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Abstract In this paper, we introduce the notion of oriented faces especially triangles
in a connected oriented locally finite graph. This framework then permits to define the
Laplace operator on this structure of the 2-simplicial complex. We develop the notion of χ -
completeness for the graphs, based on the cut-off functions. Moreover, we study essential
self-adjointness of the discrete Laplacian from the χ -completeness geometric hypothesis.
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1 Introduction

The impact of the geometry on the essential self-adjointness of the Laplacians is stud-
ied in many areas of mathematics on Riemannian manifolds; see [4, 7, 9, 13] and also
on one-dimensional simplicial complexes; see [1, 5, 8, 12, 14, 19]. Indeed, Laplacians on
Riemannian manifolds and simplicial complexes share a lot of common elements. Despite
of this, various geometric notions such as distance and completeness in the Riemannian
framework have no immediate analog in the discrete setting. Combinatorial Laplacians
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were originally studied on graphs, beginning with Kirchhoff and his study of electrical net-
works [10]. Simplicial complexes can be viewed as generalizations of graphs, as from any
graph, we can form its clique complex, a 2-simplicial complex whose faces correspond to
the cliques of the graph. In this article, we take a connected oriented locally finite graph
and we introduce the oriented faces especially triangles in such a way that every face is a
triangle, so we can regard it as a two-dimensional simplicial complex. This work presents
a more general framework for the Laplacians defined in terms of the combinatorial struc-
ture of a simplicial complex. The main result of this work gives a geometric hypothesis to
ensure essential self-adjointness for the discrete Laplacian. We develop the χ -completeness
hypothesis for triangulations. This hypothesis on locally finite graphs covers many situa-
tions that have been already studied in [1]. The authors prove that the χ -completeness is
satisfied by graphs which are complete for some intrinsic metric, as defined in [8] and [12].

The paper is structured as follows: In the second section, we will first present the basic
concepts about graphs or rather one-dimensional simplicial complexes. Next, we introduce
the notion of oriented faces more particularly triangles where all the faces are triangles. This
special structure of 2-simplicial complex is called triangulation. Without loss of generality,
we can assume that every triangle is a face for simplicity sake. So this permits to define the
Gauß-Bonnet operator T = d +δ acting on triplets of functions, 1-forms and 2-forms. After
that, we define the discrete Laplacian by L := T 2 which admits a decomposition according
to the degree

L := L0 ⊕ L1 ⊕ L2.

In the third and fourth sections, we study the closability of the operators which are used
in the following sections. Next, we get started with refer to [1] for the notion χ -completness
of the graphs and we develop this geometric hypothesis for the triangulations in Definition
4.2. Moreover, we have developed it through optimal example of the “tiangular tree” to
produce a concrete way to prove a triangulation which is not χ -complete, based on the
offspring function, we refer here to [3] for this notion.

In the fifth section, we address the main results concerning essential self-adjointness for
T and L. In the case of complete manifolds, there is a result of Chernoff ; see [4], and
we also have for the discrete setting; see [1], which conclude that the Dirac operator is
essentially self-adjoint. As a result, they prove essential self-adjointness of the Laplace-
Beltrami operator. So, we take this idea to make the relationship between T and L about the
essential self-adjointness, when the triangulation is χ -complete.

In the final section, we present a particular example of a triangulation where we study the
χ -completeness hypothesis. Moreover, we show thatL1 andL2 is not necessarily essentially
self-adjoint on the simple case.

We can extend the results in this paper to more general 2-simplicial complex, where
the oriented faces are not necessarily triangles. Particularly we can give a more general
expression of the operator d1. More precisely, one can take 2-simplicial complexes with the
number of edges of an oriented face bounded. Indeed this hypothesis is important to give a
meaning of the inequality in Definition 4.2.

2 Preliminaries

2.1 The Basic Concepts

A graphK is a pair (V, E), where V is the countable set of vertices and E the set of oriented
edges, considered as a subset of V×V . When two vertices x and y are connected by an edge
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e, we say they are neighbors. We denote x ∼ y and e = [x, y] ∈ E . We assume that E is
symmetric, i.e. [x, y] ∈ E ⇒ [y, x] ∈ E . An oriented graph K is given by a partition of E :

E = E− ∪ E+

(x, y) ∈ E− ⇔ (y, x) ∈ E+

In this case for e = (x, y) ∈ E−, we define the origin e− = x, the termination e+ = y

and the opposite edge −e = (y, x) ∈ E+. Let c : V → (0, ∞) the weight on the vertices.
We also have r : E −→ (0, ∞) the weight on the oriented edges with

∀e ∈ E, r(−e) = r(e).

A path between two vertices x, y ∈ V is a finite set of oriented edges e1, ..., en, n ≥ 1
such that

e−
1 = x, e+

n = y and, if n ≥ 2, ∀j, 1 ≤ j ≤ n − 1 =⇒ e+
j = e−

j+1.

The path is called a cycle or closed when the origin and the end are identical, ie. e−
1 = e+

n ,

with n ≥ 3. If no cycles appear more than once in a path, the path is called a simple path.
The graph K is connected if any two vertices x and y can be connected by a path with
e−
1 = x and e+

n = y. We say that the graph K is locally finite if each vertex belongs to a
finite number of edges. The graphK is without loops if there is not the type of edges (x, x),
i.e.

∀x ∈ V =⇒ (x, x) /∈ E .

2.1.1 The Set of neighbors of x ∈ V is Denoted by

V(x) := {y ∈ V : y ∼ x}.

2.1.2 The Degree of x ∈ V is by Definition deg(x), the Number of Neighbors of x

2.1.3 The Combinatorial Distance dcomb on K is

dcomb(x, y) = min{n, {ei}1≤i≤n ⊆ E a path between the two vertices x and y}.

2.1.4 Let B be a Finite Subset of V. We Define the Edge Boundary

∂EB of B by

∂EB := {e ∈ E such that {e−, e+} ∩ B �= ∅ and {e−, e+} ∩ Bc �= ∅}.
In the sequel, we assume that
K is without loops, connected, locally finite and oriented

Definition 2.1 An oriented face of K is a surface limited by a simple closed path,
considered as an element of En with n � 3, i.e

� an oriented face ⇒ ∃n ≥ 3, � = (e1, e2, ..., en) ∈ En such that {ei}1≤i≤n

⊆ E is a simple closed path.

Let F be the set of all oriented faces of K, we consider the pair (K,F ) as a 2-simplicial
complex, we denote it by T . We can denote also T =(V, E,F ).



334 Y. Chebbi

Remark 2.2 Care should be taken not to confuse the simple cycles and the oriented faces.
Indeed, one can have simple cycles that are not oriented faces.

For a face � = (e1, e2, ..., en) ∈ F , we have

� = (ei, ..., en, e1, ..., ei−1) ∈ F , ∀3 ≤ i ≤ n − 1.

We can denote also

� = (e2, e3, ..., en, e1) = .... = (en, e1, e2, ..., en−1) ∈ F .

Because K is an oriented graph, we demand

(e1, e2, ..., en) ∈ F ⇒ (−en, −en−1, ..., −e2,−e1) ∈ F .

Given � = (e1, e2, ..., en) ∈ F , the opposite face of � is denoted by

−� = (−en, −en−1, ..., −e2,−e1) ∈ F .

Let B be a finite subset of V . We define the face boundary ∂FB of B by

∂FB := {σ = (e1, e2, ..., en) ∈ F , ∃i such that ei ∈ ∂EB, n � 3}.

Definition 2.3 (Triangulation) A triangulation is a 2-simplicial complex such that all the
faces are triangles.

Remark 2.4 In the definition of a triagulation we demand that faces are triangles. In the
sequel, we assume also that each triangular cycle is an oriented face for simplicity reasons.
Indeed all the results of this work can be extended easily to any triangulation.

In the sequel we will represent the oriented faces by their vertices

� = (e1, e2, e3) = [e−
1 = e+

3 , e+
1 = e−

2 , e+
2 = e−

3 ] ∈ F .

For a face � = [x, y, z] ∈ F . Let us set

� = [x, y, z] = [y, z, x] = [z, x, y] ∈ F ⇒ −� = [y, x, z] = [x, z, y] = [z, y, x] ∈ F .

