, x) and define Xt := ∂f

∂x
(t,Gt ). If R

and f both fulfill conditions of Theorem 4.4, then one has the following equality:

a.s.
∫ T

0
Xs dGs =

∫ T

0
Xs d�Gs.

10And if one excepts [38], the results of which we fully generalize in this paper.
11If Ut is not complete, we complete it and still denote it Ut .
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In particular one has the equality:

a.s.
∫ T

0
F(s,Gs) dGs =

∫ T

0
F(s,Gs) d�Gs. (5.8)

Proof of Lemma 5.8 G being a Gaussian martingale, one gets <G>t = Rt almost surely,
for every t in [0, T ]. Since R and f both fulfill conditions of Theorem 4.4, one gets, using
both Itô formulas (4.5) and [46, Theorem 3.3]): �G(X) := IG(X) − JG(X) = 0, which

in particular implies that:
∫ T

0 F(s,Gs) dGs = ∫ T

0 F(s,Gs) d�Gs .

The main result of this subsection is the following.

Proposition 5.9 1. Assume that G is Gaussian martingale, adapted to the filtration T .
Let X in L2(G) such that Xt ∈ (L2), for every t in [0, T ], and such that (X,G) satisfies
condition (I) (given in Section 3.5). Define, for every s in [0, T ],Us := inf{t; Rt > s}.
Let us write the following conditions:

a) the map t �→ Rt is strictly increasing and continuous on [0, T ] and such that U
is absolutely continuous on [0, T ].

b) Gt2 − Gt1 is independent of Tt1 , for every 0 ≤ t1 < t2 ≤ T .

If one the two conditions a) or b) is fulfilled then the map t �→ Xt is both dG-integrable
and Itô-integrable, on [0, T ]. Moreover we have the equality:

∫ T

0
Xs dGs =

∫ T

0
Xs d�Gs. (5.9)

2. If the semimartingale G is not a Gaussian martingale, then Equality (5.9) does not hold

in general, assuming both integral
∫ T

0
Xs dGs and

∫ T

0
Xs d�Gs do exist.

Note that the condition Xt ∈ (L2), for every t in [0, T ] is only a slight reinforcement of
the assumption X ∈ L2(G).

Proof 1. Let G and X be of the form described in point 1. above. We still denote
IG(X) := ∫ T

0 Xs dGs the Itô (resp. JG(X) := ∫ T

0 Xs d�Gs the Wick-Itô) integral
of X wrt G on [0, T ], when it exists. The existence of IG(X) is clear and the existence
of JG(X) is obvious, in view of Theorem 3.10.

1.a) G being a martingale, it can be written, according to Dubins-Schwarz theorem
as Gu = BRu , for some Brownian motion B and for every u in [0, T ]. Of course
we also have the equalities Bt = GUt and URt = t , for every t in [0, T ] since R

is strictly increasing. It is then clear that:

IG(X)=
∫ T

0
Xs dGs =

∫ T

0
Xs dBRs =

∫ T

0
XURs

dBRs =
∫ RT

0
XUt dBt =

∫ RT

0
XUt d

�Bt .

For every η in S (R), we can then write S(IG(X))(η) = ∫ RT

0 S(XUt )(η) <

δt , η > dt . Besides, we have the equality < 1[0,t], η >L2(R)= E[Bt < ., η >] =
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E[GUt < ., η >] =< gUt , η >L2(R). Since U is absolutely continuous on [0, T ]
so is s �→< gUs , η >. Thus this yields to:

S(IG(X))(η) =
∫ RT

0
S(XUt )(η) d < gUt , η > .

On the other hand, we have: S(JG(X))(η) = ∫ T

0 S(Xs)(η) d < gs, η >=:∫ T

0 fη(s) dA
(η)
s , where we have set A

(η)
s :=< gs, η > and fη = S(X.)(η).

Applying [46, Proposition 4.10] to the positive and then the negative part of fη

we get
∫ T

0 fη(s) dA
(η)
s = ∫ RT

0 fη(Us) dA
(η)
Us

which entails that:

S(JG(X))(η) =
∫ RT

0
fη(Us) dA

(η)
Us

=
∫ RT

0
S(XUt )(η) d < gUt , η >

and ends the proof in this case.
1.b) The proof of the equality IG(X) = JG(X) is obtained by following exactly

the same three steps as in the proof of [30, Theorem 13.12], in which the equality
IB(X) = JB(X) is established (B being a Brownian motion). One then just
has to substitute in there the process ϕ by X, to replace 1[t1,t2) by gt2 − gt1 in the
first step, and noticing that one can find, for any process X in L2(G), a sequence
(Xn)n∈N of simple processes such that limn→+∞ IG(Xn) = IG(X), where the
convergence holds in (L2). We will only write down here the first of these three
steps; in order, first to make clear the differences with the case where G = B,
and second, to translate the proof of [30, Theorem 13.12] in the notations we use
in this paper. Let (t1, t2) be in [0, T ]2 such that 0 ≤ t1 < t2 ≤ T and assume
that Xt := Xt1 1(t1,t2], where Xt1 is U1-mesurable. Let Xt1 = ∑+∞

n=0 In(f
(n)
t1

)

be the chaos decomposition of Xt1 . By definition of Itô integral, and using the
identity:In(k) I1(l) = In+1(k ⊗ l) + n In−1(< k, l >L2(R)), where ⊗̂ denotes
the symmetric tensor product and which is valid for every: n in N∗, symmetric
function k in L2(Rn) and l in L2(R), one gets:

IG(X) = Xt1(Gt2 − Gt1) =
+∞∑
n=0

In(f
(n)
t1

) I1(gt2 − gt1)

=
+∞∑
n=0

(
In+1(f

(n)
t1

⊗̂(gt2 − gt1)) + n In−1(< f
(n)
t1

, gt2 − gt1 >
L2(R)

)
)
.

Lemma 3.11 of [30] applies here since U is included in T . One then knows that,
for every n in N∗, f (n)

t1
is equal to 0 almost everywhere on [0, T ]n\[0, t1]n. More-

over, sinceGt2−Gt1 is independent of Tt1 , it is clear that<f
(n)
t1

, gt2−gt1>L2(R)
= 0,

for every n in N∗. Using Proposition 2.4, we get, for any η in S (R),

S(IG(X))(η)=S(

+∞∑
n=0

(
In+1(f

(n)
t1

⊗̂(gt2 −gt1 )))(η)=
+∞∑
n=0

<f
(n)
t1

⊗̂(gt2 −gt1 ), η
⊗(n+1) >

=
+∞∑
n=0

<f
(n)
t1

, η⊗n ><gt2 −gt1 , η>=S(Xt1)(η)S(Gt2 −Gt1)(η)=S(JG(X))(η).

The injectivity of S-transform then allows us to write IG(X) = JG(X).

2. In view of Proposition 5.7, three cases are possible for the structure of the semimartin-
gale G. The case where G is a martingale has been treated in Point 1 below. Our
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goal here is to exhibit, when G is not a Gaussian martingale, some general and sim-
ple examples for which IG(X) and JG(X) both exist and are different. Let f be a
C1,2([0, T ] ×R,R) function. Assume that both R and f fulfill conditions of Theorem
4.4. Denote Y ≡ 0 when the process Y := (Yt )t∈[0,T ] is such that

Yt (ω) = 0, ∀(ω, t) ∈ �′ × [0, T ], (5.10)

where �′ is measurable subset such that μ(�′) = 1. We will denote Y �≡ 0 when (5.10)
is not satisfied.

The case whereM ≡ 0 being easier we will assume that A �≡ 0 and M �≡ 0 in Eq. 5.7.
Assume that both M and A are continuous and that there exists a map t �→ g

(1)
t from

[0, T ] intoL2(R) such that g(1) fulfills Assumption (A ) and such thatMt =< ., g
(1)
t >

almost surely, for every t in [0, T ]. Let us compare IG(G) and JG(G). The existence
of IG(G) is clear. Moreover, using classical Itô formula, one gets:

IG(G) =
∫ T

0
Ms dMs +

∫ T

0
As dAs + AT MT .

The existence ofJG(G) is clear in view of Example 3.14.Moreover, using again Example
3.14, the fact that M is bounded in (L2) as well as an integration by parts, one gets:

JG(G) =
∫ T

0
Ms d�Ms +

∫ T

0
As d�As + AT � MT .

Classical Itô formula, Example 3.14, Eq. 5.8 and, finally, Propsotion 5.7 and Proposi-
tion 2.4 yields:

�G(G) := IG(G) − JG(G) = ∫ T

0 As dAs − ∫ T

0 As d�As + AT MT − AT � MT

= 2−1E[A2
T ] + AT MT − AT � MT = 2−1E[A2

T ] − E[AT MT ]. (5.11)

It is then easy to find a finite variation processes A, as well as a positive real T , and
choose the map g(1), that defines the Gaussian martingale M , such that: 2−1E[A2

T ] −
E[AT MT ] �= 0.

