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Abstract Let J be the Lévy density of a symmetric Lévy process in R
d with its Lévy

exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric
and non-local operator

Lκf (x) := lim
ε↓0

∫
{z∈Rd :|z|>ε}

(f (x + z) − f (x))κ(x, z)J (z) dz ,

where κ(x, z) is a Borel function on R
d × R

d satisfying 0 < κ0 ≤ κ(x, z) ≤ κ1, κ(x, z) =
κ(x, −z) and |κ(x, z) − κ(y, z)| ≤ κ2|x − y|β for some β ∈ (0, 1]. We construct the heat
kernel pκ(t, x, y) of Lκ , establish its upper bound as well as its fractional derivative and
gradient estimates. Under an additional weak upper scaling condition at infinity, we also
establish a lower bound for the heat kernel pκ .
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process · Non-symmetric operator · Non-symmetric Markov process

Mathematics Subject Classifications (2010) Primary 60J35 · Secondary 60J75

� Panki Kim
pkim@snu.ac.kr

Renming Song
rsong@illinois.edu

Zoran Vondraček
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1 Introduction

Suppose that d ≥ 1, α ∈ (0, 2) and κ(x, z) is a Borel function on R
d × R

d such that

0 < κ0 ≤ κ(x, z) ≤ κ1 , κ(x, z) = κ(x, −z) , (1.1)

and for some β ∈ (0, 1],
|κ(x, z) − κ(y, z)| ≤ κ2|x − y|β . (1.2)

The operator

Lκ
αf (x) = lim

ε↓0

∫
{z∈Rd :|z|>ε}

(f (x + z) − f (x))
κ(x, z)

|z|d+α
dz (1.3)

is a non-symmetric and non-local stable-like operator. In the recent paper [6], Chen and
Zhang studied the heat kernel of Lκ

α and its sharp two-sided estimates. As the main result
of the paper, they proved the existence and uniqueness of a non-negative jointly continuous
function pκ

α(t, x, y) in (t, x, y) ∈ (0, 1] × R
d × R

d solving the equation

∂tp
κ
α(t, x, y) = Lκ

αpκ
α(t, ·, y)(x) , x �= y ,

and satisfying four properties - an upper bound, Hölder’s estimate, fractional derivative esti-
mate and continuity, cf. [6, Theorem 1.1] for details. They also proved some other properties
of the heat kernel pκ

α(t, x, y) such as conservativeness, Chapman-Kolmogorov equation,
lower bound, gradient estimate and studied the corresponding semigroup. Their paper is the
first one to address these questions for not necessarily symmetric non-local stable-like oper-
ators. These operators can be regarded as the non-local counterpart of elliptic operators in
non-divergence form. In this context the Hölder continuity of κ(·, z) in Eq. 1.2 is a natural
assumption.

The goal of this paper is to extend the results of [6] to more general operators than
the ones defined in Eq. 1.3. These operators will be non-symmetric and not necessarily
stable-like. We will replace the kernel κ(x, z)|z|−d−α with a kernel κ(x, z)J (z) where κ

still satisfies Eqs. 1.1 and 1.2, but J (z) is the Lévy density of a rather general symmetric
Lévy process. Here are the precise assumptions that we make.

Let φ : (0,∞) → (0, ∞) be a Bernstein function without drift and killing. Then

φ(λ) =
∫

(0,∞)

(
1 − e−λt

)
μ(dt),

where μ is a measure on (0, ∞) satisfying
∫
(0,∞)

(t ∧ 1)μ(dt) < ∞. Here and throughout
this paper, we use the notation a ∧ b := min{a, b} and a ∨ b := max{a, b}. Without loss
of generality we assume that φ(1) = 1. Define 	 : (0,∞) → (0, ∞) by 	(r) = φ(r2)

and let 	−1 be its inverse. The function x �→ 	(|x|) =: 	(x), x ∈ R
d , d ≥ 1, is negative

definite and hence it is the characteristic exponent of an isotropic Lévy process on R
d .

This process can be obtained by subordinating a d-dimensional Brownian motion by an
independent subordinator with Laplace exponent φ. The Lévy measure of this process has
a density j (|y|) where j : (0, ∞) → (0, ∞) is the function given by

j (r) =
∫

(0,∞)

(4πt)−d/2e− r2
4t μ(dt) .

Thus we have

	(x) =
∫
Rd\{0}

(1 − cos(x · y)) j (|y|) dy .



Heat Kernels of Non-symmetric Jump Processes 39

Note that when φ(λ) = λα/2, 0 < α < 2, we have 	(r) = rα , the corresponding
subordinate Brownian motion is an isotropic α-stable process and j (r) = c(d, α) r−d−α .

Our main assumption is the following weak lower scaling condition at infinity: There
exist δ1 ∈ (0, 2] and a1 ∈ (0, 1) such that

a1λ
δ1	(r) ≤ 	(λr) , λ ≥ 1, r ≥ 1 . (1.4)

This condition implies that limλ→∞ 	(λ) = ∞ and hence
∫
Rd\{0} j (|y|)dy = ∞ (i.e.,

the subordinate Brownian motion is not a compound Poisson process). The weak lower
scaling condition at infinity governs the short-time small-space behavior of the subordinate
Brownian motion. We also need a weak condition on the behavior of 	 near zero. We
assume that ∫ 1

0

	(r)

r
dr = C∗ < ∞ . (1.5)

The following function will play a prominent role in the paper. For t > 0 and x ∈ R
d we

define

ρ(t, x) = ρ(d)(t, x) := 	

((
1

	−1(t−1)
+ |x|

)−1
)(

1

	−1(t−1)
+ |x|

)−d

. (1.6)

In case when 	(r) = rα we see that ρ(t, x) = (t1/α + |x|)−d−α . It is well known that
t (t1/α + |x|)−d−α is comparable to the heat kernel p(t, x) of the isotropic α-stable process
in R

d . We will prove later in this paper (see Proposition 3.2) that tρ(t, x) is an upper bound
of the heat kernel of the subordinate Brownian motion with characteristic exponent 	.

We assume that J : Rd → (0,∞) is symmetric in the sense that J (x) = J (−x) for all
x ∈ R

d and there exists γ0 > 0 such that

γ −1
0 j (|y|) ≤ J (y) ≤ γ0j (|y|), for all y ∈ R

d . (1.7)

Following Eq. 1.3, we define a non-symmetric and non-local operator

Lκf (x) = Lκ,0f (x) := p.v.

∫
Rd

(f (x+z)−f (x))κ(x, z)J (z) dz := lim
ε↓0

Lκ,εf (x) , (1.8)

where

Lκ,εf (x) :=
∫

|z|>ε

(f (x + z) − f (x))κ(x, z)J (z) dz, ε > 0.

The following theorem is the main result of this paper.

Theorem 1.1 Assume that 	 satisfies Eqs. 1.4 and 1.5, that J satisfies Eq. 1.7, and that κ
satisfies Eqs. 1.1 and 1.2. Suppose there exists a function g : Rd → (0,∞) such that

lim
x→∞ g(x) = ∞ and Lκg(x)/g(x) is bounded from above. (1.9)

Then there exists a unique non-negative jointly continuous function pκ(t, x, y) on (0, ∞)×
R

d × R
d solving

∂tp
κ(t, x, y) = Lκpκ(t, ·, y)(x) , x �= y , (1.10)

and satisfying the following properties:

(i) (Upper bound) For every T ≥ 1, there is a constant c1 > 0 so that for all t ∈ (0, T ]
and x, y ∈ R

d ,

pκ(t, x, y) ≤ c1tρ(t, x − y) . (1.11)
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(ii) (Fractional derivative estimate) For any x, y ∈ R
d , x �= y, the map t �→

Lκpκ(t, ·, y)(x) is continuous in (0, ∞), and, for each T ≥ 1 there is a constant
c2 > 0 so that for all t ∈ (0, T ], ε ∈ [0, 1] and x, y ∈ R

d ,

|Lκ,εpκ(t, ·, y)(x)| ≤ c2ρ(t, x − y) . (1.12)

(iii) (Continuity) For any bounded and uniformly continuous function f : Rd → R,

lim
t↓0

sup
x∈Rd

∣∣∣∣
∫
Rd

pκ(t, x, y)f (y) dy − f (x)

∣∣∣∣ = 0 . (1.13)

Moreover, the constants c1 and c2 can be chosen so that they depend only on T ,
	−1(T −1), d, a1, δ1, C∗, β, γ0, κ0, κ1 and κ2.

The assumption (1.9) is a quite mild one. For example, if
∫
|z|>1 |z|εj (|z|)dz < ∞ for

some ε > 0, then the assumption (1.9) holds, see Remark 5.2 below.
Some further properties of the heat kernel pκ(t, x, y) are listed in the following result.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 are satisfied.

(1) (Conservativeness) For all (t, x) ∈ (0, ∞) × R
d ,∫

Rd

pκ(t, x, y) dy = 1 . (1.14)

(2) (Chapman-Kolmogorov equation) For all s, t > 0 and all x, y ∈ R
d ,∫

Rd

pκ(t, x, z)pκ(s, z, y) dz = pκ(t + s, x, y) . (1.15)

(3) (Joint Hölder continuity) For every T ≥ 1 and γ ∈ (0, δ1) ∩ (0, 1], there is a constant
c3 = c3(T , d, δ1, a1, β, C∗,	−1(T −1), γ0, κ0, κ1, κ2) > 0 such that for all 0 < s ≤
t ≤ T and x, x′, y ∈ R

d ,

|pκ(s, x, y) − pκ(t, x′, y)| ≤ c3

(
|t − s| + |x − x′|γ t 	−1(t−1)

)

×(ρ(s, x − y) ∨ ρ(s, x′ − y)) . (1.16)

Furthermore, if the constant δ1 in Eq. 1.4 belongs to (2/3, 2) and the constant β in
Eq. 1.2 satisfies β + δ1 > 1 then Eq. 1.16 holds with γ = 1.

(4) (Gradient estimate) If δ1 ∈ (2/3, 2), and β +δ1 > 1, then for every T ≥ 1, there exists
c4 = c4(T , d, δ1, a1, β, C∗,	−1(T −1), γ0, κ0, κ1, κ2) > 0 so that for all x, y ∈ R

d ,
x �= y, and t ∈ (0, T ],

|∇xp
κ(t, x, y)| ≤ c4	

−1(t−1)tρ(t, |x − y|) . (1.17)

Note that the gradient estimate (1.17) is an improvement of the corresponding estimate
[6, (4.19)] in the sense that the parameter δ1 could be smaller than one as long as it is still
larger than 2/3 and β + δ1 > 1.

For t > 0, define the operator P κ
t by

P κ
t f (x) =

∫
Rd

pκ(t, x, y)f (y) dy , x ∈ R
d , (1.18)

where f is a non-negative (or bounded) Borel function on R
d , and let P κ

0 = Id. Then
by Theorems 1.1 and 1.2, (P κ

t )t≥0 is a Feller semigroup with the strong Feller property.
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Let C
2,ε
b (Rd) be the space of bounded twice differentiable functions in R

d whose second
derivatives are uniformly Hölder continuous. We further have

Theorem 1.3 Suppose that the assumptions of Theorem 1.1 are satisfied.

(1) (Generator) Let ε > 0. For any f ∈ C
2,ε
b (Rd), we have

lim
t↓0

1

t

(
P κ

t f (x) − f (x)
) = Lκf (x) , (1.19)

and the convergence is uniform.
(2) (Analyticity) The semigroup (P κ

t )t≥0 ofLκ is analytic inLp(Rd) for every p ∈ [1, ∞).

Finally, under an additional assumption, we prove by probabilistic methods a lower
bound for the heat kernel pκ(t, x, y). The weak upper scaling condition means that there
exist δ2 ∈ (0, 2) and a2 > 0 such that

	(λr) ≤ a2λ
δ2	(r) , λ ≥ 1, r ≥ 1 . (1.20)

Theorem 1.4 Suppose that 	 satisfies Eqs. 1.4, 1.20 and 1.5, that J satisfies Eq. 1.7,
and that κ satisfies Eqs. 1.1 and 1.2. Suppose also that there exists a function g :
R

d → (0, ∞) such that Eq. 1.9 holds. For every T ≥ 1, there exists c5 =
c5(T , d, δ1, δ2, γ0, C∗,	−1(T −1), a1, a2, β, κ0, κ1, κ2) > 0 such that for all t ∈ (0, T ],

pκ(t, x, y) ≥ c5

{
	−1(t−1)d if |x − y| ≤ 3	−1(t−1)−1,

tj (|x − y|) if |x − y| > 3	−1(t−1)−1.
(1.21)

In particular, for all T ,M ≥ 1, there exists c6 = c6(T , d, δ1, δ2, γ0, C∗, 	−1(T −1),

a1, a2, β, κ0, κ1, κ2) > 0 for all t ∈ (0, T ] and x, y ∈ R
d with |x − y| ≤ M ,

pκ(t, x, y) ≥ c6tρ(t, x − y) . (1.22)

Theorems 1.1–1.4 generalize [6, Theorem 1.1]. Note that the lower bound (1.22) of
pκ(t, x, y) is stated only for |x − y| ≤ M . This is natural in view of the fact that Eqs. 1.4
and 1.20 only give information about short-time small-space behavior of the underlying
subordinate Brownian motion. We remark in passing that, the upper bound (1.11) may not
be sharp under the assumptions (1.4) and (1.5). When 	 satisfies scaling conditions both
near infinity and near the origin, see [11, (H1) and (H2)], the upper bound (1.11) is sharp in
the sense that the lower bound (1.22) is valid for all x, y ∈ R

d .
The assumptions (1.4), (1.5), (1.9) and (1.20) are very weak conditions and they are

satisfied by many subordinate Brownian motions. For the reader’s convenience, we list some
examples of φ, besides the Laplace exponent of the stable subordinator, such that 	(r) =
φ(r2) satisfies these assumptions.

(1) φ(λ) = λα1 + λα2 , 0 < α1 < α2 < 1;
(2) φ(λ) = (λ + λα1)α2 , α1, α2 ∈ (0, 1);
(3) φ(λ) = (λ + m1/α)α − m, α ∈ (0, 1), m > 0;
(4) φ(λ) = λα1(log(1 + λ))α2 , α1 ∈ (0, 1), α2 ∈ (0, 1 − α1];
(5) φ(λ) = λα1(log(1 + λ))−α2 , α1 ∈ (0, 1), α2 ∈ (0, α1);
(6) φ(λ) = λ/ log(1 + λα), α ∈ (0, 1).
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The functions in (1)–(5) satisfy Eqs. 1.4, 1.5, 1.20 and 1.9 (see (3.1) and Remark 5.2);
while the function in (6) satisfies Eqs. 1.4, 1.5 and 1.9, but does not satisfy Eq. 1.20. The
function φ(λ) = λ/ log(1+λ) satisfies Eq. 1.4, but does not satisfy the other two conditions.

In order to prove our main results, we follow the ideas and the road-map from [6]. At
many stages we encounter substantial technical difficulties due to the fact that in the stable-
like case one deals with power functions while in the present situation the power functions
are replaced with a quite general 	 and its variants. We also strive to simplify the proofs
and streamline the presentation. In some places we provide full proofs where in [6] only an
indication is given. On the other hand, we skip some proofs which would be almost identical
to the corresponding ones in [6]. Below is a detailed outline of the paper with emphasis on
the main differences from [6].

In Section 2 we start by introducing the basic setup, state again the assumptions, and
derive some of the consequences. In Section 2.1 we discuss convolution inequalities, cf.
Lemma 2.6. While in [6] these involve power functions, the most challenging task in the
present setting was to find appropriate versions of these inequalities. The main new technical
result here is Lemma 2.6.

In Section 3 we first study the heat kernel p(t, x) of a symmetric Lévy process Z with
Lévy density jZ comparable to the Lévy density j of the subordinate Brownian motion
with characteristic exponent 	. We prove the joint Lipschitz continuity of p(t, x) and then,
based on a result from [10], that tρ(t, x) is the upper bound of p(t, x) for all x ∈ R

d and
small t , cf. Proposition 3.2. In Section 3.1, we provide some useful estimates on functions
of p(t, x). In Section 3.2, we specify jZ by assuming jZ(z) = K(z)J (z), with K being sym-
metric and bounded between two positive constants. Let LK be the infinitesimal generator
of the corresponding process and let pK be its heat kernel. We look at the continuous depen-
dence of pK with respect to K. This subsection follows the ideas and proofs from [6] with
additional technical difficulties.

Given a function κ satisfying Eqs. 1.1 and 1.2, we define, for a fixed y ∈ R
d ,

Ky = κ(y, ·) and denote by py(t, x) the heat kernel of the freezing operator LKy . Various
estimates and joint continuity of py(t, x) are shown in Section 4.1. The rest of Section 4
is devoted to constructing the heat kernel pκ(t, x, y) of the operator Lκ . The heat kernel
should have the form

pκ(t, x, y) = py(t, x − y) +
∫ t

0

∫
Rd

pz(t − s, x − z)q(s, z, y) dz ds , (1.23)

where according to Levi’s method the function q(t, x, y) solves the integral equation

q(t, x, y) = q0(t, x, y) +
∫ t

0

∫
Rd

q0(t − s, x − z)q(s, z, y) dz ds , (1.24)

with q0(t, x, y) = (LKx −LKy )py(t, x −y). The main result is Theorem 4.5 showing exis-
tence and joint continuity of q(t, x, y) satisfying Eq. 1.24. We follow [6, Theorem 3.1], and
give a full proof. Joint continuity and various estimates of pκ(t, x, y) defined by Eq. 1.23
are given in Section 4.3.

Section 5 contains proofs of Theorems 1.1–1.4. We start with a version of a non-local
maximum principle in Theorem 5.1 which is somewhat different from the one in [6, The-
orem 4.1], continue with two results about the semigroup (P κ

t )t≥0 and then complete the
proofs.

In this paper, we use the following notations. We will use “:=” to denote a defini-
tion, which is read as “is defined to be”. For any two positive functions f and g, f � g



Heat Kernels of Non-symmetric Jump Processes 43

means that there is a positive constant c ≥ 1 so that c−1 g ≤ f ≤ c g on their com-
mon domain of definition. For a set W in R

d , |W | denotes the Lebesgue measure of W

in R
d . For a function space H(U) on an open set U in R

d , we let Hc(U) := {f ∈
H(U) : f has compact support}, H0(U) := {f ∈ H(U) : f vanishes at infinity} and
Hb(U) := {f ∈ H(U) : f is bounded}.

Throughout the rest of this paper, the positive constants δ1, δ2, γ0, a1, a2, β, κ0, κ1, κ2,

Ci , i = 0, 1, 2, . . . , can be regarded as fixed. In the statements of results and the proofs,
the constants ci = ci(a, b, c, . . .), i = 0, 1, 2, . . . , denote generic constants depending
on a, b, c, . . ., whose exact values are unimportant. They start anew in each statement and
each proof. The dependence of the constants on the dimension d ≥ 1, C∗, 	−1((2T )−1),
	−1(T −1) and γ0 may not be mentioned explicitly.

2 Preliminaries

It is well known that the Laplace exponent φ of a subordinator is a Bernstein function and

φ(λt) ≤ λφ(t) for all λ ≥ 1, t > 0 . (2.1)

For notational convenience, in this paper, we denote 	(r) = φ(r2) and without loss of
generality we assume that 	(1) = 1.

Throughout this paper φ is the Laplace exponent of a subordinator and 	(r) = φ(r2)

satisfies the weak lower scaling condition (1.4) at infinity. This can be reformulated as
follows: There exist δ1 ∈ (0, 2] and a positive constant a1 ∈ (0, 1] such that for any r0 ∈
(0, 1],

a1λ
δ1r

δ1
0 	(r) ≤ 	(λr) , λ ≥ 1, r ≥ r0 . (2.2)

In fact, suppose r0 ≤ r < 1 and λ ≥ 1. Then, 	(λr) ≥ a1λ
δ1r

δ1
0 	(1) ≥ a1λ

δ1r
δ1
0 	(r) if

λr > 1, and 	(λr) ≥ 	(r) ≥ a1λ
δ1r

δ1
0 	(r) if λr ≤ 1.

Since φ is a Bernstein function and we assume (2.2), it follows that 	 is strictly increas-
ing and limλ→∞ 	(λ) = ∞. We denote by 	−1 : (0, ∞) → (0, ∞) the inverse function of
	.