To define weighted triangulations we need weights, let us give s : F → (0, ∞) the
weight on oriented faces such that for all � ∈ F , s(−�) = s(�). The weighted triangula-
tion (T , c, r, s) is given by the triangulation T = (V, E,F). We say that T is simple if the
weights of the vertices, the edges and faces equals 1. For an edge e ∈ E , we also denote the
oriented face [e−, e+, x] by (e, x), with x ∈ V(e−) ∩ V(e+). The set of vertices belonging
to the edge e ∈ E is given by

Fe := {x ∈ V, (e, x) ∈ F} = V(e−) ∩ V(e+).

2.2 Functions Spaces

We denote the set of 0-cochains or functions on V by:

C(V) = {f : V → C}
and the set of functions of finite support by Cc(V).

Similarly, we denote the set of 1-cochains or 1-forms on E by:

C(E) = {ϕ : E → C, ϕ(−e) = −ϕ(e)}
and the set of 1-forms of finite support by Cc(E).
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Moreover, we denote the set of 2-cochains or 2-forms on F by:

C(F) = {φ : F → C, φ(−�) = −φ(�)}
and the set of 2-forms of finite support by Cc(F).

Let us define the Hilbert spaces l2(V), l2(E) and l2(F) as the sets of cochains with finite
norm, we have

(a)

l2(V) := {f ∈ C(V);
∑

x∈V
c(x)|f (x)|2 < ∞},

with the inner product

〈f, g〉l2(V) :=
∑

x∈V
c(x)f (x)g(x).

(b)

l2(E) := {ϕ ∈ C(E);
∑

e∈E
r(e)|ϕ(e)|2 < ∞},

with the inner product

〈ϕ, ψ〉l2(E) := 1

2

∑

e∈E
r(e)ϕ(e)ψ(e).

(c)

l2(F) := {φ ∈ C(F);
∑

�∈F
s(�)|φ(�)|2 < ∞},

with the inner product

〈φ1, φ2〉l2(F) = 1

6

∑

[x,y,z]∈F
s(x, y, z)φ1(x, y, z)φ2(x, y, z).

The direct sum of the spaces l2(V), l2(E) and l2(F) can be considered as a new Hilbert
space denoted byH, that is

H = l2(V) ⊕ l2(E) ⊕ l2(F),

with the norm

∀F = (f, ϕ, φ) ∈ H, ‖F‖2H = ‖f ‖2
l2(V)

+ ‖ϕ‖2
l2(E)

+ ‖φ‖2
l2(F)

.

2.3 Operators

We give in this part the expressions of the operators introduced on graphs which are already
well known and we also give other operators acting on triangulations.

2.3.1 The Difference Operator

By analogy to electric networks of voltage differences across edges leading to currents [17],
we define the difference operator d0 : Cc(V) −→ Cc(E) by

∀f ∈ Cc(V), d0(f )(e) = f (e+) − f (e−).
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2.3.2 The Co-Boundary Operator

It is the formal adjoint of d0, denoted δ0 : Cc(E) −→ Cc(V), (see [1]) acts as

∀ϕ ∈ Cc(E), δ0(ϕ)(x) = 1

c(x)

∑

e,e+=x

r(e)ϕ(e).

2.3.3 The Exterior Derivative

It is the operator d1 : Cc(E) −→ Cc(F), given by

∀ψ ∈ Cc(E), d1(ψ)(x, y, z) = ψ(x, y) + ψ(y, z) + ψ(z, x).

2.3.4 The Co-Exterior Derivative

It is the formal adjoint of d1, denoted δ1 : Cc(F) −→ Cc(E), which satisfies

〈d1ψ, φ〉l2(F) = 〈ψ, δ1φ〉l2(E), ∀(ψ, φ) ∈ Cc(E) × Cc(F). (2.1)

Lemma 2.5 The formal adjoint δ1 : Cc(F) −→ Cc(E), is given by

δ1(φ)(e) = 1

r(e)

∑

x∈Fe

s(e, x)φ(e, x).

Proof Let (ψ, φ) ∈ Cc(E) × Cc(F). The Eq. 2.1 gives

〈d1ψ, φ〉l2(F) = 1

6

∑

[x,y,z]∈F
s(x, y, z)d1(ψ)(x, y, z)φ(x, y, z)

= 1

2

∑

[x,y,z]∈F
s(x, y, z)ψ(x, y)φ(x, y, z)

= 〈ψ, δ1φ〉l2(E).

To justify it note that the expression of d1 contributing to the first sum is divided into
three similar parts. So it remains to show only

∑

[x,y,z]∈F
s(x, y, z)ψ(x, y)φ(x, y, z) =

∑

e∈E
ψ(e)

∑

x∈Fe

s(e, x)φ(e, x)

=
∑

e∈E
r(e)ψ(e)

⎛

⎝ 1

r(e)

∑

x∈Fe

s(e, x)φ(e, x)

⎞

⎠

2.3.5 Gauß-Bonnet Operator on T

By analogy to Riemannian geometry, we use the decomposition of the operators in [7] to
define the Gauß-Bonnet operator. Let us begin by defining the operator

d : Cc(V) ⊕ Cc(E) ⊕ Cc(F) �
by

∀(f, ϕ, φ) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F), d(f, ϕ, φ) = (0, d0f, d1ϕ),
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and δ the formal adjoint of d. Thus it satisfies

〈d(f1, ϕ1, φ1), (f2, ϕ2, φ2)〉H = 〈(f1, ϕ1, φ1), δ(f2, ϕ2, φ2)〉H, (2.2)

for all (f1, ϕ1, φ1), (f2, ϕ2, φ2) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Lemma 2.6 Let T = (K,F) be a triangulation. Then

δ : Cc(V) ⊕ Cc(E) ⊕ Cc(F) �

is given by

δ(f, ϕ, φ) = (δ0ϕ, δ1φ, 0), ∀(f, ϕ, φ) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Proof Let (f1, ϕ1, φ1), (f2, ϕ2, φ2) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F). Using the Eq. 2.2

〈d(f1, ϕ1, φ1), (f2, ϕ2, φ2)〉H = 〈(0, d0f1, d
1ϕ1), (f2, ϕ2, φ2)〉H

= 〈d0f1, ϕ2〉l2(E) + 〈d1ϕ1, φ2〉l2(F)

= 〈f1, δ0ϕ2〉l2(V) + 〈ϕ1, δ
1φ2〉l2(E)

= 〈(f1, ϕ1, φ1), (δ
0ϕ2, δ

1φ2, 0)〉H.

Definition 2.7 Let T = (K,F) be a triangulation, the Gauß-Bonnet operator defined as

T := d + δ : Cc(V) ⊕ Cc(E) ⊕ Cc(F) �

is given by

T (f, ϕ, φ) = (δ0ϕ, d0f + δ1φ, d1ϕ)

for all (f, ϕ, φ) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F). Moreover, the matrix representation of T is

given by T ≡
⎛

⎝
0 δ0 0
d0 0 δ1

0 d1 0

⎞

⎠

Lemma 2.8 If T = (K,F) is a triangulation then d1d0 = δ0δ1 = 0.

Proof Let f ∈ Cc(V), we have that

d1(d0f )(x, y, z) = d0f (x, y) + d0f (y, z) + d0f (z, x)

= (f (y) − f (x)) + (f (z) − f (y)) + (f (x) − f (z)) = 0.

Since d1d0 = 0 and the operator δ0δ1 is the formal adjoint of d1d0. Then δ0δ1 = 0.

Before giving an important result for f ∈ C(V), we define the two operators ˜ :
C(V) −→ C(E) by f �→ f̃ and ˜̃: C(V) −→ C(F) by f �→ ˜̃

f , where

f̃ (e) := 1

2

(
f (e+) + f (e−)

)
.

˜̃
f (x, y, z) := 1

3

(
f̃ (x, y) + f̃ (y, z) + f̃ (z, x)

) = 1

3
(f (x) + f (y) + f (z)).
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The exterior product of two 1-forms defined as . ∧disk . : C(E) × C(E) −→ C(F), is
given by:

(ψ ∧disk ϕ) (x, y, z) = [ψ(z, x) + ψ(z, y)]ϕ(x, y)

+ [ψ(x, y) + ψ(x, z)]ϕ(y, z)

+ [ψ(y, z) + ψ(y, x)]ϕ(z, x).

It satisfies ψ∧disk ϕ = − (ϕ ∧disk ψ) = −ϕ∧disk ψ = ϕ∧disk −ψ, for all ϕ, ψ ∈ C(E).