Remark 12 1. In the particular case where there exists a function f : R → R, which

belongs to L2(R), such that Gt :=
∫ t

0
f (u) dBu, for every t in [0, T ], a.s., then all

the assumptions of Propoistion 5.9 are reduced to X belongs to L2(G). Note also that

one recovers in particular, the result of [30, Theorem 13.12], that is
∫ 1

0
Xs d�Bs =

∫ 1

0
Xs dBs , for every X in L2(B).

2. One may also remark, from what we stated in the previous sections, that the existence
of

∫ 1
0 Xs d�Gs does not imply the existence

∫ 1
0 Xs dGs . Conversely the existence of∫ 1

0 Xs dGs does not imply the existence
∫ 1
0 Xs d�Gs . Three natural questions then arise

in this framework;

(i) If
∫ T

0 Xs dGs exist, on which conditions on X the integral
∫ T

0 Xs d�Gs will
exist?

(ii) If
∫ T

0 Xs d�Gs exist, on which conditions on X the integral
∫ T

0 Xs dGs will
exist?

(iii) When both the integrals
∫ T

0 Xs d�Gs and
∫ T

0 Xs dGs do exist, what is the exact
link bet ween them?
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In order to answer properly to these three questions one needs to use the operators
Dgt and D∗

gt
, defined in [30, Chap 9], and express both our Wick-Itô integral and the

Itô integral using these operators. Since this would lead us too far from the goal of this
present work, we will therefore give the answer to these questions in a future work.

3. In view of Lemma 5.8 , it seems that Equality (5.9) remains true under weaker assump-
tions than the one proposed in Proposition 5.9. However, extend (5.9) under weaker
assumptions is an open problem.

4. Of course one can limit our definition ofWick-Itô integral to Gaussian martingales only.
Then, and as it is the case for Itô integral, one can extend the definition of Wick-Itô
integral wrt G to the case where G is a Gaussian semimartingale, by simply setting:

∫ T

0
Xs d∗Gs :=

∫ T

0
Xs d�Ms +

∫ T

0
Xs dAs, (5.12)

where M (resp. A) denotes the martingale (resp. the bounded variation process) given
by Eq. 5.7, and where M is assumed to be of the form (1.1) and fulfills Assumption A .∫ T

0 Xs d∗Gs will then be defined as soon as each member of the right hand side of Eq.

5.12 will exist. The Itô integral
∫ T

0 Xs dAs , in the right hand side of Eq. 5.12, offers

also the advantage, on
∫ T

0 Xs d�As of being defined ω by ω since it is Stieljes integral.
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Appendix A: Bochner Integral

The following notions about Bochner integral come from [22, p.72, 80 and 82] and [30,
p.247].

Definition 3 (Bochner integral [30, p.247]) Let I be a Borelian subset of R endowed with
the Lebesgue measure. One says that 	 : I → (S)∗ is Bochner integrable on I if it satisfies
the two following conditions:

1. 	 is weakly measurable on I i.e u �→<< 	u, ϕ >> is measurable on I for every ϕ in
(S).

2. ∃ p ∈ N such that 	u ∈ (S−p) for almost every u ∈ I and u �→ ‖	u‖−p belongs to
L1(I ).

The Bochner-integral of 	 on I is denoted
∫
I

	s ds .

Proposition A.1 If 	 : I → (S)∗ is Bochner-integrable on I then there exists an integer
p such that

∥∥∫
I
	s ds

∥∥−p
≤ ∫

I
‖	s‖−p ds. Moreover 	 is also Pettis-integrable on I and

both integrals coincide on I.

Remark 13 The previous proposition shows that there is no risk of confusion by using the
same notation for both Bochner and Pettis integrals.
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Theorem A.2 Let p ∈ N and (	(n))n∈N be a sequence of processes from I to (S)∗such
that 	

(n)
u ∈ (S−p) for almost every u ∈ I and for every n. Assume moreover that 	(n) is

Bochner-integrable on I , for every n, and that lim
(n,m)→(+∞,+∞)

∫
I

∥∥	
(m)
s − 	

(n)
s

∥∥−p
ds = 0.

Then there exists an (S)∗-process (almost surely (S−p)-valued), denoted 	, defined and
Bochner-integrable on I , such that

lim
n→+∞

∫
I

‖	s − 	(n)
s ‖−p ds = 0 (A.1)

Furthermore, if there exists an (S)∗-process, denoted �, which verifies (A.1), then �s =
	s for a.e. s in I . Finally one has lim

n→+∞
∫
I

	
(n)
s ds = ∫

I
	s ds, where the equality and

the limit both hold in (S)∗.