From Eq. 2.1 we have

	−1(λr) ≥ λ1/2	−1(r) , λ ≥ 1, r > 0 . (2.3)

Moreover, by Eq. 2.2, 	−1 satisfies the following weak upper scaling condition at infinity:
For any r0 ∈ (0, 1],

	−1(λr) ≤ a
−1/δ1
1 	−1(r0)

−1λ1/δ1	−1(r) , λ ≥ 1, r ≥ r0 . (2.4)

In fact, from Eq. 2.2 we get 	−1(λr) ≤ a
−1/δ1
1 λ1/δ1	−1(r) for λ ≥ 1 and r ≥ 1. Sup-

pose r0 ≤ r < 1. Then, 	−1(λr) ≤ 1 ≤ a
−1/δ1
1 	−1(r0)

−1λ1/δ1	−1(r) if λr ≤ 1, and

	−1(λr) ≤ a
−1/δ1
1 λ1/δ1r1/δ1 ≤ a

−1/δ1
1 λ1/δ1	−1(r0)

−1	−1(r) if λr > 1.
For t > 0 and x ∈ R

d , we define functions r(t, x) and ρ(t, x) by

r(t, x) = 	−1(t−1)d ∧ t	(|x|−1)

|x|d
and

ρ(t, x) = ρ(d)(t, x) := 	

((
1

	−1(t−1)
+ |x|

)−1
)(

1

	−1(t−1)
+ |x|

)−d

. (2.5)
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Note that, by [2, Lemma 17],

t	(|x|−1)|x|−d ≥ 	−1(t−1)d if and only if t	(|x|−1) ≥ 1. (2.6)

Proposition 2.1 For all t > 0 and x ∈ R
d , tρ(t, x) ≤ r(t, x) ≤ 2d+2tρ(t, x).

Proof

Case 1 t	(|x|−1) ≥ 1. In this case, by Eq. 2.6 we have that r(t, x) = 	−1(t−1)d . Since
|x| ≤ 1

	−1(t−1)
, we have

1

	−1(t−1)
≤ 1

	−1(t−1)
+ |x| ≤ 2

	−1(t−1)
. (2.7)

This and Eq. 2.1 imply that

t−1 = 	(	−1(t−1))≥	

((
1

	−1(t−1)
+|x|

)−1
)

≥	(2−1	−1(t−1))≥ 1

4
	(	−1(t−1))

= 1

4
t−1

and

2−d	−1(t−1)−d ≤
(

1

	−1(t−1)
+ |x|

)−d

≤ 	−1(t−1)−d .

The last two displays imply that 2−d−2	−1(t−1)d ≤ tρ(t, x) ≤ 	−1(t−1)d .

Case 2 t	(|x|−1) ≤ 1. In this case, by Eq. 2.6 we have that r(t, x) = t	(|x|−1)

|x|d . Since

|x| ≥ 1
	−1(t−1)

, we have

|x|−1 ≥
(

1

	−1(t−1)
+ |x|

)−1

≥ 2−1|x|−1 .

This with Eq. 2.1 implies that

	(|x|−1) ≥ 	

((
1

	−1(t−1)
+ |x|

)−1
)

≥ 	(2−1|x|−1) ≥ 1

4
	(|x|−1) .

The last two displays imply the conclusion of the proposition in Case 2.

Lemma 2.2 Let T ≥ 1 and c = (2(2/a1)
1/δ1/	−1((2T )−1))d+2.

(a) For all 0 < s < t ≤ T and x, z ∈ R
d ,

ρ(t − s, x − z)ρ(s, z) ≤ c (ρ(t − s, x − z) + ρ(s, z)) ρ(t, x) . (2.8)

(b) For every x ∈ R
d and 0 < t/2 ≤ s ≤ t ≤ T , ρ(t, x) ≤ ρ(s, x) ≤ 2cρ(t, x).

Proof (a) By Eq. 2.4 we have that for all 0 < t, s ≤ T ,

1

	−1((t + s)−1)
≤ 1

	−1(2−1(t ∨ s)−1)
≤ c1

(
1

	−1(t−1)
+ 1

	−1(s−1)

)
, (2.9)

where c1 = (2/a1)
1/δ1/	−1((2T )−1) ≥ 1.
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Define � : (0,∞) → (0,∞) by �(r) := rd/	(r−1), so that ρ(t, x) =
(�( 1

	−1(t−1)
+ |x|))−1. For all a, b > 0, (a + b)d ≤ 2d(a ∨ b)d and, by Eq. 2.1,

	((a + b)−1) ≥ 	(2−1(a ∨ b)−1) ≥ 4−1	((a ∨ b)−1). Therefore, for all a, b > 0,

�(a + b) ≤ 2d+2�(a ∨ b) ≤ 2d+2(�(a) + �(b)) . (2.10)

Moreover, Eq. 2.1 implies that for r > 0,

�(c1r) = (c1r)
d

	(c−1
1 r−1)

≤ cd+2
1

rd

	(r−1)
= cd+2

1 �(r) . (2.11)

By using Eqs. 2.9–2.11, we have

�

(
1

	−1(t−1)
+|x|

)
≤�

(
c1

((
1

	−1((t − s)−1)
+|x−z|

)
+

(
1

	−1(s−1)
+|z|

)))

≤ cd+2
1 �

((
1

	−1((t − s)−1)
+ |x − z|

)
+

(
1

	−1(s−1)
+ |z|

))

≤ (2c1)
d+2

(
�

(
1

	−1((t − s)−1)
+ |x − z|

)
+ �

(
1

	−1(s−1)
+ |z|

))
. (2.12)

Thus we have that for 0 < s < t ≤ T and x, z ∈ R
d ,

(ρ(t − s, x − z) + ρ(s, z)) ρ(t, x)

=
�
(

1
	−1((t−s)−1)

+ |x − z|
)

+ �
(

1
	−1(s−1)

+ |z|
)

�
(

1
	−1((t−s)−1)

+ |x − z|
)

�
(

1
	−1(s−1)

+ |z|
) 1

�
(

1
	−1(t−1)

+ |x|
)

≥ (2c1)
−d−2 1

�
(

1
	−1((t−s)−1)

+ |x − z|
)

�
(

1
	−1(s−1)

+ |z|
)

= (2c1)
−d−2ρ(t − s, x − z)ρ(s, z) .

(b) This follows from Eq. 2.12 by taking s = t/2, z = 0 and by using that � is increasing.

2.1 Convolution Inequalities

Let B(a, b) be the beta function, i.e., B(a, b) = ∫ 1
0 sa−1(1 − s)b−1ds, a, b > 0.

Lemma 2.3 Let β, γ, η, θ ∈ R be such that 1β≥0(β/2) + 1β<0(β/δ1) + 1 − θ > 0 and
1γ≥0(γ /2) + 1γ<0(γ /δ1) + 1 − η > 0. Then for every t > 0, we have
∫ t

0
u−η	−1(u−1)−γ (t − u)−θ	−1((t − u)−1)−β du ≤ Ct1−η−θ	−1(t−1)−γ−β . (2.13)

Moreover, if β ≥ 0 and γ ≥ 0 then Eq. 2.13 holds for all t > 0 with C = B(β/2 + 1 −
θ, γ /2 + 1 − η).

Proof Let I denote the integral in Eq. 2.13. By the change of variables s = u/t we get that

I = t1−η−θ

∫ 1

0
s−η	−1(t−1s−1)−γ (1 − s)−θ	−1(t−1(1 − s)−1)−β ds .
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Since s−1 ≥ 1 and (1 − s)−1 ≥ 1, we have by Eq. 2.3 that 	−1(t−1s−1) ≥ s−1/2	−1(t−1)

and 	−1(t−1(1 − s)−1) ≥ (1 − s)−1/2	−1(t−1). Moreover, when t ∈ (0, T ], by Eq. 2.4 we
have

	−1(t−1s−1) ≤ a
−1/δ1
1 	−1(T −1)−1s−1/δ1	−1(t−1)

and

	−1(t−1(1 − s)−1) ≤ a
−1/δ1
1 	−1(T −1)−1(1 − s)−1/δ1	−1(t−1).

Hence,

I ≤ c1t
1−η−θ	−1(t−1)−γ−β

∫ 1

0
s1γ≥0(γ /2)+1γ<0(γ /δ1)−η(1 − s)1β≥0(β/2)+1β<0(β/δ1)−θ ds

= C	−1(t−1)−γ−β .

When β ≥ 0 and γ ≥ 0 then the above inequality holds for all t > 0 with c1 = 1 so
C = B(β/2 + 1 − θ, γ /2 + 1 − η).

Lemma 2.4 Suppose that 0 < t1 ≤ t2 < ∞. Under the assumptions of Lemma 2.3, we have

lim
h→0

sup
t∈[t1,t2]

(∫ h

0
+

∫ t

t−h

)
u−η	−1(u−1)−γ (t − u)−θ	−1((t − u)−1)−β du = 0.

Proof Under the assumptions of this lemma, by repeating the argument in the proof of
Lemma 2.3, we have that for all t ∈ [t1, t2],

(∫ h

0
+

∫ t

t−h

)
u−η	−1(u−1)−γ (t − u)−θ	−1((t − u)−1)−β du

≤
(
t
1−η−θ

1 ∨ t
1−η−θ

2

) (
	−1(t−1

1 )−γ−β ∨ 	−1(t−1
2 )−γ−β

)

×
(∫ h/t1

0
+

∫ 1

1−h/t1

)
s1γ≥0(γ /2)+1γ<0(γ /δ1)−η(1 − s)1β≥0(β/2)+1β<0(β/δ1)−θ ds.

Now the conclusion of the lemma follows immediately.

For γ, β ∈ R, we define

ρβ
γ (t, x) := 	−1(t−1)−γ (|x|β ∧ 1)ρ(t, x) , t > 0, x ∈ R

d .

Note that ρ0
0 (t, x) = ρ(t, x).

Remark 2.5 Recall that 	 is increasing. Thus it is straightforward to see that the following
inequalities are true: for T ≥ 1,

ρβ
γ1

(t, x) ≤ 	−1(T −1)γ2−γ1ρβ
γ2

(t, x), (t, x) ∈ (0, T ] × R
d , γ2 ≤ γ1 , (2.14)

ρβ1
γ (t, x) ≤ ρβ2

γ (t, x), (t, x) ∈ (0,∞) × R
d , 0 ≤ β2 ≤ β1 .

(2.15)
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We record the following inequality: for every T ≥ 1, t ∈ (0, T ] and β < δ1,

∫ 1

	−1(T −1)/	−1(t−1)

rβ−1	(r−1)dr ≤ 1

a1(δ1 − β)

(
	−1(T −1)

	−1(t−1)

)β

	

(
	−1(t−1)

	−1(T −1)

)

≤ 	−1(T −1)β−2

a1(δ1 − β)
t−1	−1(t−1)−β . (2.16)

The first inequality follows immediately by using the lower scaling to get that for 1 ≥ r ≥
λ−1, 	(r−1) ≤ a−1

1 λ−δ1r−δ1	(λ). The second inequality follows from Eq. 2.1.
For the remainder of this paper we always assume that Eq. 1.5 holds. The following result

is a generalization of [6, Lemma 2.1].

Lemma 2.6 (a) For every T ≥ 1, there exists c1 = c1(d, δ1, a1, C∗, T , 	−1(T −1)) > 0
such that for 0 < t ≤ T , all β ∈ [0, δ1) and γ ∈ R,

∫
Rd

ρβ
γ (t, x) dx ≤ c1

δ1 − β
t−1	−1(t−1)−γ−β . (2.17)

(b) For every T ≥ 1, there exists C0 = C0(T ) = C0(d, δ1, a1, C∗, T , 	−1(T −1)) > 0
such that for all β1, β2 ≥ 0 with β1 + β2 < δ1, γ1, γ2 ∈ R and 0 < s < t ≤ T ,

∫
Rd

ρβ1
γ1

(t − s, x − z)ρβ2
γ2

(s, z) dz

≤ C0

δ1 − β1 − β2

(
(t − s)−1	−1((t − s)−1)−γ1−β1−β2	−1(s−1)−γ2

+	−1((t − s)−1)−γ1s−1	−1(s−1)−γ2−β1−β2
)

ρ(t, x)

+ C0

δ1 − β1 − β2
(t − s)−1	−1((t − s)−1)−γ1−β1	−1(s−1)−γ2ρ

β2
0 (t, x)

+ C0

δ1 − β1 − β2
	−1((t − s)−1)−γ1s−1	−1(s−1)−γ2−β2ρ

β1
0 (t, x) . (2.18)

(c) Let T ≥ 1. For all β1, β2 ≥ 0 with β1 + β2 < δ1, and all θ, η ∈ [0, 1], γ1, γ2 ∈
R satisfying 1γ1≥0(γ1/2) + 1γ1<0(γ1/δ1) + β1/2 + 1 − θ > 0 and 1γ2≥0(γ2/2) +
1γ2<0(γ2/δ1) + β2/2 + 1 − η > 0, there exists c2 > 0 such that for all 0 < t ≤ T and
x ∈ R

d ,

∫ t

0

∫
Rd

(t − s)1−θρβ1
γ1

(t − s, x − z)s1−ηρβ2
γ2

(s, z) dz ds

≤ c2t
2−θ−η

(
ρ0

γ1+γ2+β1+β2
+ ρ

β1
γ1+γ2+β2

+ ρ
β2
γ1+γ2+β1

)
(t, x) . (2.19)

Moreover, when we further assume that γ1, γ2 ≥ 0, we can take that

c2 = 4
C0(T )

δ1 − β1 − β2
B ((γ1 + β1)/2 + 1 − θ, γ2 + β2/2 + 1 − η) . (2.20)
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Proof (a) Let c1 = c1(d) = d|B(0, 1)| and T1 = 	−1(T −1) ≤ 1. We have that for all
0 < t ≤ T ,

	−1(t−1)γ
∫
Rd

ρβ
γ (t, x) dx =

∫
Rd

(|x|β ∧ 1
)
ρ(t, x) dx

≤ c1

∫ T1/	−1(t−1)

0
rβ+d−1

	

((
1

	−1(t−1)

)−1
)

(
T1

	−1(t−1)

)d
dr

+ c1

∫ 1

T1/	−1(t−1)

rβ−1	(r−1)dr + c1

∫ ∞

1

	(r−1)

r
dr

≤ c1T
β

1

β + d
t−1	−1(t−1)d	−1(t−1)−β−d

+ c1

∫ 1

T1/	−1(t−1)

rβ−1	(r−1)dr + c1

∫ 1

0

	(r)

r
dr

≤ c1d
−1t−1	−1(t−1)−β + c1T

β−2
1

a1(δ1 − β)
t−1	−1(t−1)−β + c1C∗ (2.21)

≤ c1(d
−1 + T −2

1 a−1
1 δ−1

1 (δ1 − β)−1 + C∗a−1/2
1 T )t−1	−1(t−1)−β,

where in the second to last line we used Eq. 2.16 to estimate the first term in Eq. 2.21
and used Eq. 1.5 to estimate the second term in Eq. 2.21, and in the last line we used
the assumption β ∈ [0, δ1) and the inequality t	−1(t−1)β ≤ t (a

−1/δ1
1 (T /t)1/δ1)β ≤

a
−β/δ1
1 T ≤ a−1

1 T which follows from (2.4) with λ = T/t and r0 = r = T −1.
(b) Let c2 = (2(2/a1)

1/δ1/	−1((2T )−1))d+2. As in the display after [6, (2.5)], we have
that

(|x − z|β1 ∧ 1
) (|z|β2 ∧ 1

) ≤ (|x − z|β1+β2 ∧ 1) + (|x − z|β1 ∧ 1
) (|x|β2 ∧ 1

)
.

By using this and Eq. 2.8, we have

ρβ1
γ1

(t − s, x − z)ρβ2
γ2

(s, z)

= 	−1((t − s)−1)−γ1	−1(s−1)−γ2
(|x − z|β1 ∧ 1

) (|z|β2 ∧ 1
)
ρ(t − s, x − z)ρ(s, z)

≤ c2	
−1((t − s)−1)−γ1	−1(s−1)−γ2

(|x − z|β1 ∧ 1
) (|z|β2 ∧ 1

)
× (ρ(t − s, x − z) + ρ(s, z)) ρ(t, x)

≤ c2	
−1((t − s)−1)−γ1	−1(s−1)−γ2

{
(|x −z|β1+β2 ∧1)+ (|x −z|β1∧1

) (|x|β2 ∧1
)}

×ρ(t − s, x − z)ρ(t, x)

+c2	
−1((t − s)−1)−γ1	−1(s−1)−γ2

{
(|z|β1+β2 ∧ 1) + (|x|β1 ∧ 1

) (|z|β2 ∧ 1
)}

×ρ(s, z)ρ(t, x)

= c2	
−1(s−1)−γ2

{
ρβ1+β2

γ1
(t − s, x − z)ρ(t, x) + ρβ1

γ1
(t − s, x − z)ρ

β2
0 (t, x)

}

+c2	
−1((t − s)−1)−γ1

{
ρβ1+β2

γ2
(s, z)ρ(t, x) + ρβ2

γ2
(s, z)ρ

β1
0 (t, x)

}
.

Since β1 +β2 < δ1, now Eq. 2.18 follows by integrating the above and using Eq. 2.17.
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(c) By integrating Eq. 2.18 and using Lemma 2.3, we get Eq. 2.19. When we further
assume that γ1, γ2 ≥ 0, by integrating Eq. 2.18 and using the last part of Lemma 2.3,
we get Eq. 2.19 with the constant

C0

(
B

(
γ1 + β1 + β2

2
+ 1 − θ,

γ2 + 2

2
+ 1 − η

)

+B

(
γ2 + β1 + β2

2
+ 1 − η,

γ1 + 2

2
+ 1 − θ

)

+B

(
γ1 + β1

2
+ 1 − θ,

γ2 + 2

2
+ 1 − η

)

+B

(
γ2 + β2

2
+ 1 − η,

γ1 + 2

2
+ 1 − θ

))
,

which is, using that the beta function B is symmetric and non-increasing in each
variable, less than or equal to 4C0B ((γ1 + β1)/2 + 1 − θ, γ2 + β2/2 + 1 − η).

Lemma 2.7 Suppose 0 < t1 ≤ t2 < ∞. For β ∈ (0, δ1/2),

lim
h↓0

sup
x,y∈Rd ,t∈[t1,t2]

(∫ h

0
+

∫ t

t−h

)∫
Rd

ρ
β

0 (t −s, x−z)(ρ
β

0 (s, z−y)+ρ0
β(s, z−y))dzds = 0.

Proof We first apply Lemma 2.6(b) and then use Remark 2.5, to get that for t ∈ [t1, t2],∫
Rd

ρ
β

0 (t − s, x − z)(ρ
β

0 (s, z − y) + ρ0
β(s, z − y))dz

≤ c1((t − s)−1	−1((t − s)−1)−β + s−1	−1(s−1)−β)ρ(t1, 0).

Now the conclusion of the lemma follows immediately from Lemma 2.4.

3 Analysis of the Heat Kernel of LK

Throughout this paper, Y = (Yt ,Px) is a subordinate Brownian motion via an independent
subordinator with Laplace exponent φ and Lévy measure μ. The Lévy density of Y , denoted
by j , is given by

j (x) = j (|x|) =
∫ ∞

0
(4πs)−d/2e−|x|2/4s μ(ds) .

It is well known that there exists c = c(d) depending only on d such that

j (r) ≤ c
φ(r−2)

rd
, r > 0 (3.1)

(see [2, (15)]). The function r �→ j (r) is non-decreasing. Recall that we have assumed that
r �→ 	(r)(= φ(r2)), the radial part of the characteristic exponent 	 of Y , satisfies the
weak lower scaling condition at infinity in Eq. 2.2.

Suppose that Z = (Zt ,Px) is a purely discontinuous symmetric Lévy process with
characteristic exponent ψZ such that its Lévy measure admits a density jZ satisfying

γ̂ −1
0 j (|x|) ≤ jZ(x) ≤ γ̂0j (|x|) , x ∈ R

d , (3.2)
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for some γ̂0 ≥ 1. Hence,
∫
Rd jZ(x)dx = ∞. The characteristic exponents of Z, respectively

Y , are given by

ψZ(ξ) =
∫
Rd

(1 − cos(ξ · y))jZ(y) dy , 	(ξ) =
∫
Rd

(1 − cos(ξ · y))j (|y|) dy ,

and satisfy
γ̂ −1

0 	(|ξ |) ≤ ψZ(ξ) ≤ γ̂0	(|ξ |) , ξ ∈ R
d . (3.3)

Let ψ denote the radial nondecreasing majorant of the characteristic exponent of Z, i.e.,
ψ(r) := sup|z|≤r ψZ(z). Clearly

γ̂ −1
0 	(r) ≤ ψ(r) ≤ γ̂0	(r) , r > 0, and γ̂ −2

0 ψ(|ξ |) ≤ ψZ(ξ) ≤ ψ(|ξ |) , ξ ∈ R
d ,

and thus ψ also satisfies the weak lower scaling condition at infinity in Eq. 2.2.
By Eqs. 3.1 and 3.2,

jZ(x) ≤ γ̂0
	(|x|−1)

|x|d . (3.4)

Moreover, for every n ∈ Z+,∫
Rd

∣∣∣E
[
eiξ ·Zt

]∣∣∣ |ξ |n dξ =
∫
Rd

e−tψZ(ξ)|ξ |n dξ ≤
∫
Rd

e−t γ̂ −1
0 	(|ξ |)|ξ |n dξ

≤ c

(∫ 1

0
rd−1+ndr +

∫ ∞

1
rd−1+ne−t γ̂ −1

0 a1r
δ1

dr

)
< ∞ . (3.5)

It follows from [13, Proposition 2.5(xii) and Proposition 28.1] that Zt has a density

p(t, x) = (2π)−d/2
∫
Rd

e−ix·ξ e−tψZ(ξ) dξ = (2π)−d/2
∫
Rd

cos(x · ξ)e−tψZ(ξ) dξ,

which is infinitely differentiable in x. Let L be the infinitesimal generator of Z.

