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Abstract Let J be the Lévy density of a symmetric Lévy process in R? with its Lévy
exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric
and non-local operator

L f(x) :=lim (f(x+2) = f)(x,2)J(2)dz,
e30 J{zeRd:|z|>¢}
where « (x, z) is a Borel function on R x R4 satisfying 0 < kg < k(x,2) < k1, k(x,2) =
k(x,—z)and |k (x,z2) — k¥, 2)| < Kk2|x — y|ﬂ for some 8 € (0, 1]. We construct the heat
kernel p¥(z, x, y) of L, establish its upper bound as well as its fractional derivative and
gradient estimates. Under an additional weak upper scaling condition at infinity, we also
establish a lower bound for the heat kernel p*.
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1 Introduction

Suppose thatd > 1, ¢ € (0, 2) and «(x, z) is a Borel function on R4 x RY such that
0<ko=<k(x,z) <Kk, k2=« —2), (1.1)

and for some 8 € (0, 1],

Ik (x,2) — k (v, 2)| < kalx — yIP . (1.2)
The operator
P T _ K(x,2z)
Lo f () = lim {zemba}(m +2) = ) g 47 (1.3)

is a non-symmetric and non-local stable-like operator. In the recent paper [6], Chen and
Zhang studied the heat kernel of £¥ and its sharp two-sided estimates. As the main result
of the paper, they proved the existence and uniqueness of a non-negative jointly continuous
function pj (¢, x, y) in (¢, x, y) € (0, 1] x RY x R4 solving the equation

hpu(t,x,y)=Lypst,, N, x#y,

and satisfying four properties - an upper bound, Holder’s estimate, fractional derivative esti-
mate and continuity, cf. [6, Theorem 1.1] for details. They also proved some other properties
of the heat kernel pf(z, x, y) such as conservativeness, Chapman-Kolmogorov equation,
lower bound, gradient estimate and studied the corresponding semigroup. Their paper is the
first one to address these questions for not necessarily symmetric non-local stable-like oper-
ators. These operators can be regarded as the non-local counterpart of elliptic operators in
non-divergence form. In this context the Holder continuity of « (-, z) in Eq. 1.2 is a natural
assumption.

The goal of this paper is to extend the results of [6] to more general operators than
the ones defined in Eq. 1.3. These operators will be non-symmetric and not necessarily
stable-like. We will replace the kernel « (x, 2)|z|74~® with a kernel «(x, z)J (z) where «
still satisfies Eqgs. 1.1 and 1.2, but J(z) is the Lévy density of a rather general symmetric
Lévy process. Here are the precise assumptions that we make.

Let ¢ : (0, 00) — (0, co) be a Bernstein function without drift and killing. Then

60 = f (1— e ™) pudn),
(0,00)

where w is a measure on (0, co) satisfying f(o, ) (t A 1)pu(dt) < oo. Here and throughout
this paper, we use the notation a A b := min{a, b} and a Vv b := max{a, b}. Without loss
of generality we assume that ¢(1) = 1. Define ® : (0, co) — (0, o0) by &(r) = ¢(r2)
and let ®! be its inverse. The function x > O(|x]) =: P(x), x € R, d>1,is negative
definite and hence it is the characteristic exponent of an isotropic Lévy process on RY.
This process can be obtained by subordinating a d-dimensional Brownian motion by an
independent subordinator with Laplace exponent ¢. The Lévy measure of this process has
a density j(]y]) where j : (0, co) — (0, co) is the function given by

2
i) = f ) e 7 pdn) .
(0,00)

Thus we have
<1><x>=/ (1 — cos(x - y) j(lyD dy.
R4\{0}
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Heat Kernels of Non-symmetric Jump Processes 39

Note that when ¢(A) = 1%/, 0 < a < 2, we have ®(r) = r%, the corresponding
subordinate Brownian motion is an isotropic «-stable process and j(r) = c(d, «) pod—a,

Our main assumption is the following weak lower scaling condition at infinity: There
exist 81 € (0,2] and a; € (0, 1) such that

aM ey < dOr), A>1,r>1. (1.4)

This condition implies that lim)_, o, ®(A) = oo and hence fRd\{O} jUyhdy = oo (ie.,
the subordinate Brownian motion is not a compound Poisson process). The weak lower
scaling condition at infinity governs the short-time small-space behavior of the subordinate
Brownian motion. We also need a weak condition on the behavior of & near zero. We

assume that
I0)
dr =Cy < 00. (1.5)
0

r

The following function will play a prominent role in the paper. For # > 0 and x € R¢ we
define

@ 1 -1 1 —d
pt,x)=p(,x) = <m+|x|> (mﬁ‘bﬂ) . (1.6)

In case when ®(r) = r® we see that p(¢, x) = (/% + |x])~¢~®. It is well known that
(1% 4 |x[)~9 is comparable to the heat kernel p(t, x) of the isotropic «-stable process
in R?. We will prove later in this paper (see Proposition 3.2) that o (z, x) is an upper bound
of the heat kernel of the subordinate Brownian motion with characteristic exponent .

We assume that J : R? — (0, 00) is symmetric in the sense that J(x) = J(—x) for all
x € R? and there exists yo > 0 such that

vo iy < J() < iy, forally e RY. (1.7)

Following Eq. 1.3, we define a non-symmetric and non-local operator
LEfx) = L0 (x) = puv. f S CHD = f @K DT @ dz = L (), (18)
R &

where

L f(x) = / (fx+2) = fk(x, 2)J(z)dz, & >0.

|z|>¢e

The following theorem is the main result of this paper.
Theorem 1.1 Assume that © satisfies Eqs. 1.4 and 1.5, that J satisfies Eq. 1.7, and that
satisfies Eqgs. 1.1 and 1.2. Suppose there exists a function g : R — (0, 00) such that

lim g(x) =00 and L“g(x)/g(x) is bounded from above. (1.9)
X—> 00
Then there exists a unique non-negative jointly continuous function p*(t, x, y) on (0, 00) x
R? x RY solving
P (t,x,y) =LPE X)), x#Ey, (1.10)
and satisfying the following properties:

(i) (Upper bound) For every T > 1, there is a constant c; > 0 so that for allt € (0, T]
andx,y € RY,

Pt x,y) <citpt,x —y). (1.11)
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40 P. Kim et al.

(i) (Fractional derivative estimate) For any x,y € RY, x % vy, the map t +—
LXp¥(t, -, y)(x) is continuous in (0, 00), and, for each T > 1 there is a constant
cy > 0sothat forallt € (0,T], ¢ € [0,1]andx,y € R,

[L9¥p (e, -, y)(X)| < cap(t, x — y). (1.12)

(ili) (Continuity) For any bounded and uniformly continuous function f : R — R,

lim sup
1o xeRd

A;{d prt.x, ) f(ydy— f(x)|=0. (1.13)

Moreover, the constants c¢1 and ¢ can be chosen so that they depend only on T,
o~ (T, d, ay, 81, Cy, B, Yo, ko, k1 and k>.

The assumption (1.9) is a quite mild one. For example, if flz|>1 1zI°j(|z])dz < oo for
some & > 0, then the assumption (1.9) holds, see Remark 5.2 below.
Some further properties of the heat kernel p“(z, x, y) are listed in the following result.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 are satisfied.

(1) (Conservativeness) For all (¢, x) € (0, 00) x R4,
/ Pt x,y)dy =1. (1.14)
R4
(2) (Chapman-Kolmogorov equation) For all s,t > 0 and all x, y € R,
/dp”(t,x,z)p“(s,z,y)dz=p“(t+s,x,y). (1.15)
R

(3) (Joint Holder continuity) For every T > 1 and y € (0, §1) N (0, 1], there is a constant
c3 =c3(T,d,$81,a1, B, Cy, <I>_1(T_1), Y0, K0, K1, k2) > O such that for all 0 < s <
t<Tandx,x',yeR?

PG ) = P | < s (it =sl+ =P r o7 (7h)
x(p(s,x —y)V p(s,x" —y). (1.16)

Furthermore, if the constant 81 in Eq. 1.4 belongs to (2/3,2) and the constant B in
Eq. 1.2 satisfies B + §1 > 1 then Eq. 1.16 holds with y = 1.

(4) (Gradient estimate) If 81 € (2/3,2), and B+81 > 1, then for every T > 1, there exists
cqy = c4(T,d,81,a1, B, Cs, (1D, Y0, K0, K1, k2) > 0 so that for all x,y € R,
x #yandt € (0,T],

Ve p(t, %, ) < ca® L Dp(e, 1x — ). (1.17)

Note that the gradient estimate (1.17) is an improvement of the corresponding estimate
[6, (4.19)] in the sense that the parameter §; could be smaller than one as long as it is still
larger than 2/3 and B + 8; > 1.

For t > 0, define the operator P/ by

PF ) = /Rd P x ) fO)dy. xeRY (1.18)

where f is a non-negative (or bounded) Borel function on R?, and let Py = Id. Then
by Theorems 1.1 and 1.2, (P/);>¢ is a Feller semigroup with the strong Feller property.
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Heat Kernels of Non-symmetric Jump Processes 41

Let C,%’g(Rd) be the space of bounded twice differentiable functions in R4 whose second
derivatives are uniformly Holder continuous. We further have

Theorem 1.3 Suppose that the assumptions of Theorem 1.1 are satisfied.

(1) (Generator) Let ¢ > 0. Forany f € CZ’S(R‘I), we have
3 1 K K
lim > (PFf () = () = L (). (1.19)

and the convergence is uniform.
(2) (Analyticity) The semigroup (P} );>0 of L* is analytic in L”(Rd)for every p € [1, 00).

Finally, under an additional assumption, we prove by probabilistic methods a lower
bound for the heat kernel p“(t, x, y). The weak upper scaling condition means that there
exist 87 € (0, 2) and a > 0 such that

dOr) < aA2d@), A>1,r>1. (1.20)

Theorem 1.4 Suppose that ® satisfies Eqs. 1.4, 1.20 and 1.5, that J satisfies Eq. 1.7,
and that «k satisfies Eqs. 1.1 and 1.2. Suppose also that there exists a function g
R?Y — (0,00) such that Eq. 1.9 holds. For every T > 1, there exists ¢5 =
cs(T,d, b1, 682, v0, Cx, CID_I(T_I), ai, az, B, ko, k1, k2) > 0 such that forallt € (0, T],

e He if|x —y| <3071 H 7,

tji(x =y iflx —yl > 307 1@t (1.21)

Pt x,y) > cs {

In particular, for all T, M > 1, there exists c¢ = ce(T,d, 81,82, v0, Cx, CI>"(T’1),
ap, az, B, ko, k1,k2) > 0 forallt € (0,T]andx,y € RY with lx —y| <M,

prt,x,y) > cetp(t,x —y). (1.22)

Theorems 1.1-1.4 generalize [6, Theorem 1.1]. Note that the lower bound (1.22) of
p“(t, x, y) is stated only for |x — y| < M. This is natural in view of the fact that Eqgs. 1.4
and 1.20 only give information about short-time small-space behavior of the underlying
subordinate Brownian motion. We remark in passing that, the upper bound (1.11) may not
be sharp under the assumptions (1.4) and (1.5). When & satisfies scaling conditions both
near infinity and near the origin, see [11, (H1) and (H2)], the upper bound (1.11) is sharp in
the sense that the lower bound (1.22) is valid for all x, y € RY.

The assumptions (1.4), (1.5), (1.9) and (1.20) are very weak conditions and they are
satisfied by many subordinate Brownian motions. For the reader’s convenience, we list some
examples of ¢, besides the Laplace exponent of the stable subordinator, such that ®(r) =
¢(r2) satisfies these assumptions.

ML) =214+ A2, 0<a; <oy < 1;

2)p) = (A + A1), ap, a0 € (0, 1);

B o) = +m'/H —m, o e ©,1),m>0;

@ oW =21 (log(1 +A)*2, a1 € (0, 1), 2 € (0, 1 —a1];
(5) (1) = 2% (log(1 +A) ", a1 € (0, 1), a2 € (0, 1)
6) p(1) = 1/log(l + 1Y), « € (0, 1).
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42 P. Kim et al.

The functions in (1)—(5) satisfy Eqgs. 1.4, 1.5, 1.20 and 1.9 (see (3.1) and Remark 5.2);
while the function in (6) satisfies Eqs. 1.4, 1.5 and 1.9, but does not satisfy Eq. 1.20. The
function ¢ (A) = A/ log(1+ ) satisfies Eq. 1.4, but does not satisfy the other two conditions.

In order to prove our main results, we follow the ideas and the road-map from [6]. At
many stages we encounter substantial technical difficulties due to the fact that in the stable-
like case one deals with power functions while in the present situation the power functions
are replaced with a quite general ® and its variants. We also strive to simplify the proofs
and streamline the presentation. In some places we provide full proofs where in [6] only an
indication is given. On the other hand, we skip some proofs which would be almost identical
to the corresponding ones in [6]. Below is a detailed outline of the paper with emphasis on
the main differences from [6].

In Section 2 we start by introducing the basic setup, state again the assumptions, and
derive some of the consequences. In Section 2.1 we discuss convolution inequalities, cf.
Lemma 2.6. While in [6] these involve power functions, the most challenging task in the
present setting was to find appropriate versions of these inequalities. The main new technical
result here is Lemma 2.6.

In Section 3 we first study the heat kernel p(z, x) of a symmetric Lévy process Z with
Lévy density jz comparable to the Lévy density j of the subordinate Brownian motion
with characteristic exponent ®. We prove the joint Lipschitz continuity of p(z, x) and then,
based on a result from [10], that zo(t, x) is the upper bound of p(z, x) forall x € R? and
small #, cf. Proposition 3.2. In Section 3.1, we provide some useful estimates on functions
of p(t, x). In Section 3.2, we specify jz by assuming jz(z) = £(z)J(z), with & being sym-
metric and bounded between two positive constants. Let £ be the infinitesimal generator
of the corresponding process and let p* be its heat kernel. We look at the continuous depen-
dence of p*® with respect to &. This subsection follows the ideas and proofs from [6] with
additional technical difficulties.

Given a function « satisfying Eqs. 1.1 and 1.2, we define, for a fixed y € R,
Ry = «(y, ) and denote by p, (¢, x) the heat kernel of the freezing operator L% Various
estimates and joint continuity of py(t, x) are shown in Section 4.1. The rest of Section 4
is devoted to constructing the heat kernel p* (¢, x, y) of the operator £*. The heat kernel
should have the form

t
pit,x,y)=pyt,x —y) +/0 /Rd p(t —s,x —2)q(s,z,y)dzds, (1.23)

where according to Levi’s method the function ¢ (¢, x, y) solves the integral equation
t
q(t, x,y) =qo(t, x,y) + f /d qo(t —s,x —2)q(s, z, y)dzds, (1.24)
o JR

with go(¢, x, y) = (/.Zﬁx — Eﬁy)py (t, x — y). The main result is Theorem 4.5 showing exis-
tence and joint continuity of g (¢, x, y) satisfying Eq. 1.24. We follow [6, Theorem 3.1], and
give a full proof. Joint continuity and various estimates of p* (¢, x, y) defined by Eq. 1.23
are given in Section 4.3.

Section 5 contains proofs of Theorems 1.1-1.4. We start with a version of a non-local
maximum principle in Theorem 5.1 which is somewhat different from the one in [6, The-
orem 4.1], continue with two results about the semigroup (P;);>0 and then complete the
proofs.

In this paper, we use the following notations. We will use “:=" to denote a defini-
tion, which is read as “is defined to be”. For any two positive functions f and g, f < g

113
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Heat Kernels of Non-symmetric Jump Processes 43

means that there is a positive constant ¢ > 1 so that c"!g < f < cg on their com-
mon domain of definition. For a set W in R?, |W| denotes the Lebesgue measure of W
in R?. For a function space H(U) on an open set U in R?, we let H.(U) := {f €
H(U) : f has compact support}, Ho(U) := {f € H(U) : f vanishes at infinity} and
Hy(U) :={f € H(U) : f is bounded}.

Throughout the rest of this paper, the positive constants 81, 62, yo, a1, a2, B, ko, K1, k2,

Ci,i =0,1,2,..., can be regarded as fixed. In the statements of results and the proofs,
the constants ¢; = cj(a,b,c,...),i = 0,1,2,..., denote generic constants depending
ona,b,c, ..., whose exact values are unimportant. They start anew in each statement and

each proof. The dependence of the constants on the dimension d > 1, C,, o1 ((2T)_1),
&~!(T~') and 9 may not be mentioned explicitly.