Appendix B: Proof of Theorem 3.4

Proof In view of Proposition 3.1, it is sufficient to show that Assumption (D) holds.
Besides, it is clear that 	 is well defined on R+ since one has, for every t in R+, the
equality:

	t = E(t) · δ0 − (1[0,t) · E(t − ·))′. (B.1)

It is clear that function E (resp. E ) is increasing, differentiable on R∗+ and continuous on
R+ (resp. increasing and of class C1 on R+). Equality (B.1) together with the properties of
E entail that 	 is continuous at t = 0. Let us now establish Equality (3.5). For every t in
R∗+, ϕ in S (R), and r > 0, denote Ir :=<

	t+r−	t

r
, ϕ >. Using the change of variable

formula, an easy computation gives us:

Ir = 1
r

(∫ t+r

0
ϕ(u) ε(t+r−u) du−

∫ t

0
ϕ(u) ε(t−u) du

)

=
∫ 1

0

t
r

[
ε
(
(t+r)(1−v)

)
ϕ(v(t+r))−ε(t (1−v)) ϕ(vt)

]
dv+

∫ 1

0
ε
(
(t+r)(1−v)

)
ϕ(v(t+r))dv=: I (1)

r +I (2)
r .

For every r in (0, 1), one has I
(2)
r = ∫ t+1

0 1(0,t+r)(u)
ε(u)
t+r

ϕ(t + r − u) du. Since t and
ε are positive, Lebesgue’s dominated convergence theorem applies and allows one to write
that limr→0 I

(2)
r = ∫ t

0
ε(u)

t
ϕ(t −u) du and thus12 that limr→0 I

(2)
r = 1

t

∫ t

0 ϕ(u) ε(t −u) du.

Besides, I (1)
r can be written under the following form:

I (1)
r =

∫ 1

0
tε ((t+r)(1−v))

(
ϕ(v(t+r))−ϕ(vt)

r

)
dv+

∫ 1

0

t

r
ϕ(vt)

(
ε
(
(t+r)(1−v)

)−ε (t (1−v))
)
dv=: J (1)

r +J (2)
r .

The exact same method as the one used to compute limr→0 I
(2)
r applies and allows one to

write:

lim
r→0

J (1)
r =

∫ 1

0
tv ϕ′(vt) ε(t (1 − v)) dv = 1

t

∫ t

0
u ϕ′(u) ε(t − u) du. (B.2)

12Note that one could also have used [38, Remark 3] and assume that (γ 2)′ (and hence ε) is non-increasing.
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Having in mind that ε2(r) = (γ 2)′(r), an integration by parts in J
(2)
r yields:

J (2)
r = ϕ(0)

(
t

t + r

(E(t + r) − E(t))

r
− E(t)

t + r

)
− t

t + r

∫ 1

0
ϕ′(vt) E((t+r)(1−v)) dv

+ t

r

∫ 1

0
ϕ′(vt) (E((t + r)(1 − v)) − E(t (1 − v))) dv

︸ ︷︷ ︸
=:Kr

.

It is then clear that:

lim
r→0

J (2)
r = ϕ(0)

(
ε(t) − E(t)

t

)
− 1

t

∫ t

0
ϕ′(u) E(t − u) du + lim

r→0
Kr. (B.3)

Thus, it only remains to determine lim
r→0

Kr . An integration by parts in Kr yields:

Kr = ϕ′(0)
(

t
t+r

E (t+r)−E (t)
r

− E (t)
t+r

)
− t

t+r

∫ 1

0
ϕ′′(vt) E (t (1 − v))dv

+ t2

t+r

∫ 1

0
ϕ′′(vt)

(
E ((t+r)(1−v))−E (t (1−v))

r

)
dv.

One then gets, after a change of varaible:

lim
r→0

Kr = ϕ′(0)
(
E(t)− E (t)

t

)− 1

t

∫ t

0
ϕ′′(u) E (t −u) du+

∫ t

0
ϕ′′(u) (1− u

t
) E(t −u) du.

(B.4)
Finally, gathering limr→0 I

(2)
r and Equalities (B.2) to (B.4) yields:

lim
r→0

Ir = 1

t

∫ t

0
ϕ(u) ε(t − u) du + 1

t

∫ t

0
ϕ′(u) (u ε(t − u) − E(t − u)) du

+ 1

t

∫ t

0
ϕ′′(u) ((t−u) E(t−u)−E (t−u)) du +ϕ(0)

(
ε(t) − E(t)

t

)
+ϕ′(0)

(
E(t)−E (t)

t

)
.

