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Abstract Our target in this paper is given upper bounds for the first stability eigenvalue of
closed (compact without boundary) surfaces in a 3-Riemannian manifold endowed with a
smooth density function. As consequence, we deduce a topological constraint for the exis-
tence of closed stable surfaces in non-negatively curved spaces and a result of no existence
of closed stable self-shrinkers of the mean curvature flow in R

3.
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1 Introduction

The study of Riemannian manifolds endowed with a smooth density function has flourished
in last few years, and a much better understanding of their analytic and geometric structure
has evolved. We emphasize in that setting, the solution of Poincaré conjecture, the relaxation
of the conditions for solve the Monge’s problem for mass transportation, the behavior of
singularities of the Ricci flow, the mean curvature flow among others, see [7, 8, 14–17,
21, 22] and references therein. Moreover, the theory of these spaces and the generalized
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curvatures goes back to Lichnerowicz [12, 13] and more recently by Bakry and Émery [4],
in context of diffusion process, and it has been very actived field in recent years.

Now we will introduce some concepts that will be used in this paper. Firstly, we recall
that a weighted manifold is a Riemannian manifold (M3, g) with a real-valued smooth func-
tion f : M → R which is used as a density to measure geometric objects on M . Associated
to this structure we have an important second order differential operator defined by

�f u = �u − 〈∇u, ∇f 〉,
where u ∈ C∞. This operator is known as Drift Laplacian.

Following [4, 17, 23], the natural generalizations of the sectional, Ricci and scalar
curvatures are defined by

Sect
2m

f (X, Y ) = Sect (X, Y ) + 1

2

(
Hess f (X, X) − (df (X))2

2m

)
, (1.1)

Ric2m
f = Ricf − df ⊗ df

2m
, (1.2)

where X and Y are unit and orthogonal vectors fields tangents to M , m > 0, Ricf =
Ric + Hess f, and

S∞ = S + 2�Mf − |∇f |2, (1.3)

that last is known as Perelman’s scalar curvature, see [6] for a good overview.
Now, we introduce some objects related with the theory of surfaces in a weighted man-

ifold. Let � ⊂ M3 be a two-sided surface of M3 and consider N an unit normal vector
field globally defined on �. We will denote by A its second fundamental form and by H

the mean curvature of �, that is, the trace of A.
We recall that the weighted mean curvature, introduced by Gromov in [10], is given by

Hf = H + 〈N, ∇f 〉.
Throughout this paper, dvf = e−f dv denote the weighted measure of the surface �,

where dv is the Riemannian measure of �, |�| and |�|f denote the area of � with respect
to the Riemannian measure and the weighted measure of �, respectively. Furthermore, we
will denote by K the Gaussian curvature of � and by Sect � the sectional curvature of M

restricted to �.
It is a remarkable fact that, in the variational setting, surfaces with constant weighted

mean curvature are stationary points of the weighted area functional under variations that
preserves the weighted volume (see [5]). Moreover, the second variation of the weighted
area gives to us the weighted Jacobi operator on �, see [8], which is defined by

Jf u = �f u + (|A|2 + Ricf (N,N))u, (1.4)

for any u ∈ C∞(�) and |A|2 is the Hilbert-Schmidt norm of A.
In this paper, encouraged by the ideas in [1–3, 18], we study some geometric aspects

of surfaces with constant weighted mean curvature. More specifically, we study problems
related with the first eigenvalue of the weighted Jacobi operator on closed surfaces.

We point out that the approach used in this study allows us to generalize a result obtained
by Schoen and Yau on stable minimal surfaces in 3-Riemannian manifolds with nonnegative
scalar curvature for the setting of manifolds with density. As far as we know, our result is
new even in the Riemannian case. Now, we are able to present our main result.

It is read as follows:
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Theorem 1.1 Let (M3, g, f ) be a weighted manifold with S∞ ≥ 6c, for some c ∈ R. Let
�2 ⊂ M3 be a closed surface with constant weighted mean curvature Hf . Then,

λ1 ≤ −1

2
(H 2

f + 6c) − 4π(g − 1)

|�| .

Moreover, equality holds if and only if � is totally geodesic, f is constant on �, S∞|� = 6c

and K is constant.

Remark 1 In Riemannian case, f = 0, the estimate can be improved. See the corollary in
Section 3.1.