Lemma 2.9 (Derivation properties) Let (f, ϕ, φ) ∈ Cc(V) × Cc(E) × Cc(F). Then

d1(f̃ ϕ)(x, y, z) = ˜̃
f (x, y, z)d1(ϕ)(x, y, z) + 1

6

(
d0(f ) ∧disk ϕ

)
(x, y, z). (2.3)

δ1(
˜̃
f φ)(e) = f̃ (e)δ1(φ)(e) + 1

6r(e)

∑

x∈Fe

s(e, x)
[
d0(f )(e−, x) + d0(f )(e+, x)

]
φ(e, x).

(2.4)

Proof

(1) Let (f, ϕ) ∈ Cc(V) × Cc(E), we have

d1(f̃ ϕ)(x, y, z) = f̃ (x, y)ϕ(x, y) + f̃ (y, z)ϕ(y, z) + f̃ (z, x)ϕ(z, x)

= [f̃ (x, y) + f̃ (y, z) + f̃ (z, x)][ϕ(x, y) + ϕ(y, z) + ϕ(z, x)]
− (

f̃ (y, z) + f̃ (z, x)
)
ϕ(x, y) − (

f̃ (z, x) + f̃ (x, y)
)
ϕ(y, z)

− (
f̃ (x, y) + f̃ (y, z)

)
ϕ(z, x)

= ˜̃
f (x, y, z)d1(ϕ)(x, y, z)

+
(
2
3 f̃ (x, y) − 1

3

[
f̃ (y, z) + f̃ (z, x)

])
ϕ(x, y)

+
(
2
3 f̃ (y, z) − 1

3

[
f̃ (z, x) + f̃ (x, y)

])
ϕ(y, z)

+
(
2
3 f̃ (z, x) − 1

3

[
f̃ (x, y) + f̃ (y, z)

])
ϕ(z, x).

On the other hand, we have

(
2
3 f̃ (x, y) − 1

3

[
f̃ (y, z) + f̃ (z, x)

]) = 1
3

([
f̃ (x, y) − f̃ (y, z)

]+ [
f̃ (x, y) − f̃ (z, x)

])

= 1
6

(
d0(f )(z, x) + d0(f )(z, y)

)
.

Similarly, we get
(
2

3
f̃ (y, z) − 1

3

[
f̃ (z, x) + f̃ (x, y)

])
ϕ(y, z) = 1

6

(
d0(f )(x, y) + d0(f )(x, z)

)
ϕ(y, z).

and
(
2

3
f̃ (z, x) − 1

3

[
f̃ (x, y) + f̃ (y, z)

])
ϕ(z, x) = 1

6

(
d0(f )(y, z) + d0(f )(y, x)

)
ϕ(z, x).

Hence, we have

d1(f̃ ϕ)(x, y, z) = ˜̃
f (x, y, z)d1(ϕ)(x, y, z)

+ 1
6

[
d0(f )(z, x) + d0(f )(z, y)

]
ϕ(x, y)

+ 1
6

[
d0(f )(x, y) + d0(f )(x, z)

]
ϕ(y, z)

+ 1
6

[
d0(f )(y, z) + d0(f )(y, x)

]
ϕ(z, x).
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(2) Let (f, φ) ∈ Cc(V) × Cc(F). Then by Lemma 2.5,

δ1(
˜̃
f φ)(e) = 1

r(e)

∑

x∈Fe

s(e, x)
˜̃
f (e, x)φ(e, x)

= 1

3r(e)

∑

x∈Fe

s(e, x)
(
f̃ (e) + f̃ (e+, x) + f̃ (x, e−)

)
φ(e, x)

= 1
3 f̃ (e)δ1(φ)(e) + 1

3r(e)

∑

x∈Fe

s(e, x)f̃ (e+, x)φ(e, x)

+ 1

3r(e)

∑

x∈Fe

s(e, x)f̃ (x, e−)φ(e, x).

= f̃ (e)δ1(φ)(e)

+ 1

3r(e)

∑

x∈Fe

s(e, x)
(
f̃ (e+, x) − f̃ (e)

)
φ(e, x)

+ 1

3r(e)

∑

x∈Fe

s(e, x)
(
f̃ (x, e−) − f̃ (e)

)
φ(e, x)

= f̃ (e)δ1(φ)(e)

+ 1

6r(e)

∑

x∈Fe

s(e, x)
[
d0(f )(e−, x) + d0(f )(e+, x)

]
φ(e, x).

2.3.6 Laplacian

Through the Gauß-Bonnet operator T , we can define the discrete Laplacian on T . So,
Lemma 2.8 induces the following definition

Definition 2.10 Let T = (K,F) be a triangulation, the Laplacian on T defined as

L := T 2 : Cc(V) ⊕ Cc(E) ⊕ Cc(F) �
is given by

L(f, ϕ, φ) = (δ0d0f, (d0δ0 + δ1d1)ϕ, d1δ1φ).

for all (f, ϕ, φ) ∈ Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Remark 2.11 We can write
L := L0 ⊕ L1 ⊕ L2,

where L0 is the discrete Laplacian acting on functions given by

L0(f )(x) := δ0d0(f )(x) = 1

c(x)

∑

e,e+=x

r(e)d0(f )(e),

with f ∈ Cc(V), and where L1 is the discrete Laplacian acting on 1-forms given by

L1(ϕ)(x, y) := (d0δ0 + δ1d1)(ϕ)(x, y)

= 1

c(y)

∑

e,e+=y

r(e)ϕ(e) − 1

c(x)

∑

e,e+=x

r(e)ϕ(e)

+ 1

r(x, y)

∑

z∈F[x,y]
s(x, y, z)d1(ϕ)(x, y, z),
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with ϕ ∈ Cc(E), and where also L2 is the discrete Laplacian acting on 2-forms given by

L2(φ)(x, y, z) := d1δ1(φ)(x, y, z)

= 1

r(x, y)

∑

u∈F[x,y]
s(x, y, u)φ(x, y, u)

+ 1

r(y, z)

∑

u∈F[y,z]
s(y, z, u)φ(y, z, u)

+ 1

r(z, x)

∑

u∈F[z,x]
s(z, x, u)φ(z, x, u),

with φ ∈ Cc(F).

Remark 2.12 The operator L1 is called the full Laplacian and defined as L1 = L−
1 +

L+
1 , where L−

1 = d0δ0 (resp. L+
1 = δ1d1) is called the lower Laplacian (resp. the upper

Laplacian). In both articles [1] and [3], the authors denote 
0 = δ0d0 and 
1 = d0δ0. In
this work, we have L0 = 
0 and L−

1 = 
1.

3 Closability

On a connected locally finite graph, the operators d0 and δ0 are closable (see [1]). The next
Lemma proves the closability of the operators d1 and δ1 on a triangulation.

Lemma 3.1 Let T = (K,F) be a weighted triangulation. Then the operators d1 and δ1

are closable.

Proof

• Let (ϕn)n∈N be a sequence from Cc(E) and φ ∈ l2(F) such that

lim
n→∞

(
‖ϕn‖l2(E) + ‖d1ϕn − φ‖l2(F)

)
= 0,

then for each edge e, ϕn(e) converges to 0 and for each face �, d1(ϕn)(�) con-
verges to φ(�). But by the expression of d1 and local finiteness of T , for each face
�, d1(ϕn)(�) converges to 0. Thus we have that φ = 0.

• The same can be done for δ1 : Let (φn)n∈N be a sequence from Cc(F) and ϕ ∈ l2(E)

such that
lim

n→∞
(
‖φn‖l2(F) + ‖δ1φn − ϕ‖l2(E)

)
= 0,

then for each face σ, φn(σ ) converges to 0 and for each edge e, δ1(φn)(e) converges to
ϕ(e). But by the expression of δ1 and local finiteness of T , for each edge e, δ1(φn)(e)

converges to 0. Thus we have that ϕ = 0.

The smallest extension is the closure (see [15, 18]), denoted d0 := d0
min (resp. δ0 :=

δ0min, d
1 := d1

min, δ
1 := δ1min, T := Tmin, L := Lmin) has the domain

Dom(d0
min) =

{
f ∈ l2(V); ∃(fn)n∈N, fn ∈ Cc(V), lim

n→∞ ‖fn − f ‖l2(V) = 0, lim
n→∞ d0(fn)exists in l2(E)

}
,

for such an f , one puts
d0
min(f ) = lim

n→∞ d0(fn).
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We notice that d0
min(f ) is independent of the sequence (fn)n∈N, because d0 is closable.