Lemma 3.1 (a) For every x ∈ R
d , the function t �→ p(t, x) is differentiable and

∂p(t, x)

∂t
= −(2π)−d/2

∫
Rd

cos(x · ξ)ψZ(ξ)e−tψZ(ξ) dξ = Lp(t, x) .

(b) For every ε > 0 there exists a constant c = c(d, δ1, a1, γ̂0, ε) > 0 such that for all
s, t ≥ ε and all x, y ∈ R

d ,

|p(t, x) − p(s, y)| ≤ c (|t − s| + |x − y|) .

Proof (a) Note that for any t ≥ 0 and any h ∈ R such that t + h ≥ 0,

p(t + h, x) − p(t, x)

h
= (2π)−d/2

∫
Rd

cos(x · ξ)e−tψZ(ξ) e
−hψZ(ξ) − 1

h
dξ.

The absolute value of the integrand is bounded by 2γ̂0	(|ξ |)e−γ̂ −1
0 	(|ξ |) which is

integrable since 	(|ξ |) ≤ |ξ |2. The claim follows from the dominated convergence
theorem by letting h → 0. The last equality in the statement of the lemma follows
from [9, Example 4.5.5].

(b) By the triangle inequality we have that

|p(t, x) − p(s, y)| ≤
∫
Rd

|cos(x · ξ) − cos(y · ξ)| e−tψZ(ξ) dξ

+
∫
Rd

|cos(y · ξ)|
∣∣∣e−tψZ(ξ) − e−sψZ(ξ)

∣∣∣ dξ =: I1 + I2 .
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Clearly, | cos(x · ξ) − cos(y · ξ)| ≤ |x · ξ − y · ξ | ≤ |x − y||ξ |, which implies that, by
Eq. 3.5,

I1 ≤ |x − y|
∫
Rd

|ξ |e−tψZ(ξ) dξ ≤ |x − y|
∫
Rd

|ξ |e−εγ̂ −1
0 	(|ξ |) dξ = c1(γ̂0, ε)|x − y| .

In order to estimate I2, without loss of generality we assume that s ≤ t . Then by the
mean value theorem we have that

∣∣∣e−tψZ(ξ) − e−sψZ(ξ)
∣∣∣ ≤ |t − s|ψZ(ξ)e−sψZ(ξ) ≤ γ̂0|t − s|	(|ξ |)e−εγ̂ −1

0 	(|ξ |) .

Therefore, by Eq. 3.5,

I2 ≤ γ̂0|t − s|
∫
Rd

|ξ |2e−εγ̂ −1
0 	(|ξ |) dξ = c2(γ̂0, ε)|t − s| .

The claim follows by taking c = c1 ∨ c2.

Define the Pruitt function P by

P(r) =
∫
Rd

(
|x|2
r2

∧ 1

)
j (x)dx. (3.6)

By [2, (6) and Lemma 1],

1

2γ̂0
ψ(r−1) ≤ 1

2
	(r−1) ≤ P(r) ≤ dπ2

2
	(r−1) ≤ γ̂0dπ2

2
ψ(r−1). (3.7)

In this paper we will use Eq. 3.7 several times.
We next discuss the upper estimate of p(t, x) and its derivatives for 0 < t ≤ T and all

x ∈ R
d using [10, Theorem 3].

Proposition 3.2 For each T ≥ 1 and k ∈ Z+, there is a constant c =
c(k, T , γ̂0, d, δ1, a1) ≥ 1 such that

|∇kp(t, x)| ≤ c t (	−1(t−1))kρ(t, x) , 0 < t ≤ T , x ∈ R
d ,

where ∇k stands for the k-th order gradient with respect to the spatial variable x.

Proof First, we recall that
∫
Rd jZ(x)dx = ∞. Let f (s) := 	(s−1)

sd . Then by Eq. 3.4 we have

jZ(x) ≤ Cγ̂0f (|x|). Thus for A ∈ B(Rd),

∫
A

jZ(x)dx ≤ Cγ̂0

∫
A

	(|x|−1)

|x|d dx ≤ Cγ̂0
	(dist (0, A)−1)

dist (0, A)d
|A|

≤ Cγ̂0f (dist (0, A))(diam(A))d .

Therefore, [10, (1)] holds with γ = d and M1 = Cγ̂0.
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Since (s ∨ |y|) − (|y|/2) ≥ s/2 for s > 0, using Eq. 3.7 in the last inequality we have
that for s, r > 0,

∫
|y|>r

f ((s ∨ |y|) − (|y|/2))jZ(y)dy ≤ 2d 	((s/2)−1)

sd

∫
|y|>r

jZ(y)dy

= 2d 	((s/2)−1)

sd

∫
|y|>r

(
|y|2
r2

∧ 1

)
jZ(y)dy

≤ 2d+2 	(s−1)

sd
P(r) ≤ 2d+1γ̂0dπ2f (s)ψ(r−1). (3.8)

Therefore, [10, (2)] holds with M1 = 2d+1γ̂0dπ2.
Furthermore, by Eqs. 3.3 and 2.2, for k ∈ Z+,
∫
Rd

e−tψZ(ξ)|ξ |k dξ ≤
∫
Rd

e−t γ̂ −1
0 	(|ξ |)|ξ |k dξ = d|B(0, 1)|

∫ ∞

0
rd+k−1e−t γ̂ −1

0 	(r) dr

= d|B(0, 1)|
∫ ∞

0
(	−1(s/t))d+k−1e−γ̂ −1

0 s(	−1)′(s/t)t−1 ds

≤ d|B(0, 1)|
∫ 1

0
(	−1(s/t))d+k−1(	−1)′(s/t)t−1 ds

+d|B(0, 1)|
∞∑

n=1

e−γ̂ −1
0 2n−1

∫ 2n

2n−1
(	−1(s/t))d+k−1(	−1)′(s/t)t−1 ds

= d|B(0, 1)|
d + k

∫ 1

0
((	−1(s/t))d+k)′ ds

+d|B(0, 1)|
d + k

∞∑
n=1

e−γ̂ −1
0 2n−1

∫ 2n

2n−1
((	−1(s/t))d+k)′ ds

≤ d|B(0, 1)|
d + k

(
(	−1(t−1))d+k +

∞∑
n=1

e−γ̂ −1
0 2n−1

(	−1(2n/t))d+k

)
.

Since t ≤ T , by Eq. 2.4 we have 	−1(2n/t) ≤ c02n/δ1	−1(t−1). Thus we see that

∫
Rd

e−tψZ(ξ)|ξ |k dξ ≤ d|B(0, 1)|
d + k

(	−1(t−1))d+k

(
1 + c0

∞∑
n=1

2n(d+k)/δ1e−γ̂ −1
0 2n−1

)

≤ c1	
−1(t−1)d+k ≤ c2ψ

−(t−1)d+k,

where c2 = c2(k) > 0 and ψ− is the generalized inverse of ψ : ψ−(s) = inf{u ≥ 0 :
ψ(u) ≥ s}. Therefore, [10, (8)] holds with the set (0, T ].

We have checked that the conditions in [10, Theorem 3] hold for all k ∈ Z+. Thus by
[10, Theorem 3] (with n = d + 2 in [10, Theorem 3]), there exists c3(k) > 0 such that for
t ≤ T ,

|∇kp(t, x)| ≤ c3ψ
−(t−1)k

(
ψ−(t−1)d ∧

(
t	(|x|−1)

|x|d + ψ−(t−1)d

(1 + |x|ψ−(t−1))d+2

))

≤ c4	
−1(t−1)k

(
	−1(t−1)d ∧

(
t	(|x|−1)

|x|d + 	−1(t−1)d

(1 + |x|	(t−1))d+2

))
.
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When |x|	−1(t−1) ≥ 1 (so that t	(|x|−1) ≤ 1),

	−1(t−1)d

(1+|x|	(t−1))d+2
≤ 	−1(t−1)d

(|x|	−1(t−1))d+2
=|x|−d

⎛
⎝	−1(	(|x|−1))

	−1
(

	(|x|−1)

t	(|x|−1)

)
⎞
⎠

2

≤|x|−d(t	(|x|−1)).

In the last inequality we have used Eq. 2.3. Therefore using Proposition 2.1 we conclude
that for all 0 < t ≤ T and x ∈ R

d ,

|∇kp(t, x)| ≤ c4	
−1(t−1)k

(
	−1(t−1)d ∧ t	(|x|−1)

|x|d
)

≤ c42d+2t	−1(t−1)kρ(t, x) .

3.1 Further Properties of p(t, x)

We will need the following simple inequality, cf. [6, (2.9)]: Let a > 0 and x ∈ R
d . For

every z ∈ R
d such that |z| ≤ (2a) ∨ (|x|/2), we have

(a + |x + z|)−1 ≤ 4(a + |x|)−1 . (3.9)

Indeed, if |z| ≤ 2a, then a + |x| ≤ a + |x + z| + |z| ≤ a + |x + z| + 2a ≤ 4(a + |x + z|).
If |z| ≤ |x|/2, then 4(a + |x + z|) ≥ 4a + 4|x| − 4|z| ≥ 4a + 4|x| − 2|x| ≥ a + |x|.

For a function f : R+ × R
d → R, we define

δf (t, x; z) := f (t, x + z) + f (t, x − z) − 2f (t, x) . (3.10)

Also, f (x ± z) is an abbreviation for f (x + z) + f (x − z).
The following result is the counterpart of [6, Lemma 2.3].

Proposition 3.3 For every T ≥ 1, there exists a constant c = c(T , d, γ̂0, d, δ1, a1) > 0
such that for every t ∈ (0, T ] and x, x′, z ∈ R

d ,
∣∣p(t, x) − p(t, x′)

∣∣ ≤ c
(
(	−1(t−1)|x − x′|) ∧ 1

)
t
(
ρ(t, x) + ρ(t, x′)

)
, (3.11)

∣∣δp(t, x; z)
∣∣ ≤ c

(
(	−1(t−1)|z|)2 ∧ 1

)
t (ρ(t, x ± z) + ρ(t, x)) , (3.12)

and

|δp(t, x; z) − δp(t, x′; z)| ≤ c
(
(	−1(t−1)|x − x′|) ∧ 1

) (
(	−1(t−1)|z|)2 ∧ 1

)

× t
(
ρ(t, x ± z) + ρ(t, x) + ρ(t, x′ ± z) + ρ(t, x′)

)
. (3.13)

Proof (1) Note that, by Proposition 3.2 with k = 0, Eq. 3.11 is clearly true if
	−1(t−1)|x −y| ≥ 1. Thus we assume that 	−1(t−1)|x −y| ≤ 1. We use Proposition
3.2 for k = 1 and

p(t, x) − p(t, y) = (x − y) ·
∫ 1

0
∇p(t, x + θ(y − x)) dθ (3.14)

to estimate |p(t, x) − p(t, y)| ≤ c1t	
−1(t−1)|x − y|∫ 1

0 ρ(t, x + θ(y − x))dθ . Since
θ |y − x| ≤ 1/	−1(t−1), we get from Eq. 3.9 that

(
1

	−1(t−1)
+ |x + θ(y − x)|

)−1

≤ 4

(
1

	−1(t−1)
+ |x|

)−1

.
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Therefore using Eq. 2.1 we have |p(t, x) − p(t, y)| ≤ c2|x − y|	−1(t−1)tρ(t, x),
t ∈ (0, T ].

(2) Note that Eq. 3.12 is clearly true if 	−1(t−1)|z| ≥ 1. In order to prove Eq. 3.12 when
	−1(t−1)|z| ≤ 1 we use Eq. 3.14 twice to obtain

δp(t, x; z) = z ·
∫ 1

0
(∇p(t, x + θz) − ∇p(t, x − θz)) dθ

= 2(z ⊗ z) ·
∫ 1

0

∫ 1

0
θ∇2p(t, x + (1 − 2θ ′)θz) dθ ′ dθ . (3.15)

Note that |(1 − 2θ ′)θz| ≤ |z| ≤ 1
	−1(t−1)

. Hence, by Proposition 3.2 and Eq. 3.9 we
get the estimate∣∣∣θ∇2p(t, x + (1 − 2θ ′)θz)

∣∣∣ ≤ c3

(
	−1(t−1)

)2
tρ(t, x) .

Therefore, δp(t, x; z) ≤ c4
(
	−1(t−1)|z|)2

tρ(t, x), t ∈ (0, T ].
(3) It follows from Eq. 3.12 that it suffices to prove Eq. 3.13 in the case when

	−1(t−1)|x − y| ≤ 1. To do this, we start with the subcase when 	−1(t−1)|z| ≤ 1
and 	−1(t−1)|x − y| ≤ 1. Then by Eq. 3.15,

|δp(t, x; z) − δp(t, y; z)|
≤ c5|x − y| · |z|2

∫ 1

0

∫ 1

0

∫ 1

0
|∇3p(t, x + (1 − 2θ ′)θz + θ ′′(y − x))| dθdθ ′dθ ′′.

Note that |(1−2θ ′)θz+θ ′′(y−x))| ≤ 2
	−1(t−1)

. Hence, by Proposition 3.2 and Eq. 3.9
we get

|δp(t, x; z) − δp(t, y; z)| ≤ c6	
−1(t−1)|x − y|(	−1(t−1)|z|)2tρ(t, x) .

If 	−1(t−1)|z| ≥ 1 and 	−1(t−1)|x − y| ≤ 1, then again by Proposition 3.2 and
Eq. 3.9,

|δp(t, x; z) − δp(t, y; z)|

≤ c7

(
|x − y|

∫ 1

0
|∇p(t, x ± z + θ(y − x))| dθ

+|x − y|
∫ 1

0
|∇p(t, x + θ(y − x))| dθ

)

≤ c8	
−1(t−1)|x − y| (tρ(t, x ± z) + tρ(t, x)) , t ∈ (0, T ].

The following result is the counterpart of [6, Theorem 2.4].

Theorem 3.4 For every T ≥ 1, there exists a constant c = c(T , d, γ̂0, d, δ1, a1) > 0 such
that for all t ∈ (0, T ] and all x, x′ ∈ R

d ,∫
Rd

∣∣δp(t, x; z)
∣∣ j (|z|) dz ≤ cρ(t, x) (3.16)

and∫
Rd

∣∣δp(t, x; z) − δp(t, x′; z)
∣∣ j (|z|) dz ≤ c

(
(	−1(t−1)|x − x′|) ∧ 1

)
(ρ(t, x)+ρ(t, x′)) .

(3.17)
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Proof By Eq. 3.12 we have

∫
Rd

∣∣δp(t, x; z)
∣∣ j (|z|) dz

≤ c0

∫
Rd

(
(	−1(t−1)|z|)2 ∧ 1

)
t (ρ(t, x ± z) + ρ(t, x)) j (|z|) dz

= c0

(∫
Rd

(
(	−1(t−1)|z|)2 ∧ 1

)
tρ(t, x ± z)j (|z|) dz + tρ(t, x)P(1/	−1(t−1))

)

=: c0 (I1 + I2) . (3.18)

Clearly by Eq. 3.7, I2 ≤ c1tρ(t, x)	(	−1(t−1)) = c1ρ(t, x) . Next,

I1 = 	−1(t−1)2
∫

	−1(t−1)|z|≤1
|z|2tρ(t, x ± z)j (|z|) dz

+
∫

	−1(t−1)|z|>1
tρ(t, x ± z)j (|z|) dz

=: I11 + I12 .

By using Eq. 3.9 in the first inequality below and Eq. 3.7 in the third, we further have

I11 ≤ 4d+1tρ(t, x)

∫
|z|≤ 1

	−1(t−1)

((	−1(t−1)|z|)2 ∧ 1)j (|z|) dz

≤ 4d+1tρ(t, x)P(1/	−1(t−1)) ≤ c2ρ(t, x) .

Next, we have

I12 ≤ t

∫
|z|> 1

	−1(t−1)

	

((
1

	−1(t−1)

)−1
)(

1

	(t−1)

)−d

j (|z|) dz

= 	−1(t−1)d
∫

|z|> 1
	−1(t−1)

((	−1(t−1)|z|)2 ∧ 1)j (|z|) dz

≤ 	−1(t−1)dP(1/	−1(t−1)) ≤ c3	
−1(t−1)d	(	−1(t−1)) = c3	

−1(t−1)d t−1 ,

where in the last line we used Eq. 3.7. If |x| ≤ 2/	−1(t−1), we have that

ρ(t, x) ≥ 	

((
3

	−1(t−1)

)−1
)(

3

	(t−1)

)−d

≥ c4t
−1	−1(t−1)d ,

implying that I12 ≤ c5ρ(t, x).
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If |x| > 2/	−1(t−1), then by Eq. 3.7,

I12 =
⎛
⎝

∫
|x|
2 ≥|z|> 1

	−1(t−1)

+
∫

|z|> |x|
2

⎞
⎠ tρ(t, x ± z)j (|z|) dz

≤ c6

⎛
⎝tρ(t, x)

∫
|x|
2 ≥|z|> 1

	−1(t−1)

j (|z|) dz + j (|x|/2)

∫
|z|> |x|

2

tρ(t, x ± z) dz

⎞
⎠

≤ c7

⎛
⎝tρ(t, x)

∫
|z|> 1

	−1(t−1)

j (|z|) dz + 	(2|x|−1)

|x|d
∫
Rd

tρ(t, x ± z) dz

⎞
⎠

≤ c7

(
tρ(t, x)P(1/	−1(t−1)) + 	(|x|−1)

|x|d
)

≤ c8

(
ρ(t, x) + 	(|x|−1)

|x|d
)

≤ c9ρ(t, x) ,

where in the last line the second term is estimated by a constant times the first term in view
of the assumption that |x| > 2/	−1(t−1). This finishes the proof of Eq. 3.16.

Next, by Eq. 3.13 we have
∫
Rd

∣∣δp(t, x; z) − δp(t, x′; z)
∣∣ j (|z|) dz ≤ c10

(
(	−1(t−1)|x − x′|) ∧ 1

)

×
{∫

Rd

(
(	−1(t−1)|z|)2 ∧ 1

) (
tρ(t, x ± z) + tρ(t, x′ ± z)

)
j (|z|) dz

+ (
tρ(t, x) + tρ(t, x′)

) ∫
Rd

(
(	−1(t−1)|z|)2 ∧ 1

)
j (|z|) dz

}

≤ c11

(
(	−1(t−1)|x − x′|) ∧ 1

)
t−1 (

tρ(t, x) + tρ(t, x′)
)

,

where the last line follows by using the estimates of the integrals I1 and I2 from the first
part of the proof.

3.2 Continuous Dependence of Heat Kernels with Respect to K

Recall that J : Rd → (0, ∞) is a symmetric function satisfying Eq. 1.7. We now specify the
jumping kernel jZ . Let K : Rd → (0, ∞) be a symmetric function, that is, K(z) = K(−z).
Assume that there are 0 < κ0 ≤ κ1 < ∞ such that

κ0 ≤ K(z) ≤ κ1 , for all z ∈ R
d . (3.19)

Let jK(z) := K(z)J (z), z ∈ R
d . Then jK satisfies Eq. 3.2 with γ̂0 = γ0(κ1 ∨ κ−1

0 ). The
infinitesimal generator of the corresponding symmetric Lévy process ZK is given by

LKf (x) = p.v.

∫
Rd

(f (x + z) − f (x))K(z)J (z) dz

= 1

2
p.v.

∫
Rd

δf (x; z)K(z)J (z) dz . (3.20)
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We note in passing that, when f ∈ C2
b (Rd), it is not necessary to take the principal value

in the last line above. The transition density of ZK (i.e., the heat kernel of LK) will be
denoted by pK(t, x). Then by Lemma 3.1,

∂pK(t, x)

∂t
= LKpK(t, x) , lim

t→0
pK(t, x) = δ0(x) . (3.21)

We will need the following observation for the next result. The inequality Eq. 2.4 implies
that there exists a constant c(κ0) ≥ 1 such that

	−1((κ0t/2)−1) ≤ a
−1/δ1
1 	−1(T −1)−1(1 ∨ (κ0/2))1/δ1	−1(t−1) for all t ∈ (0, T ].

Consequently, for all z ∈ R
d and t ∈ (0, T ],(

	−1((κ0t/2)−1)|z|
)

∧ 1 ≤ a
−1δ1
1 	−1(T −1)−1(1 ∨ (κ0/2))1/δ1

((
	−1(t−1)|z|

)
∧ 1

)
.

(3.22)
The following result is the counterpart of [6, Theorem 2.5], and in its proof we follow

the proof of [6, Theorem 2.5] with some modifications.