2 Preliminaries

It is well known that the Laplace exponent ¢ of a subordinator is a Bernstein function and
Gd(At) < 1o (1) forallA > 1, > 0. 2.1)

For notational convenience, in this paper, we denote ®(r) = ¢ (r?) and without loss of
generality we assume that (1) = 1.

Throughout this paper ¢ is the Laplace exponent of a subordinator and ®(r) = ¢ (r2)
satisfies the weak lower scaling condition (1.4) at infinity. This can be reformulated as
follows: There exist §; € (0, 2] and a positive constant a; € (0, 1] such that for any ry €
O, 1],

a i o) < dGr), A=1r=r. (2.2)
In fact, suppose ro < r < 1 and A > 1. Then, ®(Ar) > al)»‘slrg'd)(l) > al)\‘slrg‘d>(r) if
ar > 1,and () = @) = Al r) () if Ar < 1.

Since ¢ is a Bernstein function and we assume (2.2), it follows that ® is strictly increas-
ing and limy _, oo ® (1) = 0o. We denote by o1 (0, 00) — (0, 00) the inverse function of
d.

From Eq. 2.1 we have

o 'or) = A"?07 ' r), A>1,r>0. (2.3)
Moreover, by Eq. 2.2, ®~! satisfies the following weak upper scaling condition at infinity:
For any rg € (0, 1],
o ') <a; e o) AT (), A= 1r =1, (2.4)
In fact, from Eq. 2.2 we get d>_1()\r) < afl/alkl/‘sld)_l(r) for A > 1 and r > 1. Sup-
pose rg < r < 1. Then, @~ '(ar) < 1 < a; /&~ (rg) "2V 0~ (r) if Ar < 1, and
1) < ap PN < g TR o ()L (1) i A > 1.
For ¢t > 0 and x € R?, we define functions r(z, x) and p(z, x) by
1 (|x|™)
x4

@ 1 -1 1 —d
pt,x)=p%(t,x) = (((Dl(tl) + |x|> ) <m + |x|> . 2.5)
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44 P. Kim et al.

Note that, by [2, Lemma 17],
td(x| ™ Hx™ = o7 1¢™HY ifandonlyif r®(x|7h) > 1. (2.6)

Proposition 2.1 Forallt > 0and x € RY tp(t, x) < r(t, x) < 241 21p(z, x).

Proof

Case 1 t®(Jx|~1) > 1. In this case, by Eq. 2.6 we have that r(t, x) = &~ 1¢1H4. Since
|x] < ﬁ,we have

L1 g2 @7
Ol — -l ol ’
This and Eq. 2.1 imply that
=@tz (1+u01 >0 o ()= Lo@ i)
- P11 - 4

= —t
and
da—1,,—1\—d 1 - 1,—1\—d
27T ()T < <P (7 H™?.
@« _<¢404)+u0 <o ¢

The last two displays imply that 27920~ (r— 1) < rp(r, x) < &1~ H7.

Case 2 ®(|x|™") < 1. In this case, by Eq. 2.6 we have that r(¢, x) = %. Since

1
x| > FRITaE we have

1 1 B 1 1
x| E(W'Hﬂ) =27 x|
This with Eq. 2.1 implies that
-1
ox ) 2 & (s + 1) )z 0@ ™ = 2oax)
- oI 1) - —4 '

The last two displays imply the conclusion of the proposition in Case 2. O

Lemma 22 Let T > 1 and c = 2(2/ay)' %1 /&~ 1(@2T)~1))4+2.
(@) Forall0<s <t <Tandx,z € R4,

pt —s,x —2)p(s,2) <c(plt —s,x—2) +p(s,2) p, x) . (2.8)
(b) Foreveryx € R and 0 < t/2<s<t<T,p(t,x)<p(s,x) <2cp(t,x).

Proof (a) ByEq.2.4 wehavethatforall0 <t,s <T,

1 1 1 1
ST+ H = e Ve <<1>‘1(t‘1) " 43‘1(5‘1)) e
where ¢; = (2/ay)®1/o~ (@)™ > 1.
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Heat Kernels of Non-symmetric Jump Processes 45

Define 0 : (0,000 — (0,00) by o(r) := r?/®@~"), so that p(t,x) =
(0(g=r=5 l(t 5+ |x))~!. For all a,b > 0, (a + b)? < 2%(a v b)¢ and, by Eq. 2.1,

S((a+b)H>d2 avb)™) >471d((a v b)~!). Therefore, for alla, b > 0,

o(a+b) <29%0(a v b) <29 2(g(a) + o(b)). (2.10)
Moreover, Eq. 2.1 implies that for r > 0,
(cir)? rd
oleir) = PP Cim@(rfl) =c{o(r). (2.11)
1

By using Egs. 2.9-2.11, we have

1 1 1
o (i 1) =e (o (s )+ (o )
t2 (o) (o
“ Q<<d>*1<<t—s>*1)+'x Z'%(@*l(rl)“”))
e o) e (o )
(2¢1) (g<¢_l((t_s)_l)+|x ) +eo q)_l(s_l)+|z| . (2.12)

Thus we have that for0 < s <7 < T and x, z € R,

IA

IA

(p(t —s,x —2) + p(s,2)) p(t, x)

_e(emmam i -2l) +e( 1(571)+|Z|> !
Y (W +Ix —Z|)Q< 1(rl) + |Z|) 0(71(1 + |x|)
1
> (e

4 (W +Ix —Zl)Q ( |(‘71) + |Z|)
= Q) 2 p(t — 5, x — 2)p(s,2).

(b) This follows from Eq. 2.12 by taking s = ¢/2, z = 0 and by using that o is increasing.
O

2.1 Convolution Inequalities
Let B(a, b) be the beta function, i.e., B(a, b) = [is*~'(1 = 5)>"'ds, a, b > 0.

Lemma 2.3 Let B8,y,n,0 € R be such that 15-0(8/2) + 1g-0(8/81) +1 -0 > 0 and
1,>0(¥/2) + 1, <0(y/81) + 1 —n > 0. Then for every t > 0, we have

t
/ u M YTt —w et —w) T Pdu <t 0o T B L (2.13)
0
Moreover, if B > 0and y > 0 then Eq. 2.13 holds for all t > 0 with C = B(B/2+ 1 —
0,y/2+1—n).
Proof Let I denote the integral in Eq. 2.13. By the change of variables s = u/t we get that

1
I = t“'?*ef sTTe N s v - Pl a —s) H P ds.
0

@ Springer



46 P. Kim et al.

Since s~! > 1 and (1 —s)~! > 1, we have by Eq. 2.3 that ol > 71201
and @111 —5)"1) > (1 —5)"/20~1(¢~1). Moreover, when ¢ € (0, T1, by Eq. 2.4 we
have

(Dfl(tflsfl) Sa1—1/51(Dfl(Tfl)flsfl/le(Dfl(tfl)
and
cD—l(t—l(l —S)_l) S al_l/BIQD_l(T_I)_l(l _ S)_l/aqu_l(f_l).

Hence,

1
I < C]llinigfbil(til)iyiﬁ/ SIVZO(V/2)+1;/<O(V/81)77](] _S)lﬂzo(ﬁ/2)+l,e<o(ﬁ/5|)*9 ds
0
=Cco ¢ Hr b,

When g > 0 and y > 0 then the above inequality holds for all # > 0 with ¢c; = 1 so
C=BB/2+1-0,y/24+1—n). O

Lemma 2.4 Suppose that 0 < t; < tp < o0. Under the assumptions of Lemma 2.3, we have

h t
lim sup (/ +f )f’?@*l(u*‘)*y(t—u)*%*l((t—u)*l)*ﬁ du = 0.
0 t—h

h=01e[ty,0]

Proof Under the assumptions of this lemma, by repeating the argument in the proof of
Lemma 2.3, we have that for all ¢ € [#, 2],

h t
(/ + / ) u o YT —w o Nt —wH P du
0 t—h
< (tll—n—e v tzl—n—e) (®71(t171)ﬂ/*/3 v @71(1‘271)77*/3)

h/t 1
« (/ 1 +/ ) slr=00r /24, <oy [80=n(] _ g)1p=008/2+150(B/50=0 g
0 1=h/t

Now the conclusion of the lemma follows immediately. O

For y, B8 € R, we define
Pt x) == ')V (IxIP ADp(t,x), t>0,xeR.
Note that pg(t, x) = p(t, x).

Remark 2.5 Recall that @ is increasing. Thus it is straightforward to see that the following
inequalities are true: for 7' > 1,

ph(t.x) <@ N TP (1,x), (LX) € (O.TIXRY, pm=<py. (214
pB(t, x) < pf2 (1, x), (t,x) € (0,00) xRY, 0<p<pi.
(2.15)
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We record the following inequality: forevery T > 1,¢ € (0, T] and 8 < 4y,

/l P loGNdr < : LA ﬂq> LG
o-1(T-1)/-1 (1) ai(dr—p) \ o-1¢=hH o-I(T1)

cb—l(T—l)ﬂ—Z PR
—1t ® . 2.16
ai(6r —B) ' “ (210

The first inequality follows immediately by using the lower scaling to get that for 1 > r >
A~ @) < ap'AT01r 7% ®(1). The second inequality follows from Eq. 2.1.

For the remainder of this paper we always assume that Eq. 1.5 holds. The following result
is a generalization of [6, Lemma 2.1].

Lemma 2.6 (a) Forevery T > 1, there exists ¢; = ci(d, 81, a1, Cx, T, @1 (T™1)) > 0
such that forQ <t < T, all B €0,61) andy € R,

/Rd pbt, x)dx < (Slci_lﬁz—lqu(z—l)—y—ﬂ. 2.17)

(b) For every T > 1, there exists Cy = Co(T) = Co(d, 81,a1,Cy, T, 2~ Y (T~1) > 0
such that for all B1, fo = Owith B1 + B2 <1, y1, 2 € Rand 0 <s <t <T,

/d PNt — 5, x = 2)pl2(s, 2) dz
R

Co o daw=ls N =IN-ri—Bi—Bag—1 —1y—
e (DR A (D I R G R
+O7 (=) T e T T (e, )
ey e R R (R L S RO

C _ e Ao —Tn—yr—
+m¢ Y-y HsTo s P pliax). (218)

(¢) LetT > 1. Forall B1,B2 = O with B1 + B2 < &1, and all 6,1 € [0,1],y1,y2 €
R satisfying 1,,>0(y1/2) + 1,,<0(v1/81) + B1/2 + 1 — 6 > 0 and 1,,>0(y2/2) +
1,,<0(y2/81) + B2/2+1—n > 0, there exists c; > 0 such that for all0 <t < T and
x e R4,

t
f / (t =)'l —s,x = 25" pfi(s, D) dzds
0 JRd
2-6— 0 B B2
=t ! ('OV1+V2+/31+/32 + '0)/1|+yz+ﬂz + '0}/1+V2+ﬂ|) @, x). (2.19)

Moreover, when we further assume that yy, y» > 0, we can take that

r=4— D) B B2~ B2 =), (220)
81— pB1— B
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Proof (a) Letc; = ci(d) = d|B(0,1)| and T} = ®~1(T~') < 1. We have that for all

(b)

0<t<T,

oy fRd ph(t, x)dx = fRd (Ix1F A1) p(t, x) dx

r

—1
1
Ti/e-la ¢ ((?1(171)) )
< Cl/ rﬁ+d—l y d
0 T
(df‘(r*l))
00 d)(r_l)

1
—i—cl/ rﬂ_1d>(r_1)dr+c1/ dr
Ty /@11 1 r

C]Tlﬂ
B+d

1 1
[}
01/ rﬂ71®(r71)dr+clf (r)dr
T r

/@71 0

< oo 1) F—d

+
+
-2

8
c1T,
<cd ol )y P L ile Y By (221)
ai(é; — B)
—1/2

<c(@d T a8 61— B+ Cuay T 0T ) A

where in the second to last line we used Eq. 2.16 to estimate the first term in Eq. 2.21
and used Eq. 1.5 to estimate the second term in Eq. 2.21, and in the last line we used

the assumption 8 € [0, §1) and the inequality o L HP < t(al_l/BI(T/t)l/‘Sl)ﬁ <
al_ﬁ/(sl T < aflT which follows from (2.4) with A = T/t andrg = r = T~ 1.

Let co = (2(2/a)'/%1 /&~ 1((2T)~"))?*2. As in the display after [6, (2.5)], we have
that

(Ix =z A1) (1212 A1) < (Ix — 2P A D) + (Ix — 21 A1) (Ix1P2 A D).
By using this and Eq. 2.8, we have

PR =5, x = 2)pf2 (s, 2)
- TH T (Ix — 2P A1) (1212 A1) p(t—5,x — 2)p(s, 2)

< a® N (@ =)"HeT TH T (I — 2 A L) (1212 A1)
X (p(t —s,x —2) + p(s,2) p(t, x)
< @ (-9 H e sH T (x — 2P A D+ (Ix — 2P AL) (1x1P2 A1)}

xp(t—s,x = 2)p(t, x)
+a@ (@ - e TH {1 A D + (11 A T) (1217 A1)}

xp(s, 2)p(t, x)
= 07 ) R — s x = (1) + pfi 0 =5, x = Dl )

+e2®7 (= )7 P D0 ) + PG5 D0 (1 00}

Since B + f2 < 61, now Eq. 2.18 follows by integrating the above and using Eq. 2.17.
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(c) By integrating Eq. 2.18 and using Lemma 2.3, we get Eq. 2.19. When we further
assume that y|, y» > 0, by integrating Eq. 2.18 and using the last part of Lemma 2.3,
we get Eq. 2.19 with the constant

2
co (B V1+ﬂ1+52+1_9’)/2+ 1oy
2 2
2
+B(W+1_n,y1;— +1_9>

2
+B(V142-/31+1_9,V2;- +1—fl>

2
+B(’/2J2rﬂ2+1—n,m; +1—9>>,

which is, using that the beta function B is symmetric and non-increasing in each
variable, less than or equal to 4CoB ((y1 + B1)/2+ 1 =0, v2+ B2/2+1—n).

Lemma 2.7 Suppose 0 <t <t < oo. For B € (0,81/2),

h t
lim sup (/ +/ h) fRd Pg(t—s,x—z)(pg(s,z—y)+p2(s,z—y))dzds=0.
0 t—

th»}FRd,teltl,Q]

Proof We first apply Lemma 2.6(b) and then use Remark 2.5, to get that for ¢ € [t1, 2],

/ Pyt —5.x = 2) (0§ (5.2 = ¥) + pY(s. 2 — )dz
Rd
<c(t =)o@t - H P 457 o TP p(nr, 0).

Now the conclusion of the lemma follows immediately from Lemma 2.4. O

3 Analysis of the Heat Kernel of £

Throughout this paper, ¥ = (Y3, P,) is a subordinate Brownian motion via an independent
subordinator with Laplace exponent ¢ and Lévy measure p. The Lévy density of Y, denoted
by j, is given by

J) = j(lx]) = /0 " sy a2 P )

It is well known that there exists ¢ = c(d) depending only on d such that

-2
j(”)Sc(p(:d ), r>0 3.1)

(see [2, (15)]). The function r — j(r) is non-decreasing. Recall that we have assumed that
r = ®@F)(= ¢@r?)), the radial part of the characteristic exponent ¢ of Y, satisfies the
weak lower scaling condition at infinity in Eq. 2.2.