This is nothing but (3.5). Let us now show that t �→ |	′(t)|−q ∈ ∩
b∈R∗+

L2((0, b)), ∀q ≥ 3.

Let b be a positive real and q be an integer such that q ≥ 3. It is sufficient to show that the
map t �→ |	′(t)|2−q belongs to L1((0, b)). Using (3.5), one gets, for every integer k ≥ 2,

| < 	′(t), ek > | ≤ αk

(
ε(t) + E(t)

t
+ M

)
, (B.5)

where αk := ‖ek‖∞ + ‖e′
k‖∞ + ‖e′′

k‖∞ and where M := (t + 3) sup
s∈[0,t]

E(s) + sup
s∈[0,t]

E (s) +

sup
s∈(0,t]

E (s)
s

. Using the relation e′
k(x) =

√
k
2ek−1(x)−

√
k+1
2 ek+1(x) (see [30, p.354]) as well

as Theorem 2.1, one easily obtains that αk ≤ 48 (k + 1)2
∑2

l=−2 ‖ek+l‖2∞ ≤ 250 (k + 1)2,
for every integer k ≥ 2. Having in mind the definition ofRn given in Eq. 3.4 it is then clear
that there exists C > 0 which does not depend on q nor t such that:

|	′(t)|2−q =
+∞∑
k=0

|<	′(t), ek > |2 (2k+2)−2q ≤�(t) ·
+∞∑
k=0

α2
k (2k+2)−2q ≤C · �(t) ·R2−q,

(B.6)

where we have set �(t) := (ε(t) + E(t)
t

+ M)
2
. It then remains to show that both ε2 and

t �→ E(t)2

t2
belong to L1((0, b)). The first part is clear since ε2 = (γ 2)′. Moreover, in a
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neighborhood of 0 one has13 E(t) ≤ 2 t ε(t), for t �= 0. One therefore has:
∫ b

0

(
E(t)

t

)2
dt ≤

4
∫ b

0 ε2(t)dt = 4γ 2(b) < +∞, which ends the proof.
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Séminaire de Probabilités XL 1899, 3–65 (2007)
11. Elliott, R.J., Van der Hoek, J.: A general fractional white noise theory and applications to finance. Math.

Financ. 13(2), 301–330 (2003)
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nel. J. Funct. Anal. 46(2), 230–238 (1982)

16. Hida, T., Hitsuda, M.: Gaussian Processes, Volume 120 of Translations of Mathematical Monographs.
American Mathematical Society, Providence (1993). Translated from the 1976 Japanese original by the
authors

17. Hida, T.: Analysis of Brownian Functionals. Carleton Univ., Ottawa (1975). Carleton Mathematical
Lecture Notes No. 13

18. Hitsuda, M.: Formula for Brownian partial derivatives. Second Japan-USSR Symposium on Probability
Theory, pp. 111–114. Kyoto (1972)

19. Hitsuda, M.: Formula for Brownian partial derivatives. In: Proceedings of Faculty of Integrated Arts and
Sciences. Hiroshima University III-4, pp. 1–15 (1978)

20. Hida, T., Kuo, H., Potthoff, J., Streit, L.: White Noise. An Infinite Dimensional Calculus, vol. 253.
Kluwer Academic Publishers (1993)

21. Holden, H., Oksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. A Modeling.
White Noise Functional Approach, 2nd edn. Springer (2010)

22. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups, vol. 31. American Mathematical Society
(1957)

23. Hida, T., Si, S.: An Innovation Approach to Random Fields. World Scientific Publishing Co. Inc, River
Edge (2004). Application of white noise theory

13See [38, p.396] for a proof of this fact.

41



J. Lebovits

24. Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Stochastic models (Mexico
City, 2002), Volume 336 of Contemp. Math., pp. 195–201. Amer. Math. Soc., Providence (2003)

25. Janson, S.: Gaussian Hilbert Spaces, Volume 129 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge (1997)

26. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum. C.
R. (Dokl.) Acad. Sci. URSS 26, 115–118 (1940)

27. Kruk, I., Russo, F.: Malliavin Skorohod calculus and Paley-Wiener integral for covariance singular
processes. Preprint (2010)

28. Kruk, I., Russo, F., Tudor, C.A.: Wiener integrals, Malliavin calculus and covariance measure structure.
J. Funct. Anal. 249(1), 92–142 (2007)
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