Theorem 3.5 For every T ≥ 1, there exists a constant c > 0 depending on T , d, κ0, κ1,

γ0, a1 and δ1 such that for any two symmetric functions K1 and K2 inRd satisfying Eq. 3.19,
every t ∈ (0, T ] and x ∈ R

d , we have∣∣∣pK1(t, x) − pK2(t, x)

∣∣∣ ≤ c‖K1 − K2‖∞ tρ(t, x) , (3.23)∣∣∣∇pK1(t, x) − ∇pK2(t, x)

∣∣∣ ≤ c‖K1 − K2‖∞	−1(t−1)tρ(t, x) (3.24)

and ∫
Rd

∣∣∣δpK1 (t, x; z) − δpK2 (t, x; z)

∣∣∣ j (|z|) dz ≤ c‖K1 − K2‖∞ρ(t, x) . (3.25)

Proof (i) Using Eq. 3.21 in the second and third lines, the fact LK1 is self-adjoint in the
fourth and fifth lines, we have

pK1(t, x) − pK2(t, x) =
∫ t

0

d

ds

(∫
Rd

pK1(s, y)pK2(t − s, y − x) dy

)
ds

=
∫ t

0

(∫
Rd

(
LK1pK1(s, ·)(y)pK2(t − s, y − x)

−pK1(s, y)LK2pK2(t − s, ·)(y − x)
)

dy

)
ds

=
∫ t/2

0

(∫
Rd

pK1(s, y)
(
LK1 − LK2

)
pK2(t − s, ·)(y − x)dy

)
ds

+
∫ t

t/2

(∫
Rd

(
LK1 − LK2

)
pK1(s, ·)(y)pK2(t − s, y − x)dy

)
ds

= 1

2

∫ t/2

0

(∫
Rd

pK1(s, y)

(∫
Rd

δpK2 (t−s, x−y; z)(K1(z)−K2(z))J (z)dz

)
dy

)
ds

+1

2

∫ t

t/2

(∫
Rd

pK2(t−s, x−y)

(∫
Rd

δpK1 (s, y; z)(K1(z)−K2(z))J (z)dz

)
dy

)
ds.
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By using Eq. 3.16, Proposition 3.2 and the convolution inequality Eq. 2.19, we
have

∫ t/2

0

(∫
Rd

pK1 (s, y)

(∫
Rd

δpK2 (t − s, x − y; z)(K1(z) − K2(z))J (z)dz

)
dy

)
ds

+
∫ t/2

0

(∫
Rd

pK2 (s, x − y)

(∫
Rd

δpK1 (t − s, y; z)(K1(z) − K2(z))J (z)dz

)
dy

)
ds

≤ γ̂0‖K1 − K2‖∞

(∫ t/2

0

(∫
Rd

pK1(s, y)

(∫
Rd

∣∣∣δpK2 (t − s, x − y; z)

∣∣∣ j (|z|)dz

)
dy

)
ds

+
∫ t/2

0

(∫
Rd

pK2 (s, x − y)

(∫
Rd

∣∣∣δpK1 (t − s, y; z)

∣∣∣ j (|z|)dz

)
dy

)
ds

)

≤ c1‖K1 − K2‖∞
∫ t/2

0

∫
Rd

s (ρ(s, y)ρ(t − s, x − y) + ρ(s, x − y)ρ(t − s, y)) dy ds

≤ 2c1‖K1 − K2‖∞t−1
∫ t

0

∫
Rd

s(t − s)(ρ(s, y)ρ(t − s, x − y)

+ρ(s, x − y)ρ(t − s, y))dyds

≤ c2‖K1 − K2‖∞ tρ(t, x), for all t ∈ (0, T ], x ∈ R
d .

(ii) Set K̂i (z) := Ki (z) − κ0/2, i = 1, 2. It is straightforward to see that pκ0/2(t, x) =
p1(κ0t/2, x). Thus, by the construction of the Lévy process we have that for i = 1, 2,

pKi (t, x) =
∫
Rd

pκ0/2(t, x − y)pK̂i (t, y) dy =
∫
Rd

p1(κ0t/2, x − y)pK̂i (t, y) dy.

(3.26)
By Eq. 3.26, Proposition 3.2, Eqs. 3.23, 2.18 in the penultimate line (with t, 2t

instead of s, t), and Lemma 2.2(b) in the last line, we have that for all t ∈ (0, T ] and
x ∈ R

d ,

∣∣∣∇pK1(t, x)−∇pK2(t, x)

∣∣∣=
∣∣∣∣
∫
Rd

∇p1 (κ0t/2, x−y) (pK̂1(t, y)−pK̂2(t, y))dy

∣∣∣∣
≤ c1‖K1 − K2‖∞	−1(t−1)t2

∫
Rd

ρ(t, x − y)ρ(t, y) dy

≤ c2‖K1 − K2‖∞	−1(t−1)tρ(t, y) .

(iii) By using Eqs. 3.26, 3.12, Lemma 2.6(b) and Eq. 3.23, we have

∣∣∣δpK1 (t, x; z) − δpK2 (t, x; z)

∣∣∣
=

∣∣∣∣
∫
Rd

δp1 (κ0t/2, x − y; z)
(
pK̂1(t, y) − pK̂2(t, y)

)
dy

∣∣∣∣
≤ c1‖K1 − K2‖∞

(
(	−1(t−1)|z|)2 ∧ 1

)
t2

∫
Rd

(ρ(t, x − y ± z)

+ρ(t, x − y))ρ(t, y)dy

≤ c2‖K1 − K2‖∞
(
(	−1(t−1)|z|)2 ∧ 1

)
t (ρ(t, x ± z) + ρ(t, x)) .
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Now we have
∫
Rd

∣∣∣δpK1 (t, x; z) − δpK2 (t, x; z)

∣∣∣ j (|z|) dz ≤ c2‖K1 − K2‖∞

×
∫
Rd

(
(	−1(t−1)|z|)2 ∧ 1

)
t (ρ(t, x ± z) + ρ(t, x)) j (|z|) dz

= c2‖K1 − K2‖∞
∫
Rd

(
(	−1(t−1)|z|)2 ∧ 1

)
t (ρ(t, x ± z) + ρ(t, x)) j (|z|) dz,

which is the same as Eq. 3.18 and was estimated in the proof of Theorem 3.4 by
c3ρ(t, x). This finishes the proof.

4 Levi’s Construction of Heat Kernels

For the remainder of this paper, we always assume that κ : Rd × R
d → (0, ∞) is a Borel

function satisfying Eqs. 1.1 and 1.2, that 	 satisfies Eqs. 1.4 and 1.5 and that J satisfies
Eq. 1.7. Throughout the remaining part of this paper, β is the constant in Eq. 1.2.

For a fixed y ∈ R
d , let Ky(z) = κ(y, z) and let LKy be the freezing operator

LKy f (x) = LKy ,0f (x) = lim
ε↓0

LKy ,εf (x), where LKy ,εf (x)

=
∫

|z|>ε

δf (x; z)κ(y, z)J (z)dz. (4.1)

Let py(t, x) = pKy (t, x) be the heat kernel of the operator LKy . Note that x �→ py(t, x) is
in C∞

0 (Rd) and satisfies Eq. 3.21.

4.1 Estimates on py(t, x − y)

The following result is the counterpart of [6, Lemmas 3.2 and 3.3].

Lemma 4.1 For every T ≥ 1 and β1 ∈ (0, δ1) ∩ (0, β], there exists a constant c = c(T , d ,
δ1, β1, κ0, κ1, κ2, γ0) > 0 such that for all x ∈ R

d and t ∈ (0, T ],
∣∣∣∣
∫
Rd

LKx ,εpy(t, ·)(x − y) dy

∣∣∣∣ ≤ c t−1 	−1(t−1)−β1 , for all ε ∈ [0, 1], (4.2)

∣∣∣∣
∫
Rd

∂tpy(t, x − y) dy

∣∣∣∣ ≤ c t−1 	−1(t−1)−β1 , (4.3)

∣∣∣∣
∫
Rd

∇py(t, ·)(x − y) dy

∣∣∣∣ ≤ c 	−1(t−1)1−β1 . (4.4)

Furthermore, we have

lim
t↓0

sup
x∈Rd

∣∣∣∣
∫
Rd

py(t, x − y) dy − 1

∣∣∣∣ = 0 . (4.5)
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Proof Choose γ ∈ (0, δ1 − β1) ∩ (0, 1]. Since
∫
Rd pz(t, ξ − y)dy = 1 for every ξ, z ∈ R

d ,
by the definition of δpx we have

∫
Rd δpx (t, x −y; w)dy = 0. Therefore, using this, Eqs. 1.1,

1.7 and 3.25, for ε ∈ [0, 1] and t ∈ (0, T ],
∣∣∣∣
∫
Rd

LKx ,εpy(t, ·)(x − y) dy

∣∣∣∣
=

∣∣∣∣
∫
Rd

(∫
|w|>ε

(
δpy (t, x − y; w) − δpx (t, x − y; w)

)
κ(x, w)J (w) dw

)
dy

∣∣∣∣
≤ κ1γ0

∫
Rd

(∫
|w|>ε

∣∣δpy (t, x − y; w) − δpx (t, x − y; w)
∣∣ j (|w|) dw

)
dy

≤ c1

∫
Rd

‖κ(y, ·) − κ(x, ·)‖∞ρ(t, x − y) dy

≤ c1κ2

∫
Rd

(|x − y|β1 ∧ 1
)
ρ(t, x − y) dy ≤ c2t

−1	−1(t−1)−β1 .

Here the last line follows from Eqs. 1.2 and 2.17 since β1 + γ ∈ (0, δ1).
For Eq. 4.3, by using Eqs. 3.16 and 4.2 in the third line, we get, for t ∈ (0, T ],

∣∣∣∣
∫
Rd

∂tpy(t, x − y) dy

∣∣∣∣ =
∣∣∣∣
∫
Rd

LKy py(t, ·)(x − y) dy

∣∣∣∣
≤

∣∣∣∣
∫
Rd

(
LKx − LKy

)
py(t, ·)(x − y) dy

∣∣∣∣ +
∣∣∣∣
∫
Rd

LKx py(t, ·)(x − y) dy

∣∣∣∣
≤ c3

∫
Rd

ρ
β1
0 (t, x − y) dy + c2t

−1	−1(t−1)−β1 ≤ c4t
−1	−1(t−1)−β1 .

Here we have used Eq. 2.17 in the last inequality.
For Eq. 4.4, by Eq. 3.24 we have

∣∣∣∣
∫
Rd

∇py(t, ·)(x − y) dy

∣∣∣∣ =
∣∣∣∣
∫
Rd

(∇py(t, ·) − ∇px(t, ·)
)
(x − y) dy

∣∣∣∣
≤ c5

∫
Rd

‖κ(x, ·) − κ(y, ·)‖∞t	−1(t−1)ρ(t, x − y) dy

≤ c6

∫
Rd

(|x − y|β1 ∧ 1
)
t	−1(t−1)ρ(t, x − y) dy

= t	−1(t−1)

∫
Rd

ρ
β1
0 (t, x − y) dy

≤ c7t	
−1(t−1)t−1	−1(t−1)−β1 = 	−1(t−1)1−β1 .

In the last inequality we used Lemma 2.6(a) which requires that β1 + γ ∈ (0, δ1).
Finally, by using Eq. 3.23 in the second line and Eq. 2.17 in the last inequality, we get

sup
x∈Rd

∣∣∣∣
∫
Rd

py(t, x − y) dy − 1

∣∣∣∣ ≤ sup
x∈Rd

∫
Rd

∣∣py(t, x − y) − px(t, x − y)
∣∣ dy

≤ c8 sup
x∈Rd

∫
Rd

‖κ(y, ·) − κ(x, ·)‖∞tρ(t, x − y) dy

≤ c9t sup
x∈Rd

∫
Rd

ρ
β1
0 (t, x − y) dy ≤ c10	

−1(t−1)−β1 , t ∈ (0, T ] .
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Lemma 4.2 The function py(t, x) is jointly continuous in (t, x, y).

Proof By the triangle inequality, we have

|py1(t1, x1) − py2(t2, x2)| ≤ |py1(t1, x1) − py2(t1, x1)| + |py2(t1, x1) − py2(t2, x2)|.

Applying Eqs. 3.23 and 1.2 to the first term on the right hand side and Lemma 3.1(b) to the
second term on the right hand side, we immediately get the desired joint continuity.

4.2 Construction of q(t, x, y)

For (t, x, y) ∈ (0, ∞) × R
d × R

d define

q0(t, x, y) := 1

2

∫
Rd

δpy (t, x − y; z) (κ(x, z) − κ(y, z)) J (z) dz

=
(
LKx − LKy

)
py(t, ·)(x − y) . (4.6)

In the next lemma we collect several estimates on q0 that will be needed later on.

Lemma 4.3 For every T ≥ 1 and β0 ∈ (0, β], there is a constant C1 ≥ 1 depending on
d, δ1, κ0, κ1, κ2, γ, T and 	−1(T −1) such that for t ∈ (0, T ] and x, x′, y, y′ ∈ R

d ,

|q0(t, x, y)| ≤ C1(|x − y|β0 ∧ 1)ρ(t, x − y) = C1ρ
β0
0 (t, x − y), (4.7)

and for all γ ∈ (0, β0),

|q0(t, x, y) − q0(t, x
′, y)|

≤ C1
(|x − x′|β0−γ ∧ 1

) {(
ρ0

γ + ρ
β0
γ−β0

)
(t, x − y) +

(
ρ0

γ + ρ
β0
γ−β0

)
(t, x′ − y)

}

(4.8)

and

|q0(t, x, y) − q0(t, x, y′)| ≤ C1	
−1(t−1)β0

(|y − y′|β0 ∧ 1
) (

ρ(t, x − y) + ρ(t, x − y′)
)
.

(4.9)

Proof (a) Equation 4.7 follows from Eqs. 3.16 and 1.2.
(b) By Eqs. 4.7 and 2.14, we have that for t ∈ (0, T ],

|q0(t, x, y)| ≤ c0ρ
β0
0 (t, x − y) ≤ c0	

−1(T −1)γ−β0ρ
β0
γ−β0

(t, x − y),

which proves Eq. 4.8 for |x − x′| ≥ 1. Now suppose that 1 ≥ |x − x′| ≥ 	−1(t−1)−1.
Then, by Eq. 4.7, for t ∈ (0, T ],

|q0(t, x, y)|≤ c1

(
	−1(t−1)

)−(β0−γ )

ρ
β0
γ−β0

(t, x−y) ≤ c1|x−x′|β0−γ ρ
β0
γ−β0

(t, x−y),



62 P. Kim et al.

and the same estimate is valid for |q0(t, x
′, y)|. By adding we get Eq. 4.8 for this case.

Finally, assume that |x − x′| ≤ 1 ∧ 	−1(t−1)−1. Then, by Eqs. 1.7, 1.2 and 3.17, for
t ∈ (0, T ],

|q0(t, x, y) − q0(t, x
′, y)| =

∣∣∣∣
∫
Rd

δpy (t, x − y; z)(κ(x, z) − κ(y, z))J (z) dz

−
∫
Rd

δpy (t, x
′ − y; z)(κ(x′, z) − κ(y, z))J (z) dz

∣∣∣∣
≤ γ0

∫
Rd

|δpy (t, x − y; z) − δpy (t, x
′ − y; z)| |κ(x, z) − κ(y, z)|j (|z|) dz

+γ0

∫
Rd

|δpy (t, x
′ − y; z)||κ(x, z) − κ(x′, z)|j (|z|) dz

≤ γ0κ2
(|x − y|β0 ∧ 1

) ∫
Rd

|δpy (t, x − y; z) − δpy (t, x
′ − y; z)|j (|z|) dz

+γ0κ2
(|x − x′|β0 ∧ 1

) ∫
Rd

|δpy (t, x
′ − y; z)|j (|z|) dz

≤ c2
(|x − y|β0 ∧ 1

) (
ρ(t, x − y) + ρ(t, x′ − y)

) + c2|x − x′|β0ρ(t, x′ − y).

By using the definition of ρ(t, x′−y), the obvious equality x′−y = (x−y)+(x′−x),
the assumption that |x − x′| ≤ 	−1(t−1)−1 and Eq. 3.9, we conclude that ρ

β

0 (t, x′ −
y) ≤ 4ρ

β

0 (t, x − y). Thus, it follows that for t ∈ (0, T ],
|q0(t, x, y) − q0(t, x

′, y)| ≤ 5 c2 ρ
β0
0 (t, x − y) + c2|x − x′|β0ρ(t, x′ − y)

≤ 5 c2 |x − x′|β0−γ ρ
β0
γ−β0

(t, x − y)

+c2|x − x′|β0−γ ρ0
γ (t, x′ − y) .

(c) First note that

q0(t, x, y) − q0(t, x, y′)

= 1

2

∫
Rd

δpy (t, x − y; z)
(
κ(y′, z) − κ(y, z)

)
J (z) dz

+1

2

∫
Rd

(
δpy (t, x − y; z) − δpy (t, x − y′; z)

) (
κ(x, z) − κ(y′, z)

)
J (z) dz

+1

2

∫
Rd

(
δpy (t, x − y′; z) − δ

py′ (t, x − y′; z)
) (

κ(x, z) − κ(y′, z)
)
J (z) dz

=: I1 + I2 + I3 .

It follows from Eqs. 1.2, 1.7 and 3.16 that for t ∈ (0, T ],
|I1|≤c1

(|y−y′|β0 ∧1
) ∫

Rd

∣∣δpy (t, x−y; z)
∣∣ j (|z|) dz≤c2

(|y−y′|β0 ∧1
)
ρ(t, x−y) ,

which is smaller than or equal to the right-hand side in Eq. 4.9 since 	−1(t−1) ≥
	−1(T −1). By Eqs. 1.1, 1.7 and 3.17 we get that

|I2| ≤ c1

∫
Rd

∣∣δpy (t, x − y; z) − δpy (t, x − y′; z)
∣∣ j (|z|) dz

≤ c2

(
(	−1(t−1)|y − y′|) ∧ 1

) (
ρ(t, x − y) + ρ(t, x − y′)

)

≤ c2 	−1(T −1)−β0	−1(t−1)β0
(|y − y′|β0 ∧ 1

) (
ρ(t, x − y) + ρ(t, x − y′)

)
.
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Finally, by Eqs. 1.1, 1.2, 1.7 and 3.25, for t ∈ (0, T ],

|I3| ≤ c1

∫
Rd

∣∣∣δpy (t, x − y′; z) − δ
py′ (t, x − y′; z)

∣∣∣ j (|z|) dz

≤ c3 ‖κ(y, ·) − κ(y′, ·)‖∞ρ(t, x − y′) ≤ c4
(|y − y′|β0 ∧ 1

)
ρ(t, x − y′) .

Lemma 4.4 The function q0(t, x, y) is jointly continuous in (t, x, y).

Proof It follows from Lemma 4.2 that (t, x, y) �→ py(t, x − y) is jointly continuous and
hence also that δpy (t, x−y; z) is jointly continuous in (t, x, y). To prove the joint continuity
of q0(t, x, y), let (tn, xn, yn) → (t, x, y) ∈ (0, T ] × R

d × R
d and assume that 0 < ε ≤

tn ≤ T . The integrands will converge because of the joint continuity of δpy and continuity
of κ in the first variable. Moreover, by Eq. 3.12,

∣∣δpyn
(tn, xn − yn; z)

∣∣ |κ(xn, z) − κ(yn, z)|j (|z|)
≤ c1

(
(	−1(t−1

n )|z|2) ∧ 1
)

T (ρ(tn, xn − yn ± z) + ρ(tn, xn, yn)) j (|z|)
≤ c2ρ(ε, 0)

(
(	−1(ε−1)|z|2) ∧ 1

)
j (|z|).

Since the right-hand side is integrable on R
d , the joint continuity follows by use of the

dominated convergence theorem.

For n ∈ N, we inductively define

qn(t, x, y) :=
∫ t

0

∫
Rd

q0(t − s, x, z)qn−1(s, z, y) dz ds, (t, x, y) ∈ (0, ∞) × R
d × R

d .

(4.10)
The following result is the counterpart of [6, Theorem 3.1].

Theorem 4.5 The series q(t, x, y) := ∑∞
n=0 qn(t, x, y) is absolutely and locally uniformly

convergent on (0,∞) × R
d × R

d and solves the integral equation

q(t, x, y) = q0(t, x, y) +
∫ t

0

∫
Rd

q0(t − s, x, z)q(s, z, y) dz ds . (4.11)

Moreover, q(t, x, y) is jointly continuous in (t, x, y) ∈ (0, ∞) × R
d × R

d and has the
following estimates: for every T ≥ 1 and β2 ∈ (0, β] ∩ (0, δ1/2) there is a constant C2 =
C2(T , d, δ1, κ0, κ1, κ2, β2, γ0) > 0 such that

|q(t, x, y)| ≤ C2

(
ρ

β2
0 + ρ0

β2

)
(t, x − y), (t, x, y) ∈ (0, T ] × R

d × R
d , (4.12)

and for any γ ∈ (0, β2) and T ≥ 1 there is a constant C3 = C3(T , d, δ1, γ, κ0, κ1, κ2,

γ0, β2) > 0 such that for all (0, T ] × R
d × R

d ,

|q(t, x, y) − q(t, x′, y)|
≤ C3

(|x − x′|β2−γ ∧ 1
) ((

ρ0
γ + ρ

β2
γ−β2

)
(t, x−y) +

(
ρ0

γ + ρ
β2
γ−β2

)
(t, x′ − y)

)
. (4.13)
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Proof This proof follows the main idea of the proof of [6, Theorem 3.1], except that we give
a full proof of the joint continuity in Step 2. We give the details for the readers’ convenience.
In this proof, T ≥ 1 is arbitrary.