Suppose that Z = (Z;,Py) is a purely discontinuous symmetric Lévy process with
characteristic exponent vz such that its Lévy measure admits a density jz satisfying

7o ilxD < jz(x) <wijlxD,  xeR?, (3.2)
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for some 7 > 1. Hence, f]Rd jz(x)dx = oo. The characteristic exponents of Z, respectively
Y, are given by

vz () = /Rd(l —cos(§ - y)jz(y)dy, (&) = /Rd(l —cos(§ - y)j(lyhdy,

and satisfy

Vo ' ®(ED < Yz(E) < MP(ED. & eR?. (3.3)
Let i denote the radial nondecreasing majorant of the characteristic exponent of Z, i.e.,

Y (r) := sup|, <, ¥z(z). Clearly
Vo l@) < Y(r) @), r>0, and 7, Y (ED < ¥z <v(ED. &R

and thus ¥ also satisfies the weak lower scaling condition at infinity in Eq. 2.2.
By Eqgs. 3.1 and 3.2,

_ ®(x|7h

Jjz(x) =0 MG (3.4)

Moreover, for every n € Z,

f [ [e52]| 11 a = / V2@ g g < / 70 UED g g
Rd R4 R4

1 0 =1_ s
<c f pd=14n g, +/ pd=l4n =tyy ar’t | oo 3.5)
0 1

It follows from [13, Proposition 2.5(xii) and Proposition 28.1] that Z; has a density

p(t,x) = (zn)—d/z/ eivE 1z () g _ (2”)_d/2/ cos(x - £)e—V2© gg.
R4 Rd
which is infinitely differentiable in x. Let £ be the infinitesimal generator of Z.

Lemma 3.1 (a) Forevery x € RY, the functiont — p(t, x) is differentiable and

ap(a: D~ myi / , cos(x - EYz(E)e V2O dE = Lp(t,x).
R

(b) For every ¢ > 0 there exists a constant ¢ = c(d, 81, ay, Yo, €) > 0 such that for all
s,t>ecandallx,y e R4,

Ipt,x) — pls, | <c(t —s|+|x—yl).

Proof (a) Note that for any + > 0 and any & € R such thatz +h > 0,

b — B, ~hyz€) _ |
p+ XZ pt,x) _ Q)2 /Rd cos(x -g)e*"“@)%dé-

The absolute value of the integrand is bounded by 2)’/‘0<b(|.§|)e’%_l‘b(‘§|) which is
integrable since ®(|€]) < |€]2. The claim follows from the dominated convergence
theorem by letting 7 — 0. The last equality in the statement of the lemma follows
from [9, Example 4.5.5].

(b) By the triangle inequality we have that

1p(t.3) — pls, )] < /R leos(x ) — cos(y - £)] V) g

*/ lcos(y - )] |e™V#® — V7O ag =i 1y + 1.
R4
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Clearly, | cos(x - &) —cos(y - €)| < |x-& —y-&| < |x — y||&|, which implies that, by
Eq. 3.5,

h<lv—yl / Ele V7 g < |x y|/ Ele=T0 0D g — ¢ G, o)l — 1.
R4 R4

In order to estimate I, without loss of generality we assume that s < ¢. Then by the
mean value theorem we have that

‘e—n/fz(&) _ e—swz(@‘ <t = s|Yz(E)e= V2O < it — s|d(EDeTo PUED
Therefore, by Eq. 3.5,
—~ —_— -1 o~
< ole =1 [ | 16Pe 0 20D d — a1

The claim follows by taking ¢ = ¢ V ¢». 0

Define the Pruitt function P by

|x|? .
Pr) = /R (5 ar)woax. (3.6)
By [2, (6) and Lemma 1],
1 R dn?® . wdn?
V) =500 )sp(r)deW )= Y. (3.7
Y0

In this paper we will use Eq. 3.7 several times.
We next discuss the upper estimate of p(¢, x) and its derivatives for 0 < ¢ < T and all
x e R4 using [10, Theorem 3].

Proposition 3.2 For each T > | and k € Z,, there is a constant ¢ =
ck,T,v,d,81,ar) > 1 such that

IVEp(t, x)| < et (@' ")ep(r,x), 0<t<T,xeRY

where V¥ stands for the k-th order gradient with respect to the spatial variable x.

Proof First, we recall that [, jz(x)dx = co. Let f(s) = %{') Then by Eq. 3.4 we have
jz(x) < CP f(1x]). Thus for A € B(RY),

. ~ [ @(xI™H _ ®(dist (0, A)~")
//;]Z(x)dx < Cy /Awdx = CVOW|A|
< C7 f(dist (0, A))(diam(A))?.

Therefore, [10, (1)] holds with y = d and M; = Cy.
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Since (s Vv [y]) — (|y]/2) = s/2 for s > 0, using Eq. 3.7 in the last inequality we have
that for s, r > 0,

2P/
d

/‘ S D = 1720 jz 0y = 2B [ gy
yl>r yl>r
1) 2 —1 2
= 22O [ (PR 1) zay
s [y|>r r
<200 DDy < 2 150dx? £ (5. (3.8)

Therefore, [10, (2)] holds with M| = 291 5dn?.
Furthermore, by Eqgs. 3.3 and 2.2, for k € Z,,

~— 0 o~
Ad e*“/fz(é)g;lk dg < /Rd e 1¢(\€|)|§-|k d¢ = d|B(0, 1)|‘/0 pdtk=1,=t7, o) dr

d|B(0, 1)| / Oo«b*l(s/r))'”k*‘e*%"f<<1>*l)’<s/t>r*1 ds
0

IA

1
d1B(0, 1) / (@ s/ (@1 (/0 ds
0

o0 on
+d|B(0, 1)|Ze—%’12""/ (@ s/ @YY s/ ds
on—1

n=1

_ dIBO, D dtk
=4 f«@ (/) ds
d|B(0, )] P N ,
it Ze O /ZH(@’ Ls/0)+hy ds

n=1

< % ((q>‘(t1)>d+k + Ze%"z"‘@‘(z’l/n)d*") :

n=1

Since r < T, by Eq. 2.4 we have @1 2"/t < c0231d~1(t—1). Thus we see that

_ d|B(0, 1)| _ _o5—lan—1
tyrz(§) kd < o 1 t 1\\d+k 1 2n(d+k)/81 )/0 2
[ e oretas < @) fal e

n=1

<@ 1T < ey (e HATE,

where ¢ = cp(k) > 0 and ¢~ is the generalized inverse of ¥: ¥~ (s) = influ > 0 :
Y (u) > s}. Therefore, [10, (8)] holds with the set (0, T'].

We have checked that the conditions in [10, Theorem 3] hold for all k € Z.. Thus by
[10, Theorem 3] (with n = d + 2 in [10, Theorem 3]), there exists ¢3(k) > O such that for
t<T,

. DTN P S 1 Y(E ! Y@ hH?
|v P(f»x)| 503\0 (t ) (W (t ) /\< |X|d + (1+|X|1ﬁ_(1_1))d+2

etk [t —1yd o [ 1RCXITD G
saet )<© ‘ )A< W T e ) )
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When |x|®~1(+~1) > 1 (so that td(Jx|~}) < 1),
2

—1—1yd —1—1yd -1 -1
(1) ) al @ (@(x17)) <1~ (x 1)),

(i@ = oty | oo (Sdy)
1®(|x]7h)

In the last inequality we have used Eq. 2.3. Therefore using Proposition 2.1 we conclude
that forall0 < ¢ < T and x € RY,

1@ (x|~

IVEp(t, x)] < cs@™ 7D <q>—1(f‘)d A
X

) <2927 Yo, x) .
O
3.1 Further Properties of p(¢, x)

We will need the following simple inequality, cf. [6, (2.9)]: Let a > 0 and x € R?. For
every z € R4 such that |z| < (2a) Vv (]x]/2), we have
@+lx+zp"' <d@+xp7t. (3.9)

Indeed, if |z| < 2a,thena+ |x| <a+|x+z]+|z| <a+|x+z|+2a <4(a+ |x +z]).
If |z] < |x|/2, then 4(a + |x + z|) > 4a + 4|x| — 4]z| > 4a + 4|x| — 2|x| = a + |x|.
For a function f : Ry x RY — R, we define

Spt,x;2) = ft,x+2)+ flt,x —2) = 2f(t,x). (3.10)

Also, f(x % z) is an abbreviation for f(x + z) + f(x — 2).
The following result is the counterpart of [6, Lemma 2.3].

Proposition 3.3 For every T > 1, there exists a constant ¢ = c¢(T,d, ., d, 81,a1) > 0
such that for everyt € (0, Tl and x, x', z € RY,

|p(t,x) = pt, x| < ¢ ((qu(fl)|x — 2D A 1) tp@t, ) +p@, "), GID

|8,(t,x:2)] < ¢ <(®_](t_])|z|)2 A 1) t(p(t,x £2) + p(t, 1)), (3.12)

and
18,1, x:2) — 8,(t. X' 2)] < c ((Cb_l(t_l)lx — XA 1) ((d)‘l(t_])lzl)z A 1)
xt(pt,x£2)+pE,x)+pt,x' £2)+p@ x)). (3.13)

Proof (1) Note that, by Proposition 3.2 with k = 0, Eq. 3.11 is clearly true if
&1t~ 1|x — y| = 1. Thus we assume that ' (1) |x — y| < 1. We use Proposition
3.2fork =1 and

1
pt,x)—p(t,y)=(x—y)- / Vp(t, x +60(y — x))do (3.14)
0

to estimate |p(¢, x) — p(t, y)| < cit® ¢~ H|x — ylfolp(t,x +6(y — x))d0 . Since
Oly — x| < 1/&~ 1™, we get from Eq. 3.9 that

1 -1 1 -1
(m-i- |X+9(y—x)|> S4<m+|x|> .
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Therefore using Eq. 2.1 we have |p(t, x) — p(t, y)| < calx — y|®~ ¢ Do, x),
te(0,T].

(2) Note that Eq. 3.12 is clearly true if ®~!(#~1)|z| > 1. In order to prove Eq. 3.12 when
&~ 1(t71|z| < 1 we use Eq. 3.14 twice to obtain

1
Op(t,x;2) = Z~/ (Vpt,x +6z) — Vp(t,x —0z)) db
0

1 pl
2(z®2z) - / / OV2p(t,x + (1 —20")02)d0’'do .  (3.15)
0 JO

Note that |(1 — 20")0z| < |z] < ﬁ Hence, by Proposition 3.2 and Eq. 3.9 we
get the estimate

‘9V2p(l‘, x+ (- 29’)9@‘ <c (ob—l(t—l))2 102, x) .

Therefore, 8, (¢, x; 2) < ca (O~ (¢=1)|zl)” tp(t, x), t € (0, T1.

(3) It follows from Eq. 3.12 that it suffices to prove Eq. 3.13 in the case when
&~ 1(¢t=hjx — y| < 1. To do this, we start with the subcase when ®~1(¢~1)|z] < 1
and ®~'(+~1)|x — y| < 1. Then by Eq. 3.15,

[8p(t, x;2) — 8p(t, y; 2)|
1 p1 pl
<cslx —yl|- |z|2/ / / IV3p(r, x + (1 —20")0z 4+ 6" (y — x))| dOd6'de" .
0o Jo JO
Note that |(1—26")0z40" (y —x))| < ﬁ Hence, by Proposition 3.2 and Eq. 3.9
we get
18,1, x32) = 8,(t, y; )| < @'t HIx — yl( @~ 7Nzt x) .

If &' lz| > 1and @'+ ")|x — y| < 1, then again by Proposition 3.2 and
Eq. 3.9,

[8p(t, x;2) — 8p(t, y; 2)|

IA

1
] (lx —yI/ IVp(t,x £2+0(y —x))|do
0

1
- y|/0 IVt x + 60y — x) d9>

g® 't Yx — y| tpt, x £ 2) +1p@t,x)), te€ (0TI O

IA

The following result is the counterpart of [6, Theorem 2.4].

Theorem 3.4 For every T > 1, there exists a constant ¢ = ¢(T,d, Yy, d, 81,a1) > 0 such
that forallt € (0, T] and all x, x' € R4,

fRd 16, x:2)] j(1z) dz < cp(t, x) (3.16)

and
/Rd [8p(t,x:2) = 8,(t, x5 2)| j(z)dz < ¢ ((<I>’](t’1)|x —XPDA 1) (o(t, x)+p(t,x)).
(3.17)
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Proof By Eq. 3.12 we have

/|5p(t,x;z)|j(|z|)dz

]R(l

< Co/ (@D A1) 1 (ot x 2 2) + p(t, 1)) j(J2]) dz
Ra’

=< (f (@' D1D? A1) 1ot x £2)j (12 dz + rp<t,x)7>(1/<1>—1<r—1>))
R
=:co(l1 + Db). (3.18)

Clearly by Eq. 3.7, I, < c1tp(t, x)®(®~1(¢t™")) = c1p(t, x) . Next,

I - qu(rlf/ l2Ptp (. x % 2)j (2]) dz
-1 —z|<1

+/ tp(t,x £2)j(|z)) dz
-1 hz|>1

= In+1.

By using Eq. 3.9 in the first inequality below and Eq. 3.7 in the third, we further have

I

IA

49+ 52, x) (@' hHlzh? A Dj(lz]) dz

-1
RI= 3=

4 e, )P/ ) < cap(t, x) .

IA

Next, we have

1 -1 1 —d .
t/\~zl>% ¢ ((q>—1<;—1>> )(q,(,_l)> J(lzhdz
o=T¢=T)

=o' (@ e HizD? A Dj(zl) dz

|z|>

IA

1>

o—1g—1)

ol HYPa/o7 e < et Hde@ ) = s T HA T

IA

where in the last line we used Eq. 3.7. If |x| < 2/<I>’l (+~1), we have that

3 B 3 - gyl —1nd
pt,x) > & (m) (m) >yt O ()Y,

implying that 112 < c5p(%, x).
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If |x| > 2/®~ (¢~ 1), then by Eq. 3.7,

I = ﬁw
T >lzl>

+/ tp(t,x £z)j(lz])dz
o |z|> &l
o=l¢=T) 2

<6 [ 100, 1) j(lzh dz + j<|x|/2)/ ip(tx £ ) dz
§2lel> 5=ri=r; lz> 15!
. d2[x|7)
<c7|tp(, x) jlzhdz + ———— tp(t,x £z)dz
|z|>¢,,1t,,) x| Rd

-1
tp(t, )P(1/@~ 171 + CD(||xx||d)>

A
o
~J
P

@ (x|
ECS p(tvx)+7 §C9p(t7x)a

where in the last line the second term is estimated by a constant times the first term in view
of the assumption that |x| > 2/®~!(z~1). This finishes the proof of Eq. 3.16.
Next, by Eq. 3.13 we have

/Rd 858, 332) = 8,6, s )| (12D dz < ero (@7 Dl = ¥ A1)
x {/Rd ((<1>—‘(z—1)|z|)2 A 1) (tp(t, x £ 2) + tp(t, ' +2)) j(lz]) dz

+(tp(t,x)+tp(t,x/))/ (@"ahizp? A 1)j(|z|)dz}
R4
<en (@7 = XD A1) (1o 0) + 10, x)

where the last line follows by using the estimates of the integrals /1 and /> from the first
part of the proof. O

3.2 Continuous Dependence of Heat Kernels with Respect to &

Recall that J : R? — (0, 00) is a symmetric function satisfying Eq. 1.7. We now specify the
jumping kernel jz. Let & : R? — (0, 00) be a symmetric function, that is, &(z) = R(—z).
Assume that there are 0 < kg < k1 < oo such that

ko < R(z) < k1, forall z € R?. (3.19)

Let j8(z) := R(z)J(2), z € R?. Then j® satisfies Eq. 3.2 with 7 = yo(k1 V &, ). The
infinitesimal generator of the corresponding symmetric Lévy process Z® is given by

L5500 = b [ (e +0 — fn8@I @ ds
= lp-V-/ dr(x; 2)R(2)J(2) dz. (3.20)
2 Rd
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We note in passing that, when f € C,% (R9), it is not necessary to take the principal value
in the last line above. The transition density of Z® (i.e., the heat kernel of £#) will be
denoted by pR(z, x). Then by Lemma 3.1,

apt(t, x)
Jat

We will need the following observation for the next result. The inequality Eq. 2.4 implies
that there exists a constant c(xg) > 1 such that

= L%, x), lim PR, x) =8y (x). (3.21)
t—

O ot/ <ay o T AV (/20107 ¢ forallr € (0, T].
Consequently, for all z € R? and ¢ € (0, T,

(@7 ot/ Dlzl) AL = a7 TNV o/2) Y (97 1zl ) A T).
(3.22)
The following result is the counterpart of [6, Theorem 2.5], and in its proof we follow
the proof of [6, Theorem 2.5] with some modifications.