The largest is d0
max = (δ0)∗, the adjoint operator of δ0min, (resp. δ

0
max = (d0)∗, the adjoint

operator of d0
min).

We also note d1
max = (δ1)∗, the adjoint operator of δ1min, (resp δ1max = (d1)∗, the adjoint

operator of d1
min).

Proposition 3.2 Let T = (K,F) be a weighted triangulation. Then

Dom(Tmin) ⊆ Dom(d0
min) ⊕

(
Dom(δ0min) ∩ Dom(d1

min)
)

⊕ Dom(δ1min).

Proof Let F = (f, ϕ, φ) ∈ Dom(Tmin), so there exists a sequence (Fn)n =
((fn, ϕn, φn))n ⊆ Cc(V) ⊕ Cc(E) ⊕ Cc(F) such that lim

n→∞ Fn = F in H and (T Fn)n∈N
converges inH. Let us denote by l0 = (f0, ϕ0, φ0) this limit. Therefore

‖T Fn − l0‖2H = ‖δ0ϕn − f0‖2l2(V)
+ ‖(d0 + δ1)(fn, φn) − ϕ0‖2l2(E)

+ ‖d1ϕn − φ0‖2l2(F)
.

Hence δ0ϕn → f0 and d1ϕn → φ0 respectively in l2(V) and in l2(E). So, by definition,
ϕ ∈ Dom(δ0min) ∩ Dom(d1

min), f0 = δ0minϕ and φ0 = d1
minϕ. Moreover, we combine the

parallelogram identity with Lemma 2.8 to obtain the following result

‖(d0 + δ1)(f, φ)‖2
l2(E)

= ‖d0(f )‖2
l2(E)

+‖δ1(φ)‖2
l2(E)

, ∀n ∈ N, ∀(f, φ) ∈ Cc(V)×Cc(F).

Since
(
(d0 + δ1)(fn, φn)

)
n
converges in l2(E), then by completeness of l2(E)

(
d0(fn)

)
n

and
(
δ1(φn)

)
n
are convergent in l2(E). Thus, we conclude that f ∈ Dom(d0

min) and φ ∈
Dom(δ1min).

Proposition 3.3 Let T = (K,F) be a weighted triangulation. Then

Dom(Lmin) ⊆ Dom(δ0mind
0
min)⊕

(
Dom(d0

minδ
0
min) ∩ Dom(δ1mind

1
min)

)
⊕Dom(d1

minδ
1
min).

Proof i) We will show that (L0)min ⊆ δ0mind
0
min. First, we note that

Dom(δ0mind
0
min) = {f ∈ Dom(d0

min), d0
minf ∈ Dom(δ0min)}.

Let f ∈ Dom((L0)min), so there exists a sequence (fn)n ⊆ Cc(V) such that

fn → f in l2(V), δ0d0fn → (δ0d0)minf in l2(V).

So, (L0fn)n is a Cauchy sequence. Moreover, we have

∀n, m ∈ N, ‖d0fn − d0fm‖2
l2(E)

= 〈d0(fn − fm), d0(fn − fm)〉l2(E)

= 〈δ0d0(fn − fm), fn − fm〉l2(V)

= 〈L0(fn − fm), fn − fm〉l2(V)

≤ ‖L0(fn − fm)‖l2(V)‖fn − fm‖l2(V).

Thus (d0fn)n is a Cauchy sequence because (L0fn)n is a Cauchy sequence and
(fn)n is convergent. So, it is convergent in l2(E). By closability, we conclude that
f ∈ Dom(δ0mind

0
min).

ii) First, for all ϕ, ψ ∈ Cc(E) we have

〈L1ϕ,ψ〉l2(E) = 〈(L−
1 + L+

1 )ϕ, ψ〉l2(E) = 〈δ0ϕ, δ0ψ〉l2(V) + 〈d1ϕ, d1ψ〉l2(F). (3.1)
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Using the same method as in i) with Eq. 3.1 we obtain that (L−
1 )min ⊆ d0

minδ
0
min

and (L+
1 )min ⊆ δ1mind

1
min. It remains to show that we have

(L1)min ⊆ (L−
1 )min + (L+

1 )min

Let ϕ ∈ Dom((L1)min), so there exists a sequence (ϕn)n ⊆ Cc(E) such that
ϕ = lim

n→∞ ϕn in l2(E) and (L1ϕn)n∈N converges in l2(E). Then, by the parallelogram

identity with Lemma 2.8 we obtain

‖(L−
1 + L+

1 )(ϕn)‖2l2(E)
= ‖L−

1 (ϕn)‖2l2(E)
+ ‖L+

1 (ϕn)‖2l2(E)
, ∀n ∈ N.

Then
(
L−
1 (ϕn)

)
n
and

(
L+
1 (ϕn)

)
n
are convergent in l2(E). Moreover, by the clos-

ability of L−
1 and L+

1 , we conclude that ϕ ∈ Dom((L−
1 )min) ∩ Dom((L+

1 )min).

iii) Since, for any φ, � ∈ Cc(F), we have

〈L2φ, �〉l2(F) = 〈d1δ1φ, �〉l2(F) = 〈δ1φ, δ1�〉l2(E). (3.2)

Using the same method as in i) with Eq. 3.2 we obtain that (L2)min ⊆ d1
minδ

1
min.

4 Geometric Hypothesis

4.1 χ-Completeness

In this subsection, we give the geometric hypothesis for the triangulation T . First we recall
the definition of χ -completeness given in [1] for the case of graphs. A graph K = (V, E)

is χ -complete if there exists an increasing sequence of finite sets (Bn)n∈N such that V =
∪n∈NBn and there exist related functions χn satisfying the following three conditions:

i) χn ∈ Cc(V), 0 ≤ χn ≤ 1.
ii) x ∈ Bn ⇒ χn(x) = 1.
iii) ∃C > 0 such that ∀n ∈ N, x ∈ V

1

c(x)

∑

e∈E,e±=x

r(e)|d0χn(e)|2 ≤ C.

Remark 4.1 The χ -completeness is related to the notion of intrinsic metric for weighted
graphs. This geometric hypothesis covers many situations that have been already studied.
Particularly in [1], the authors prove that it is satisfied by locally finite graphs which are
complete for some intrinsic pseudo metric, as defined in [8] and [12].

Definition 4.2 A triangulation T = (K,F) is χ -complete, if

(C1) K is χ -complete.
(C2) ∃M > 0, ∀n ∈ N, e ∈ E, such that

1

r(e)

∑

x∈Fe

s(e, x)|d0χn(e
−, x) + d0χn(e

+, x)|2 ≤ M.
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For this type of 2-simplicial complexes one has

∀p ∈ N, ∃np, n ≥ np ⇒ ∀e ∈ E, such that e+ or e− ∈ Bp, d0χn(e) = 0. (4.1)

E =
⋃

n∈N
En if En := {e ∈ E, e+ ∈ Bn or e− ∈ Bn}. (4.2)

∀q ∈ N, ∃nq, n ≥ nq ⇒ ∀(e, x) ∈ F , such that e−, e+ or x ∈ Bq, d0χn(e
±, x) = 0. (4.3)

F =
⋃

n∈N
Fn if Fn := {[x, y, z] ∈ F , x ∈ Bn or y ∈ Bn or z ∈ Bn}. (4.4)

∀f ∈ l2(V), ‖f ‖2
l2(V)

= lim
n→∞〈χnf, f 〉l2(V). (4.5)

∀ϕ ∈ l2(E), ‖ϕ‖2
l2(E)

= lim
n→∞

1

2

∑

e∈E
r(e)χn(e

+)|ϕ(e)|2. (4.6)

∀φ ∈ l2(F), ‖φ‖2
l2(F)

= lim
n→∞

1

6

∑

e∈E
χ̃n(e)

⎛

⎝
∑

x∈Fe

s(e, x)|φ(e, x)|2
⎞

⎠ . (4.7)

lim
n→∞

∑

e∈E∗(n)

r(e)|ϕ(e)|2 = 0, (4.8)

where
E∗(n) := {e ∈ E, ∃x ∈ Fe such that (e

±, x) ∈ supp(d0χn)}

lim
n→∞

∑

e∈E

∑

x∈F∗
e (n)

s(e, x)|φ(e, x)|2 = 0, (4.9)

where
∀e ∈ E, F∗

e (n) := {x ∈ Fe, (e±, x) ∈ supp(d0χn)}.