Step 1: By Eqs. 4.7, 2.19 and 2.20, we have that

|q1(t, x, y)| ≤ C2
1

∫ t

0

∫
Rd

ρ
β2
0 (t − s, x − y − u)ρ

β2
0 (s, u) du ds

≤ 8C0C
2
1B (β2/2, β2/2)

(
ρ0

2β2
+ ρ

β2
β2

)
(t, x − y), t ≤ T .

Let C = 24C0C
2
1 and we claim that for n ≥ 1 and t ≤ T ,

|qn(t, x, y)| ≤ γn

(
ρ0

(n+1)β2
+ ρ

β2
nβ2

)
(t, x − y) (4.14)

with

γn = Cn+1
n∏

j=1

B (β2/2, jβ2/2) .

We have seen that Eq. 4.14 is valid for n = 1. Suppose that it is valid for n. Then
by using Eqs. 2.19, 2.20, 2.14 and 2.15, we have that for t ≤ T ,

|qn+1(t, x, y)| ≤
∫ t

0

∫
Rd

|q0(t − s, x, z)| |qn(s, z, y)| dz ds

≤ C1γn

∫ t

0

∫
Rd

ρ
β2
0 (t−s, x−z)

(
ρ0

(n+1)β2
+ ρ

β2
nβ2

)
(s, z−y) dz ds

≤ 24C0C1γnB

(
β2

2
,
(n + 1)β2

2

)(
ρ0

(n+2)β2
+ ρ

β2
(n+1)β2

)
(t, x−y)

≤ γn+1

(
ρ0

(n+2)β2
+ ρ

β2
(n+1)β2

)
(t, x − y) .

Thus Eq. 4.14 is valid. Since

∞∑
n=0

γn	
−1(T −1)−(n+1)β2 =

∞∑
n=0

(
	−1(T −1)−β2C�

(
β2
2

))n+1

�
(

(n+1)β2
2

) =: C2 < ∞ ,

by using Eqs. 2.14 and 2.15 in the second line, it follows that for t ≤ T ,

∞∑
n=0

|qn(t, x, y)| ≤
∞∑

n=0

γn

(
ρ0

(n+1)β2
+ ρ

β2
nβ2

)
(t, x − y)

≤
∞∑

n=0

γn	
−1(T −1)−(n+1)β2

(
ρ0

β2
+ ρ

β2
0

)
(t, x−y)=C2

(
ρ0

β2
+ ρ

β2
0

)
(t, x−y) .

This proves that
∑∞

n=0 qn(t, x, y) is absolutely and uniformly convergent on
[ε, T ] × R

d × R
d for all ε ∈ (0, 1) and T ≥ 1, hence q(t, x, y) is well defined.

Further, by Eq. 4.10,

m+1∑
n=0

qn(t, x, y) = q0(t, x, y) +
∫ t

0

∫
Rd

q0(t − s, x, z)

m∑
n=0

qn(s, z, y) dz ds ,

and Eq. 4.11 follows by taking the limit of both sides as m → ∞.
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Step 2: The joint continuity of q0(t, x, y) was shown in Lemma 4.4. We now prove the
joint continuity of q1(t, x, y). For any x, y ∈ R

d and t, h > 0, we have

q1(t + h, x, y) − q1(t, x, y)

=
∫ t+h

t

∫
Rd

q0(t + h − s, x, z)q0(s, z, y)dzds

+
∫ t

0

∫
Rd

(q0(t + h − s, x, z) − q0(t − s, x, z)) q0(s, z, y)dzds. (4.15)

It follows from Eq. 4.7 that, there exists c1 = c1(T ) > 0 such that, for 0 < h ≤
t/4 and t + h ≤ T ,

sup
x,y∈Rd

∣∣∣∣
∫ t+h

t

∫
Rd

q0(t + h − s, x, z)q0(s, z, y)dzds

∣∣∣∣

≤ c1 sup
x,y∈Rd

∫ t+h

t

∫
Rd

ρ
β2
0 (t + h − s, x − z)ρ

β2
0 (s, z − y)dzds

= c1 sup
x,y∈Rd

∫ h

0

∫
Rd

ρ
β2
0 (r, x − z)ρ

β2
0 (t + h − r, z − y)dzdr

≤ c1

∫ h

0
sup

x,y∈Rd

∫
Rd

ρ
β2
0 (r, x − z)ρ

β2
0 (t − r, z − y)dzdr.

Now applying Lemma 2.6(b), we get

sup
x,y∈Rd

∫
Rd

ρ
β2
0 (r, x − z)ρ

β2
0 (t − r, z − y)dz

≤ c2((t − r)−1	−1((t − r)−1)−β2 + r−1	−1(r−1)−β2)ρ(t, 0).

It follows from Lemma 2.3 that the right-hand side of the display above is
integrable in r ∈ (0, t), so by the dominated convergence theorem, we get

lim
h↓0

sup
x,y∈Rd

∣∣∣∣
∫ t+h

t

∫
Rd

q0(t + h − s, x, z)q0(s, z, y)dzds

∣∣∣∣ = 0. (4.16)

Using Eq. 4.7 again, we get that for s ∈ (0, t],
| (q0(t + h − s, x, z) − q0(t − s, x, z)) q0(s, z, y)|
≤ c3

(
ρ

β2
0 (t + h − s, x − z) + ρ

β2
0 (t − s, x − z)

)
ρ

β2
0 (s, z − y)

≤ c4ρ
β2
0 (t − s, x − z)ρ

β2
0 (s, z − y).

It follows from Lemma 2.6(c) that
∫ t

0

∫
Rd

ρ
β2
0 (t − s, x − z)ρ

β2
0 (s, z − y)dzds ≤ c5(ρ

2β2
0 (t, 0) + ρ

β2
β2

(t, 0)) < ∞,

thus we can use the dominated convergence theorem to get that, by the continuity
of q0,

lim
h↓0

∫ t

0

∫
Rd

(q0(t + h − s, x, z) − q0(t − s, x, z)) q0(s, z, y)dzds = 0. (4.17)
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It follows from Eq. 4.9 that for s ∈ (0, T ],
|q0(s, z, y) − q0(s, z, y

′)|
≤ c6

(
(	−1(s−1)|y − y′|)β2 ∧ 1

) (
ρ(s, z − y) + ρ(s, z − y′)

)
.

Now we fix 0 < t1 ≤ t2 ≤ T . Then for any ε ∈ (0, t1/4), t ∈ [t1, t2] and s ∈ [ε, t],
|q0(t − s, x, z)

(
q0(s, z, y) − q0(s, z, y

′)
) |

≤ c7

(
(	−1(ε−1)|y − y′|)β2 ∧ 1

)
ρ

β2
0 (t − s, x, z)

(
ρ(s, z − y) + ρ(s, z − y′)

)
.

By Lemma 2.6(c), we have

sup
x,y,y′∈Rd ,t∈[t1,t2]

∫ t

0

∫
Rd

ρ
β2
0 (t − s, x, z)

(
ρ(s, z − y) + ρ(s, z − y′)

)
dzds < ∞.

Thus

lim
y′→y

sup
x∈Rd ,t∈[t1,t2]

∫ t

ε

∫
Rd

|q0(t − s, x, z)
(
q0(s, z, y) − q0(s, z, y

′)
) |dzds = 0.

Consequently, for each 0 < t1 < t2 ≤ T and ε ∈ (0, t1/4), the family of functions{∫ t

ε

∫
Rd

q0(t − s, x, z)q0(s, z, ·)dzds : x ∈ R
d , t ∈ [t1, t2]

}

is equi-continuous. By combining Eq. 4.7 and Lemma 2.7, we get that

lim
ε→0

sup
x,y∈Rd ,t∈[t1,t2]

(∫ ε

0
+

∫ t

t−ε

)∫
Rd

q0(t − s, x, z)q0(s, z, y)dzds = 0. (4.18)

Therefore the family{∫ t

0

∫
Rd

q0(t − s, x, z)q0(s, z, ·)dzds : x ∈ R
d , t ∈ [t1, t2]

}
(4.19)

is equi-continuous.
Similarly, by using Eq. 4.8, we can show that, for each 0 < t1 < t2 ≤ T and

ε ∈ (0, t1/4), the family of functions
{∫ t−ε

0

∫
Rd

q0(t − s, ·, z)q0(s, z, y)dzds : y ∈ R
d , t ∈ [t1, t2]

}

is equi-continuous. Combining this with Eq. 4.18, we get the family of functions{∫ t

0

∫
Rd

q0(t − s, ·, z)q0(s, z, y)dzds : y ∈ R
d , t ∈ [t1, t2]

}
(4.20)

is equi-continuous.
Now combining the continuity of t → q1(t, x, y) (by Eqs. 4.16 and 4.17) and

the equi-continuities of the families Eqs. 4.19 and 4.20, we immediately get the
joint continuity of q1.

The joint continuity of qn(t, x, y) can be proved by induction by using the
estimate Eq. 4.14 of qn and Lemma 2.7. The joint continuity of q(t, x, y) follows
immediately.

Step 3: By replacing α by 2 and β by β2, this step is exactly the same as Step 4 in [6].
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4.3 Properties of φy(t, x)

Let

φy(t, x, s) :=
∫
Rd

pz(t − s, x − z)q(s, z, y) dz, x ∈ R
d , 0 < s < t (4.21)

and

φy(t, x) :=
∫ t

0
φy(t, x, s) ds =

∫ t

0

∫
Rd

pz(t − s, x − z)q(s, z, y) dz ds . (4.22)

The following result is the counterpart of [6, Lemma 3.5].

Lemma 4.6 For all x, y ∈ R
d , x �= y, the mapping t �→ φy(t, x) is absolutely continuous

on (0, ∞) and

∂tφy(t, x) = q(t, x, y) +
∫ t

0

∫
Rd

LKzpz(t − s, ·)(x − z)q(s, z, y) dz ds, t ∈ (0,∞) .

(4.23)

Proof Step 1: Here we prove that for any T ≥ 1, t ∈ (0, T ] and s ∈ (0, t),

∂tφy(t, x, s) =
∫
Rd

∂tpz(t − s, x − z)q(s, z, y) dz . (4.24)

Let |ε| < (t − s)/2. We have that

φy(t + ε, x, s) − φy(t, x, s)

ε
=

∫
Rd

(∫ 1

0
∂tpz(t + θε − s, x, z) dθ

)
q(s, z, y) dz .

By using Eqs. 1.7, 3.21, 3.16 and 3.20, we have,

|∂tpz(t + θε − s, x − z)| =
∣∣∣LKzpz(t + θε − s, ·)(x − z)

∣∣∣
≤ 1

2
γ0

∫
Rd

|δpz (t + θε − s, x − z; w)|κ(z,w)j (|w|) dw

≤ c1ρ(t + θε − s, x − z) ≤ c2ρ(t − s, x − z) .

In the last inequality we used that |ε| < (t − s)/2 and applied Lemma 2.2(b).
Together with Eq. 4.12 this gives that for any β2 ∈ (0, β)∩(0, δ1/2) and t ∈ (0, T ]
|∂tpz(t + θε−s, x−z)q(s, z, y)| ≤ c3(T )ρ(t−s, x−z)

(
ρ0

β2
+ ρ

β2
0

)
(s, z − y)

=: g(z) .

By Eq. 2.18, we see that
∫
Rd g(z) dz < ∞. Thus, by the dominated convergence

theorem,

lim
ε→0

φy(t + ε, x, s) − φy(t, x, s)

ε
=

∫
Rd

∂tpz(t − s, x − z)q(s, z, y) dz ,

proving Eq. 4.24.
Step 2: Here we prove that for all x �= y and t ∈ (0, T ], T ≥ 1,

∫ t

0

∫ r

0

∣∣∂rφy(r, x, s)
∣∣ ds dr ≤ c1(T ) t

	(|x − y|−1)

|x − y|d < +∞ . (4.25)
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By Eq. 4.24 we have

∣∣∂rφy(r, x, s)
∣∣ ≤

∫
Rd

|∂rpz(r − s, x − z)| |q(s, z, y) − q(s, x, y)| dz

+ |q(s, x, y)|
∣∣∣∣
∫
Rd

∂rpz(r − s, x − z) dz

∣∣∣∣ =: Q(1)
y (r, x, s)

+Q(2)
y (r, x, s) .

For Q
(1)
y (r, x, s), by Eqs. 4.13, 3.20, 3.16 and Lemma 2.6(a) and (c), for β2 ∈

(0, δ1/2) ∩ (0, β] and γ ∈ ((2 − δ1)β2/2, β2),∫ t

0

∫ r

0
Q(1)

y (r, x, s) ds dr

≤ c2

∫ t

0

∫ r

0

∫
Rd

∣∣∣LKzpz(r − s, x − z)

∣∣∣ (|x − z|β2−γ ∧ 1
)

×
{(

ρ0
γ + ρ

β2
γ−β2

)
(s, x − y) +

(
ρ0

γ + ρ
β2
γ−β2

)
(s, z − y)

}
dz ds dr

≤ c3

∫ t

0

∫ r

0

(∫
Rd

ρ
β2−γ

0 (r − s, x − z)dz

)(
ρ0

γ + ρ
β2
γ−β2

)
(s, x − y) ds dr

+c3

∫ t

0

∫ r

0

∫
Rd

ρ
β2−γ

0 (r − s, x − z)
(
ρ0

γ + ρ
β2
γ−β2

)
(s, z − y) dz ds dr

≤ c4

∫ t

0

∫ r

0
(r − s)−1	−1((r − s)−1)γ−β2

(
ρ0

γ + ρ
β2
γ−β2

)
(s, x − y) ds dr

+c4

∫ t

0

(
ρ0

β2
+ ρ

β2
0 + ρβ2−γ

γ

)
(r, x − y) dr

≤ c4
	(|x − y|−1)

|x − y|d
∫ t

0

∫ r

0
(r − s)−1	−1((r − s)−1)γ−β2

×
(
	−1(s−1)−γ + 	−1(s−1)β2−γ

)
ds dr

+c4
	(|x − y|−1)

|x − y|d
∫ t

0

(
	−1(r−1)−β2 + 1 + 	−1(r−1)−γ

)
dr

≤ c5
	(|x − y|−1)

|x − y|d
∫ t

0

(
	−1(r−1)−β2 + 1 + 	−1(r−1)−γ

)
dr

≤ c6t
	(|x − y|−1)

|x − y|d < +∞ .

The second to last inequality follows from Lemma 2.3.
For Q

(2)
y , by Eqs. 4.3, 4.12 and Lemma 2.3 we have

∫ t

0

∫ r

0
Q(2)

y (r, x, s) dr ds ≤ c7

∫ t

0

∫ r

0

(
ρ0

β2
+ ρ

β2
0

)
(s, x − y)(r − s)−1	−1

×((r − s)−1)−β2 ds dr

≤ 2c7
	(|x − y|−1)

|x − y|d
∫ t

0

(∫ r

0
(r − s)−1	−1((r − s)−1)−β2 ds

)
dr

≤ c8t
	(|x − y|−1)

|x − y|d < +∞ .
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Step 3: We claim that for fixed s > 0 and x, y ∈ R
d ,

lim
t↓s

φy(t, x, s) = q(s, x, y) . (4.26)

Assume t ≤ T , T ≥ 1. For any δ > 0 we have

∣∣∣∣
∫
Rd

pz(t − s, x − z) (q(s, z, y) − q(s, x, y)) dz

∣∣∣∣
≤

∫
|x−z|≤δ

pz(t − s, x − z) |q(s, z, y) − q(s, x, y)| dz

+
∫

|x−z|>δ

pz(t − s, x − z) (|q(s, z, y)| + |q(s, x, y)|) dz =: J1(δ, t, s)

+J2(δ, t, s) .

By Eq. 4.13, for any ε > 0 there exists δ = δ(s, x, y, T ) > 0 such that if |z−x| ≤
δ, then |q(s, z, y) − q(s, x, y)| ≤ ε . Therefore, by Proposition 3.2 and Lemma
2.6(a),

J1(δ, t, s) ≤ ε

∫
Rd

pz(t − s, x − z) dz ≤ ε(t − s)

∫
Rd

ρ(t − s, z) dz ≤ c1ε .

For J2(δ, t, s), since pz(t−s, x−z) ≤ c2(t−s)ρ(t−s, x−z) ≤ c2(t−s)ρ(0, x−z),
by Eq. 4.12 we have

J2(δ, t, s) ≤ c3(t − s)

(
	(δ−1)

δd

∫
Rd

ρ(s, z − y) dz

+ρ(s, x − y)

∫
|x−z|>δ

	(|x − z|−1)

|x − z|d dz

)

where c3 = c3(T ) > 0 is independent of t . By Eq. 2.17, the term in parenthesis is
finite. Hence, the last line converges to 0 as t ↓ s. This and Eq. 4.5 prove Eq. 4.26.

Step 4: By Eq. 4.26, we have that

φy(t, x, s) − q(s, x, y) =
∫ t

s

∂rφy(r, x, s) dr .

Integrating both sides with respect to s from 0 to t , using first Eq. 4.25 and Fubini’s
theorem, and then Eqs. 4.24 and 3.21, we get

φy(t, x)−
∫ t

0
q(s, x, y) ds =

∫ t

0

∫ t

s

∂rφy(r, x, s) dr ds=
∫ t

0

∫ r

0
∂rφy(r, x, s) ds dr

=
∫ t

0

∫ r

0

∫
Rd

LKzpz(r−s, ·)(x−z)q(s, z, y) dz ds dr .

This proves that t �→ φy(t, x) is absolutely continuous and gives its Radon-
Nykodim derivative (4.23).
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The following result is the counterpart of [6, Lemma 3.6].

Lemma 4.7 For all t > 0, x �= y and ε ∈ [0, 1], we have

LKx ,εφy(t, x) =
∫ t

0

∫
Rd

LKx ,εpz(t − s, ·)(x − z)q(s, z, y) dz ds (4.27)

and

t �→ LKx py(t, x − y) and t �→ LKx φy(t, x) are continuous on (0, ∞) . (4.28)

Furthermore, if β + δ1 > 1 and δ1 ∈ (2/3, 2) we also have

∇xφy(t, x) =
∫ t

0

∫
Rd

∇pz(t − s, ·)(x − z)q(s, z, y) dz ds. (4.29)

Proof Fix x �= y and T ≥ 1. In this proof we assume 0 < t < T and all the constants will
depend on T , but independent of s and t .