Theorem 3.5 For every T > 1, there exists a constant ¢ > 0 depending on T, d, ko, k1,
Y0 a1 and 81 such that for any two symmetric functions 81 and R in R? satisfying Eq. 3.19,
everyt € (0,T]and x € R4, we have

P10 = pR )| < el = Ralloo 1001, ) (3.23)
VP (0 = VpT | = el = Rallow®™ 000 2) (3.24)

and
/Rd ’(spﬁl (t.X32) = 8, (£, x; z)‘ j(zhdz < cllfi — Ralloop(t, x) . (3.25)

Proof (i) Using Eq. 3.21 in the second and third lines, the fact £*! is self-adjoint in the
fourth and fifth lines, we have

t

pﬁ1<r,x>—pﬁ2<r,x>=/ i(/ PR, y)pﬁza—s,y—x)dy) ds
0 ds R4

t
:/o (/1‘@ (,Cﬁlpﬁ(s’ ')(}’)pﬁz(t C sy —x)

—pM s VLS PR =5,y = ) dy) ds
/2
-/ (/ pﬁl(s,w(ﬁf"—c*@)pﬁza—s,-><y—x>dy>ds
0 R4
t
+ / (/ (ﬁﬁl—ﬁ’%)pﬁl(s,~)<y>pﬁ2<r—s,y—x>dy)ds
t/2 \JR4
1 t/2 "
=§/ (/ p ‘(s,y)</ Bpﬁz(t—s,x—y;z)(ﬁl(z)—ﬁz(z))J(z)dz)dy)ds
0 ]Rd ]Rd

t
—l—lf (/ pﬁz(t—s,x—y) (/ 8 ﬁl(s,y;Z)(ﬁl(z)—Rz(z))J(z)dz> dy) ds.
2 Jijp \Urd re 7
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By using Eq. 3.16, Proposition 3.2 and the convolution inequality Eq. 2.19, we
have

12
/ (/ PR, y) </ 8,5, (1 — 5, x — y; 2)(R1(2) — ﬁz(z))J(z)dz> dy) ds
0 R4 RY
t/2
+/ (/ pR(s,x —y) (/ 8,0 (1 =5, y; ) (R1(2) — ﬁz(Z))J(Z)dZ> dy) ds
0 R R

/2
?ollﬁl—ﬁzlloo</ (/ Pﬁ’(s,y)</ ‘5pﬁ2(t—s,x_y;Z)‘j(IZDdZ)dy)ds
0 R4 R4
t/2
+/ ([ pﬁz(s,x—y)(/ ‘Spﬁl(t—s,y;z)‘j(lzl)dz)dy)ds)
0 R4 R4

12
el =Sl [ [ 50690 = 5.5 =)+ 90,5 = 9pte = 5.y dyds

IA

IA

IA

t
2¢1 181 — ﬁznoof'/o /Rd s(t —5)(p(s, Y)p(t —s,x — y)

+p(s,x —y)p(t — s, y))dyds
21 — Ralloo to(t, ), forallt € (0, T], x € R?.

IA

(ii) Set Ei () := Ri(z) —ko/2, i =1,2.Itis straightforward to see that p“0/2(z, x) =
pl(kot /2, x). Thus, by the construction of the Lévy process we have that fori = 1, 2,

pRit,x) = /Rd PO x — y)pRie, y)dy = A‘{d plkot/2,x — y)pRi(t, y) dy.

(3.26)

By Eq. 3.26, Proposition 3.2, Eqs. 3.23, 2.18 in the penultimate line (with ¢, 2¢

instead of s, ¢), and Lemma 2.2(b) in the last line, we have that for all ¢ € (0, T'] and
x e R4,

V()= VpS )| = ‘ [, 9p! G253 00 = p 0y

IA

IR = Ralloe® ™ (72 fRd p(t.x — V(i y) dy

allfi — Rlle® ¢ Hip(t, y) .

IA

(iii) By using Egs. 3.26, 3.12, Lemma 2.6(b) and Eq. 3.23, we have

‘spﬁl (1,x:2) = 8, (1, x: z)‘

’/ 8,1 (k0t/2,x =3 2) (pf“ (ty) - P, y)) dy)
R4

IA

ctllfi = Kalloo (@7 7HIZD? A T) rzf (p(t,x — y +2)
Rd

+p(t,x —y)p(t, y)dy

el = Falloo (@71 DD A1) £ (o1, x £ 2) + plt, 1))

IA
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Now we have
/ ‘SPRI(t,x;Z)—Spﬁz(t,x;z)'j(lzl)dz < alf - fllo
R4
x/ (@71 a™DIzn? A1) 1 (o, x £ 2) + o1, ) (2D dz
Rd
= allf —ﬁznoofw (@71 HIDI A1) 1 (o x £ 2) + (e, 2) (2 dz,

which is the same as Eq. 3.18 and was estimated in the proof of Theorem 3.4 by
c3p(t, x). This finishes the proof. O

4 Levi’s Construction of Heat Kernels
For the remainder of this paper, we always assume that x : R? x R? — (0, o0) is a Borel
function satisfying Eqs. 1.1 and 1.2, that & satisfies Eqs. 1.4 and 1.5 and that J satisfies
Eq. 1.7. Throughout the remaining part of this paper, B is the constant in Eq. 1.2.

For a fixed y € RY, let Ry(z) = k(y, z) and let L be the freezing operator

LY fx) = LYV f(x) = liIla L% £(x), where £ f(x)
= / 3¢ (x; Dk (y, 2)J(2)dz. (4.1)
lz|>e

Let py(t,x) = p*(t, x) be the heat kernel of the operator £, Note that x > py(t, x) is
in Cj° (R?) and satisfies Eq. 3.21.

4.1 Estimates on p, (¢, x —y)
The following result is the counterpart of [6, Lemmas 3.2 and 3.3].

Lemma 4.1 Forevery T > 1and 81 € (0, 81) N (0, B], there exists a constant ¢ = ¢(T, d,
81, B1, ko, k1, k2, Y0) > 0 such that for all x € R? andt € (0, T},

V LAEp(t, ) (x —y)dy' <ct'o 'Y P forallie €0, 1], 4.2)
Rd

<ct ol P, 4.3)

‘/ Bpy(t,x — y) dy
]Rd

<cd @ Hlh, 4.4)

[, o= nay
Rd
Furthermore, we have

lim sup
110 xeRd

/dey(t,x—y)dy—l‘=0. 4.5)
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Proof Choose y € (0,81 — 1) N (0, 1]. Since fRd p.(t, & —y)dy = 1forevery &,z € RY,
by the definition of §,,, we have fRd 8p, (t, x —y; w)dy = 0. Therefore, using this, Egs. 1.1,
1.7 and 3.25, fore € [0, 1] and ¢t € (0, T'],

’/ L p(t, ) (x —y) dy‘
]R(l

/d </ ((Sp‘,(t,x —y;w) =8 (t, x —y; w))/c(x, w)](w)dw) dy’
IX lw|>¢e ’

IA

m/o/ (/ |8p, (1. x — y; w) — 8, (1, x — y; w)| j(lwl)dw> dy
R4 |lw|>e

IA

c1/ (s ) — ke Voot x — ) dy
]Rd

IA

cier [ (b =3P A o = dy o7 )
R

Here the last line follows from Eqgs. 1.2 and 2.17 since 81 + y € (0, 8;).
For Eq. 4.3, by using Egs. 3.16 and 4.2 in the third line, we get, for t € (0, T],

’/ Orpy(t, x —y)dy‘ = ‘/ L% py(t, ) (x — y)dy’
R4 R4

IA

f (L% = £%) pytt ) = v dy‘ + ‘/ L% py(t, )(x = y) dy‘
RY R

IA

ca/ip(’fl t,x —y)dy+eat o7 ¢ < eyt h
RL

Here we have used Eq. 2.17 in the last inequality.
For Eq. 4.4, by Eq. 3.24 we have

’/ Vpy(t, )(x —y) dy‘ = ’/ (Vpy(t, ) = Vpse(t, ) (x — y) dy‘
Ra’ Rd

IA

cs /R llic(x, ) — k(v oot @ ¢ Hp(t, x — y)dy

IA

c6/ (e =3P A1) 10~ Do, x = y)dy
R4
= rdf‘(f‘)/ ph (t, x = y)dy

R4

cntd 'l A = o ¢ H A,

IA

In the last inequality we used Lemma 2.6(a) which requires that g1 + y € (0, é1).
Finally, by using Eq. 3.23 in the second line and Eq. 2.17 in the last inequality, we get

sup
xeRd

/ py(t,x—y)dy—l‘s supf |py(t,x —y) — px(t,x — y)| dy
R¢ xeRd JR?

IA

cg SUP/ lx(y, ) —Kk(x, Heotot, x —y)dy

xeRd JR

IA

cot sup / PPNt x — yydy < clo® 'Y, e, TI.
R

xeRd
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Lemma 4.2 The function py(t, x) is jointly continuous in (t, x, y).

Proof By the triangle inequality, we have

|y, (11, x1) = Py, (12, X2)| < [Py, (1, X1) = Py, (11, XD 4 [Py, (11, X1) = Py, (82, x2)|.

Applying Egs. 3.23 and 1.2 to the first term on the right hand side and Lemma 3.1(b) to the
second term on the right hand side, we immediately get the desired joint continuity. O

4.2 Construction of ¢ (¢, x, y)

For (1, x, y) € (0, 00) x R? x R? define

1
qo(t, x,y) := > /]Rd 3p, 0, x —y;2) (k(x,2) —Kk(¥,2)) J(2) dz
= (L% = L£%) )=y 4.6)
In the next lemma we collect several estimates on gg that will be needed later on.

Lemma 4.3 For every T > 1 and By € (0, B], there is a constant C1 > 1 depending on
d, 81, ko, k1, k2, y, T and = (T~") such that fort € (0, T1and x,x',y,y € R,

lgo(t, x, »)| < Ci(lx = 1P A Dp(t,x — y) = Clpoo(t x =), 4.7)
and for all y € (0, By),

lgo(t, x, y) — qo(t, x', y)|
<G (|x_x/|ﬁ0_y/\1){(’01’+’0y ﬂo)(t x_y)+<p7+py ﬂo>(t . —y)]
(4.8)

and

lgo(t, x, ¥) — qo(t, x, y) < Cro~ (e ™H% (Jy — y'1Po A1) (p(t, x — ¥) + p(t, x — Y)).
4.9)

Proof (a) Equation 4.7 follows from Eqgs. 3.16 and 1.2.
(b) By Egs. 4.7 and 2.14, we have that for t € (0, T'],

lqo(t, x, )| < copf®(t, x = y) < co® 1T Fopll 1 x —y),

which proves Eq. 4.8 for |x — x’| > 1. Now suppose that 1 > |x —x/| > &~ 1~ H~L
Then, by Eq. 4.7, for ¢t € (0, T,

o =By
lgo(t, x, 1)1 = e (@71 ¢7H) P ot x—y) < erlx—x' 1P ol (1 ),
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and the same estimate is valid for |go(z, x’, y)|. By adding we get Eq. 4.8 for this case.
Finally, assume that [x — x| < 1 A o1 (t_l)_l. Then, by Egs. 1.7, 1.2 and 3.17, for
te(0,T],

lgo(t, x,y) — qo(t, x', y)| = VRd 8p, (1, x =y 2)(k(x,2) —k(y,2))J(2)dz

- /Rd 8py (1, X' = y; D)k (', 2) — Kk (¥, 2))J (2) dz

A

< Vo/Rd 18p, (1, x — y32) =8, (t, X" — y: 2)| |k (x, 2) — k(y, 2| j(|z]) dz

+%0 fRd 18p, (£, x" = y; DIk (x, 2) =k (x", 2)1j (Iz]) dz

IA

yos (1 = yIP A 1) /Rd 8y, (1, % — 3 2) — 8, (0 2" — y: )1 (I2]) dz

o (1 — 2P0 A1) fd 18, (1, x' — y; )1 (12]) dz
R

IA

a2 (e =y A1) (ot x = y) + ot x" = ) +calx —x1Pp(t, " = y).
By using the definition of p(z, x’— y), the obvious equality x' —y = (x —y) + (' — x),
the assumption that |x — x| < ®~!(¢=1)~! and Eq. 3.9, we conclude that pg (t,x' —
y) < 4pg (t, x — y). Thus, it follows that for ¢t € (0, T],

lgo(t, X, ) — qot, X', W < Se2 (6, x — y) + ealx — X 1Pop(t, 2 — y)
< Scalx = x|l e x —y)
+eale =217 p) (1~ y)
(c) First note that
qo(t, x, ¥) = qo(t, x, y)

1
= 5/ Spy(t,x —y:12) (k(¥', 2) — k(. 2)) J(2) dz
R4

1

+3 /]R’ (Bpr(t.x —y;2) = 8pr(t, x — '3 2)) (k(x,2) —Kk (¥, 2)) J(2) dz
1 / / /

+§ /]Rd (épy'(t,x —yi2) =8yt x—y ;z)) (k(x,2) —k(y',2) J(2)dz

=hLh+hL+1.

It follows from Eqgs. 1.2, 1.7 and 3.16 that for ¢ € (0, T'],
I <c (Iy—y’IﬂOM)/d 8,0 (t, x=y; 2| j(zD) dz<ca (Iy=Y' 1P AL) plt, x =),
R

which is smaller than or equal to the right-hand side in Eq. 4.9 since ®~'(¢~!) >
&~ 1(T~1). By Egs. 1.1, 1.7 and 3.17 we get that

Ll < o /R |82 (1. x — y12) = 8ps (6. x — ¥/ 2)] j (2 dz
= o (@Dl =yD A1) (ptx =) +pt.x = ¥)
< o '@ H e aHR (ly =y A1) (ot x = 3) + o, x = Y)).
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Finally, by Eqgs. 1.1, 1.2, 1.7 and 3.25, for ¢ € (0, T'],

113

IA

e [ [por=yi0 =5, 0x = 50| e dz
R4

IA

ey, ) =k Mecpt,x =) < cally = YI1P A1) pt,x—y). O

Lemma 4.4 The function qo(t, x, y) is jointly continuous in (t, x, y).

Proof 1t follows from Lemma 4.2 that (¢, x, y) + p,(f, x — y) is jointly continuous and
hence also that § Py (t, x —y; z) is jointly continuous in (¢, x, y). To prove the joint continuity
of go(t, x, y), let (t,, xn, yn) — (¢, x,y) € (0,T] x R x R? and assume that 0 < ¢ <
tn < T. The integrands will converge because of the joint continuity of §,, and continuity
of k in the first variable. Moreover, by Eq. 3.12, '

|5py,, (tns Xn — Yns Z)| |k (X, 2) — Kk (Yns 217 (12])
< 1 (@71 DD A ) T (a0 = 3 £ 2 + Pt Xs ) (12D

< 206, 0) (@7 DI A1) (.

Since the right-hand side is integrable on R¢, the joint continuity follows by use of the
dominated convergence theorem. O

For n € N, we inductively define

t
qn(t, X, ) :=/ /dQO(t—S,X,Z)Qn—l(S,Z»)’)dZdS, (t,x,y) € (0,00) x RY x RY.
0 JR

(4.10)
The following result is the counterpart of [6, Theorem 3.1].

Theorem 4.5 The series q(t, x,y) := ZZOZO qn(t, x, y) is absolutely and locally uniformly
convergent on (0, 00) x RY x R? and solves the integral equation

t
q(t, x,y) =qo(t,x,y)+/ /Rd qo(t —s,x,2)q(s,z, y)dzds . 4.11)
0

Moreover, q(t, x,y) is jointly continuous in (t,x,y) € (0,00) x R x RY and has the
following estimates: for every T > 1 and B € (0, B]1 N (0, §1/2) there is a constant Cor =
Co(T, d, 81, ko, K1, k2, B2, Y0) > O such that
B2 0 _ d d
lgt,x, I = Calpy” +pp, ) & x—y), (t,x,y) €0, T] xR xR, (4.12)

and for any y € (0, B2) and T > 1 there is a constant C3 = C3(T,d, b1, y, ko, k1, k2,
Y0, B2) > 0 such that for all (0, T] x RY x R,

lg(t.x,y) —q(t,x", y)
< Gy (b = X177 A1) (0 + 002y, (6= + (00 + 002, (0.3 = ) . @13)
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Proof This proof follows the main idea of the proof of [6, Theorem 3.1], except that we give
a full proof of the joint continuity in Step 2. We give the details for the readers’ convenience.
In this proof, T > 1 is arbitrary.