Now we will provide the notion of stability to our context and then we will present some
consequences of our result.

Definition 1 Under the above notation. We say that a surface � is stable if the first
eigenvalue λ1 of the Jacobi operator is nonnegative. Otherwise, we say that � is unstable.

The next result is a generalization of a result due to Schoen and Yau on stable minimal
surfaces (see [19]) and this technique allows us to give an improvement of Theorem 2.1
in [9].

The result is the following:

Corollary 1.1 Let (M3, g, f ) be a weighted manifold with nonnegative Perelman’s scalar
curvature. Let � be a closed stable surface with constant weighted mean curvature Hf .
Then � is conformally equivalent to the sphere S2 or � is a totally geodesic flat torus T2.
Moreover, if S∞ > 0, then � is conformally equivalent to the sphere S2.

Our second result is the following:

Theorem 1.2 Let (M3, g, f ) be a weighted manifold with Sect ≥ c, for some c ∈ R, and

Hess f ≥ df ⊗ df

2m
(in the sense of quadratic forms). Let �2 ⊂ M3 be a closed surface

with constant weighted mean curvature Hf . Then,

(i) λ1 ≤ −1

2

(
H 2

f

1+m
+ 4c

)
, with equality if and only if � is totally umbilical in M3,

Ric(N,N) = 2c, df (N) = m

1 + m
Hf on � and Hess f (N, N) = df (N)2

2m
;

(ii) λ1 ≤ − H 2
f

(1 + 2m)
− 4c + 2

|�|f
∫
�

K dvf . Furthermore, equality holds if and only if

K is constant, Sect � = c, df (N) = m

1 + m
Hf on � and Hess f (N, N) = df (N)2

2m
.

Our third result reads as follows:

Theorem 1.3 Let (M3, g, f ) be a weighted manifold with Sect
2m

f ≥ c, for some c ∈ R,

and Hessf ≤ σ · g for some real function σ on M . Let �2 ⊂ M3 be a closed surface with
constant weighted mean curvature Hf . Then,
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(i) λ1 ≤ − 1
2

(
H 2

f

1+m
+ 4c

)
, with equality if and only if � is totally umbilical in M3,

Ric2m
f = 2c and df (N) = m

1 + m
Hf on �;

(ii) λ1 ≤ − H 2
f

(1 + 2m)
−

(
4c −

∫
�

σ dvf

|�|f
)

+ 2

|�|f
∫
�

K dvf .

Moreover, if equality holds, then Sect
2m

f = c, Ric2m
f = 2c, df (N) = 2m

1+2m
Hf ,

and |A| is a constant on �. Moreover, M3 has constant sectional curvature k and e−f

is the restriction of a coordinate function from the appropriate canonical embedding
of Q3

k in E
4, where E4 is R4 or L4.

Remark 2 We believe the hypotheses on the function f in Theorems 1.2 and 1.3 are natu-
ral, because we recovered the Riemannian case if the function is constant and also, for m

large enough, we captured huge regions in the Gaussian space, which is very important in
literature.

Now, we will give an application on the context of mean curvature flow. For that, we
recall that a self-shrinker of the mean curvature flow is an oriented surface � ⊂ R

3 such
that

H = −1

2
〈x, N〉,

where N is an unit normal vector field on �. So, if we consider R
3 endowed with the

function f (x) = |x|2
4 , then a self-shrinker is a f -minimal surface in the Euclidean space.

More generally, the triple (R3, δij , |x|2/4) is known as Gaussian space and the surfaces
with weighted mean curvature λ are know as λ-surfaces.

The next result is a consequence of the proof of the Theorem 1.2 and it reads as follows:

Corollary 1.2 All closed λ-surfaces in the Gaussian space are unstable. In particular, there
exists no closed stable self-shrinker surfaces in R

3.

The paper is organized in this way: In Section 2 we give a classification of weighted
manifolds with constant weighted sectional curvature, we also provide a way to describe
the first eigenvalue of the weighted Jacobi operator and, to conclude the section, we rewrite
the terms of the weighted Jacobi operator in an appropriate way. In Section 3 we present the
proof of the results and others consequences of them.

2 Preliminaries

An important result for us is the classification of weighted manifolds with constant weighted
sectional curvature. The result below follows closely the one in [23], and we include the
proof here for the sake of completeness.