(a) By Eqs. 1.7, 1.1, 3.16, 4.12 and Lemma 2.6(b), for each s ∈ (0, t),

∫
Rd

∫
Rd

|δpz (t − s, x − z; w)|κ(x,w)J (w)dw|q(s, z, y)|dz

≤ c1

∫
Rd

ρ(t − s, x − z)ρ(s, z − y)dz < ∞. (4.30)

Thus we can use Fubini’s theorem so that from Eq. 4.21 we have that for s ∈ (0, t),

LKx ,εφy(t, ·, s)(x) =
∫
Rd

LKx ,εpz(t − s, ·)(x −z)q(s, z, y) dz, ε ∈ [0, 1] . (4.31)

Let β2 ∈ (0, δ1/2) ∩ (0, β] and γ ∈ (0, β2). By the definition of φy , Eq. 4.21, and
Fubini’s theorem, using the notation (3.10) we have for ε ∈ (0, 1] and s ∈ (0, t),

∣∣∣LKx ,εφy(t, ·, s)(x)

∣∣∣
= 1

2

∣∣∣∣
∫

|w|>ε

(∫
Rd

δpz (t − s, x − z; w)q(s, z, y) dz

)
κ(x, w)J (w) dw

∣∣∣∣
= 1

2

∣∣∣∣
∫
Rd

(∫
|w|>ε

δpz(t − s, x − z; w)κ(x,w)J (w) dw

)
q(s, z, y) dz

∣∣∣∣
≤ 1

2

∫
Rd

(∫
|w|>ε

|δpz (t − s, x − z; w)|κ(x,w)J (w) dw

)
|q(s, z, y)−q(s, x, y)| dz

+1

2

∣∣∣∣
∫
Rd

(∫
|w|>ε

δpz(t − s, x − z; w)κ(x,w)J (w) dw

)
dz

∣∣∣∣ |q(s, x, y)| .
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By using Eqs. 1.7, 3.16, 4.2, 4.12 and 4.13 first and then using Lemma 2.6(a)–(b), we
have that for ε ∈ (0, 1] and s ∈ (0, t),

∣∣∣LKx ,εφy(t, ·, s)(x)

∣∣∣
≤ c2

∫
Rd

ρ
β2−γ

0 (t − s, x − z)
(
ρ0

γ + ρ
β2
γ−β2

)
(s, z − y) dz

+c2

(∫
Rd

ρ
β2−γ

0 (t − s, x − z) dz

)(
ρ0

γ + ρ
β2
γ−β2

)
(s, x − y)

+c2(t − s)−1	−1((t − s)−1)−β2
(
ρ

β2
0 (s, x − y) + ρ0

β2
(s, x − y)

)

≤ c2

∫
Rd

ρ
β2−γ

0 (t − s, x − z)ρ0
γ (s, z − y) dz

+c2

∫
Rd

ρ
β2−γ

0 (t − s, x − z)ρ
β2
γ−β2

(s, z − y) dz

+c3(t − s)−1	−1((t − s)−1)γ−β2
(
ρ0

γ + ρ
β2
γ−β2

)
(s, x − y)

+c3(t − s)−1	−1((t − s)−1)−β2
(
ρ

β2
0 (s, x − y) + ρ0

β2
(s, x − y)

)

≤ c4

(
(t − s)−1	−1((t − s)−1)γ−2β2	−1(s−1)β2−γ

+(t − s)−1	−1((t − s)−1)γ−β2	−1(s−1)β2−γ

+(t − s)−1	−1((t − s)−1)γ−β2	−1(s−1)−γ + (t − s)−1	−1((t − s)−1)−β2

+s−1	−1(s−1)−β2 + s−1	−1(s−1)−γ
)

ρ(0, x − y)

≤ c5(t − s)−1	−1((t − s)−1)γ−β2s−1	−1(s−1)−γ ρ(0, x − y). (4.32)

In the last inequality above we have used the inequality

	−1(s−1)β2 ≤ a
−β2/δ1
1 	−1(T −1)−β2s−β2/δ1 ≤ a

−β2/δ1
1 	−1(T −1)−β2T 1−β2/δ1s−1.

Using the fact that x �= y and Lemma 2.3 we see that the term on the right hand
side of Eq. 4.32 is integrable in s ∈ (0, t). Moreover, by Eqs. 1.1, 1.7, 4.12 and
Proposition 3.2,

∫
|w|>ε

∫ t

0
|δφy (t, x, s; w)|κ(x, w)J (w) ds dw

≤ 2κ1γ0C2

∫
|w|>ε

∫ t

0

∫
Rd

pz(t − s, x − z)(ρ
β2
0 (s, z − y) + ρ0

β2
(s, z − y))dzj (|w|) ds dw

+κ1γ0C2

∫
|w|>ε

∫ t

0

∫
Rd

pz(t − s, x ± w − z)(ρ
β2
0 (s, z − y)

+ρ0
β2

(s, z − y))dzj (|w|) ds dw

≤ c6

∫
|w|>ε

j (|w|)dw

∫ t

0
(t−s)

(∫
Rd

ρ(t−s, x−z)(ρ
β2
0 (s, z − y) + ρ0

β2
(s, z − y))dz

)
ds

+c6j (ε)

∫ t

0

∫
Rd

(t − s)

(∫
Rd

ρ(t − s, x ± w − z)dw

)
(ρ

β2
0 (s, z − y)

+ρ0
β2

(s, z − y))dz ds , (4.33)
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which is, by Lemma 2.6(a)–(b), less than or equal to

c7(ε)

(∫ t

0
s−1	−1(s−1)−β2ρ(t, x−y) ds +

∫ t

0

∫
Rd

(ρ
β2
0 (s, z−y) + ρ0

β2
(s, z−y))dz ds

)

≤ c8(ε)

(∫ t

0
s−1	−1(s−1)−β2dsρ(t, x − y) +

∫ t

0
s−1	−1(s−1)−β2ds

)
< ∞. (4.34)

Thus we can apply Fubini’s theorem to see that, by Eqs. 4.31, 4.27 holds for ε ∈
(0, 1]. Moreover, by Fubini’s theorem and the dominated convergence theorem in the
first equality and the second equality below respectively:

LKx φy(t, x) = lim
ε↓0

∫ t

0
LKx ,εφy(t, ·, s)(x) ds =

∫ t

0
lim
ε↓0

LKx ,εφy(t, ·, s)(x) ds ,

which together with Eq. 4.31 yields Eq. 4.27 for ε = 0.
(b) Now we prove Eq. 4.28. Note that, by Lemma 3.1(b), t �→ δpy (t, x−y; z) = py(t, x−

y + z) + py(t, x − y − z) − 2py(t, x − y) is continuous. Let ε ∈ (0, t). By Eq. 3.12,

|δpy (t, x − y; z)| ≤ c11

(
	−1(t−1)|z|2 ∧ 1

)
t (ρ(t, x − y ± z) + ρ(t, x − y))

≤ c12
t

ε

(
	−1(ε−1)|z|2 ∧ 1

)
ε (ρ(ε, x − y ± z) + ρ(ε, x − y)) .

By Eq. 1.7 and the proof of Eq. 3.16 we see that the right-hand side multiplied by
κ(x, z)J (z) is integrable with respect to dz. This shows that the family {δpy (t, x −
y; z)κ(x, z)J (z) : t ∈ (ε, T )} is dominated by an integrable function. Now by the
dominated convergence theorem we see that t �→ LKx py(t, x − y) is continuous on
(0, T ].

Let β2 ∈ (0, δ1/2) ∩ (0, β] and γ ∈ (0, β2). By Eq. 4.32,∣∣∣LKx φy(t, x, s)

∣∣∣ ≤ c5(t − s)−1	−1((t − s)−1)γ−β2s−1	−1(s−1)−γ ρ(0, x − y) .

(4.35)
Note that for 0 < t ≤ t + h ≤ T ,

LKx φy(t + h, x) − LKx φy(t, x)

=
∫ t+h

t

LKx φy(t + h, x, s)ds +
∫ t

0

(
LKx φy(t + h, x, s) − LKx φy(t, x, s)

)
ds.

(4.36)

When h ≤ t/2, by Eqs. 2.3 and 2.4, we have
∫ t+h

t

(t + h − s)−1	−1((t + h − s)−1)γ−β2s−1	−1(s−1)−γ ds

=
∫ h

0
r−1	−1(r−1)γ−β2(t + h − r)−1	−1((t + h − r)−1)−γ dr

≤ c13

∫ h

0
r−1	−1(r−1)γ−β2(t − r)−1	−1((t − r)−1)−γ dr ,

and so by Lemma 2.4 and Eq. 4.35 we get

lim
h→0

∫ t+h

t

LKx φy(t + h, x, s)ds = 0. (4.37)
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Note that, by Eq. 4.30 we can apply the dominated convergence theorem and use the
continuity of t �→ LKx py(t, x − y) so that for each s ∈ (0, t),

lim
h→0

(LKx φy(t + h, x, s) − LKx φy(t, x, s))

=
∫
Rd

lim
h→0

(LKx pz(t + h − s, ·)(x − z) − LKx pz(t − s, ·)(x − z))q(s, z, y) dz

= 0. (4.38)

By Lemma 2.3, s �→ (t − s)−1	−1((t − s)−1)γ−β2s−1	−1(s−1)−γ is integrable in
(0, t), so using Eq. 4.35, we can apply the dominated convergence theorem and use
Eq. 4.38 to get that

lim
h→0

∫ t

0
(LKx φy(t + h, x, s) − LKx φy(t, x, s))ds = 0. (4.39)

Combining Eqs. 4.37–4.39 we get the desired continuity.
(c) Finally we show Eq. 4.29. Since β + δ1 > 1 and δ1 ∈ (2/3, 2), we can and will choose

β2 ∈ (0 ∨ (1 − δ1), δ1/2) ∩ (0, β] and γ ∈ (0, β2 ∧ (β2 + δ1 − 1) ∧ (δ1 − 2β2)). For
example, one can take β2 = β ∧ (1/3).

For each fixed 0 < s < t and hei = (0, . . . , h, . . . , 0) ∈ R
d with |h| ≤

1/(2	−1((t − s)−1)), by Eqs. 3.11, 3.9, 2.1 and 4.12 we have

1

h
|pz(t − s, x − z + hei) − pz(t − s, x − z)| |q(s, z, y)|

≤ c
1

h

(
(	−1((t − s)−1)|h|) ∧ 1

)
(t − s)(ρ(t − s, x − z + hei)

+ρ(t − s, x − z))|q(s, z, y)|
≤ 2d+2c(t − s)	−1((t − s)−1)ρ(t − s, x − z)(ρ

β2
0 + ρ0

β2
)(s, z − y) (4.40)

which is integrable in z ∈ R
d by Lemma 2.6(b). Thus we can use the dominated

convergence theorem and Eq. 4.21 to get that for s ∈ (0, t),

∂iφy(t, ·, s)(x) =
∫
Rd

∂ipz(t − s, ·)(x − z)q(s, z, y) dz . (4.41)

Let

∂iφy(t, ·, s)(w) =
∫
Rd

∂ipz(t − s, ·)(w − z)q(s, z, y) dz

= 1[t/2,t)(s)

∫
Rd

∂ipz(t − s, ·)(w − z) (q(s, z, y) − q(s, w, y))dz

+ 1[t/2,t)(s)

∫
Rd

∂ipz(t − s, ·)(w − z) q(s, w, y)dz

+ 1(0,t/2)(s)

∫
Rd

∂ipz(t − s, ·)(w − z) q(s, z, y)dz

=: 1[t/2,t)(s)R1(t, s, w, y) + 1[t/2,t)(s)R2(t, s, w, y)

+ 1(0,t/2)(s)R3(t, s, w, y) . (4.42)
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Let x′ ∈ B(x, |x − y|/4). Then it follows from Proposition 3.2 and Eq. 4.13 that
for s ∈ [t/2, t),

∣∣R1(t, s, x
′, y)

∣∣
≤

∫
Rd

|∂ipz(t − s, ·)(x′ − z)||q(s, z, y) − q(s, x′, y)|dz

≤
∫
Rd

(
(t − s)	−1((t − s)−1)ρ(t − s, x′ −z)

(|x′−z|β2−γ ∧1
)(

ρ0
γ +ρ

β2
γ−β2

)
(s, x′ −y)

+(t−s)	−1((t−s)−1)ρ(t−s, x′−z)
(|x′−z|β2−γ ∧1

)(
ρ0

γ + ρ
β2
γ−β2

)
(s, z−y)

)
dz

= (t − s)

(∫
Rd

ρ
β2−γ

−1 (t − s, x′ − z)dz

)(
ρ0

γ + ρ
β2
γ−β2

)
(s, x′ − y).

+(t − s)

∫
Rd

ρ
β2−γ

−1 (t − s, x′ − z)ρ0
γ (s, z − y)dz

+(t − s)

∫
Rd

ρ
β2−γ

−1 (t − s, x′ − z)ρ
β2
γ−β2

(s, z − y)dz

≤ c9

(
	−1((t − s)−1)1−β2+γ

(
ρ0

γ + ρ
β2
γ−β2

)
(s, x′ − y)

+
(
	−1((t−s)−1)1−2β2+γ 	−1(s−1)−γ+β2+	−1((t−s)−1)1−β2+γ 	−1(s−1)−γ

+(t − s)s−1	−1(s−1)(	−1(s−1)−γ + 	−1(s−1)−β2)
)

ρ(t, x′ − y)
))

≤ c10

(
	−1((t − s)−1)1−β2+γ 	−1(s−1)−γ+β2

+	−1((t − s)−1)1−2β2+γ 	−1(s−1)−γ+β2 + 	−1((t − s)−1)1−β2+γ 	−1(s−1)−γ

+(t − s)s−1	−1((t − s)−1)	−1(s−1)−γ
)

ρ(t, (x − y)/2). (4.43)

Here the third inequality follows from Lemma 2.6(a)–(b). Since δ1 > 2/3 > 1/2
and γ < δ1 + β2 − 1, using Lemma 2.3 (so that

∫ t

t/2 	−1((t − s)−1)1−β2+γ ds and∫ t

t/2(t − s)	−1((t − s)−1)ds are finite) it is straightforward to see that the function on
the right-hand side above is integrable in s over [t/2, t).

Next, for s ∈ [t/2, t), using Eq. 4.12 in the second and Eq. 4.4 in the third line
below,

∣∣R2(t, s, x
′, y)

∣∣ =
∣∣∣∣
∫
Rd

∂ipz(t − s, ·)(x′ − z) dz

∣∣∣∣ q(s, x′, y)

≤
∣∣∣∣
∫
Rd

∂ipz(t − s, ·)(x′ − z) dz

∣∣∣∣
(
ρ

β2
0 + ρ0

β2

)
(s, x′, y)

≤ c	−1((t − s)−1)1−β2ρ(t, x′ − y)

≤ c	−1((t − s)−1)1−β2ρ(t, (x − y)/2). (4.44)

Since
∫ t

t/2 	−1((t −s)−1)1−β2 ds < ∞ because β2 +δ1 > 1, the right-hand side above
is integrable in s over [t/2, t).
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Finally for s ∈ (0, t/2], since β2 < δ1/2,

∣∣R3(t, s, x
′, y)

∣∣ ≤
∫
Rd

|∂ipz(t − s, ·)(x′ − z)|q(s, z, y)|dz

≤ c

∫
Rd

(t − s)	−1((t − s)−1)ρ(t − s, x′ − z)
(
ρ0

β2
+ ρ

β2
0

)
(s, z − y)dz

= c(t − s)

∫
Rd

ρ−1(t − s, x′ − z)
(
ρ0

β2
+ ρ

β2
0

)
(s, z − y)dz

≤ c(t − s)
(
(t − s)−1	−1((t − s)−1)1−β2 + (t − s)−1	−1((t − s)−1)

+(t−s)−1	−1((t−s)−1)	−1(s−1)−β2 +	−1((t−s)−1)s−1	−1(s−1)−β2
)
ρ(t, x′−y)

≤ c
(
	−1((t − s)−1) + 	−1((t − s)−1)	−1(s−1)−β2

+(t − s)	−1((t − s)−1)s−1	−1(s−1)−β2
)

ρ(t, x′ − y), (4.45)

which is integrable using Lemma 2.3.
Hence we can use the dominated convergence theorem and Eq. 4.41 to conclude

that

lim
h→0

1

h

(
φy(t, x + w) − φy(t, x)

) = lim
h→0

∫ t

0

∫ 1

0
∂iφy(t, ·, s)(x + θw) dθdsds

=
∫ t

0
∂iφy(t, ·, s)(x)ds =

∫ t

0

∫
Rd

∂ipz(t − s, ·)(x − z)q(s, z, y) dzds,

which gives Eq. 4.29.

4.4 Estimates and Smoothness of pκ(t, x, y)

Now we define and study the function

pκ(t, x, y) := py(t, x − y) + φy(t, x) = py(t, x − y)

+
∫ t

0

∫
Rd

pz(t − s, x − z)q(s, z, y) dz ds . (4.46)

Lemma 4.8 (1) For every T ≥ 1 and β2 ∈ (0, β] ∩ (0, δ1/2), there is a constant
c1 = c1(T , d, δ1, β2, γ, κ0, κ1, κ2) > 0 so that for all t ∈ (0, T ] and x, y ∈ R

d ,
pκ(t, x, y) ≤ c1tρ(t, x − y). (2) For any γ ∈ (0, δ1) ∩ (0, 1] and T ≥ 1 there exists
c2 = c2(T , d, δ1, β2, γ, κ0, κ1, κ2) > 0 such that for all x, x′, y ∈ R

d and t ∈ (0, T ],

∣∣pκ(t, x, y) − pκ(t, x′, y)
∣∣ ≤ c2|x − x′|γ t

(
ρ0−γ (t, x − y) + ρ0−γ (t, x′ − y)

)
.

Proof Throughout this proof we assume that x, x′, y ∈ R
d and t ∈ (0, T ].
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(1) By the estimate of pz (Proposition 3.2), Eq. 4.12, Lemma 2.6(c), Eqs. 2.14 and 2.15,
we have

∫ t

0

∫
Rd

pz(t − s, x − z)|q(s, z, y)| dz ds

≤ c1

∫ t

0

∫
Rd

(t − s)ρ(t − s, x − z)
(
ρ0

β2
+ ρ

β2
0

)
(s, z − y) dz ds

≤ c2t
(
ρ0

β2
+ ρ

β2
0

)
(t, x − y)

≤ 2	−1(T −1)−β2c2tρ(t, x − y), for all t ∈ (0, T ] . (4.47)

Therefore, pκ(t, x, y) ≤ py(t, x − y) + |φy(t, x)| ≤ c4tρ(t, x − y).
(2) We have by Eq. 3.11 and the fact that γ ≤ 1,

|pz(t, x − z) − pz(t, x
′ − z)| ≤ c1|x − x′|γ t	−1(t−1)γ

(
ρ(t, x − z) + ρ(t, x′ − z)

)
= c1|x − x′|γ t

(
ρ0−γ (t, x − z) + ρ0−γ (t, x′ − z)

)
.

Thus, by Eq. 4.12 and a change of the variables, we further have

|φy(t, x)−φy(t, x
′)|≤

∫ t

0

∫
Rd

|pz(t−s, x−z)−pz(t−s, x′−z)| |q(s, z, y)| dz ds

≤ c2|x−x′|γ
∫ t

0

∫
Rd

(t−s)
(
ρ0−γ (t−s, x−z) + ρ0−γ (t−s, x′−z)

) (
ρ

β2
0 +ρ0

β2

)

×(s, z−y) dz ds

≤ c3|x−x′|γ t
(
ρ0−γ+β2

(t, x−y) + ρ
β2−γ (t, x−y) + ρ0−γ+β2

(t, x′−y)

+ ρ
β2−γ (t, x′−y)

)

≤ 2c3	
−1(T −1)−β2 |x−x′|γ t

(
ρ0−γ (t, x−y)+ρ0−γ (t, x′−y)

)
, for all t ∈ (0, T ] .

Since γ ∈ (0, δ1), the penultimate inequality follows from Eq. 2.19 (with θ = 0),
and the last inequality by Eqs. 2.14 and 2.15. The claim of the lemma follows by
combining the two estimates.

The following result is the counterpart of [6, Lemma 3.7].

Lemma 4.9 The function pκ(t, x, y) defined in Eq. 4.46 is jointly continuous on (0, ∞) ×
R

d × R
d .

Proof The joint continuity of py(t, x − y) was shown in Lemma 4.2. For φy(t, x) we use
Eq. 4.22 and the joint continuity of q(s, z, y) on (0, ∞) × R

d × R
d together with the

dominated convergence theorem. This is justified by the estimates pz(t − s, x −z) ≤ c1(t −
s)ρ(t − s, x − z) and Eq. 4.12 which yield that |pz(t − s, x − z)q(s, z, y)| ≤ c2(t − s)ρ(t −
s)

(
ρ

β2
0 + ρ0

β2

)
(s, z − y) for β2 ∈ (0, β] ∩ (0, δ1/2). The latter function is integrable over

(0, t] × R
d with respect to ds dz by Lemma 2.6.
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Now we define the operator Lκ as in Eq. 1.8 which can be rewritten as

Lκf (x)=Lκ,0f (x)= lim
ε↓0

Lκ,εf (x), where Lκ,εf (x)= 1

2

∫
|z|>ε

δf (x; z)κ(x, z)J (z) dz.

(4.48)
Note that for a fixed x ∈ R

d , it holds that Lκf (x) = LKx f (x). This will be used later on.
The following result is the counterpart of [6, Lemma 4.2].

Lemma 4.10 For every T ≥ 1, there is a constant c1 = c1(T , d, δ1, a1, β, C∗, γ0, κ0,

κ1, κ2) > 0 such that for all ε ∈ [0, 1],
|Lκ,εpκ(t, ·, y)(x)| ≤ c1ρ(t, x − y), for all t ∈ (0, T ] and x, y ∈ R

d , x �= y (4.49)

and if β + δ1 > 1 and δ1 ∈ (2/3, 2) we also have
∣∣∇xp

κ(t, x, y)
∣∣ ≤ c1t	

−1(t−1)ρ(t, x − y) for all t ∈ (0, T ] and x, y ∈ R
d , x �= y .

(4.50)

Proof By Eq. 3.16 and the fact that for fixed x, Lκ,εf (x) = LKx ,εf (x) for ε ∈ [0, 1], we
see that

|Lκpy(t, ·)(x − y)| ≤ c1ρ(t, x − y), for all t ∈ (0, T ] and ε ∈ [0, 1].
Let ε ∈ [0, 1]. By recalling the definition (4.22) of φy and using Eq. 4.27, we have

Lκ,εφy(t, x) =
∫ t

t/2

∫
Rd

LKx ,εpz(t − s, ·)(x − z) (q(s, z, y) − q(s, x, y)) dz ds

+
∫ t

t/2

(∫
Rd

LKx ,εpz(t − s, ·)(x − z) dz

)
q(s, x, y) ds

+
∫ t/2

0

∫
Rd

LKx ,εpz(t − s, ·)(x − z)q(s, z, y) dz ds

=: Q1(t, x, y) + Q2(t, x, y) + Q3(t, x, y) .