Step 1: By Eqgs. 4.7, 2.19 and 2.20, we have that

lg1(t, x, y)| < CZ/ / t—s,x—y —u)pgz(s,u)duds

IA

8CoCEB (B2/2. 2/2) (08, + off) (1 x —¥). 1 =T,

Let C = 2*CoC? and we claim that forn > 1and t < 7,

93,01 = 0 (Pl + 203, ) 6 = ) (@.14)
with
n
yo =C"" ] B (B2/2.jB2/2) -
j=1

We have seen that Eq. 4.14 is valid for n = 1. Suppose that it is valid for n. Then
by using Eqgs. 2.19, 2.20, 2.14 and 2.15, we have that fort < T,

t
|gnt1(t, x, ¥)| S/O lelqo(t—s,x,z)l lgn (s, z, y)|dzds

t
< Cl)’nj(; /Rd pgz(t—S,x—z) (,o?nH)ﬁz + pféz) (s,z—y)dzds

B2 (n+1)pa
= 24C0C1V11B (7 Y (P(,H_z),gz + 1051+])ﬁ2) (t, x—y)

= Yntl (/)8,+2)ﬂ2 + pgfﬂ)ﬁz) t,x—y).
Thus Eq. 4.14 is valid. Since
0 <q)71(T71)*/32C1" (%))’H_l

Z yu®= (T~ E = §

1
o r ((n+2)/32)

by using Eqgs. 2.14 and 2.15 in the second line, it follows that for ¢ < T,

=:Cr < 00,

o0 o0
D11 = D v (P, + 00, ) (x = )

n=0 n=0

o
<Y e (@A (pgz + pgz) t,x=y)=C (;022 + pgz) (t,x—=y).
n=0

This proves that > oo gn(t, x,y) is absolutely and uniformly convergent on
[, T] x R? x RY for all & (0,1)and T > 1, hence g(¢, x, y) is well defined.
Further, by Eq. 4.10,

m+1

3 Gt 5. 9) = @olt. %, y)+f [ ot =, 9> ans. 2y deds,

n=0 n=0
and Eq. 4.11 follows by taking the limit of both sides as m — oo.
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Step 2: The joint continuity of go(z, x, y) was shown in Lemma 4.4. We now prove the
joint continuity of g1 (¢, x, y). Forany x, y € R and r, h > 0, we have

qit+h,x,y)—qi(t, x,y)

t+h
=/ / ‘IO(t+h -5, X, Z)QO(S, 2, )’)dZdS
t R

t
+/ /d (qo(t +h —s,x,2) —qot —s,x,2)) qo(s, z, y)dzds. (4.15)
0 JR

It follows from Eq. 4.7 that, there exists ¢c; = c1(T) > 0 such that, for 0 < h <
t/dandt+h <T,

sup

t+h
/ / qo(t +h —s,x,2)qo(s, z, y)dzds
x,yeRd d

t+h
<c) sup / / 2(t—i—h—s x—z)poz(s 7z — y)dzds
t

x,yeRd

=c; sup / /]Rl (rx—z)p 2(t+h—rz—y)dzdr

x,yeRd
§c1/ sup / 2(r x—z)poz(t—r 7z — y)dzdr.
0 x,yeRd JRY
Now applying Lemma 2.6(b), we get
sup / Py x — )pf(t — 1.z — y)dz
x,yeRd JR?
<a@-n'o @ -+ r e T e, 0.

It follows from Lemma 2.3 that the right-hand side of the display above is
integrable in r € (0, 1), so by the dominated convergence theorem, we get

Llﬁ}xs;%d /Hh/ qo(t +h —s,x,2)qo(s, z, y)dzds| = 0. (4.16)
Using Eq. 4.7 again, we get that for s € (0, 7],
[(qo(t +h —s,x,2) —qot —s,x,2))q0(s, 2, )|
=a(pfern—sx—+pfa—sx=2)pf2 -y

<capl(t —s,x —2)pf (5,2 — y).

It follows from Lemma 2.6(c) that

t
/ /d P2t — 5, x — 200 (5, 2 — y)dzds < es(pi (1, 0)+pﬂz(t 0)) < oo,
0 JR

thus we can use the dominated convergence theorem to get that, by the continuity
of qo,

t
lim/ / (qo(t +h —s,x,2) —qo(t —5,x,2))qo(s, z, y)dzds = 0. (4.17)
hi0 Jo JRrd
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Step 3:

It follows from Eq. 4.9 that for s € (0, T'],
|90(s, 2, ¥) — qo(s, z, )|
< a6 (@7 6Ty =D A L) (o652 = )+ pls, 2= 1)

Now we fix0 < t; <t; < T.Thenforanye € (0,1 /4),t € [t;,2] and s € [¢, t],

lgo(t — s, x,2) (qo(s. 2, ¥) — qo(s, 2, y")) |

< o7 (@71 =y D2 A1) Al = 5.2, (G, 2= )+ pls, 2= V).
By Lemma 2.6(c), we have
xvy,y%%l;ge[n,tz]/ot /]Rd ,ogz(t —s5,x,2) (p(s.z2—y) + p(s, 2 — y)) dzds < o0.
Thus

lim  sup /t / lgo(t — 5, %, 2) (qo(s. 2, ) — qo(s, 2, ¥)) |dzds = 0.

Y'Y xeRe el n] Je JRY

Consequently, foreach 0 < t; <t < T and ¢ € (0, 71 /4), the family of functions

'
{// QO(f—S,X,Z)qo(S,Z,~)dzds:xeRd,te[tl,tz]}
s JRd

is equi-continuous. By combining Eq. 4.7 and Lemma 2.7, we get that

& '
lim sup (f +/ )f qo(t — s, x,2)qo(s, z, y)dzds = 0. (4.18)
e—0 0 i—e/) JRd

x,yeR? 1€ty 1]

Therefore the family

t
{/ / qo(t — s, x,2)qo(s, z,)dzds : x € RY t e [t1, tz]} (4.19)
0 JRrd

is equi-continuous.
Similarly, by using Eq. 4.8, we can show that, for each 0 < ¢t < f, < T and
e € (0, t1/4), the family of functions

t—e&
{/ /d qo(t —s,-,2)qo0(s,z,y)dzds : y € Rd,t € [t, tz]}
0 R

is equi-continuous. Combining this with Eq. 4.18, we get the family of functions

t
{f /d qo(t —s,-,2)qo(s,z, y)dzds : y € ]Rd, t e, tg]} (4.20)
0 JR

is equi-continuous.

Now combining the continuity of # — ¢ (¢, x, ¥) (by Egs. 4.16 and 4.17) and
the equi-continuities of the families Eqs. 4.19 and 4.20, we immediately get the
joint continuity of ¢;.

The joint continuity of g, (¢, x, y) can be proved by induction by using the
estimate Eq. 4.14 of ¢,, and Lemma 2.7. The joint continuity of ¢ (z, x, y) follows
immediately.

By replacing o by 2 and S by f, this step is exactly the same as Step 4 in [6]. [
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Heat Kernels of Non-symmetric Jump Processes 67

4.3 Properties of ¢, (¢, x)
Let
dy(t, x,5) = / p(t —s,x —2)q(s,z,y)dz, x € R, 0<s <t 4.21)
R4
and
t t
y(t, x) == / dy(t,x,5)ds = / /d p(t —s,x —2)q(s,z,y)dzds. (4.22)
0 0 JR
The following result is the counterpart of [6, Lemma 3.5].

Lemma 4.6 Forallx,y € R, x + y, the mapping t — ¢y (t, x) is absolutely continuous
on (0, 00) and

t
py(t,x) =q(t,x,y) +/ /,1 L'ﬁzpz(t —5,)(x —2)q(s,z,y)dzds, t € (0,00).
0 JR
(4.23)
Proof Step 1: Here we prove that forany 7 > 1,¢t € (0, T]and s € (0, 1),

By (1, %, 5) = f By pe(t — . x — 2)q(s. 2, y) dz. 4.24)
R

Let |e| < (t — s)/2. We have that

_ 1
¢yt +e,x,5) ¢y(t,x75)=/d (/ 3 p(t +0e —s,x,z)d@)q(s,z,y)dz.
rd \Jo

&

By using Egs. 1.7, 3.21, 3.16 and 3.20, we have,

18Pt + 02 = 5,5 = )| = | L% pe(t + 65 — 5, )(x = 2)

IA

2
cip(t+0e—s5,x—2) < cop(t —5,x—2).

1
*Vo/d 8p.(t + 0 — s, x — z; w)k(z, w) j (lw]) dw
R

IA

In the last inequality we used that |¢| < (¢ — s)/2 and applied Lemma 2.2(b).
Together with Eq. 4.12 this gives that for any 8, € (0, 8)N(0, §1/2) and t € (0, T']

100 p2(t + 02 =5, 5 =2)q (5, 2. M| = ex(Dplt—s,x=2) (0§, + pf*) (5.2 = ¥)

= g(2).
By Eq. 2.18, we see that fRd g(2) dz < oo. Thus, by the dominated convergence
theorem,
. (F+&,x,8) — t,x,s
tim ¢ ) =t x,5) =/ O pe(t —s,x —2)q(s, 2, y) dz,
e—0 & R4

proving Eq. 4.24.
Step 2: Here we prove that forall x # yandzr € (0,T], T > 1,

(Ix —yI™H

t r 6}
/f |0, ¢y (r, x, $)| dsdr < c(T)t — < +00. (4.25)
0 Jo lx — vl
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By Eq. 4.24 we have
|&%mmw|sﬁwmmv—ax—@umxaw—q@xyna
+m@J;wWA;apAw—xx—wdz=:Q9@Jaw

+0P(rx,s).

For Q(yl)(r, x,s), by Egs. 4.13, 3.20, 3.16 and Lemma 2.6(a) and (c), for B, €
0,61/2)N (0, Bland y € (2 —61)B2/2, B2),

/l/rQi,l)(r,x,s) dsdr
=af [ fIe
R4

{(py+py 52) (s, x—y)+(py+py ﬂz) (s, z—y)}dzdsdr

Bo—y _ _ B> _
< 03/0 /0 (fRd Py T(r—s,x z)dz) (,Oy + o2 ﬂ2> (s,x — y)dsdr
t r ﬂ y
> - - —
+C3/0 /0 /Rd Py r—s,x—2) (,oy +,0y ﬂ2> (s,z—y)dzdsdr

t r
< 04//(r—s)_]df]((r—s)_l)y_ﬁz (p +,0y ﬂz) (s, x —y)dsdr

pZ r—s, x—z)‘ x—zlﬂ2 V/\l)

+C4/ (/Oﬂ2 +p0 + ,0’32 y) (r,x —y)dr
0

-l
ce d(|x |d )// r—s) Lol ((r — 5) 1y B2
lx — ¥l

x (q>—1(s—1)—V n q>—1(s—1)ﬂ2—y) ds dr

) _ -1 t
oy 2= (e'e™H P 1407 7)) ar
[x =yl 0
1) _ -1 t
es PP [ @1 g 1k o e Y ar
lx =yl 0
1) -1
< cst(pciﬂd) < +00.
lx — I

The second to last inequality follows from Lemma 2.3.
For 07, by Egs. 4.3, 4.12 and Lemma 2.3 we have

// Q(z)(r x,s)drds <c7// pﬁz+ﬂo (5, x =N -9~ 0!

x((r—s)~ )ﬂstdr
_ vl t r
<26, 2 =17 (/ (r—s)*1¢*1((r—s)*l)*ﬂ2ds) dr
0 0

Ix — y|4
d(|x — y|!
@D
lx — yl
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Step 3:  We claim that for fixed s > Oand x, y € R4,

lim g, (1, x,5) = 45, x,3) . (4.26)
tls

Assume t < T,T > 1. For any § > 0 we have

‘/Rd p(t —s,x —2)(q(s,2,y) —q(s,x,y)) dz
S/ Pt —s,x —2)|q(s,z, y) —q(s,x, y)| dz
[x—z|<d
+/ p(t —s,x —2)(Iq(s, z, M|+ g (s, x, Y)) dz =: Ji1(8, 1, 5)
[x—z|>8
+208,1,5).
By Eq. 4.13, for any € > O there exists 6 = 6(s, x, y, T) > O such thatif |z — x| <

8, then |g(s, z, ¥) — q(s, x, ¥)| < e. Therefore, by Proposition 3.2 and Lemma
2.6(a),

R ss/

p.(t —s,x —z)dz Ss(t—s)/ p(t—s,2)dz < cie.
R4 R4

For J,(8, ¢, 5), since p;(t—s,x—2) < c2(t—s)p(t—s,x—2) < c2(t—5)p(0, x—2),
by Eq. 4.12 we have

o hH
J(8,1,5) < e3(t — ) —df p(s.z—y)dz
8 Rd

D(|lx — 7!
+o(s,x — y) =) ),
|x—z|>8 lx — z|

where ¢3 = ¢3(T) > 0 is independent of 7. By Eq. 2.17, the term in parenthesis is
finite. Hence, the last line converges to O as ¢ | s. This and Eq. 4.5 prove Eq. 4.26.
Step 4: By Eq. 4.26, we have that

'
¢y(t,x,s)—q(s,x,y)=/ 0ry(r, x,s)dr.

N

Integrating both sides with respect to s from O to ¢, using first Eq. 4.25 and Fubini’s
theorem, and then Eqgs. 4.24 and 3.21, we get

t t pt tpr
qby(t,x)—/ q(s,x,y)ds = // 8r¢y(r,x,s)drds=// 0rpy(r, x,5)ds dr
0 0Js 0J0

t r
:// / L% p.(r—s5. ) (x—2)q(s. 2. y) dz ds dr .
0 JO R4

This proves that t +— ¢,(¢, x) is absolutely continuous and gives its Radon-
Nykodim derivative (4.23). O
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The following result is the counterpart of [6, Lemma 3.6].

Lemma 4.7 Forallt > 0, x # y and ¢ € [0, 1], we have

t
L’ﬁx’gqby(t, x) = [0 /1;1 LY p (t—5,)(x —2)q(s, 2, y) dzds 4.27)

and
t > L% py(t,x —y)andt — ﬁﬁﬂpy(t, x) are continuous on (0, 00) . (4.28)

Furthermore, if B 4+ 681 > 1 and §1 € (2/3, 2) we also have

t
wy(r,x):f /dez(r—s, )x — 2)q(s. 2 y) dz ds. 4.29)
0 JR

Proof Fix x # y and T > 1. In this proof we assume O < ¢t < T and all the constants will
depend on T, but independent of s and ¢.