Proposition 4.3 Let T be a simple triangulation of bounded degree, i.e ∃λ > 0, ∀x ∈
V, deg(x) ≤ λ. Then T is a χ -complete triangulation.

Proof Let us consider T an infinite triangulation. Given o ∈ V, let Bn be a ball of radius
n ∈ N centered by the vertex o:

Bn = {x ∈ V, dcomb(o, x) ≤ n}.
We set the cut-off function χn ∈ Cc(V) as follow:

χn(x) :=
(
2n − dcomb(o, x)

n
∨ 0

)
∧ 1, ∀n ∈ N

∗.

- If x ∈ Bn ⇒ χn(x) = 1 and x ∈ Bc
2n ⇒ χn(x) = 0.

- For e ∈ E, we have that

|d0χn(e)| ≤ 1

n

∣∣dcomb(o, e+) − dcomb(o, e−)
∣∣ = 1

n
.

Hence

∀x ∈ V,
∑

e∈E,e±=x

|d0χn(e)|2 ≤ λ

n2

and
∀e ∈ E,

∑

x∈Fe

|d0χn(e
−, x) + d0χn(e

+, x)|2 ≤ 2λ

n2
.
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o

Fig. 1 An infinite 6-regular triangulation

Example 4.4 (A χ -complete triangulation)
We consider T a 6-regular simple triangulation, i.e. deg(x) = 6, ∀x ∈ V . Then, by

Proposition 4.3 we have that T is a χ -complete triangulation (Fig. 1).

Proposition 4.5 Let T = (K,F) be a χ -complete triangulation. Then

Dom ((L0)min) = Dom(δ0mind
0
min).

Proof In Proposition 3.3, we have already (L0)min ⊆ δ0mind
0
min. Indeed, we will show that

δ0mind
0
min ⊆ (L0)min. Let f ∈ Dom(δ0mind

0
min), by the χ -completeness of T , we now

consider a sequence (χnf )n ⊆ Cc(V). It remains to show that:

lim
n→∞ ‖f − χnf ‖l2(V) + ‖L0(f − χnf )‖l2(V) = 0. (4.10)

For the first term of Eq. 4.10, since f ∈ l2(V) we have

‖f − χnf ‖2
l2(V)

≤
∑

x∈Bc
n

c(x)|f (x)|2 → 0, when n → ∞.

For the second term of Eq. 4.10, we need a derivation formula of d0, see [14]. Let e ∈ E,

for each (f, g) ∈ Cc(V) × Cc(V) we have

d0(fg)(e) = f (e+)d0(g)(e) + d0(f )(e)g(e−). (4.11)
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By the definition of L0, we have

‖L0(f − χnf )‖2
l2(V)

=
∑

x∈V

1

c(x)

∣∣∣∣∣∣

∑

e,e+=x

r(e)d0((1 − χn)f )(e)

∣∣∣∣∣∣

2

.

Using the derivation formula (4.11), we get

‖L0(f − χnf )‖2
l2(V)

≤ 2
∑

x∈V

1

c(x)

∣∣∣∣∣∣

∑

e,e+=x

r(e)(1 − χn)(e
+)d0(f )(e)

∣∣∣∣∣∣

2

+2
∑

x∈V

1

c(x)

∣∣∣∣∣∣

∑

e,e+=x

r(e)f (e−)d0(χn)(e)

∣∣∣∣∣∣

2

= 2

⎛

⎜⎝‖(1 − χn)L0(f )‖2
l2(V)

+
∑

x∈V

1

c(x)

∣∣∣∣∣∣

∑

e,e+=x

r(e)f (e−)d0(χn)(e)

∣∣∣∣∣∣

2
⎞

⎟⎠ .

Since L0(f ) ∈ l2(V), we have

lim
n→∞ ‖(1 − χn)L0(f )‖l2(V) = 0.

On the other hand, by the hypothesis iii) of χ -completeness and the Cauchy-Schwarz
inequality, we get

∑

x∈V

1

c(x)

∣∣∣∣∣∣

∑

e,e+=x

r(e)f (e−)d0(χn)(e)

∣∣∣∣∣∣

2

≤
∑

x∈V

1

c(x)

⎛

⎝
∑

e,e+=x

r(e)|d0(χn)(e)|2
⎞

⎠

⎛

⎝
∑

e∈supp(d0χn),e+=x

r(e)|f (e−)|2
⎞

⎠

≤
∑

x∈V
C

∑

e∈supp(d0χn),e+=x

r(e)|f (e−)|2

≤ C
∑

e∈supp(d0χn)

r(e)|f (e−)|2.

The properties (4.1) and (4.2) permit to conclude that this term tends to 0 when ∞.

4.2 The Case of a Not χ-Complete Triangulation

In [3], the authors use the offspring function on the trees to give a counter example of a graph
which is not χ -complete. The same thing for the triangulations is not always χ -complete.
To prove it, we will study the triangular tree in Definition 4.6.

Let T a weighted triangulation, one can take any point o ∈ V . Given n ∈ N, we denote
the spheres by

Sn := {x ∈ V, dcomb(o, x) = n}.



346 Y. Chebbi

o S2 S
3

S1

Fig. 2 A Triangular Tree

Definition 4.6 A triangular tree T = (V,F) with the origin vertex o is a triangulation
where V = ∪n∈NSn, such that

∀x ∈ Sn\{o}, V(x) ∩ Sn−1 = {←−x }.
∀x ∈ Sn, y ∈ V(x) ∩ Sn+1 ⇔ ←−

y = x.

(x, y) ∈ E ∩ (Sn\{o})2 ⇒ ←−
x = ←−

y .

where ←−
x the unique vertex in Sn−1, which is related with x ∈ Sn\{o} (Fig. 2).

Let T be a simple triangular tree. The offspring of the n-th generation (see [3]) is given
by

off(n) = #Sn+1

#Sn

.

Proposition 4.7 Let T be a simple triangular tree with the origin vertex o. Assume that

sup
n∈N

sup
x∈Sn

# (V(x) ∩ Sn+1)

off(n)
< ∞.

Then

T is χ -complete ⇔
∑

n�1

1√
off(n)

= ∞.
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Proof

⇒) In a proof by contradiction, we start by assuming that T is χ -complete and the series
converges. So, there exists a sequence (χn)n included in Cc(V), satisfying

∃C > 0, ∀n ∈ N,
∑

y∼x

|χn(x) − χn(y)|2 ≤ C, x ∈ V .

Given n, m ∈ N and xm ∈ Sm. By the local finiteness of the triangulation, we find
xm+1 ∈ V(xm) ∩ Sm+1, such that

|χn(xm) − χn(xm+1)| = min
y∈V(xm)∩Sm+1

|χn(xm) − χn(y)|.

But, ∑

y∈V(xm)∩Sm+1

|χn(xm) − χn(y)|2 ≤ C.

Hence

|χn(xm) − χn(xm+1)| ≤
√

C√
off(m)

.

Moreover, by convergence of the series, there is N ∈ N such that

∑

k≥N

1√
off(k)

<
1

2
√

C
.

Then, by ii) of the definition of χ -completeness, there is n0 ∈ N such that χno(x) =
1 for all dcomb(o, x) ≤ N. Since χno is with finite support, there is M ∈ N such that
χno(x) = 0 for all dcomb(o, x) ≥ N + M. Therefore,

|χno(xN ) − χno(xN+M)| ≤ |χno(xN ) − χno(xN+1)| + ..... + |χno(xN+M−1) − χno(xN+M)|
≤ √

C

N+M−1∑

k=n

1√
off(k)

<
1

2
.

Since |χno(xN) − χno(xN+M)| = 1, we have the contradiction.
⇐) We consider the cut-off function:

χn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if dcomb(o, x) � n,

max

⎛

⎝0, 1 −
dcomb(o,x)−1∑

k=n

1√
off(k)

⎞

⎠ if dcomb(o, x) > n.

Since the series diverges, χn is with finite support and satisfies i) and ii) of the
definition of χ -completeness. Given x ∈ Sm with m > n, we have

∑

y∈V(x)∩Sm+1

|χn(x) − χn(y)|2 ≤ # (V(x) ∩ Sm+1)

off(m)
.

∑

y∈V(x)∩Sm

|χn(x) − χn(y)|2 = 0.