Lemma 1 Let (M3, g, f ) be a weighted manifold. Assume that Sect
2m

f = c, then M has
constant sectional curvature k, for some k ∈ R. Moreover, if f is a non constant function,
then c = −(m − 1)k, and u = e−f/m is the restriction of a coordinate function from the
appropriate canonical embedding of a space form of curvature k,Q3

k , in E
4, where E4 is R4

or L4.
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Proof Let X and Y be an unit and orthogonal vectors on M . Then, by Eq. 1.1, we get

c = Sect (X, Y ) + 1

2

(
Hess f (X, X) − (df (X))2

2m

)

and

c = Sect (Y,X) + 1

2

(
Hess f (Y, Y ) − (df (Y ))2

2m

)
.

So, there exists a smooth function w : M → R such that

Hess f − df ⊗ df

2m
= w · g.

Then, letting {E1, E2, X} be an orthonormal frame and adding up the weighted sectional
curvature on the plane spanned by {Ei, X}, i = 1, 2, we have

2c = Ric(X,X) + 2w.

Thus, by Schur’s Lemma, w is a constant function and so M has constant sectional
curvature, let’s say k. Defining the function u = e−f/m, we have that

Hess u = −c − k

m
u · g. (2.1)

So, by Lemma 1.2 in [20],
g = dt2 + (u′)2g0, (2.2)

where g0 is a local metric on a surface orthogonal to ∇u (a level set of u) and u′ denotes the
derived of u in the direction of the gradient of u.

Computing the radial sectional curvature of the metric (2.2), we have (c+ (m−1)k)u′ =
0. Since f is non constant, we have that c = −(m − 1)k. Moreover, as u satisfies equa-
tions (2.1) and (2.2), u is the restriction of a coordinate function from the appropriate
canonical embedding of Q3

k in E
4, where E

4 is R4 or L4.

Now we will describe the first stability eigenvalue in an appropriate manner. For this,
consider a first eigenfunction ρ ∈ C∞(�) of the Jacobi operator Jf , that is, Jf ρ = −λ1ρ;
or equivalently,

− �f ρ = (λ1 + |A|2 + Ricf (N,N))ρ. (2.3)

Furthermore, λ1 is simple and it is characterized by

λ1 = inf

{− ∫
�

uJf u dvf∫
�

u2 dvf

: u ∈ C∞(�), u 
= 0

}
. (2.4)

We observe that the first eigenfunction of an elliptic second-order differential operator
has a sign. Therefore, without loss of generality, we can assume that ρ > 0.

Thus,

�f ln ρ = � ln ρ − 〈∇ f, ∇ ln ρ〉
= div�(∇ ln ρ) − 〈∇ f, ρ−1∇ ρ〉
= div�(ρ−1∇ ρ) − ρ−1〈∇ f, ∇ ρ〉
= ρ−1div�(∇ ρ) + 〈∇ ρ−1,∇ ρ〉 − ρ−1〈∇ f, ∇ ρ〉
= ρ−1(�ρ − 〈∇ f, ∇ ρ〉) − ρ−2|∇ ρ|2
= ρ−1�f ρ − ρ−2|∇ ρ|2
= −(λ1 + |A|2 + Ricf (N,N)) − ρ−2|∇ ρ|2. (2.5)
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Integrating the equality above on � with respect to the weighted measure dvf and using the
divergence theorem we have that

0 = −λ1|�|f −
∫

�

(|A|2 + Ricf (N,N)) dvf − α,

where αf := ∫
�

ρ−2|∇ ρ|2 dvf ≥ 0 defines a simple invariant that is independent of the
choice of ρ, because λ1 is simple. So,

λ1 = − 1

|�|f (αf +
∫

�

(|A|2 + Ricf (N,N)) dvf ). (2.6)

Let {Ei} be an orthonormal frame in T � and {aij } the coefficients of A in the frame,
using the Gauss equation

K = Sect � − 〈A(X), Y 〉2 + 〈A(X),X〉〈A(Y ), Y 〉,
we have that

K − Sect � = a11a22 − a2
12 = 1

2

⎛
⎝(a11 + a22)

2 −
2∑

i,j=1

a2
ij

⎞
⎠ = 1

2

(
H 2 − |A|2

)
,

hence

|A|2 = H 2 + 2(Sect � − K). (2.7)

To complete this section, we recall the traceless of the second fundamental form of �,
that is, the tensor φ defined by φ = A − H

2 I , where I denotes the identity endomorphism

on T �. We note that tr(φ) = 0 and |φ|2 = |A|2 − H 2

2 ≥ 0, with equality if and only if �

is totally umbilical, where |φ|2 is the Hilbert-Schmidt norm.
In the literature, φ is know as the total umbilicity tensor of �. In terms of φ, the Jacobi

operator is rewritten as

Jf u = �f u +
(

|φ|2 + H 2

2
+ Ricf (N,N)

)
u. (2.8)

We use exactly this expression in next section to obtain an estimate of the first eigenvalue
of the weighted Jacobi operator.