(a) ByEgs.1.7,1.1,3.16, 4.12 and Lemma 2.6(b), for each s € (0, 1),

/]Rd /Rd 18p,(t =5, x — z; w) |k (x, w)J (w)dwlg (s, z, y)|dz

<c /d p(t —s,x —2)p(s,z— y)dz < oo. (4.30)
R
Thus we can use Fubini’s theorem so that from Eq. 4.21 we have that for s € (0, 1),
LAED (1, -, 5)(x) = /d LY p (1—s,)(x—2)q(s, 2, y)dz, €€[0,1]. (4.31)
R

Let B € (0,81/2) N (0, B] and y € (0, B2). By the definition of ¢, Eq. 4.21, and
Fubini’s theorem, using the notation (3.10) we have for ¢ € (0, 1] and s € (0, 1),

L5561, ) @)

- 1 / (./ Sp. (1 =5, x =23 w)l](S,Z,y)dz)"(x’w)](w)dw‘
2 | Jjwise \Jre "~
= 1 / (/ Sp;(t—s,x—z; w)tc(x,w)](w)dw> q(s,z,y)dz
2 |Jre lw|>¢
1
= E/Rd (/| Op. (1 =8, x = el w>f(w>dw> (5.2, 1) —=q(s. x, )| dz
+1 f </ dplt =5, % =2 w)K(X,w)J(w)dw> dz| lq(s, x, y)I.
2 |Jpd |lw|>e
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By using Eqgs. 1.7, 3.16, 4.2, 4.12 and 4.13 first and then using Lemma 2.6(a)—(b), we
have that for e € (0, 1] and s € (0, 1),

L5561, 5) )|

IA

Br—v 0 B
C2/Rd Py =5, x—2) (py +py_,gz> (s,z—y)dz

+c2 (/R P -, x—z)dz) (p,9+pfz_ﬁz) (s,x =)

et =)~ @7 (@ =)D (Pl 5ox = ) + 0 5.1 = )

IA

62/ 052_V(t—s,x —z)p(y)(s,z—y)dz
Rd
Po—v . i _
+62/ (t—s,x Z)py g, (8,2 —y)dz
a3t =T = )T T (0D + pf2 ) 5.6 = )

et =) 07 (=)D (o5 x = ) 4+ pf 5.6 = )

e (0= 97107 (= 9) 7y 2o (Y

IA

+t =) o7 (@ =Ty TR s THRTY
+t—9)to (=) Y P IsTH T+t —s) o (1 —s)"H
+s o I hH=P 4 S_qu_l(S_l)_y) 00, x —y)

IA

st —s) T (@ —s) Yy PsT o (sTH TV p(0, x — y). (4.32)
In the last inequality above we have used the inequality

—1(S—1)ﬁ2 Sal—ﬁz/fsl¢—1(T—1)—ﬁzs—ﬁ2/81 Sal—ﬂz/alqD—l(T—l)—ﬁle—ﬁz/éls—l.
Using the fact that x # y and Lemma 2.3 we see that the term on the right hand

side of Eq. 4.32 is integrable in s € (0, ). Moreover, by Egs. 1.1, 1.7, 4.12 and
Proposition 3.2,

f / \8¢‘(t x,8; w)|k(x, w)J(w)ds dw
lw|>e

< 2/<11/0C2/ ‘ / /Rip (r—s, x—z)(poz(s z—y)+pﬁ2(s z—y)Ndzj(lw])dsdw
|w|>e a
+K1V0C2/ / / p(t —s, xiw—z)(pZ(s,z—y)
lw|>¢e R4
+p,32(s,z —y)dzj(lw]) ds dw
<

t
cﬁf‘l j(|w|)dw/0 (t—s) ([de(t—s,x—zxpg%s,z—y>+p22<s,z—y))dz) ds

t
+Csj(6)//(l—5)(/ p(t—s,xiw—z)dW)(p (s,2—=)
0 JRA R4

+pp, (5.2 — y)dzds., (4.33)
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which is, by Lemma 2.6(a)—(b), less than or equal to
t t
c7(e) (/ sT' TN T e x—y) ds + / Ad%ﬁ%s, 2=Y) + pg, (s, 2= y)dz ds)
0 0

t t
< cg(e) (/ sTlo s Y Prdsp(t, x — y) +/ s*l@*l(sfl)*ﬂzcls) <oo.  (4.34)
0 0

Thus we can apply Fubini’s theorem to see that, by Eqs. 4.31, 4.27 holds for ¢ €
(0, 1]. Moreover, by Fubini’s theorem and the dominated convergence theorem in the
first equality and the second equality below respectively:

t t
,cﬁxd)y(t,x):% /0 LAY, 8)(x) ds = /0 lgiigﬁﬁ%y(rw,s)(x)ds,

which together with Eq. 4.31 yields Eq. 4.27 for ¢ = 0.
(b) Now we prove Eq. 4.28. Note that, by Lemma 3.1(b), r — 3, (t, x—y; 2) = py(t,x —
y+z2)+pyt,x —y—2) —2py(t,x —y) is continuous. Let ¢ € (0, ¢). By Eq. 3.12,

8, (0.5 = yi 9| < et (@7 TP AT) 1 (ol x =y £ 2) 4 plt, x = )

IA

et (@7 DIP A1) e (e x =y £ D)+ ple v = 1)

By Eq. 1.7 and the proof of Eq. 3.16 we see that the right-hand side multiplied by
k(x,z)J(z) is integrable with respect to dz. This shows that the family {§ py (1, x —
y; )k (x,z)J(z) : t € (e, T)} is dominated by an integrable function. Now by the
dominated convergence theorem we see that 1 — LR py(t, x — y) is continuous on
0, T].

Let 82 € (0,61/2) N (0, Bland y € (0, B2). By Eq. 4.32,

L5y, x,9)] < 65 =97 07 (@ = )7 P o7 T Y p(0,x - ).
(4.35)
Note thatfor0 <t <t+h <T,

LRyt +h,x) — LYy (2, x)

t+h 1
:/ £~‘ix¢y(t+h,x,s)ds+/ (L%0y(t +hox.5) = L%, 1, x.5) ) ds.
t 0

(4.36)
When h < t/2, by Egs. 2.3 and 2.4, we have
t+h
/ t+h—s)"'o Nt +h—s) Yy Ps o (s Vs
t
h
= / rte Y PR+ h - o (e +h— )T TV ar
0
h
< 013/ R S U D R S (R I e N
0
and so by Lemma 2.4 and Eq. 4.35 we get
t+h
lim / LRyt +h, x,5)ds = 0. 4.37)
h—0 J;
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Note that, by Eq. 4.30 we can apply the dominated convergence theorem and use the
continuity of t — LB py(t, x —y) so that for each s € (0, 1),

Jim (L% gy (1 + b x,5) = LYy (1, %, )

= / lim (LR p(t +h —s,)(x —2) — LY p.(t — 5, ) (x — 2))q(s, 2, y) dz
Rd h—0

= 0. (4.38)
By Lemma 2.3, s — (t —s) &7 1((r — ) )Y P25~ 1o~ 1(s71)77 is integrable in

(0, 1), so using Eq. 4.35, we can apply the dominated convergence theorem and use
Eq. 4.38 to get that

t
I}inb/ (L@ (t +h,x,5) — LYy (2, x, 5))ds = 0. (4.39)
—-UJo

Combining Eqgs. 4.37-4.39 we get the desired continuity.

(c) Finally we show Eq. 4.29. Since $ 481 > 1 and é; € (2/3, 2), we can and will choose
p2e (OV(—1381),81/2)N (0, Bland y € (0, B2 A (B2 + 81 — 1) A (81 — 2p2)). For
example, one can take 8y = 8 A (1/3).

For each fixed 0 < s < ¢ and he; = (0,...,h,...,0) € R? with h| <
1/2d~'((t —5)™")), by Egs. 3.11, 3.9, 2.1 and 4.12 we have

1
A |p:(t —s,x —z+he)) — p(t —s,x —2)|g(s, z, y)l

< e (@71 =9 D A1) (= $)(ptt — 5. x — 2+ ey
< ¢y p(t —s,x —z+ he;)

+ot —s,x—2)lq(s, z, y)l
< 22t — )07t — )"t — 5. x — (P + pY) (5.2 — ¥) (4.40)

which is integrable in z € R? by Lemma 2.6(b). Thus we can use the dominated
convergence theorem and Eq. 4.21 to get that for s € (0, 7),

Ay, -, 9)(x) = fRd 9 pz(t — s, )(x —2)q(s,z, y)dz. (4.41)
Let
0y (t, - s)(w) = /Rd dipz(t — s, ) (w —2)q(s, z, y)dz
= 12,0 (s) fRd 0ipe(t — s, )(w —2)(q(s,2,¥) — q(s, w, ¥))dz
+ 1 2.0(8) /Rd 0ip(t — s, )(w—2)q(s, w, y)dz

+ 1(0,¢/2)(5) /Rd 0ip(t —s,)(w—2)q(s,z,y)dz

= 1ppn@R1E, s, w,y) + 10 Ra(t, s, w, y)
+ 1((),t/2)(s)R3(t, S, w,y). (4.42)
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Let x’ € B(x, |x — y|/4). Then it follows from Proposition 3.2 and Eq. 4.13 that
fors € [t/2,1),

|Ri(t, s, X', )]

= /Rd 10; p.(t — s, )(x" = 2D|lg(s, 2, y) — q(s, x', y)|dz
5/(, <(f —S)Q_l((f—S)_l)p(t—s,X’—z)(IX’—zl’gz‘VAl)(p +pl ﬂz)(s X' —y)
Fa=) @ (=) D p(t—s. 5 =015 =2 A1) (0} + plfy, N5 9)) d
ﬂ B ’
(t—s) <A 2 J/(l‘—s X —Z)dZ) (p3+pyiﬁz> (s, x" —y).

+(t—S)/ o Y(t—s.x" = 2)p) (s, 2 — y)dz

+(t—S)/ PP =5 % —z)py (8,2 — y)dz

= oo (@7 =™ (0D 4 pf2 ) 54 = )
+(q>—1((t_s)—l)l—2ﬁ2+yq>— (s~ B Lo (1—s) "I TP ol (571 Y
+(t =557 o7 THE@ T )T + 07 6 TH ) ) plex — )

= e (7@ =) T )T

+q>—l((t _ s)—1)1—2ﬁ2+)/q)—1(S—l)—}/-‘rﬂz + QD_I((I _ S)—l)l—ffz-i-)/q)—l(s—l)—)/
+(t = )5 o7 (@ =9 ™HOT 6T ) ot (= 1)/, (4.43)

Here the third inequality follows from Lemma 2.6(a)—(b). Since §; > 2/3 > 1/2
and y < 81 + B2 — 1, using Lemma 2.3 (so that [/, ®~'((r — s)71)!7P2*7ds and
ftt/z (t — )DLt —s)"Dds are finite) it is straightforward to see that the function on
the right-hand side above is integrable in s over [t/2, t).

Next, for s € [t/2,1), using Eq. 4.12 in the second and Eq. 4.4 in the third line
below,

q(s,x’,y)

|Ra(t, 5, %", y)| = ’/Rd dip(t —s, ) —2)dz

<

(po + p,gQ) (s, X", y)

/ 0 p(t —s,)(x —2)dz
R4

<cd Nt =) ) Ppt,x' —y)
<cd N1t =) O Pp@, (x — y)/2). (4.44)

Since ftl/z &1t —5)"H1=P2 ds < oo because B2+81 > 1, the right-hand side above
is integrable in s over [7/2, t).
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Finally for s € (0, t/2], since 2 < 81/2,

|R3(r,5,x", y)| < fRd |9; p2(t — 5, ) (x" = Dq (s, z, y)ldz
e [ =907 =500 =58 =) (0§, + of?) 0.2 = v
=c(t—ys) /Rd p—1(t —s,x" —2) (pgz + pgz) (s,2—y)dz
=ct—9) (t=9"o =) +a—9T o (-9
+(t—s)—‘q>—1(<t—s)—‘)dr‘(s—‘)—ﬂz+<I>—](<z—s>—1)s—ldr‘(s—‘)‘ﬂZ)p(t,x’—y)
sc(e -9+ (-9 e sH

+@ — )0 ¢ - s)*l)s*1q>*1(s*‘)*ﬂ2> p(t, x' —y), (4.45)

which is integrable using Lemma 2.3.
Hence we can use the dominated convergence theorem and Eq. 4.41 to conclude
that

1 t 1
lim — (¢y(t, x + w) — ¢y (7, x)) = lim / / dipy(t, -, $)(x + Ow) dOdsds
h—0h '~ h—0Jo Jo ’

t t
=/ 3i¢y(t,-,S)(x)ds:f / 0ip:(t — s, )(x — 2)q(s, z, y) dzds,
0 0 JRd

which gives Eq. 4.29.

O
4.4 Estimates and Smoothness of p“ (¢, x, y)
Now we define and study the function
Pt x,y) = py(t,x —y) +¢y(t,x) = py(t,x —y)
—|—/(;t /l.&d p:(t —s,x —2)q(s,z,y)dzds . (4.46)

Lemma 4.8 (1) For every T > 1 and B> € (0,8] N (0,81/2), there is a constant
c1 = c1(T,d,é1, B2, v, k0,k1,k2) > 0 so that for all t € (0,T] and x,y € R,
pt,x,y) < citp(t,x — y). (2) Forany y € (0,81) N (0,1] and T > 1 there exists
¢ =c(T,d, 81, B2, v, ko, k1, k2) > O such that forall x, x', y € R andt € 0, T1,

P2 3) = P X )| < ol = X1 1 (02, 0k = )+ 02, X = ).

Proof Throughout this proof we assume that x, x’, y € R and 7 € (0, T].
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(1) By the estimate of p, (Proposition 3.2), Eq. 4.12, Lemma 2.6(c), Egs. 2.14 and 2.15,
we have

t
// p(t —s5,x —2)Iq(s,z, y)|dzds
0 JRY

IA

t
— — — 0 B2 _
61/0 /l‘{d(t $)p(t —s,x —2) (;%2 + 0 ) (s.z— y)dzds

IA

eat (pf, + 00 ) (o x =)
20T Y Pecrtp(r, x —y), forallr € (0, 7). (4.47)

IA

Therefore, p“(t, x, y) < py(t,x —y) + |¢, (1, X)| < catp(t,x —y).
(2) We have by Eq. 3.11 and the fact that y <1,

po(t,x —2) — po(t,x' = 2)] < crlx —=x/1"1@7 ™ (p(t, x —2) + p(1, X = 2))

crle =37t (2, x =2+ 9%, 5 =) .

Thus, by Eq. 4.12 and a change of the variables, we further have

t
|¢y(t»X)—¢y(t,x/)|§/0 /Rd |p(t—s,x=2)—pe(t—s5,x'=2)| Iq (s, z, )| dz ds

< cz|x—x’|V/0t fRd(r—s) (00, =s.x=2)+ 9% =5, x'=2)) (ol +0}, )
x(s,z—y)dzds
< esle—x171 (0, 1, (05 =2) + 02 (0 x=y) + 02, (4 =)
+ ,szy(t,x’—y)>
<2630~ 1 (T~ )P lx—x'|"1 (pSV(t,x—y)+p9y(z,x’—y)) . forall € (0,T].
Since y € (0, §1), the penultimate inequality follows from Eq. 2.19 (with 6 = 0),

and the last inequality by Eqs. 2.14 and 2.15. The claim of the lemma follows by
combining the two estimates. 0

The following result is the counterpart of [6, Lemma 3.7].

Lemma 4.9 The function p*(t, x, y) defined in Eq. 4.46 is jointly continuous on (0, 00) X
R? x R4

Proof The joint continuity of py (¢, x — y) was shown in Lemma 4.2. For ¢, (¢, x) we use
Eq. 4.22 and the joint continuity of ¢(s, z, y) on (0,00) x R? x R? together with the
dominated convergence theorem. This is justified by the estimates p,(t —s, x —z) < ¢ (t —
s)p(t —s, x —z) and Eq. 4.12 which yield that |p,(t —s, x —2)q (s, z, y)| < c2(t —s)p(t —
s) (pgz + p22> (s,z —y) for B> € (0, B1 N (0, 81/2). The latter function is integrable over

(0, ] x R? with respect to ds dz by Lemma 2.6. O
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Now we define the operator £* as in Eq. 1.8 which can be rewritten as

LE f(x) =£"’0f(x)=lii1(}£"’£f(x), where £° f(x)= 1 / 8r(x; DK (x, 2)J (2) dz.
& |z]>¢

2
(4.48)
Note that for a fixed x € R, it holds that £¥ £ (x) = £% f(x). This will be used later on.
The following result is the counterpart of [6, Lemma 4.2].

Lemma 4.10 For every T > 1, there is a constant ¢y = c¢1(T,d, é1, a1, B, Cx, Y0, ko,
K1, k2) > 0 such that for all € € [0, 1],

L€ pX(t, -, y)(X)| < cipt,x —y), forallt € (0, Tlandx,y e R, x £y (4.49)
and if B+ 81 > 1 and §1 € (2/3, 2) we also have
’pr'((t, X, y)! < Cltd>_l(t_l),0(t, x—y) forallt e (0,T]andx,y € RY, x “y.
(4.50)
Proof By Eq. 3.16 and the fact that for fixed x, £¢ f (x) = L£L%¢ f(x) for & € [0, 1], we
see that
|£pr(t, Jx =) <ciplt,x —y), forallz € (0, T]and ¢ € [0, 1].

Let ¢ € [0, 1]. By recalling the definition (4.22) of ¢, and using Eq. 4.27, we have

t

Ek’s(ﬁy(t’)(:) = / Eﬁbspz(t -, )(X - Z) (q(s7 Z, y) - q(sax! )’)) dZdS
12 Jrd

t
+/ (/ Eﬁx’spz(t—s, -)(x—z)dz)q(s,x,y)ds
/2 \JRd

12
+/ lﬁﬁx’spz(t —5,)(x —2)q(s,z,y)dzds
0 R
=: Q1(t,x,y) + Qat, x, y) + Q3(, x, ).