Let β2 ∈ (0, δ1/2) ∩ (0, β]. For Q1(t, x, y) we use Eq. 3.16, Lemmas 2.2(b), 2.3 and 2.6(a)
and (c) to get that for any γ ∈ ((2 − δ1)β2/2, β2),

|Q1(t, x, y)| ≤ c1

∫ t

t/2

(∫
Rd

ρ
β2−γ

0 (t − s, x − z) dz

)(
ρ0

γ + ρ
β2
γ−β2

)
(s, x − y) ds

+c1

∫ t

t/2

∫
Rd

ρ
β2−γ

0 (t − s, x − z)
(
ρ0

γ + ρ
β2
γ−β2

)
(s, z − y) dz ds

≤ c2

(
ρ0

γ + ρ
β2
γ−β2

)
(t, x − y)

∫ t

0

∫
Rd

ρ
β2−γ

0 (t − s, x − z) dzds

+c1

∫ t

0

∫
Rd

ρ
β2−γ

0 (t − s, x − z)
(
ρ0

γ + ρ
β2
γ−β2

)
(s, z − y) dz ds

≤ c3ρ
0
γ−β2

(t, x − y)	−1(t−1)−β2−γ + c3

(
ρ0

β2
+ ρβ2−γ

γ + ρ
β2
0

)
(t, x − y)

≤ c4ρ(t, x − y), for all t ∈ (0, T ] ,
where the last two lines follow from Eqs. 2.14 and 2.15.
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For Q2(t, x, y), by Eqs. 4.2, 4.12, Lemmas 2.2(b), 2.3, Eqs. 2.14 and 2.15,

|Q2(t, x, y)| ≤ c5

∫ t

t/2
(t − s)−1	−1((t − s)−1)−β2

(
ρ0

β2
+ ρ

β2
0

)
(s, x − y) ds

≤ c6

(
ρ0

β2
+ ρ

β2
0

)
(t, x − y)

∫ t

0
(t − s)−1	−1((t − s)−1)−β2 ds

≤ c7ρ(t, x − y)	−1(t−1)−β2 ≤ c7	
−1(T −1)−β2ρ(t, x − y), for all t ∈ (0, T ] .

For Q3(t, x, y), by Eqs. 3.16, 4.12, Lemma 2.6(c), Eqs. 2.14 and 2.15,

|Q3(t, x, y)| ≤ c7

∫ t/2

0

∫
Rd

ρ(t − s, x − z)
(
ρ0

β2
+ ρ

β2
0

)
(s, z − y) dz ds

≤ 2
c7

t

∫ t

0

∫
Rd

(t − s)ρ(t − s, x − z)
(
ρ0

β2
+ ρ

β2
0

)
(s, z − y) dz ds

≤ c8

(
ρ0

β2
+ ρ

β2
0

)
(t, x − y) ≤ 2c8	

−1(T −1)−βρ(t, x − y) .

Combining the above calculations and Eq. 4.46 we obtain Eq. 4.49.
(ii) Since β+δ1 > 1 and δ1 ∈ (2/3, 2), we can and will choose β2 ∈ (0∨(1−δ1), δ1/2)∩

(0, β] and γ ∈ (0, β2 ∧ (β2 + δ1 − 1) ∧ (δ1 − 2β2)). By Eqs. 4.29 and 4.42–4.45 we have

|∇xφy(t, x)| ≤ c1ρ(t, x − y)

(∫ t/2

0
	−1((t − s)−1) + 	−1((t − s)−1)	−1(s−1)−β2

+(t − s)	−1((t − s)−1)s−1	−1(s−1)−β2ds

+
∫ t

t/2
	−1((t − s)−1)1−β2 + 	−1((t − s)−1)1−β2+γ 	−1(s−1)−γ+β2

+	−1((t − s)−1)1−β2+γ 	−1(s−1)−β2

+(t − s)s−1	−1((t − s)−1)	−1(s−1)−γ ds

)
. (4.51)

Since β + δ1 > 1, δ1 > 2/3 > 1/2 and γ < δ1 + β2 − 1, using Lemma 2.3 we see
that

∫ t

t/2 	−1((t − s)−1)1−β2 ds ≤ c2t	
−1(t−1)1−β2 ,

∫ t

t/2 	−1((t − s)−1)1−β2+γ ds ≤
c3t	

−1(t−1)1−β2+γ and
∫ t

0 (t −s)	−1((t−s)−1)ds ≤ c4t
2	−1(t−1). Thus, by Lemma 2.3,

Eq. 4.51 is bounded above by c5t	
−1(t−1)ρ(t, x − y). Now, Eq. 4.50 follows immediately

from this, Eqs. 4.46, 4.29 and Proposition 3.2.

We will also need the following corollary, which follows from Eq. 4.28.

Corollary 4.11 For x �= y, the function t �→ Lκpκ(t, x, y) is continuous on (0,∞).

5 Proofs of Main Results

5.1 A Nonlocal Maximum Principle

We first establish a somewhat different version of [6, Theorem 4.1].
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Theorem 5.1 Suppose there exists a function g : Rd → (0, ∞) such that Eq. 1.9 holds. Let
T > 0 and u ∈ Cb([0, T ] × R

d) be such that

lim
t↓0

sup
x∈Rd

|u(t, x) − u(0, x)| = 0 , (5.1)

and for each x ∈ R
d ,

t �→ Lκu(t, x) is continuous on (0, T ]. (5.2)

Suppose that u(t, x) satisfies the following inequality: for all (t, x) ∈ (0, T ] × R
d ,

∂tu(t, x) ≤ Lκu(t, x) . (5.3)

Then for all t ∈ (0, T ),

sup
x∈Rd

u(t, x) ≤ sup
x∈Rd

u(0, x) . (5.4)

Proof Choose a > 0 such that

Lκg(x) ≤ ag(x), for all x ∈ R
d . (5.5)

Let δ, ε > 0 and uδ
ε(t, x) := u(t, x) − δ(t − ε + eatg(x)). Then by Eqs. 5.3 and 5.5, for all

(t, x) ∈ (0, T ] × R
d , we have

∂tu
δ
ε(t, x) = ∂tu(t, x) − δ(1 + aeatg(x)) ≤ Lκu(t, x) − δ − δaeatg(x)

= Lκuδ
ε(t, x) − δ + δeat (Lκg(x) − ag(x)) ≤ Lκuδ

ε(t, x) − δ. (5.6)

Since u ∈ Cb([0, T ] × R
d), by letting δ → 0 and ε → 0, it suffices to show that

sup
x∈Rd

uδ
ε(t, x) ≤ sup

x∈Rd

uδ
ε(ε, x), t ∈ (ε, T ] . (5.7)

Fix δ, ε > 0 and suppose that Eq. 5.7 does not hold. Then, by the continuity of uδ
ε and the

fact that limx→∞ uδ
ε(t, x) = −∞ (which is a consequence of Eq. 1.9), there exist t0 ∈ (ε, T ]

and x0 ∈ R
d such that

sup
t∈(ε,T ],x∈Rd

uδ
ε(t, x) = uδ

ε(t0, x0). (5.8)

Thus by Eq. 5.6, for h ∈ (0, t0 − ε),

0 ≤ 1

h
(uδ

ε(t0, x0) − uδ
ε(t0 − h, x0))= 1

h

∫ t0

t0−h

∂tu
δ
ε(s, x0)ds ≤ 1

h

∫ t0

t0−h

Lκuδ
ε(s, x0)ds − δ.

Letting h → 0 and using Eqs. 5.2 and 5.8 we get

0 ≤ Lκuδ
ε(t0, x0) − δ

= p.v.
∫
Rd

(
uδ

ε(t0, x0 + z) − uδ
ε(t0, x0)

)
κ(x0, z)J (z) dz − δ ≤ −δ,

which gives a contradiction. Therefore Eq. 5.7 holds.

Remark 5.2 Suppose that
∫
|z|>1 |z|εj (|z|)dz < ∞ for some ε > 0. Let g(x) = (1+|x|2)ε/2.

Note that

|∂i,j g(x)| ≤ c1(1 + |x|)ε−2, i, j = 1, . . . , d. (5.9)
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By Eqs. 5.9 and 3.7, we have that for |x| ≤ 1,

|Lκg(x)| ≤ γ0

∫
|z|≤1

|δg(x; z)|j (|z|)dz + γ0g(x)

∫
|z|>1

j (|z|)dz

+γ0

∫
|z|>1

g(x ± z)j (|z|)dz

≤ c2

(∫
|z|≤1

|z|2j (|z|)dz +
∫

|z|>1
j (|z|)dz +

∫
|z|>1

|z|εj (|z|)dz

)

≤ c3 ≤ c3g(x). (5.10)

If |x| > 1, then by Eqs. 5.9 and 3.7,

|Lκg(x)| ≤ γ0

∫
|z|≤|x|

|δg(x; z)|j (|z|)dz + γ0g(x)

∫
|z|>|x|

j (|z|)dz

+γ0

∫
|z|>|x|

g(x ± z)j (|z|)dz

≤ c3

(∫
|z|≤|x|

|x|ε−2|z|2j (|z|)dz + g(x)

∫
|z|>1

j (|z|)dz +
∫

|z|>|x|
|z|εj (|z|)dz

)

≤ c4

(
|x|ε

∫
Rd

((|z|/|x|)2 ∧ 1)j (|z|)dz + g(x) + 1

)
≤ c5g(x). (5.11)

Therefore g satisfies Eq. 1.9.

5.2 Properties of the Semigroup (P κ
t )t≥0

Define

P κ
t f (x) =

∫
Rd

pκ(t, x, y)f (y)dy.

Lemma 5.3 For any bounded function f , we have

LκP κ
t f (x) =

∫
Rd

Lκpκ(t, ·, y)(x)f (y)dy . (5.12)

Proof By the same computation as in the proof of Eq. 3.16 we have that for all t ≤ T ,
T ≥ 1, and ε > 0,

t

∫
|z|>ε

ρ(t, x ± z)j (|z|) dz

≤
∫

	−1(t−1)|z|≤1,|z|>ε

tρ(t, x ± z)j (|z|) dz +
∫

	−1(t−1)|z|>1
tρ(t, x ± z)j (|z|) dz

≤ c14d+1tρ(t, x)

∫
|z|>ε

j (|z|) dz + c1ρ(t, x),
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thus by Lemma 4.8(1),∫
Rd

(∫
|w|>ε

∣∣pκ(t, x ± w, y) − 2pκ(t, x, y)
∣∣ κ(x, w)J (w) dw

)
dy

≤ 2γ0κ1

∫
Rd

∫
|w|>ε

|pκ(t, x, y)|j (|w|) dwdy + γ0κ1

∫
Rd

∫
|w|>ε

|pκ(t, x ± w, y)|j (|w|) dwdy

≤ c2t

(∫
|w|>ε

j (|w|) dw

)∫
Rd

ρ(t, x − y)dy + c2t

∫
Rd

(∫
|w|>ε

ρ(t, x ± w − y)j (|w|) dw

)
dy

< ∞.

Thus by Fubini’s theorem, for all for bounded function f and ε ∈ (0, 1],
Lκ,εP κ

t f (x) =
∫
Rd

Lκ,εpκ(t, ·, y)(x)f (y)dy.

Now, Eq. 5.12 follows from this, Eq. 4.49 and the dominated convergence theorem.

The following result is the counterpart of [6, Lemma 4.4].

Lemma 5.4 (a) For any p ∈ [1, ∞], there exists a constant c = c(p, d, δ1, β, κ0, κ1,

κ2) > 0 such that for all f ∈ Lp(Rd) and t > 0,

‖LκP κ
t f ‖p ≤ ct−1‖f ‖p . (5.13)

(b) If f ∈ L∞(Rd), t �→ LκP κ
t f is a continuous function on (0,∞).

(c) For any p ∈ [1, ∞) and f ∈ Lp(Rd), t �→ LκP κ
t f is continuous from (0, ∞) into

Lp(Rd).

Proof (a) Let p ∈ [1, ∞]. By Eq. 5.12, Lemma 4.10, Young’s inequality and Lemma
2.6(a), we have that for all f ∈ Lp(Rd) ∩ L∞(Rd),

‖LκP κ
t f ‖p ≤ c1

(∫
Rd

∣∣∣∣
∫
Rd

ρ(t, x − y)|f (y)| dy

∣∣∣∣
p

dx

)1/p

≤ c1‖ρ(t, ·)‖1 ‖f ‖p ≤ c2t
−1‖f ‖p .

Inequality Eq. 5.13 for f ∈ Lp(Rd) now follows by a standard density argument.
(b) For any ε ∈ (0, 1), by Lemma 4.10 we have for x �= y,

sup
t∈(ε,T )

∣∣Lκpκ(t, x, y)
∣∣ ≤ c sup

t∈(ε,T )

ρ(t, x − y) ≤ cρ(ε, x − y) .

Assume that f is bounded and measurable. By Corollary 4.11, t �→ Lκpκ(t, x, y)

f (y) is continuous for x �= y. By the above display, the family {Lκpκ(t, x, y)f (y) :
t ∈ (ε, 1)} is bounded by the integrable function ρ(ε, x − y)|f (y)|. Now it fol-
lows from the dominated convergence theorem and Eq. 5.12 that t �→ LκP κ

t f (x) is
continuous.

(c) Let p ∈ [1, ∞). When f ∈ Lp(Rd) ∩ L∞(Rd), the claim follows similarly as (b) by
using Eq. 5.12 and the domination by the Lp-function

∫
Rd ρ(ε, x − y)f (y) dy. The

claim for f ∈ Lp(Rd) now follows by standard density argument and Eq. 5.13.

Remark 5.5 Note that Lemma 5.4 uses only the following properties of pκ(t, x, y):
Eq. 5.12, |Lκpκ(t, ·, y)(x)| ≤ c1(T )ρ(t, x − y) for t ∈ (0, T ] and t �→ Lκpκ(t, ·, y)(x)

is continuous on (0, T ]. Moreover, Lemma 5.3 uses only the following properties of



82 P. Kim et al.

pκ(t, x, y): pκ(t, ·, y)(x) ≤ c2(T )tρ(t, x − y) and |Lκ,εpκ(t, ·, y)(x)| ≤ c3(T )ρ(t, x − y)

for ε ∈ [0, 1] and t ∈ (0, T ].

The following result is the counterpart of [6, Lemma 4.3].

Lemma 5.6 For any bounded Hölder continuous function f ∈ C
η
b (Rd), we have

Lκ

(∫ t

0
P κ

s f (·)ds

)
(x) =

∫ t

0
LκP κ

s f (x)ds , x ∈ R
d . (5.14)

Proof Define

Ttf (x) =
∫
Rd

py(t, x − y)f (y)dy, Stf (x) =
∫
Rd

q(t, x, y)f (y)dy

and

Rtf (x) =
∫ t

0
Tt−sSsf (x)ds.

Then, by Fubini’s theorem and Eq. 4.12, for all for bounded function f ,

P κ
t f (x) = Ttf (x) + Rtf (x). (5.15)

We now assume ε ∈ (0, 1] and 0 < s < t ≤ T , T ≥ 1. Suppose that |f (x) − f (y)| ≤
c1(|x−y|η ∧1). Without loss of generality we may and will assume that η < β. By Fubini’s
theorem, Eqs. 1.7, 1.1 and 3.16,

Lκ,εTtf (x) =
∫
Rd

Lκ,εpz(s, ·)(x − z)f (z) dz.

Thus,

|Lκ,εTsf (x)| ≤
∫
Rd

(∫
|w|>ε

|δpz (s, x − z; w)|κ(x,w)J (w) dw

)
|f (z) − f (x)| dz

+
∣∣∣∣
∫
Rd

(∫
|w|>ε

δpz(s, x − z; w)κ(x,w)J (w) dw

)
dz

∣∣∣∣ |f (x)| .

By using Eqs. 1.7, 3.16, 4.2 and 2.17, for any β1 ∈ (0, δ1)∩(0, β], |Lκ,εTsf (x)| is bounded
by

c1

∫
Rd

ρ(s, x − z)
(|x − z|η ∧ 1

)
dz + c1 s−1	−1(s−1)−β1

≤ c2 s−1	−1(s−1)−η + c1 s−1	−1(s−1)−β1 ,

and the right hand side is integrable by Lemma 2.3. Thus by the dominated convergence
theorem and Fubini’s theorem,

Lκ

∫ t

0
Tsf (x) ds = lim

ε↓0
Lκ,ε

∫ t

0
Tsf (x) ds =

∫ t

0
lim
ε↓0

Lκ,εTsf (x)ds =
∫ t

0
LκTsf (x) ds .

(5.16)
It follows from Eqs. 4.13, 2.17 and the boundedness of f that for any β2 ∈ (0, β] ∩

(0, δ1/2) and γ ∈ (0, β2), we have

|Ssf (x) − Ssf (x′)| ≤ c3s
−1	−1(s−1)−γ

(|x − x′|β2−γ ∧ 1
)
. (5.17)

It follows from Eqs. 4.12, 2.17 and the boundedness of f that

|Ssf (x)| ≤ c4s
−1	−1(s−1)−β2 . (5.18)
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We use Lemma 4.8(1) and Fubini’s theorem in the first line below, which can be justified
by an argument similar to Eqs. 4.33 and 4.34:

|Lκ,εRsf (x)|
≤

∫ s

0

∣∣∣∣
∫
Rd

(∫
|w|>ε

δpz(s − r, x − z; w)κ(x,w)J (w) dw

)
Srf (z) dz

∣∣∣∣ dr

≤
∫ s

0

∫
Rd

(∫
|w|>ε

|δpz (s − r, x − z; w)|κ(x,w)J (w) dw

)
|Srf (z) − Srf (x)| dzdr

+
∫ s

0

∣∣∣∣
∫
Rd

(∫
|w|>ε

δpz(s − r, x − z; w)κ(x,w)J (w) dw

)
dz

∣∣∣∣ |Srf (x)|dr .

By using Eqs. 1.7, 3.16, 4.2, 2.17, 5.17, 5.18 and Lemma 2.3, we further have that

|Lκ,εRsf (x)| ≤ c5

∫ s

0

∫
Rd

ρ(s − r, x − z)r−1	−1(r−1)−γ
(|x − z|β2−γ ∧ 1

)
dzdr

+c5

∫ s

0
r−1	−1(r−1)−β2dr

≤ c6

∫ s

0
(s−r)−1	−1((s−r)−1)−(β2−γ )r−1	−1(r−1)−γ dr + c5

∫ s

0
r−1	−1(r−1)−β2dr

≤ c7s
−1	−1(s−1)−β2 + c5	

−1(s−1)−β2 = 2c7s
−1	−1(s−1)−β2 ,

and the right hand side is integrable by Lemma 2.3. This justifies the use of the dominated
convergence theorem in the second line of the following calculation:

Lκ

∫ t

0
Rsf (x) ds = lim

ε↓0
Lκ,ε

∫ t

0
Rsf (x) ds =

∫ t

0
lim
ε↓0

Lκ,εRsf (x) ds =
∫ t

0
LκRsf (x) ds .

(5.19)
Combining Eq. 5.19 with 5.16 and 5.15, we arrive at the conclusion of this lemma.

5.3 Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1. By using Lemma 4.6 in the second equality, Eq. 4.6 in the third,
Eq. 4.11 in the fourth, Eq. 4.6 in the fifth, and Lemma 4.7 in the sixth equality, we have

∂tp
κ(t, x, y) = ∂tpy(t, x − y) + ∂tφy(t, x)

= LKy py(t, x−y)+
(

q(t, x, y)+
∫ t

0

∫
Rd

LKzpz(t−s, ·)(x−z)q(s, z, y) dz ds

)

=
(
LKx py(t, x − y) − q0(t, x, y)

)

+
(

q(t, x, y) +
∫ t

0

∫
Rd

LKzpz(t − s, ·)(x − z)q(s, z, y) dz ds

)

= LKx py(t, x − y) +
∫ t

0

∫
Rd

q0(t − s, x − z)q(s, z, y) dz ds

+
∫ t

0

∫
Rd

LKzpz(t − s, ·)(x − z)q(s, z, y) dz ds

= LKx py(t, x − y) +
∫ t

0

∫
Rd

LKx pz(t − s, ·)(x − z)q(s, z, y) dz ds

= Lκpκ(t, x, y) .
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Thus Eq. 1.10 holds. The joint continuity of pκ(t, x, y) is proved in Lemma 4.9. Fur-
ther, if we apply the maximum principle, Theorem 5.1, to uf (t, x) := P κ

t f (x) with
f ∈ C∞

c (Rd) and f ≤ 0, we get uf (t, x) ≤ 0 for all t ∈ (0, T ] and all x ∈ R
d . This

implies that pκ(t, x, y) ≥ 0.