3 Proofs

3.1 Proof of the Theorem 1.1

We start with a straightforward computation. Let {e1, e2, e3} be an adapted referential of �

to M . Lets rewrite the expression |A|2 + Ricf (N,N). We know that

S

2
= Sect � + Ric(e3),

where S is the scalar curvature of M . By Gauss’ equation (2.7), we have

Sect � = K − H 2

2
+ |A|2

2
.
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Setting e3 = N and f3 = 〈∇f, e3〉 we handle the potential of the stability operator as
follows:

|A|2 + Ricf (N,N) = S

2
− K + H 2

2
+ |A|2

2
+ Hess f (e3, e3)

= 1

2
S∞ − �Mf + 1

2
|∇f |2 − K + H 2

2
+ |A|2

2
+ Hess f (e3, e3)

= 1

2
S∞ − (��f − Hf3 + Hess f (e3, e3)) + 1

2
(|∇f |2 + f 2

3 )

−K + H 2

2
+ |A|2

2
+ Hess f (e3, e3)

= 1

2
S∞ − K − ��f + 1

2
|∇f |2 + 1

2
H 2

f + 1

2
|A|2. (3.1)

Integrating it with respect to Riemannian measure dv, using the divergence theorem and
Gauss-Bonnet theorem we obtain∫

�

|A|2 + Ricf (N,N) dv = 4π(g − 1) + 1

2

∫
�

(S∞ + H 2
f + |A|2 + |∇f |2) dv.

By the other hand, integrating (2.5) with respect to dv we obtain that

−
∫

�

〈 1

ρ
∇ρ, ∇f 〉 = −λ1|�| − (α +

∫
�

|A|2 + Ricf (N,N)),

where α = ∫
�

ρ−2|∇ρ|2dv, and so,

−
∫

�

(
|∇ρ|2
2ρ2

+ |∇f |2
2

)
≤ −λ1|�| − (α +

∫
�

|A|2 + Ricf (N,N)).

After a simple computation we have that

λ1 ≤ − 1

|�| (
α

2
+ 4π(g − 1) + 1

2

∫
�

(S∞ + H 2
f + |A|2).

By our hypothesis,

λ1 ≤ −1

2
(H 2

f + 6c) − 4π(g − 1)

|�| .

Moreover, if equality holds then α = 0 and thus ρ and f are constants on �, � is totally
geodesic, S∞|� = 6c and K is constant. The reciprocal is immediate.

Now we provide a non-trivial example of a surface into a weighted manifold satisfying
all hypothesis and the equality conclusion of Theorem 1.1.

Example 1 Consider the upper hemisphere

M = S
3+ = {x ∈ R

4 : |x| = 1 and x4 ≥ 0}
furnished with the standard euclidean metric and the density f (p) = 1

2 r(p)2, where r is the
distance to north pole. We let compute the first weighted stability eigenvalue of the great
sphere � = ∂S3+.

As it easy to see, � is totally geodesic with unit normal field N = −∂r and the Gaussian
curvature is equal to one. Moreover, a straightforward computation shows that the hessian
of f is

Hessf = r cot(r)(〈·, ·〉 − dr ⊗ dr) + dr ⊗ dr.
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Using the informations about � we infer that,

Jf = � + 3,

where we used that �f = �, A = 0 and Ricf (N) = 3. So, λ1 = −3, which is equal to
term in the right hand side of the inequality of Theorem 1.1.

In Riemannian case, f = 0, we can improve the estimate in Theorem 1.1. The result is
the following:

Corollary 3.1 Let (M3, g) be a Riemannian manifold with S ≥ 6c, for some c ∈ R. Let
�2 ⊂ M3 be a closed surface with constant mean curvature H . Then,

λ1 ≤ −3

4
(H 2 + 4c) − 4π(g − 1)

|�| .