Let B € (0,81/2) N (0, B]. For Q1(¢, x, y) we use Eq. 3.16, Lemmas 2.2(b), 2.3 and 2.6(a)
and (c) to get that for any y € ((2 — 81)82/2, B2),

t
m/ (/ ol y(t—s,x—z)dz>(py+p52ﬁ2)(s,x—y)ds
+61// 2y(t—s,x—z)(p‘“moﬁ2 )(s,z—y)dzds
12 JRa 14 y=F2
cz(py+py “p, ) (@, x—y)// PVt — s, x —2)dzds

vor [ [ a0 (ool ) e yaas
0o JR

e3p)_p .3 = @ NI s (o, + o 4 ) (6,3 = )
cap(t,x —y), forallte (0,T],

1Q1(t, x, )|

IA

IA

IA

IA

where the last two lines follow from Eqs. 2.14 and 2.15.
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For O, (¢, x, y), by Egs. 4.2, 4.12, Lemmas 2.2(b), 2.3, Egs. 2.14 and 2.15,
! B
102t x. )| < 5 //2@ =)0 =97 (o, +00?) (5.3 = y)ds
t

t
< ¢ (of, +A07) (1.2~ y)/0 (=9 o -9 P as
<cpt,x =N ' eTH P <o () Pp(r,x —y),  forallt € (0, T].

For Q3(¢, x, y), by Egs. 3.16, 4.12, Lemma 2.6(c), Eqs. 2.14 and 2.15,

1)2
0txnl = er [ [ p—sx=2) (o, +ol?) 2 - ) dzds
0 R4
c t
< 2l/ / (t—$5)p(t —s,x —2) (pg2 +p5‘2) (s,z— y)dzds
1 0 ]Ra’
< cs (0B, + A7) (1 = ) = 20507 T Pt x - ).

Combining the above calculations and Eq. 4.46 we obtain Eq. 4.49.
(ii) Since 8461 > 1 and §; € (2/3, 2), we can and will choose 8 € (0v(1—61), 81/2)N
(0,Bland y € (0, B2 A (B2 + 61 — 1) A (81 —2B2)). By Egs. 4.29 and 4.42-4.45 we have

)2
IVigy(t, X)| < c1p(t, x — y) (/ >Nt —-s) H+o (-5 He lsH P
0

+(t =)D ((t =) s e (s Pads
t
L R e e R R SO RAT
t/2
+O7H (1 —5)TH! TP T T

+(—s)s to N ((r — s)_l)CD_l(s_l)_yds) . 4.51)

Since B+ 681 > 1,8; > 2/3 > 1/2 and y < 8§ + B2 — 1, using Lemma 2.3 we see
that [}, @71t — )" Prds < cprd DI, [T @7 — 5)THITPYds <
e3t® 1 (HI =P+ and [t —5)@ 1 ((t—s5)"Nds < car?®7 (¢ "). Thus, by Lemma 2.3,
Eq. 4.51 is bounded above by cstd ' Hp(t, x — y). Now, Eq. 4.50 follows immediately
from this, Egs. 4.46, 4.29 and Proposition 3.2. O

We will also need the following corollary, which follows from Eq. 4.28.

Corollary 4.11 For x # y, the function t — L* p*(t, x, y) is continuous on (0, 00).

5 Proofs of Main Results
5.1 A Nonlocal Maximum Principle

We first establish a somewhat different version of [6, Theorem 4.1].
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Theorem 5.1 Suppose there exists a function g : R — (0, 00) such that Eq. 1.9 holds. Let
T > 0andu € Cp([0, T] x R?) be such that

lim sup |u(t,x) —u(0,x)| =0, 5.1
xeRd
and for each x € R4,
t = L%, x) is continuous on (0, T]. 5.2)

Suppose that u(t, x) satisfies the following inequality: for all (t, x) € (0, T] x RY,

Oru(t,x) < L(t, x) . (5.3)
Then forallt € (0, T),
sup u(t, x) < sup u(0, x). 5.4
xeRd xeRd
Proof Choose a > 0 such that
Lfg(x) < ag(x), forallx € R?. (5.5)

Letd, e > 0and u‘g(t, x):=u(t,x) —8(t — &+ e g(x)). Then by Egs. 5.3 and 5.5, for all
(t,x) e (0, T] x RY, we have

B,ug(t, x) = du(t,x) —8(1 +ae” g(x)) < L¥u(t,x) — 8 — dae” g(x)

= L1, x) — 8 + 8¢ (L¥g(x) — ag(x)) < LUl (t, x) — 8. (5.6)
Since u € Cp([0, T] x RY), by letting 6§ — 0 and ¢ — 0, it suffices to show that
sup ug(t,x) < sup ug(s,x), te(T]. 5.7)
xeRd xeRd

Fix §, ¢ > 0 and suppose that Eq. 5.7 does not hold. Then, by the continuity of u and the
fact that lim,_, ug (t, x) = —oo (which is a consequence of Eq. 1.9), there existty € (¢, T']
and xo € R? such that

sup  ud(r,x) = ul(to, xo). (5.8)
te(e, T, xeRd

Thus by Eq. 5.6, for & € (0, tp — ¢€),

1 1 [P 1 [
0 < —(ud(to, x0) — ul(to — h,xo))Z*/‘ dul (s, xo)ds < ff LXul(s, xo)ds — 8.
h h Jig—n h Jig—n

0]

Letting # — 0 and using Egs. 5.2 and 5.8 we get

0 < L (19, x0) — 8
= pv. / (u (G, x0 + 2) = ul(to, x0)) ke (x0, 2)J (2) dz — 8 < =3,
R(
which gives a contradiction. Therefore Eq. 5.7 holds. O

Remark 5.2 Supposethatf‘Z|>1 1z|°j(Iz])dz < oo forsome e > 0. Let g(x) = (1+]x|»)e/2.
Note that

0,780 < cr(l+xD*2, i j=1,....d. (5.9)
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By Egs. 5.9 and 3.7, we have that for |x| < 1,

|IL%g(x)| < Vo/ 184 (xs 2)1j (IzDdz + yog (x) J(IzDdz

lzI=1 |z]>1

+7/o/‘| lz,’(xﬂ:z)j(lzl)dz
zl>

c ([ 1|Z|2j(|Z|)dZ+[| lj(|Z|)dz+/|| 1|Z|8j(|z|)dz>

c3 < c3g(x). (5.10)

IA

IA

If |x| > 1, then by Egs. 5.9 and 3.7,

L g(x)| < VO/ 18 (x5 217 (Iz)dz + yog (x) J(zhdz

lz]<lx| [z[>]x]

+V0/|| 8D (ehd:

< (/ 2127 (zhdz + g | j(zhdz + / |z|€j(|z|)dz)
lzl=<|x]| lz|>1 [z]>1x]|

< c4 (leg A;{d((lzl/lxl)z ADj(zdz + gx) + 1) < es5g(x). (5.11)
Therefore g satisfies Eq. 1.9.
5.2 Properties of the Semigroup (P/);>0
Define

PEFw = [t sy,
Lemma 5.3 For any bounded function f, we have
LR = [ L 0 F )y (5.12)

Proof By the same computation as in the proof of Eq. 3.16 we have that for all r < T,
T>1,ande > O,

tf pt.x £ 2)j(z]) dz
|z|>¢&

IA

/ tp(t,x:l:z)j(lzl)dz+/ tp(t, x £ 2)j(1z]) dz
Ot~ D|z|<1,|z|>¢ Ot~ D|z|>1

4™ ip(t, x) jlz)dz +c1p(t, x),

|z|>¢

IA
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thus by Lemma 4.8(1),

fd (/ |p"(t,x +w,y) —2p“(t, x, y)}/((x, w)J (w) dw) dy
R |lw|>¢

IA

ZVOKI// |p”<r,x,y>|j<|w|>dwdy+yox1f/ 1P (0o x £ w, Y (w]) dwdy
Rd J|w|>e Rd J|w|>e

Czt(/ j(|w|)dw)/ p(z,x—y>dy+c2t/ (f p(t,xiw—y)j(lwl)dw>dy
|w|>e R4 Rd |lw|>e

< Q.

IA

Thus by Fubini’s theorem, for all for bounded function f and ¢ € (0, 1],

e Fw = [ 0 )i
Now, Eq. 5.12 follows from this, Eq. 4.49 and the dominated convergence theorem. O
The following result is the counterpart of [6, Lemma 4.4].
Lemma 5.4 (a) For any p € [1, 00], there exists a constant ¢ = c(p,d, 51, B, ko, k1,
k2) > 0 such that for all f € LP(RY) andt > 0,
ILPEfllp < et I f - (5.13)

) Iffe L®RY), t > L¥ P f is a continuous function on (0, 00).
(c) Forany p € [1,00) and f € LP(RY), t — L¥ P f is continuous from (0, 00) into
LP(RY).

Proof (a) Let p € [1,0c0]. By Eq. 5.12, Lemma 4.10, Young’s inequality and Lemma
2.6(a), we have that for all f € L?(R?) N L>®(RY),
p 1/p
dx)

c1 </ f p(t.x — NI dy
R4 R4

cillo I fllp < et MIfll,

Inequality Eq. 5.13 for f € L?(R?) now follows by a standard density argument.
(b) Forany ¢ € (0, 1), by Lemma 4.10 we have for x # y,

IA

IL“Pf fllp

IA

sup |L¥pK(t,x,y)| <c sup p(t,x —y) <cple,x —y).
1e(e,T) 1€(e,T)

Assume that f is bounded and measurable. By Corollary 4.11, r +— Lp“(¢, x, y)
f () is continuous for x # y. By the above display, the family {L* p* (¢, x, y) f(y) :
t € (g, 1)} is bounded by the integrable function p(e, x — y)|f(y)|. Now it fol-
lows from the dominated convergence theorem and Eq. 5.12 that t +— LXPf f(x) is
continuous.

(c) Letp e[l,00). When [ € LP(R?) N L (R?), the claim follows similarly as (b) by
using Eq. 5.12 and the domination by the L?-function f]Rd p(e,x —y)f(y)dy. The
claim for f € L?(R?) now follows by standard density argument and Eq. 5.13. O

Remark 5.5 Note that Lemma 5.4 uses only the following properties of p“(z, x, y):

Eq. 5.12, | L p“(t, -, y)(x)| < c1(T)p(t,x —y) fort € (0, T] and t — L*p“(¢, -, y)(x)
is continuous on (0, T]. Moreover, Lemma 5.3 uses only the following properties of
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pet, x, y): pt, -, »)(x) < co(Mtp(t, x — y) and [L° p*(t, -, y)(x)| < c3(T)p(t, x —y)
fore € [0,1]and r € (0, T].

The following result is the counterpart of [6, Lemma 4.3].

Lemma 5.6 For any bounded Holder continuous function f € C Z (RY), we have

t t
U([ffﬂﬂﬁ)@):/[?ﬁf@ﬂa xeR?. (5.14)
0 0

Proof Define

nfw = [ px =0y s = [ atx o
and .
Rif(x) = / Ti—sSs f (x)ds.
Then, by Fubini’s theorem and Eq. 4.12, fo(r) all for bounded function f,

Pl f(x) =Tif(x) + R f(x). (5.15)

We now assume € € (0,1]and 0 < s <t < T, T > 1. Suppose that | f(x) — f(y)| <
c1(Jx —y|T A 1). Without loss of generality we may and will assume that < 8. By Fubini’s
theorem, Eqs. 1.7, 1.1 and 3.16,

LT, £ (x) = fR L6~ D Q)

Thus,

L5 T, f ()] < /

R4

/ (/ 8p. (s, x — z; wik(x, w)J(w)dw) dz
R4 |lw|>e

By using Egs. 1.7, 3.16,4.2 and 2.17, for any 8; € (0, §1) N (0, B, |L¢ Ty f (x)| is bounded
by

</| 18p. (s, x — 2z w)IK(X»W)J(W)dw> If (@) = f(0)ldz

+ FACIIR

01/ p(s.x —2) (x —z" A1) dz+cp s o7 (5™ A
Rd

<cos o s ) T4 sl sH A

and the right hand side is integrable by Lemma 2.3. Thus by the dominated convergence
theorem and Fubini’s theorem,

! ' t t
EK/ T, f(x)ds = lim ZK’S/ T, f(x)ds = / lim L° Ty f (x)ds = / LT f(x)ds .
o £10 0 0 &0 0

(5.16)
It follows from Egs. 4.13, 2.17 and the boundedness of f that for any g, € (0, ] N
(0,61/2) and y € (0, B2), we have

1S f(x) = S D] < essT' o7 ™) T (Ix = X177 A ). (5.17)
It follows from Eqgs. 4.12, 2.17 and the boundedness of f that
1S f ()] < eas™r (s H P2, (5.18)
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We use Lemma 4.8(1) and Fubini’s theorem in the first line below, which can be justified
by an argument similar to Eqs. 4.33 and 4.34:

|LF Ry f ()]

- /S /d (/ 8p, (s —r,x — z; wk (x, w)J(w)dw> Srf@)dz
R lw|>e

—Jo
< / fd (/ 18p, (s — r,x — z; w)k (x, w)J(w)dw) IS, £(2) — S, £ (x)| dzdr
0 JR w|>e

|
N
+/
0

/ (/ 8p, (s =1, x — z; w);c(x,w)](w)dw) dz
Rd IE
By using Egs. 1.7, 3.16,4.2,2.17,5.17, 5.18 and Lemma 2.3, we further have that

dr

IS f()ldr .

]
LR, f ()] < Cs/(; fde(s Crx = e Y (lx— 2B A ) dzdr

N
+c5/ rte )Py
0

IA

N s

c6/ (s—r) o N ((s—r)"H~ Bl ")V gy +C‘5/ rle =Y Py
0 0

<cps ol P f sl sTH P2 = 205 e (sTH TP

and the right hand side is integrable by Lemma 2.3. This justifies the use of the dominated
convergence theorem in the second line of the following calculation:

t t ‘ t
C"/ Ry f(x)ds = lim ﬁ'“/ Ry f(x)ds = / lim L° R f (x)ds = / LER f(x)ds .
o £l0 0 0 &40 0

(5.19)
Combining Eq. 5.19 with 5.16 and 5.15, we arrive at the conclusion of this lemma. [

5.3 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1. By using Lemma 4.6 in the second equality, Eq. 4.6 in the third,
Eq. 4.11 in the fourth, Eq. 4.6 in the fifth, and Lemma 4.7 in the sixth equality, we have

P (t,x,y) =0 py(t,x —y) + 3y (t, x)
t
= ﬁﬁ»'py(t,x—y)Jr(q(z,x, y)-i—/ fd L% p (t—s,)(x—2)q(s, 2, y) dzdS>
0 JR
= (Lﬁ‘ py(t, x —y) —qo(t, x, y))
t
+ (q(t,x, y) +/ fd L% p(t —5,)(x —2)q(s,2, ) dzdS>
0 JR
t
=L%py(t.x—y) +/ /d qo(t —s,x —2)q(s, z, y)dzds
0 JR
t
+/ / L% p(t — s, )(x — 2)q(s, 2, y) dzds
0 JRd

'
= ['ﬁxpy(l,x -y +/0 /]Rd Eﬁ‘pz(t —5,)(x —2)q(s,z,y)dzds

=Lp(tx,y).
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Thus Eq. 1.10 holds. The joint continuity of p*(z, x, y) is proved in Lemma 4.9. Fur-
ther, if we apply the maximum principle, Theorem 5.1, to u (¢, x) = P/ f(x) with
feCPRY and f <0, wegetus(t,x) < 0foralt e (0,7]andall x € R This
implies that p“ (¢, x, y) > 0.