∑

y∈V(x)∩Sm−1

|χn(x) − χn(y)|2 = |χn(x) − χn(
←−
x )|2 ≤ 1

off(m − 1)
.
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On the other hand,

i) If e ∈ Sm × Sm+1 with m > n, we have
∑

x∈Fe

|d0χn(e
−, x) + d0χn(e

+, x)|2 =
∑

x∈Fe

|2χn(x) − χn(e
−) − χn(e

+)|2

≤ |Fe|
off(m)

≤ #
(
V(e−) ∩ Sm+1

)

off(m)
.

ii) If e ∈ Sm × Sm with m > n, we have
∑

x∈Fe

|d0χn(e
−, x) + d0χn(e

+, x)|2 =
∑

x∈Fe

|2χn(x) − χn(e
−) − χn(e

+)|2

= |2χn(
←−
e ) − χn(e

−) − χn(e
+)|2

≤ 4

off(m − 1)
,

with ←−
e is a unique vertex in Sm−1 ∩ Fe.

It satisfies Definition 4.2 of χ -completeness.

Corollary 4.8 Let T be a simple triangular tree, endowed with an origin such that

off(n) = # (V(x) ∩ Sn+1) , for all x ∈ Sn,

then T is χ -complete if and only if
∑

n�1

1√
off(n)

= ∞.

Example 4.9 Set α > 0. Let T be a simple triangular tree, endowed with an origin such that

off(n) = # (V(x) ∩ Sn+1) = �nα� + 1, for all x ∈ Sn,

then T is χ -complete if only if α ≤ 2.

5 Essential Self-Adjointness

In [1], the authors use the χ -completeness hypothesis on a graph to ensure essential self-
adjointness for the Gauβ-Bonnet operator and the Laplacian. In this section, with the same
idea we will prove the main result, when the triangulation is χ -complete. Let us begin from

Proposition 5.1 Let T = (K,F) be a χ -complete triangulation then the operator d1 + δ1

is essentially self-adjoint on Cc(E) ⊕ Cc(F).

Proof It suffices to show that d1
min = d1

max and δ1min = δ1max. Indeed, d
1+δ1 is a direct sum

and if F = (ϕ, φ) ∈ Dom((d1 + δ1)max) then ϕ ∈ Dom(d1
max) and φ ∈ Dom(δ1max). By

hypothesis, we have ϕ ∈ Dom(d1
min) and φ ∈ Dom(δ1min), thus F ∈ Dom((d1 + δ1)min).

1) Let ϕ ∈ Dom(d1
max), we will show that

‖ϕ − χ̃nϕ‖l2(E) + ‖d1 (ϕ − χ̃nϕ) ‖l2(F) → 0 when n → ∞.
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By the properties (4.1) and (4.2), we know that

∀p ∈ N, ∃np, ∀n ≥ np, ‖ϕ − χ̃nϕ‖2
l2(E)

≤
∑

e∈Ec
p

r(e)|ϕ(e)|2

so lim
n−→∞ ‖ϕ − χ̃nϕ‖ = 0.

From the derivation formula (2.3) in Lemma 2.9, we have

d1 (ϕ − χ̃nϕ) (e, x) = d1
((

1̃ − χn

)
ϕ
)

(e, x)

= (
1 − ˜̃χn

)
(e, x)d1(ϕ)(e, x)

+ 1
6

(
d0(1 − χn)(x, e−) + d0(1 − χn)(x, e+)

)
ϕ(e)

+ 1
6

(
d0(1 − χn)(e) + d0(1 − χn)(e

−, x)
)
ϕ(e+, x)

+ 1
6

(
d0(1 − χn)(e

+, x) + d0(1 − χn)(−e)
)
ϕ(x, e−)

= (
1 − ˜̃χn

)
(e, x)d1(ϕ)(e, x)

+ 1
6

(
d0χn(e

−, x) + d0χn(e
+, x)

)
ϕ(e)

+ 1
6

(
d0χn(−e) + d0χn(x, e−)

)
ϕ(e+, x)

+ 1
6

(
d0χn(x, e+) + d0χn(e)

)
ϕ(x, e−).

Since d1ϕ ∈ l2(F), one has

lim
n→∞ ‖ (1 − ˜̃χn

)
d1ϕ‖l2(F) = 0.

On the other hand,

∑

(e,x)∈F
s(e, x)|ϕ(e)|2|d0χn(e

−, x) + d0χn(e
+, x)|2 =

∑

e∈E
|ϕ(e)|2

∑

x∈Fe

s(e, x)|d0χn(e
−, x)

+ d0χn(e
+, x)|2

≤ M
∑

e∈E∗(n)

r(e)|ϕ(e)|2.

The property (4.8) allows to conclude that this term tends to 0 as n → ∞. Applying
the same process to the other terms, we have

∑

(e,x)∈F
s(e, x)|ϕ(e+, x)|2|d0χn(−e) + d0χn(x, e−)|2 =

∑

(e+,x)∈E
|ϕ(e+, x)|2

∑

y∈F(e+,x)

s(e+, x, y)

|d0χn(e
+, y) + d0χn(x, y)|2

≤ M
∑

(e+,x)∈E∗(n)

r(e+, x)|ϕ(e+, x)|2

and

∑

(e,x)∈F
s(e, x)|ϕ(x, e−)|2|d0χn(x, e+) + d0χn(e)|2 =

∑

(x,e−)∈E
|ϕ(x, e−)|2

∑

y∈F(x,e−)

s(x, e−, y)

|d0χn(x, y) + d0χn(e
−, y)|2

≤ M
∑

(x,e−)∈E∗(n)

r(x, e−)|ϕ(x, e−)|2.

2) Let φ ∈ Dom(δ1max), we will show that

‖φ − ˜̃χnφ‖l2(F) + ‖δ1(φ − ˜̃χnφ)‖l2(E) → 0 when n → ∞.
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By the properties (4.3) and (4.4), we know that

‖φ − ˜̃χnφ‖2
l2(F)

= 1
6

∑

(x,y,z)∈F
s(x, y, z)|1 − ˜̃χn(x, y, z)|2|φ(x, y, z)|2

≤
∑

(x,y,z)∈Fc
q

s(x, y, z)|φ(x, y, z)|2 → 0, when n → ∞.

By the derivation formula (2.4) in Lemma 2.9, we have

δ1(φ − ˜̃χnφ)(e) = δ1
(

(
˜
1̃ − χn)φ

)
(e)

= (1 − χ̃n)(e)δ
1(φ)(e)

+ 1

6r(e)

∑

x∈Fe

s(e, x)d0(1 − χn)(e
−, x)φ(e, x)

+ 1

6r(e)

∑

x∈Fe

s(e, x)d0(1 − χn)(e
+, x)φ(e, x)

= (1 − χ̃n) (e)δ1(φ)(e)

+ 1

6r(e)

∑

x∈Fe

s(e, x)d0(χn)(x, e−)φ(e, x)

+ 1

6r(e)

∑

x∈Fe

s(e, x)d0(χn)(x, e+)φ(e, x).

We know that
lim

n→∞ ‖ (1 − χ̃n) δ1(φ)‖ = 0

because δ1φ ∈ l2(E). For the second and third terms, we use the inequality of
Definition 4.2 and the Cauchy-Schwarz inequality. Fix e ∈ E, then

∣∣∣∣∣∣

∑

x∈Fe

s(e, x)
(
d0(χn)(x, e−) + d0(χn)(x, e+)

)
φ(e, x)

∣∣∣∣∣∣

2

≤
∑

x∈Fe

s(e, x)|d0(χn)(x, e−)

+ d0(χn)(x, e+)|2
×

∑

x∈F∗
e (n)

s(e, x)|φ(e, x)|2

≤ Mr(e)
∑

x∈F∗
e (n)

s(e, x)|φ(e, x)|2.

Therefore,

∑

e∈E
r(e)

∣∣∣∣∣∣
1

r(e)

∑

x∈Fe

s(e, x)
(
d0(χn)(x, e−) + d0(χn)(x, e+)

)
φ(e, x)

∣∣∣∣∣∣

2

≤ M
∑

e∈E

∑

x∈F∗
e (n)

s(e, x)|φ(e, x)|2.

By property (4.9), this terms tends to 0.

Corollary 5.2 Let T = (K,F) be a χ -complete triangulation then the operator L+
1 ⊕ L2

is essentially self-adjoint on Cc(E) ⊕ Cc(F).