Moreover, equality holds if and only if � is totally umbilical, S|� = 6c and K is constant.

Proof The equation (3.1) can be rewrite, with f = 0, in the following way

|A|2 + Ric(N,N) = 1

2
S − K + 3

4
H 2 + 1

2
|φ|2.

After a straightforward computation we have that

λ1 = − 1

|�| (α + 4π(g − 1) + 1

2

∫
�

(S + 3

2
H 2 + |φ|2),

and so

λ1 ≤ −3

4
(H 2 + 4c) − 4π(g − 1)

|�| .

Moreover, if equality holds then α = 0 and thus ρ is constant, � is totally umbilical,
S|� = 6c and K is constant. The reciprocal is immediate.

In the next subsection we will provide the prove of Theorem 1.2 and some consequences.

3.2 Proof of the Theorem 2.1

Using (2.7) in Eq. 2.6 we obtain that

λ1 = − 1

|�|f
{
αf − 2

∫
�

K dvf +
∫

�

[H 2 + 2Sect � + Ricf (N,N)]
}

.

So, using the definition of weighted mean curvature we have

λ1 = − 1

|�|f
{
αf − 2

∫
�

K dvf +
∫

�

(Hf − 〈N, ∇ f 〉)2 +
∫

�

[2Sect � + Ricf (N,N)]
}

.

Moreover, we know that for all a, b ∈ R and k > −1, it holds that

(a + b)2 ≥ a2

1 + k
− b2

k
, (3.2)
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with equality if and only if b = − k
1+k

a. Applying that inequality with k = 2m, a = Hf ,

b = −〈∇f,N〉, using the definition in Eq. 1.2 we get, after a straightforward computation,
that

λ1 ≤ − H 2
f

1 + 2m
− 1

|�|f
{
αf − 2

∫
�

K dvf +
∫

�

(
Ric2m

f (N,N) + 2Sect �

)}
. (3.3)

Using the hypotheses we obtain

λ1 ≤ − H 2
f

1 + 2m
− 4c − 2

|�|f
∫

�

K dvf . (3.4)

Proof (i) Choosing the constant function u = 1 to be the test function in Eq. 2.4 to
estimate λ1, and using the expression in Eq. 2.8, we obtain that

λ1 ≤ − ∫
�

1Jf 1 dvf∫
�

1 dvf

= − 1

|�|f
[∫

�

|φ|2 + 1

2

∫
�

H 2 +
∫

�

Ricf (N,N)

]

= − 1

|�|f
[∫

�

|φ|2 + 1

2

∫
�

(Hf − 〈N,∇ f 〉)2 +
∫

�

Ricf (N,N)

]

≤ − 1

|�|f

[∫
�

|φ|2 + 1

2

∫
�

(
H 2

f

1 + m
− 〈N, ∇ f 〉2

m

)
+

∫
�

Ricf (N,N)

]

≤ − H 2
f

2(1 + m)
− 2c − 1

|�|f
∫

�

|φ|2

≤ −1

2

(
H 2

f

1 + m
+ 4c

)
.

If λ1 = − 1
2

(
H 2

f

1+m
+ 4c

)
, then all the inequalities above becomes equalities and conse-

quently � is totally umbilical, Ric(N,N) = 2c, df (N) = m

1 + m
Hf , and Hess f (N, N) =

df (N)2

2m
.

On the other hand, if � is totally umbilical, Ric(N,N) = 2c, df (N) = m

1 + m
Hf and

Hess f (N, N) = df (N)2

2m
, we have

H = Hf − df (N)

= Hf − m

1 + m
Hf

= 1

1 + m
Hf ,

and

Ricf (N,N) = 2c + 1

2m
(df (N))2

= 2c + m

2(1 + m)2
H 2

f .
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Hence,

Jf = �f + H 2

2
+ 2c + m

2(1 + m)2
H 2

f

= �f + 1

2(1 + m)2
H 2

f + 2c + m

2(1 + m)2
H 2

f

= �f + 1

2(1 + m)
H 2

f + 2c,

and thus,

λ1 = −1

2

(
H 2

f

1 + m
+ 4c

)
,

as desired.

(ii) Using our hypotheses, we have by Eq. 3.4 that

λ1 ≤ − H 2
f

1 + 2m
− 4c − 2

|�|f
∫

�

K dvf .