(i) Equation 1.11 is proved in Lemma 4.8(1).
(ii) The estimate Eq. 1.12 is given in Eq. 4.49, while continuity of t �→ Lκpκ(t, ·, y)(x)

is proven in Corollary 4.11.
(iii) Let f be a bounded and uniformly continuous function. For any ε > 0, there exists

δ > 0 such that |f (x) − f (y)| < ε for all |x − y| < δ. By Eqs. 4.5, 1.5, 2.17 and the
estimate for py(t, x − y) in Proposition 3.2 we have

lim
t↓0

sup
x∈Rd

∣∣∣∣
∫
Rd

py(t, x − y)f (y) dy − f (x)

∣∣∣∣
= lim

t↓0
sup
x∈Rd

∣∣∣∣
∫
Rd

py(t, x − y)f (y) dy −
∫
Rd

py(t, x − y)f (x) dy

∣∣∣∣
≤ c1 lim

t↓0
sup
x∈Rd

∫
Rd

tρ(t, x − y) |f (y) − f (x)| dy

≤ εc1 lim
t↓0

sup
x∈Rd

∫
|x−y|<δ

tρ(t, x − y)dy + 2c1‖f ‖∞ lim
t↓0

sup
x∈Rd

∫
|x−y|≥δ

tρ(t, x−y)dy

≤ c2ε lim
t↓0

sup
x∈Rd

∫
Rd

tρ(t, x−y)dy + 2c1‖f ‖∞ lim
t↓0

t sup
x∈Rd

∫
|x−y|≥δ

	(|x − y|−1)

|x − y|d dy

≤ c2ε + 2c1‖f ‖∞ lim
t↓0

t

∫
|z|≥δ

	(|z|−1)

|z|d dz = c2ε .

This implies that

lim
t↓0

sup
x∈Rd

∣∣∣∣
∫
Rd

py(t, x − y)f (y) dy − f (x)

∣∣∣∣ = 0 . (5.20)

Further, by Eqs. 4.47 and 2.17, for any β2 ∈ (0, β] ∩ (0, δ1), we have∣∣∣∣
∫
Rd

∫ t

0

∫
Rd

pz(t − s, x − z)q(s, z, y) dz ds f (y)dy

∣∣∣∣
≤ c3 ‖f ‖∞ t

∫
Rd

(
ρ

β2
0 + ρ0

β2

)
(t, x − y) dy ≤ c4 	−1(t−1)−β2 −→ 0 , t ↓ 0 .

The claim now follows from this, Eqs. 4.46 and 5.20.

Uniqueness of the kernel satisfying Eqs. 1.10–1.13 Let p̃κ (t, x, y) be another non-
negative jointly continuous kernel satisfying Eqs. 1.10–1.13. For any function f ∈
C∞

c (Rd), define ũf (t, x) := ∫
Rd p̃κ (t, x, y)f (y) dy. By the joint continuity of p̃κ (t, x, y),

(i) and (iii) we have that

ũf ∈ Cb([0, T ] × R
d), lim

t↓0
sup
x∈Rd

|̃uf (t, x) − f (x)| = 0 .

By Lemma 5.3 and Remark 5.5,

Lκ ũf (t, x) =
∫
Rd

Lκ p̃κ (t, x, y)f (y) dy and Lκuf (t, x) =
∫
Rd

Lκpκ(t, x, y)f (y) dy.

(5.21)
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Moreover, by Lemma 5.4 and Remark 5.5, t �→ Lκuf (t, x) and t �→ Lκ ũf (t, x) are
continuous on (0, T ]. Here and in Eq. 5.21 we use that p̃κ satisfies (i)–(ii).

Let w(t, x) := uf (t, x) − ũf (t, x). Then w(0, x) = 0, limt↓0 supx∈Rd |w(t, x) −
w(0, x)| = 0, and t �→ Lκw(t, x) is continuous on (0, T ]. Note that by Eqs. 1.12 and 1.10,

|∂tp
κ(t, x, y)| + |∂t p̃

κ (t, x, y)| ≤ c5ρ(t, x − y), t ∈ (0, T ] .
Thus, by the dominated convergence theorem,

∂t ũf (t, x) =
∫
Rd

∂t p̃
κ (t, x, y)f (y) dy and ∂tuf (t, x) =

∫
Rd

∂tp
κ(t, x, y)f (y) dy.

By this, Eqs. 1.10 and 5.21, we have ∂tw(t, x) = Lκw(t, x). Hence, all the assumptions of
Theorem 5.1 are satisfied and we can conclude that for every t ∈ (0, T ], supx∈Rd w(t, x) ≤
supx∈Rd w(0, x) = 0. By applying the theorem to −w we get that w(t, x) = 0 for all
t ∈ (0, T ] and every x ∈ R

d . Hence, uf = ũf for every f ∈ C∞
c (Rd), which implies that

p̃κ (t, x, y) = pκ(t, x, y).
The last statement of the theorem about the dependence of constants c1 and c2 has been

already proved in the results above.

Proof of Theorem 1.2 (1) The constant function u(t, x) = 1 solves ∂tu(t, x) =
Lκu(t, x), hence applying Theorem 5.1 to ±(P κ

t 1(x) − 1) we get that P κ
t 1(x) ≡ 1

proving Eq. 1.14.
(2) Same as the proof of [6, Theorem 1.1(3)].
(3) By Eqs. 1.10 and 1.12 we see that |∂tp

κ(t, x, y)| ≤ c2ρ(t, x − y) for t ∈ (0, T ] and
x �= y. Hence by the mean value theorem, for 0 < s ≤ t ≤ T and x �= y,∣∣pκ(s, x, y) − pκ(t, x, y)

∣∣ ≤ c2|t − s|ρ(s, x − y) . (5.22)

Let γ ∈ (0, δ1) ∩ (0, 1]. By Lemma 4.8 and by the definition of ρ0
−1, we have that for

every t ∈ (0, T ] ,

|pκ(t, x, y) − pκ(t, x′, y)| ≤ c1|x − x′|γ 	−1(t−1)t
(
ρ(t, x − y) + ρ(t, x′ − y)

)
≤ 2c1|x − x′|γ 	−1(t−1)t

(
ρ(t, x − y) ∨ ρ(t, x′ − y)

)
.

(5.23)

By use of the triangle inequality, this together with Eq. 5.22 implies the first claim.
By Eq. 1.11, if 	−1(t−1)|x − x′| ≥ 1,

|pκ(t, x, y) − pκ(t, x′, y)| ≤ pκ(t, x, y) + pκ(t, x′, y)

≤ c1t
(
ρ(t, x − y) + ρ(t, x′ − y)

)
≤ 2c1|x − x′|	−1(t−1)t

(
ρ(t, x − y) ∨ ρ(t, x′ − y)

)
. (5.24)

Suppose 	−1(t−1)|x − x′| ≥ 1, β + δ1 > 1 and δ1 ∈ (2/3, 2). Then by Eq. 4.50

|pκ(t, x, y) − pκ(t, x′, y)| ≤ |x − x′| ·
∫ 1

0
|∇p(t, x + θ(x′ − x), y)| dθ

≤ ct	−1(t−1)|x − x′|
∫ 1

0
ρ(t, (x − y) + θ(x′ − x))dθ. (5.25)

Since θ |x′ − x| ≤ 1/	−1(t−1), from Eq. 5.25 we have

|pκ(t, x, y) − pκ(t, x′, y)| ≤ ct	−1(t−1)|x − x′|ρ(t, x − y)

≤ ct	−1(t−1)|x − x′| (ρ(t, x − y) ∨ ρ(t, x′ − y)
)
. (5.26)
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Equations 5.22, 5.24 and 5.26 imply the second claim.
(4) This follows immediately from the second part of Lemma 4.10.

Proof of Theorem 1.3 (1) We first claim that for f ∈ C
2,ε
b (Rd), Lκf is bounded Hölder

continuous. We will use results from [1]. For f ∈ C
2,ε
b (Rd) and x, z ∈ R

d , let

Ezf (x) = f (x + z) − f (x) and Fzf (x) = f (x + z) − f (x) − ∇f (x) · z.

Using the assumption that κ(y, z) = κ(y, −z), we have

LKy f (x) =
∫

|z|<1
Fzf (x)κ(y, z)J (z)dz +

∫
|z|≥1

Ezf (x)κ(y, z)J (z)dz.

Thus, Lκf is bounded by Eqs. 1.7 and 1.1. Moreover, using Eqs. 1.2, 1.7 and [1,
Theorem 5.1 (b) and (e)] with γ = 2 + ε,

|Lκf (x) − Lκf (y)|
≤ |

∫
Rd

δf (x; z)(κ(x, z) − κ(y, z))J (z)dz| + |LKy f (x) − LKy f (y)|

≤ c1(|x−y|β ∧1)

∫
Rd

(|z|2∧1)j (|z|)dz+c1

∫
|z|<1

|Fzf (x)−Fzf (y)|κ(y, z)j (|z|)dz

+c1

∫
|z|≥1

|Ezf (x) − Ezf (y)|κ(y, z)j (|z|)dz

≤ c2|x − y|β + c2

(∫
|z|<1

|z|2j (|z|)dz

)
|x − y|ε + c2

(∫
|z|≥1

j (|z|)dz

)
|x − y|.

Thus we have proved the claim.
For f ∈ C

2,ε
b (Rd), we define u(t, x) := f (x) + ∫ t

0 P κ
s Lκf (x) ds . Note that

|u(t, x) − u(0, x)| ≤
∫ t

0
|P κ

s Lκf (x)|ds ≤ t‖Lκf ‖∞.

Thus Eq. 5.1 holds. Since Lκf is bounded Hölder continuous, we can use Eq. 5.14
(together with Eqs. 1.12, 1.10 and 5.21) to get LκP κ

s Lκf (x) = ∂s

(
P κ

s Lκf
)
(x)) and

obtain

Lκu(t, x) = Lκf (x) +
∫ t

0
LκP κ

s Lκf (x) ds

= Lκf (x) +
∫ t

0
∂s

(
P κ

s Lκf
)
(x) ds = PtLκf (x) = ∂tu(t, x) .

Therefore u(t, x) satisfies the assumptions of Theorem 5.1. Since u(0, x) = f (x), it
follows from the maximum principle that

P κ
t f (x) = u(t, x) = f (x) +

∫ t

0
P κ

s Lκf (x) ds . (5.27)

Since Lκf is bounded and uniformly continuous, we can use Eq. 1.13 to get

lim
t↓0

1

t

(
P κ

t f (x) − f (x)
) = lim

t↓0

1

t

∫ t

0
P κ

s Lκf (x)ds = Lκf (x)

and the convergence is uniform.
(2) Using our Theorem 1.1(iii), Theorem 1.2(1) and Lemma 5.4, the proof of this part is

the same as in [6].
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5.4 Lower Bound Estimate of pκ(t, x, y)

By Theorem 1.3, we have that (P κ
t )t≥0 is a Feller semigroup and there exists a Feller process

X = (Xt ,Px) corresponding to (P κ
t )t≥0. Moreover, by Eq. 5.27 for f ∈ C

2,ε
b (Rd),

f (Xt ) − f (x) −
∫ t

0
Lκf (Xs) ds (5.28)

is a martingale with respect to the filtration σ(Xs, s ≤ t). Therefore by the same argument
as that in [6, Section 4.4], we have the following Lévy system formula: for every function
f : Rd × R

d → [0, ∞) vanishing on the diagonal and every stopping time S,

Ex

∑
0<s≤S

f (Xs−, Xs) = Ex

∫ S

0
f (Xs, y)JX(Xs, dy)ds , (5.29)

where JX(x, y) := κ(x, y − x)J (x − y).
For A ∈ B(Rd) we define τA := inf{t ≥ 0 : Xt /∈ A}.
The following result is the counterpart of [6, Lemma 4.6].

Lemma 5.7 For each γ ∈ (0, 1) there exists A = A(γ ) > 0 such that for every r > 0,

sup
x∈Rd

Px

(
τB(x,r) ≤ (A	(1/(4r)))−1

)
≤ γ . (5.30)

Proof Without loss of generality, we take x = 0. The constant A will be chosen later. Let
f ∈ C∞

b (Rd) with f (0) = 0 and f (y) = 1 for |y| ≥ 1. For any r > 0 set fr(y) = f (y/r).
By the definition of fr and the martingale property in Eq. 5.28 we have

P0

(
τB(0,r) ≤ (A	(1/(4r)))−1

)
≤ E0

[
fr

(
XτB(0,r)∧(A	(1/(4r)))−1

)]

= E0

(∫ τB(0,r)∧(A	(1/(4r)))−1

0
Lκfr (Xs) ds

)
.

(5.31)

By the definition of Lκ , Eqs. 1.1 and 1.7 we have

|Lκfr (y)| = 1

2

∣∣∣∣
∫
Rd

(fr (y + z) + fr(y − z) − 2fr(y)) κ(y, z)J (z) dz

∣∣∣∣
≤ κ1γ0‖∇2fr‖∞

2

∫
|z|≤r

|z|2j (|z|) dz + 2κ1γ0‖fr‖∞
∫

|z|>r

j (|z|) dz

≤ c1

(
‖∇2f ‖∞

r2
r2P(r) + ‖f ‖∞P(r)

)
≤ c2 	(r−1) ,

where c2 = c2(κ1, γ0, f ). Here the last inequality is a consequence of Eq. 3.7. Substituting
in Eq. 5.31 we get that

P0

(
τB(0,r) ≤ (A	(1/(4r)))−1

)
≤ c2	(r−1)(A	(1/(4r)))−1 ≤ 4c2A

−1 .

With A = 4c2/γ the lemma is proved.

Proof of Theorem 1.4 Throughout the proof, we fix T , M ≥ 1 and, without loss of
generality, we assume that 	−1(T −1)−1 = M .
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By [4, Theorem 2.4] and the same argument as the one in [5, Proposition 2.2] (see also
[7, Proposition 6.4(1)] or [3, Proposition 6.2]), Eqs. 1.4, 1.20, 1.1 and 1.7 imply that there
exists a constant c0 > 0 such that

py(t, x) ≥ c0

(
	−1(t−1)d ∧ tj (|x|)

)
(t, x, y) ∈ (0, T ] × B(0, 4M) × R

d . (5.32)

Since by [11, Lemma 3.2(a)],

j (|x|) ≥ c1|x|−d	(|x|−1), |x| ≤ 4M (5.33)

for some c1 ∈ (0, 1), by Proposition 2.1 we have

py(t, x) ≥ c0c1tρ(t, x) (t, x, y) ∈ (0, T ] × B(0, 4M) × R
d . (5.34)

(1) Let λ = 1/A where A is the constant from Lemma 5.7 for γ = 1/2. Then for every
t > 0,

sup
z∈Rd

Pz(τB(z,2−2	−1(t−1)−1) ≤ λt) ≤ 1

2
. (5.35)

Let t ∈ (0, T ] and |x − y| ≤ 3	−1(t−1)−1( so that |x − y| ≤ 3M). By Eq. 4.47 we have
that there exists a constant c2 > 0 such that∫ t

0

∫
Rd

pz(t − s, x − z)q(s, z, y) dz ds ≥ −c2t
(
ρ0

β + ρ
β

0

)
(t, x − y)

= −c2t
(
	−1(t−1)−β + |x − y|β ∧ 1

)
ρ(t, x − y)

≥ −c2t
(
	−1(t−1)−β + 3β	−1(t−1)−β

)
ρ(t, x − y) .

We choose t0 ∈ (0, 1) so that for all t ∈ (0, t0), c2(1 + 3β)	−1(t−1)−β ≤ c1/2. Together
with Eqs. 5.34 and 4.46 we conclude that for all t ∈ (0, t0) and all x, y ∈ R

d satisfying
|x − y| ≤ 3	−1(t−1)−1 we have

pκ(t, x, y) ≥ c1

2
tρ(t, x − y) ≥ c3t

	
(

1
	−1(t−1)

+ 3
	−1(t−1)

)
(

1
	−1(t−1)

+ 3
	−1(t−1)

)d
≥ c4	

−1(t−1)d .

By Eq. 1.15 and iterating �T/t0� + 1 times, we obtain the following near-diagonal lower
bound

pκ(t, x, y) ≥ c5	
−1(t−1)d for all t ∈ (0, T ] and |x − y| ≤ 3	−1(t−1)−1 . (5.36)

Now we assume |x − y| > 3	−1(t−1)−1 and let σ = inf{t ≥ 0 : Xt ∈ B(y, 2−1	−1

(t−1)−1)}. By the strong Markov property and Eq. 5.35 we have

Px

(
Xλt ∈ B(y, 	−1(t−1)−1)

)
≥Px

(
σ ≤λt, sup

s∈[σ,σ+λt]
|Xs −Xσ |<2−1	−1(t−1)−1

)

= Ex

(
PXσ

(
sup

s∈[0,λt]
|Xs − X0| < 2−1	−1(t−1)−1

)
; σ ≤ λt

)

≥ inf
z∈B(y,2−1	−1(t−1)−1)

Pz

(
τB(z,2−1	−1(t−1)−1) > λt

)
Px (σ ≤ λt)

≥ 1

2
Px (σ ≤ λt) ≥ 1

2
Px

(
Xλt∧τ

B(x,	−1(t−1)−1)
∈ B(y, 2−1	−1(t−1)−1)

)
. (5.37)
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Since

Xs /∈ B
(
y, 2−1	−1(t−1)−1

)
⊂ B

(
x, 	−1(t−1)−1

)c

, s < λt ∧ τB(x,	−1(t−1)−1),

we have

1Xλt∧τ
B(x,	−1(t−1)−1)

∈B(y,2−1	−1(t−1)−1) =
∑

s≤λt∧τ
B(x,	−1(t−1)−1)

1Xs∈B(y,2−1	−1(t−1)−1 .

Thus, by the Lévy system formula in Eq. 5.29 we have

Px

(
Xλt∧τ

B(x,	−1(t−1)−1)
∈ B(y, 2−1	−1(t−1)−1)

)

= Ex

[∫ λt∧τ
B(x,	−1(t−1)−1)

0

∫
B(y,2−1	−1(t−1)−1)

JX(Xs, u) du ds

]

≥ Ex

[∫ λt∧τ
B(x,6·2−4	−1(t−1)−1)

0

∫
B(y,2−1	−1(t−1)−1)

κ0j (|Xs −u|)1{u:|Xs−u|<|x−y|} du ds

]
.

(5.38)

Let w be the point on the line connecting x and y (i.e., |x −y| = |x −w|+ |w −y|) such
that |w −y| = 7 · 2−4	−1(t−1)−1. Then B(w, 2−4	−1(t−1)−1) ⊂ B(y, 2−1	−1(t−1)−1).
Moreover, for every (z, u) ∈ B(x, 6 · 2−4	−1(t−1)−1) × B(w, 2−4	−1(t−1)−1), we have

|z − u| ≤ |z − x| + |w − u| + |x − w| = |z − x| + |w − u| + |x − y| − |w − y|
< (6 · 2−4 + 2−4)	−1(t−1)−1 + |x − y| − 7 · 2−4	−1(t−1)−1 = |x − y|.

Thus

B(w, 2−4	−1(t−1)−1) ⊂ {u : |z − u| < |x − y|} for z ∈ B(x, 6 · 2−4	−1(t−1)−1).

(5.39)
Equations 5.39 and 5.35 imply that

Ex

[∫ λt∧τ
B(x,6·2−4	−1(t−1)−1)

0

∫
B(y,2−1	−1(t−1)−1)

j (|Xs − u|)1{u:|Xs−u|<|x−y|} du ds

]

≥ Ex

[
λt ∧ τB(x,6·2−4	−1(t−1)−1)

] ∫
B(w,2−4	−1(t−1)−1)

j (|x − y|) du

≥ λtPx

(
τB(x,6·2−4	−1(t−1)−1) ≥ λt

) ∣∣∣B(w, 2−4	−1(t−1)−1)

∣∣∣ j (|x − y|)
≥ c6t	

−1(t−1)−d j (|x − y|) . (5.40)

By combining Eq. 5.37, 5.38 and 5.40 we get that

Px

(
Xλt ∈ B(y,	−1(t−1)−1)

)
≥ 1

2
c6t	

−1(t−1)−d j (|x − y|) (5.41)

By Eqs. 1.15, 5.36 and 5.41 we have

pκ(t, x, y) ≥
∫

B(y,	−1(t−1)−1)

pκ(λt, x, z)pκ((1 − λ)t, z, y) dz

≥ inf
z∈B(y,	−1(t−1)−1)

pκ((1 − λ)t, z, y)

∫
B(y,	−1(t−1)−1)

pκ(λt, x, z) dz

≥ c7	
−1(t−1)d t	−1(t−1)−d j (|x − y|) = c7tj (|x − y|) .

Combining this estimate with Eq. 5.36 we obtain Eq. 1.21. Inequality Eq. 1.22 follows from
Eq. 1.21, Proposition 2.1 and Eq. 5.33.
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