(i) Equation 1.11 is proved in Lemma 4.8(1).
(ii) The estimate Eq. 1.12 is given in Eq. 4.49, while continuity of z > L* p* (¢, -, y)(x)
is proven in Corollary 4.11.
(iii) Let f be a bounded and uniformly continuous function. For any ¢ > 0, there exists
8 > Osuchthat | f(x) — f(y)| < e forall |x — y| < 4. By Egs. 4.5, 1.5, 2.17 and the
estimate for py (¢, x — y) in Proposition 3.2 we have

lim sup / pyt,x = y)f(y»)dy — f(x)
10 yepra [JRA
= lim sup / Py, x —y)f(y)dy —/ py(t, x — y)f(x)dy’
t}0 xeRd R4 R4
< c1lim sup / tp(t,x = y) 1 f(y) — f(x)ldy
10y crd JRA

< &cy lim sup / tp(t,x — y)dy + 2c1]|| floo lim sup / to(t, x—y)dy
10 yeRrd Jx—y|<s 1O yerd JIx—y|>8

. . ®(x —yI™h
< cp¢elim sup tp(t,x—y)dy + 2c1|| flloo lim? sup 7ddy
HO yepe JRY 10 erd Jjx—yizs X =l

. ®(jz7hH
< e+ 2c1||f||oohﬁ)1t ————dz =c¢.
t

|z|=8 |Z|d

This implies that

lim sup =0. (5.20)

10 xeRd
Further, by Egs. 4.47 and 2.17, for any S € (0, 81N (0, 81), we have

t
/// pz(t—s,x—z)q(s,z,y)dzde(y)dy‘
R4 Jo JRY

< alflor [ (o +03) tx=ndy < o™l — 0, 0.

/Rd pyt,x =y)f(»dy — f(x)

The claim now follows from this, Egs. 4.46 and 5.20.

Uniqueness of the kernel satisfying Eqs. 1.10-1.13 Let p¥ (¢, x, y) be another non-
negative jointly continuous kernel satisfying Eqgs. 1.10-1.13. For any function f €
CX(RY), define Uyp(t,x) = [ga P(t,x,y) f(y)dy. By the joint continuity of p* (¢, x, y),
(i) and (iii) we have that

ii; € Cy([0, T] x RY), 1%1 sup [i 7 (t,x) — f(x)] = 0.
: t

xeRd
By Lemma 5.3 and Remark 5.5,
L%(r,x):/ L5 ) f(»)dy and ﬁ“uf(t,m:/ L5 p (. x. 1) f () dy.
R4 R4
(5.21)
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Moreover, by Lemma 5.4 and Remark 5.5, t — Lfu(r,x) and t — LXU(t,x) are
continuous on (0, 7']. Here and in Eq. 5.21 we use that p* satisfies (i)—(ii).

Let w(t,x) = us(t,x) — ﬁf(t,x). Then w(0,x) = 0, lim; o sup,cre |w(t, x) —
w(0,x)| =0, and t — LXw(¢, x) is continuous on (0, T']. Note that by Egs. 1.12 and 1.10,

|aIpK(tv-xv )’)| + |3tﬁk(t7x’Y)| E CSP(LX _)’)7 re (Os T]

Thus, by the dominated convergence theorem,
0yt = [ 5@ x 0Oy and duge0 = [ 05 G o) dy,

By this, Egs. 1.10 and 5.21, we have 9, w(¢, x) = Lw(z, x). Hence, all the assumptions of
Theorem 5.1 are satisfied and we can conclude that for every ¢ € (0, T'], sup, cge w(z, x) <
sup,cre w(0,x) = 0. By applying the theorem to —w we get that w(t, x) = 0 for all
t € (0, T] and every x € R?. Hence, uy =1uy forevery f € C° (RY), which implies that
Pt x,y) = p it x,y).

The last statement of the theorem about the dependence of constants ¢; and ¢, has been
already proved in the results above.

Proof of Theorem 1.2 (1) The constant function u(t,x) = 1 solves du(t,x) =
L¥u(t, x), hence applying Theorem 5.1 to (P 1(x) — 1) we get that P/ 1(x) = 1
proving Eq. 1.14.

(2) Same as the proof of [6, Theorem 1.1(3)].

(3) By Egs. 1.10 and 1.12 we see that |9, p* (¢, x, y)| < cap(t,x — y) fort € (0, T] and
x # y. Hence by the mean value theorem, for0 < s <t < T and x # y,

|p¥ (s, x,9) — P, x, y)| < calt —slp(s, x — y). (5.22)

Lety € (0,81) N (0, 1]. By Lemma 4.8 and by the definition of pgl, we have that for
everyt € (0, 7],

1p(t, x, ) — p“(t, X', Y| < erlx =X 1Y@ Dt (p(t, x — y) + p(t, X' — y)
< 2cilx = X177 e He (ot x — y) v p(t, X = y)) .
(5.23)

By use of the triangle inequality, this together with Eq. 5.22 implies the first claim.
ByEq. L.11,if @1~ H|x —x'| > 1,

A

1P, x, y) = pt. X' ) < p@,x, y) + p, X y)

< ct(pt,.x —y)+p@t.x" —y))

2eilx =2 [@7 D (ot x =)V p(, X = y)) (5.24)
Suppose ®~ 1t~ |x —x'| = 1,8+ 8; > 1 and 8; € (2/3, 2). Then by Eq. 4.50

IA

1
It x, y) = p“(t,x", )| < |x —X’I~/ IVp@t,x +0(" —x), y)|do
0

1
< cad ¢ Hx - x/l/ p(t, (x —y) +0(x" — x))do. (5.25)
0

Since 0|x’ — x| < 1/®~1(t~"), from Eq. 5.25 we have

1Pt x,y) = pX@t x' p) < ctdT ¢ Hx — X |pt, x — y)
< ad '@ Dlx = x| (oGt x = y) Vv o, X" = ). (5.26)
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Equations 5.22, 5.24 and 5.26 imply the second claim.
(4) This follows immediately from the second part of Lemma 4.10. (]

Proof of Theorem 1.3 (1) We first claim that for f € CZ’S(]Rd ), L f is bounded Holder
continuous. We will use results from [1]. For f € C,%’S(Rd) and x,z € RY, let

Ef(x)=fx+2) = fx) and F f(x)=f(x+2)—fx)=Vfx)- z

Using the assumption that « (y, z) = k(y, —z), we have

L% f(x) = f

lz]<1

sz(X)K(y,z)J(z)der/ E; f(x)k(y,2)J (2)dz.

lz|=1

Thus, £¥ f is bounded by Egs. 1.7 and 1.1. Moreover, using Egs. 1.2, 1.7 and [1,
Theorem 5.1 (b) and (e)] withy =2 + ¢,

IL¥ f(x) — L f ()
<| /R 87 (x; D)k (x, 2) — k(y, 2 (2)dz] + [L% f(x) — LY £ ()]

501(|x—y|ﬁA1)/Rd(IZIZ/\l)j(IZI)d2+61 /\l 1Isz(x)—sz(y)IK(y,z)j(lzl)dz

el /H EF@) = Ef ) le(y. 9 D)z

scz|x—y|ﬁ+c2(/ |z|2j<|z|>dz)|x—y|g+c2(/ j(|z|)dz)|x—y|.
lz]<1 |z|>1

Thus we have proved the claim.
For f € Cg’a(]Rd), we define u(t, x) := f(x) + f(; P¥L¥ f(x)ds . Note that

t
lu(z, x) —u(0,x)| < /0 |PSLf)lds < L5 f oo

Thus Eq. 5.1 holds. Since £ f is bounded Holder continuous, we can use Eq. 5.14
(together with Eqs. 1.12, 1.10 and 5.21) to get £ PXL¥ f (x) = 05 (PFL* f) (x)) and
obtain

t
Lfu(t,x) = ﬁ'(f(x)—l-/ LEPELE f(x)ds
0

t
= L f(x) +/ s (PELEf) (x)ds = PLLS f(x) = du(t, x) .
0
Therefore u(t, x) satisfies the assumptions of Theorem 5.1. Since u(0, x) = f(x), it
follows from the maximum principle that

t
Pff(x) =u(t,x) = f(x) —|—/0 PSLE f(x)ds. (5.27)
Since £* f is bounded and uniformly continuous, we can use Eq. 1.13 to get
L1 1t
ltlﬁ)l " (P,"f(x) — f(x)) = ltlj{)l ;/0 PELE f(x)ds = LK f(x)
and the convergence is uniform.

(2) Using our Theorem 1.1(iii), Theorem 1.2(1) and Lemma 5.4, the proof of this part is
the same as in [6]. O
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5.4 Lower Bound Estimate of p“ (¢, x, y)

By Theorem 1.3, we have that (P/);>0 is a Feller semigroup and there exists a Feller process
X = (X;, Py) corresponding to (P/);>o. Moreover, by Eq. 5.27 for f € Ci’g (RY),

t
f(X,)—f(x)—/OE’(f(XS)ds (5.28)

is a martingale with respect to the filtration o (X, s < t). Therefore by the same argument
as that in [6, Section 4.4], we have the following Lévy system formula: for every function
f :R? x RY — [0, 00) vanishing on the diagonal and every stopping time S,

N
Be 30 FOm X0 =B [ G dyds, (5.29)
O0<s<S§

where Jx (x,y) ;= k(x,y —x)J(x — y).
For A € B(R?) we define t4 := inf{r > 0: X, ¢ A}.
The following result is the counterpart of [6, Lemma 4.6].

Lemma 5.7 For eachy € (0, 1) there exists A = A(y) > 0 such that for every r > 0,
sup Pr (Taer) = (AG/G) ™) < 7. (5.30)

xeRd

Proof Without loss of generality, we take x = 0. The constant A will be chosen later. Let
f e Cgo(Rd) with f(0) =0and f(y) = 1for|y| > 1. Forany r > O set f,(y) = f(y/r).
By the definition of f, and the martingale property in Eq. 5.28 we have

Py (TB(O,r) < (ACI>(1/(47’)))_1> < Eg [fr (XTB(O,)A(A@U/(M)))*I)]

80, A(AD(1/(4r))) ™!
= Eo / LK fr(Xg)ds | .
0

(5.31)
By the definition of £¥, Egs. 1.1 and 1.7 we have

1
1L fr (0] = 3 ’/Rd (fr++ (-2 =2/, 2/ (2)dz

2
- kiyollV fr”oo/
2 lzl<r

V2 flloo
< (”rf”rzmr) " ||f||oo7>(r>> < o0,

|22 (2] dz + 2K1V0||fr||oo/ J(zDdz

|z]>r

where ¢; = ca(k1, Y0, f). Here the last inequality is a consequence of Eq. 3.7. Substituting
in Eq. 5.31 we get that

Po (80, = (A®(1/@) ™) = 2®G™HAGA /(@)™ < dea™"
With A = 4c¢;/y the lemma is proved. O

Proof of Theorem 1.4 Throughout the proof, we fix T,M > 1 and, without loss of
generality, we assume that ®~1(T~1)~! = M.
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By [4, Theorem 2.4] and the same argument as the one in [5, Proposition 2.2] (see also
[7, Proposition 6.4(1)] or [3, Proposition 6.2]), Eqs. 1.4, 1.20, 1.1 and 1.7 imply that there
exists a constant ¢y > 0 such that

py(t.%) = co (<I>_1(t_l)d A tj(|x|)> (,x,y) € (0,T] x BO,4M) x RY.  (5.32)
Since by [11, Lemma 3.2(a)],
J(xh = ellxl™o(x|™h, x| <4M (5.33)
for some ¢; € (0, 1), by Proposition 2.1 we have
py(t,x) > cocrtp(t,x)  (t,x,y) € (0, T1 x B(0,4M) x R . (5.34)

(1) Let A = 1/A where A is the constant from Lemma 5.7 for y = 1/2. Then for every
t >0,

sup ]P)Z(IB(Z,272<I>71(171)71) < )Lt) < . (535)

zeRd

Lets € (0, T]and |x — y| < 3®~1(¢r=1)~!(so that |x — y| < 3M). By Eq. 4.47 we have
that there exists a constant ¢o > 0 such that

NSRR

t
f / pz(t —s,x —2)q(s, z, y)dzds > —cat (pg +p(’)3) (t,x—y)
0 JRrd
= —cat (@7 4 lx =y A1) plt,x = ¥)

—eot (qu(t—l)—ﬁ + 3f‘<1>—1(r—1)—ﬂ> ot x — y).

v

We choose #g € (0, 1) so that for all ¢ € (0, 1), ca(1 + 38)®d~1(t=1)~F < ¢1/2. Together
with Eqs. 5.34 and 4.46 we conclude that for all # € (0, ) and all x, y € RY satisfying
lx —y| <30~~~ we have
g G )
RGO 1(: D

_|._

>y d 1 He.

K ‘1 _
Pt x,y) = 2tp(mc y) = c3t

—1 ([ 1 )
By Eq. 1.15 and iterating |T/#o] + 1 times, we obtain the following near-diagonal lower
bound

1
o1 T)

Pt x,y) > csd LY forallt € (0, T]and |x — y| <30~ '¢~H™L.  (5.36)

Now we assume |x — y| > 30~ 1¢Hlandleto = inf{r > 0: X, € B(y, 21!
(t~H~1}. By the strong Markov property and Eq. 5.35 we have

P, (XM € B(y, cb*l(fl)*l))sz (cr <Af,  sup |XS—X(,|<21d>l(tl)l>

s€lo,0+At]
=E, [Px, | sup |Xs—Xo|<27'o7 ¢ ) )io<ar
s€[0,A]
> inf P (TB(Z’Z—IQ-,—I(I—I)—I) > )\,l‘) I[Dx (U < )\.t)

z
z€B(y,27 11~

v

1 1
SP(@ <) = 5P (Xoine e B, 277 e™H™h) . (537)

B(x, o~ 1¢=1)—1)
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Since
—Tgy—1,,—1 -1 —1,,-1-1\¢
Xs ¢ B(y,27°d7(¢t7) CB(x, o () , S <AtA TB(x, o1 (=)~ 1)»
we have

Byl = > Iy ey a-to-1g-1)-1 -

SSAIAT

X
MATE o=l =)= 1)

B(x, o~ 1¢—1)—1)

Thus, by the Lévy system formula in Eq. 5.29 we have

Py (X)‘”\ts(x_arl(rl)*l)

E |:/M/\r3(x‘¢1(,1)1)/ ; (X )d J ]
= X ,u)duds
Lo B(y2-1-1a=1)1) '

MAT —dp—1—1y—1
B(x.62~ 40— 1—1)—1)
E, [f / ko J (I Xs —uD) L X u<|x—y|) du dS} .
0 B(y,27 1o~

(5.38)

Let w be the point on the line connecting x and y (i.e., |x — y| = |x — w|+|w — y|) such
that [w —y| = 7-274®~ (¢t~ ~!. Then B(w,274®~ ¢~ c B(y, 27 1o~ ¢~ ).
Moreover, for every (z,u) € B(x, 6 - 274d~ 1~ H = x B(w, 27*®~1¢~1)~1), we have

€ B(y, 2*1<1>*1(r1)*1))

v

lz—ul < lz—x[+lw—ul+x—w =lz—x|+w—ul+|x—yl —|w—y|
<6242 Mo e Y T x—y =7 2% e H T = x — ).
Thus

Bw,27*o !¢ Y™ c{u:lz—ul <|x—y|} forze B(x,6-27%0 ¢ H™),
(5.39)
Equations 5.39 and 5.35 imply that

MATp 62—4o—1(—1)~1)
E, |:/ ! / J (X _M|)1{u1\Xx—u|<|x—y\}duds]
0 B(y2-10-1G-1)1)

B M A Tpeo gttty / j(lx = yl) du
al (x.6 el Bw, 2401 (1))

%

%

APy (Tpirpa-t0-1 1)1y = ML) \B(w, 277 jx =D

v

cst® ') j(Ix = D). (5.40)
By combining Eq. 5.37, 5.38 and 5.40 we get that
1
By (X € Bo @7 T ™h) 2 Ser @ T i =y (54D)
By Eqgs. 1.15, 5.36 and 5.41 we have

PK(LX’ y) Z / pk()\t9x’z)pk((1_)‘-)t7 2, y)dZ
B(y, o~~~
> inf P =Mt z,y) PO, x,2)dz
z€B(y. @~ 1¢=Hh B(y,®~1(t=1)~1)
—1=Id =1 =Iy=d (v N ot (e
> @@ )T @) j(x =y =cj (Ix —yD).

Combining this estimate with Eq. 5.36 we obtain Eq. 1.21. Inequality Eq. 1.22 follows from
Eq. 1.21, Proposition 2.1 and Eq. 5.33. O
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