If equality holds, then αf = 0, Sect � = c, Hess f (N, N) = df (N)2

2m
.

Firstly, we obtain of the equation (3.2) that

df (N) = 2m

1 + 2m
Hf .

and so H = 1

1 + 2m
Hf . Moreover, α = 0 implies ∇ρ = 0 and thus using the equation

(2.3) we have that |A|2 is constant. Futhermore, by Eq. 2.7, we have that K is constant.

On the other hand, if K is constant, Sect � = c, Hess f (N,N) = df (N)2

2m
and df (N) =

2m

1 + 2m
Hf , we have that

Ricf (N,N) = 2c + 2m

(1 + 2m)2
H 2

f ,

and so

Jf = �f + |A|2 + Ricf (N,N)

= � + H 2 + 2(c − K) + 2c + 2m

(1 + 2m)2
H 2

f

= �f + 4c + 1

1 + 2m
H 2

f − 2K,

and this implies that

λ1 = −4c − 1

1 + 2m
H 2

f + 2K.

Now, using that K is constant,

λ1 = −4c − H 2
f

1 + 2m
+ 2

|�|f
∫

�

K dvf ,

as desired.
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3.3 Proof of the Theorem 1.3

Before initiate the proof, we will recall the generalized sectional curvature

Sect
2m

f (X, Y ) = Sect (X, Y ) + 1

2

(
Hess f (X, X) − (df (X))2

2m

)
,

where X, Y are unit and orthogonal vectors fields on M .
Moreover,

Ric2m
f (X,X) =

2∑
i=1

Sect
2m

f (X, Yi).

So,

Ric2m
f (N,N) + 2Sect � ≥ Ric2m

f (N,N) + 2Sect
2m

f |� − Hess f (X, X),

where X is a vector field on �.
Plugging the hypothesis Hess f ≤ σg into Eq. 3.3 we get

λ1 ≤ − H 2
f

1 + 2m

− 1

|�|f
{
αf − 2

∫
�

K dvf +
∫

�

(
Ric2m

f (N,N) + 2Sect
2m

f − σ
)

dvf

}
. (3.5)

Now, we are able to prove our result.

Proof The item (i) is a consequence of Theorem 1.2 (i). To second item, we use the
expression in Eq. 3.5 and our hypotheses.

Now, if equality holds, then α = 0, Ric2m
f = 2c and Sect

2m

f = c. By equality in the
inequality (3.2), we obtain

df (N) = 2m

1 + 2m
Hf ,

and so

H = Hf − 2m

1 + 2m
Hf = 1

1 + 2m
Hf .

Moreover, α = 0 imply that ρ is constant and of the equation (2.3) we have that |A|2 is also
a constant.

To conclude, we use the Lemma 1 to get that M3 has constant sectional curvature and
e−f has the property enunciated in equality case.

Corollary 3.2 Let (M3, g, f ) be a weighted manifold with Sect ≥ c. Assume that

Hess f ≥ df ⊗ df

2m
(in the sense of quadratic forms). Then,

(i) There is no closed stable surface with

H 2
f

1 + m
+ 4c > 0.

(ii) If �2 is a closed and stable surface such that
H 2

f

1 + 2m
+ 4c < 0, then

|�|f ≥ −2

(∫
�

K dvf

)(
| H 2

f

1 + 2m
+ 4c|

)−1

.
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Proof By definition, a surface is stable if and only if λ1 ≥ 0. Thus the item (i) follows from
the Theorem 1.2 (i). For the item (ii), we use the definition of stability and the Theorem 1.2
(ii). So,

0 ≤ λ1 ≤ − H 2
f

1 + 2m
− 4c + 2

|�|f
∫

�

K dvf ,

and thus

|�|f
∣∣∣∣∣

H 2
f

1 + 2m
+ 4c

∣∣∣∣∣ ≥ −2
∫

�

K dvf .

Another consequence of the Theorem 1.2 is an improvement of the Proposition 3.2 in
[11] to � no necessarily f -minimal.

Corollary 3.3 Under the same assumptions of the Theorem 1.2.

(i) If c > 0, then � cannot be stable;
(ii) If c = 0, but Hf 
= 0, then � cannot be stable;

(iii) If c = 0 and � is stable, then Hf = 0.
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