The Discrete Laplacian of a 2-Simplicial Complex 351

Proof

First we have that L+
1 ⊕ L2 = (

d1 + δ1
)2

and L+
1 ⊕ L2 (Cc(E) ⊕ Cc(F)) ⊆ Cc(E) ⊕

Cc(F). As Proposition 13 in [1] we prove that d1 + δ1 is essentially self-adjoint if and only
if L+

1 ⊕ L2 is essentially self-adjoint.

Theorem 5.3 Let T = (K,F) be a χ -complete triangulation then the operator T is
essentially self-adjoint on Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Proof
1st Step:We will show that

Dom(Tmin) = Dom(d0
min) ⊕

(
Dom(δ0min) ∩ Dom(d1

min)
)

⊕ Dom(δ1min).

Let F = (f, ϕ, φ) ∈ Dom(d0
min) ⊕ (

Dom(δ0min) ∩ Dom(d1
min)

) ⊕ Dom(δ1min). Then
there exist (fn)n ⊆ Cc(V) and (φn)n ⊆ Cc(F) such that:

- fn → f in l2(V) and d0fn → d0
minf in l2(E).

- φn → φ in l2(F) and δ1φn → δ1minφ in l2(E)

On the other hand, let ϕ ∈ Dom(δ0min) ∩ Dom(d1
min). By the χ -completeness of T , we

now consider the sequence (χ̃nϕ)n ⊆ Cc(E). It remains to show that

‖ϕ − χ̃nϕ‖l2(E) + ‖δ0(ϕ − χ̃nϕ)‖l2(V) + ‖d1(ϕ − χ̃nϕ)‖l2(F) → 0, when n → ∞.

The first and the third terms has already been shown in Proposition 5.1. For the following
we need a derivation formula of δ0 taken in [14]. Let x ∈ V, for each (f, ϕ) ∈ Cc(V)×Cc(E)

we have

δ0(f̃ ϕ)(x) = f (x)δ0(ϕ)(x) − 1

2c(x)

∑

e,e+=x

r(e)d0(f )(e)ϕ(e). (5.1)

Therefore, by derivation formula (5.1), we get

δ0(ϕ − χ̃nϕ)(x) = (1 − χn)(x)δ0(ϕ)(x) + 1

2c(x)

∑

e,e+=x

r(e)d0χn(e)ϕ(e).

As a consequence, because δ0ϕ ∈ l2(V), we have

lim
n→∞ ‖(1 − χn)δ

0ϕ‖l2(V) = 0.

For the second term, we combine the property iii) of χ -completeness for a graph with
the Cauchy-Schwarz inequality to obtain for all x ∈ V,

|
∑

e,e+=x

r(e)d0χn(e)ϕ(e)|2 ≤
∑

e,e+=x

r(e)|d0χn(e)|2
∑

e∈supp(d0χn),e+=x

r(e)|ϕ(e)|2

≤ Cc(x)
∑

e∈supp(d0χn),e+=x

r(e)|ϕ(e)|2.

So,
∑

x∈V

1

c(x)
|
∑

e,e+=x

r(e)d0χn(e)ϕ(e)|2 ≤
∑

x∈V
C

∑

e∈supp(d0χn),e+=x

r(e)ϕ(e)|2

≤ C
∑

e∈supp(d0χn)

r(e)|ϕ(e)|2 → 0, when n → ∞,
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by the properties (4.1) and (4.2).
Hence

Fn → F inH, T Fn → TminF inH,

where Fn = (fn, χ̃nϕ, φn) and TminF (f, ϕ, φ) = (δ0minϕ, d0
minf + δ1minφ, d1

minϕ). Then
F ∈ Dom(Tmin).

2th Step: To show that T is essentially self-adjoint, we will prove that Tmax = Tmin. By
the first step, Theorem 1 in [1] and Proposition 5.1 it remains to show that:

Dom(Tmax) ⊆ Dom(d0
max) ⊕

(
Dom(δ0max) ∩ Dom(d1

max)
)

⊕ Dom(δ1max).

Let F = (f, ϕ, φ) ∈ Dom(Tmax) then T F ∈ H. This implies that δ0ϕ ∈ l2(V), d0f +
δ1φ ∈ l2(E) and d1ϕ ∈ l2(F). As consequence, by the definition of δ0max and d1

max we have
ϕ ∈ Dom(δ0max) ∩ Dom(d1

max). Moerever, by χ -completness of T , there exists a sequence
of cut-off functions (χn)n ⊆ Cc(V). Then, the parallelogram identity with Lemma 2.8 we
get

‖d0(χnf ) + δ1( ˜̃χnφ)‖2
l2(E)

= ‖d0χnf ‖2
l2(E)

+ ‖δ1 ˜̃χnφ‖2
l2(E)

.

Now, it remains to prove that d0(χnf ) + δ1( ˜̃χnφ) converges in l2(E). Indeed, we need
some formulas taken in Lemma 2.9 and [14] to give that:

d0(χnf ) = χ̃nd
0(f ) + f̃ d0(χn).

δ1( ˜̃χnφ)(e) = χ̃n(e)δ
1(φ)(e)+ 1

6r(e)

∑

x∈Fe

s(e, x)
[
d0(χn)(e

−, x) + d0(χn)(e
+, x)

]
φ(e, x)

︸ ︷︷ ︸
In(e)

.

Therefore, we have

‖d0(f − χnf ) + δ1(φ − ˜̃χnφ)‖2
l2(E)

= ‖(1 − χ̃n)(d
0f + δ1φ) + f̃ d0χn + In‖2l2(E)

≤ 3
(
‖(1 − χ̃n)(d

0f + δ1φ)‖2
l2(E)

+ ‖f̃ d0χn‖2l2(E)
+ ‖In‖2l2(E)

)

Because d0f + δ1φ ∈ l2(E), we have

lim
n→∞ ‖(1 − χ̃n)(d

0f + δ1φ)‖2
l2(E)

= 0.

By Proposition 5.1 we have

lim
n→∞ ‖In‖2l2(E)

= 0.
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Moreover, by the hypothesis iii) of χ -completeness we have

‖f̃ d0χn‖2l2(E)
= 1

2

∑

e∈E
r(e)|f̃ (e)d0(χn)(e)|2

≤
∑

e∈E
r(e)|f (e+)|2|d0(χn)(e)|2

=
∑

x∈V
|f (x)|2

∑

e,e+=x

|r(e)d0χn(e)|2

≤ C
∑

x∈Vn

c(x)|f (x)|2

where Vn := {x ∈ V, ∃e ∈ supp(d0χn) such that e+ = x}. This term tends to 0 by the
property (4.2).

Theorem 5.4 Let T = (K,F) be a χ -complete triangulation. Then T is essentially self-
adjoint on Cc(V) ⊕ Cc(E) ⊕ Cc(F) if and only if L is essentially self-adjoint on Cc(V) ⊕
Cc(E) ⊕ Cc(F).
Proof

Since
T (Cc(V) ⊕ Cc(E) ⊕ Cc(F)) ⊆ Cc(V) ⊕ Cc(E) ⊕ Cc(F),

using the same technique in the proof of Proposition 13 in [1], the result holds.

Corollary 5.5 Let T = (K,F) be a χ -complete triangulation then L is essentially self-
adjoint on Cc(V) ⊕ Cc(E) ⊕ Cc(F).

6 Examples

6.1 A Triangulation with 1-Dimensional Decomposition

We now strengthen the previous example and follow ideas of [2] and [3].

Definition 6.1 (1-dimensional decomposition)A 1-dimensional decomposition of the graph
K = (V, E) is a family of finite sets (Sn)n∈N which forms a partition of V, that is V =
�n∈NSn, such that for all x ∈ Sn, y ∈ Sm (Fig. 3),

(x, y) ∈ E ⇒ |n − m| ≤ 1.

S1 S2 S3 S4 S5S
0

o

Fig. 3 A triangulation with 1-dimensional decomposition
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Given such a 1-dimensional decomposition, we write Bn := ∪n
i=0Si . We set,

(∗)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

deg±
Sn

(x) := 1

c(x)

∑

y∈V(x)∩Sn±1

r(x, y) for all x ∈ Sn,

deg0Sn
(x) := 1

c(x)

∑

y∈V(x)∩Sn

r(x, y) for all x ∈ Sn,

degSn×Sn+1
(e) := 1

r(e)

∑

x∈Fe∩(Sn∪Sn+1)

s(e, x) for all e ∈ Sn × Sn+1,

deg0S2
n
(e) := 1

r(e)

∑

x∈Fe∩Sn

s(e, x) for all e∈ S2
n,

deg±
S2

n
(e) := 1

r(e)

∑

x∈Fe∩Sn±1

s(e, x) for all e∈ S2
n.

We denote

η±
n := sup

x∈Sn

deg±
Sn

(x), βn := sup
e∈Sn×Sn+1

degSn×Sn+1
(e), γ ±

n := sup
e∈S2

n

deg±
S2

n
(e).

Theorem 6.2 Let T = (K,F) be a triangulation and (Sn)n∈N a 1-dimensional decompo-
sition of the graph K. Assume that

∑

n∈N

1√
ξ(n, n + 1)

= ∞,

with ξ(n, n + 1) = η+
n + η−

n+1 + βn + γ +
n + γ −

n+1. Then T is χ -complete and in particular,
L is essentially self-adjoint on Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Proof
We set

χn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if dcomb(o, x) � n,

max

⎛

⎝0, 1 −
dcomb(o,x)−1∑

k=n

1√
ξ(k, k + 1)

⎞

⎠ if dcomb(o, x) > n.

Since the series diverges, χn is with finite support. Note that χn is constant on Sn. If
x ∈ Sm with m > n, we have

1

c(x)

∑

y∈V(x)∩Sm+1

r(x, y)|χn(x) − χn(y)|2 ≤ deg+
Sm

(x)

ξ(m, m + 1)
≤ 1.

1

c(x)

∑

y∈V(x)∩Sm

r(x, y)|χn(x) − χn(y)|2 = 0.

1

c(x)

∑

y∈V(x)∩Sm−1

r(x, y)|χn(x) − χn(y)|2 ≤ deg−
Sm

(x)

ξ(m − 1,m)
≤ 1.
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On the other hand,

- If e ∈ Sm × Sm+1, we get

1

r(e)

∑

x∈Fe∩(Sm∪Sm+1)

s(e, x)|(χn(x)−χn(e
−))+(χn(x)−χn(e

+))|2 ≤
deg+

Sm×Sm+1
(x, y)

ξ(m, m + 1)
≤ 1.

- If e∈ S2
m, we get

1

r(e)

∑

x∈Fe∩Sm

s(e, x)|(χn(x) − χn(e
−)) + (χn(x) − χn(e

+))|2 = 0

1

r(e)

∑

x∈Fe∩Sm+1

s(e, x)|(χn(x) − χn(e
−)) + (χn(x) − χn(e

+))|2 ≤
deg+

S2
m
(e)

ξ(m,m + 1)
≤ 1.

1

r(e)

∑

x∈Fe∩Sm−1

s(e, x)|(χn(x) − χn(e
−)) + (χn(x) − χn(e

+))|2 ≤
deg−

S2
m
(e)

ξ(m − 1, m)
≤ 1.

Then T is χ -complete and in particular, L is essentially self-adjoint by Corollary 5.5.

6.2 A Triangular Tree

Let T be a triangular tree, endowed with an origin. Due to its structure, one can take

(∗∗)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

deg−
Sn

(x) := 1

c(x)
r(x,

←−
x ) for all x ∈ Sn,

degSn×Sn+1
(e) := 1

r(e)

∑

x∈Fe∩Sn+1

s(e, x) for all e ∈ Sn × Sn+1,

deg−
S2

n
(e) := 1

r(e)
s(e,

←−
e ) for all e∈ S2

n,

where ←−
e is a unique vertex in Sn−1 ∩ Fe.

Proposition 6.3 Let T be a triangular tree with its origin o. Assume that

∑

n∈N

1√
ξ(n, n + 1)

= ∞,

with ξ(n, n + 1) = η+
n + η−

n+1 + βn + γ −
n+1. Then T is χ -complete and in particular, L is

essentially self-adjoint on Cc(V) ⊕ Cc(E) ⊕ Cc(F).

Proof Use the same method as Theorem 6.2 with (∗∗).

6.3 Essential Self-Adjointness on the Simple Case

In [20] and [6], they prove that L0 is essentially self-adjoint on Cc(V) when the graph is
simple. But the self-adjointness property does not always hold with other operators in the
simple case. We recall the operator L−

1 is not necessarily essentially self-adjoint on simple
tree, see [3]. Moreover, we refer to [11] for the adjacency matrixAK = deg−L0 where deg

denotes the operator of multiplication with the functions which shows that the deficiency
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indices of AK are infinite. In this framework, it is important to notice that L1 and L2 are
not necessarily essentially self-adjoint on a simple triangulation.

Proposition 6.4 Let T be a simple triangular tree. Assume that

off(n) = # (V(x) ∩ Sn+1) , x ∈ Sn (6.1)

n �→ off2(n)

off(n + 1)
∈ l1(N).

Then, L1 is not essentially self-adjoint on Cc(E) and the deficiency indices are infinite.

Proof
We construct ϕ ∈ l2(E)\{0}, such that ϕ ∈ Ker(L∗

1 + i) and such that ϕ is equal to
constant Cn on Sn ×Sn+1. It takes the value 0 on S2

n. Given the fact that (x, y)∈ S2
n, we get

Cn (# (V(x) ∩ Sn+1) − # (V(y) ∩ Sn+1)) = 0.

It holds because of the condition (6.1). Now, we set (x, y) ∈ Sn × Sn+1 and with the
condition (6.1), we have

(off(n) + 1 + i)Cn − off(n + 1)Cn+1 − Cn−1 = 0.

We can then apply Theorem 5.1 in [3] to obtain the conclusion.

We will see now also that L2 is not necessarily essentially self-adjoint on simple
triangulation.

Proposition 6.5 Let T be a simple triangulation with 1-dimensional decomposition as
shown in Fig. 4. Assume that

n �→ #S2n

#S2(n+1)
∈ l1(N). (6.2)

Then, L2 is not essentially self-adjoint on Cc(F).

Proof We consider the faces in Fig. 4 as follows:

� ∈ F ⇔ there exists n ∈ N∪{0} such that � = (e2n+1, x) ∈
(
S2
2n+1 × S2n

)
∪
(
S2
2n+1 × S2n+2

)
.

S1 S2 S3 S4 S5S
0

1 eee
53o

Fig. 4 A particular triangulation with 1-dimensional decomposition
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Set φ ∈ l2(F)\{0} such that φ ∈ Ker(L∗
2 + i). For n ∈ N, it is given by

φ(e2n+1, x) :=
{

C2n+2 for all x ∈ S2n+2.

C2n for all x ∈ S2n.

Let x ∈ S2n+2, we have

(L∗
2 + i)(φ)(e2n+1, x) =

∑

u∈Fe2n+1

φ(e2n+1, u) +
∑

u∈F
(e

+
2n+1,x)

φ(e+
2n+1, x, u)

+
∑

u∈F
(x,e

−
2n+1)

φ(x, e−
2n+1, u)

+iφ(e2n+1, x) = 0.

Hence, we get

(#S2n+2 + 2 + i) C2n+2 + (#S2n) C2n = 0. (6.3)

By the Eq. 6.3, we get

‖φ|S2
2n+1×S2n+2

‖2
l2(F)

= 1

6

∑

[x,y,z]∈S2
2n+1×S2n+2

|φ(x, y, z)|2

= 1

6
(#C2n+2)

2 (#S2n+2)

= 1

6

(#C2n)
2 (#S2n)

2

|#S2n+2 + 2 + i|2 (#S2n+2)

= (#S2n) (#S2n+2)

|#S2n+2 + 2 + i|2 ‖φ|S2
2n−1×S2n

‖2
l2(F)

Since lim
n→∞

#S2n

#S2(n+1)
= 0, we get by induction

C := sup
n∈N∗

‖φ|S2
2n−1×S2n

‖2
l2(F)

< ∞.

Thus

‖φ|S2
2n+1×S2n+2

‖2
l2(F)

≤ C
(#S2n) (#S2n+2)

|#S2n+2 + 2 + i|2 .

From Eq. 6.2, we conclude that φ ∈ l2(F). By mimicking the proof of Theorem X.36
of [16] one shows that dimKer(L∗

2 + i) ≥ 1 and thus L2 is not essentially self-adjoint on
Cc(F).

Remark 6.6 By one of Propositions 6.5 and 6.4, we conclude that L is not necessarily
essentially self-adjoint on a simple triangulation.
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