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Abstract We study existence and uniqueness of solutions to a class of quasilinear degen-
erate parabolic equations, in bounded domains. We show that there exists a unique solution
which satisfies possibly inhomogeneous Dirichlet boundary conditions. To this purpose
some barrier functions are properly introduced and used.
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1 Introduction

We are concerned with bounded solutions to the following nonlinear parabolic equation:

ρ ∂tu = �[G(u)] in � × (0, T ], (1.1)

where � is an open bounded subset of RN (N ≥ 1) with boundary ∂� = S and ρ is a
positive function of the space variables. Throughout the paper, we shall make the following
assumption:
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H0. S is an (N − 1)−dimensional compact submanifold of RN of class C3.

Moreover, we require the functions ρ and G to satisfy the following hypotheses:

H1. ρ ∈ C(�), ρ > 0 in �;
H2. G ∈ C1(R), G(0) = 0, G′(s) > 0 for any s ∈ R \ {0}. Moreover, if G′(0) = 0,

then G′ is decreasing in (−δ, 0) and increasing in (0, δ) for some δ > 0.
Clearly, the character of Eq. 1.1 is determined by G and ρ as one can see by looking at

Eq. 1.1 as

∂tu = 1

ρ
�[G(u)] in � × (0, T ] , (1.2)

In fact, in view of the nonlinear function G(u) and hypothesisH2, the Eq. 1.1 can be degen-
erate; however, we also consider the case where such degeneracy does not occur (see H5
below). Moreover, setting

d(x) := dist(x,S) (x ∈ �̄) ,

if ρ(x) → 0 as d(x) → 0, the coefficient 1
ρ
of the operator 1

ρ
� is unbounded at S , so the

operator is singular; whereas, if ρ(x) → ∞ as d(x) → 0, the operator 1
ρ
� is degenerate at

S .
Problem (1.1) appears in a wide number of physical applications (see, e.g., [20]); note

that, by choosing G(u) = |u|m−1u for some m > 1, we obtain the well known porous
medium equation with a variable density ρ = ρ(x) (see [4, 5]).

Previous Results on the Cauchy Problem In the literature, a particular attention has
been devoted to the following companion Cauchy problem{

ρ∂tu = �[G(u)] in R
N × (0, T ],

u = u0 inRN × {0}. (1.3)

In particular, existence and uniqueness of solutions to Eq. 1.3 have been extensively studied;
note that here and hereafter we always consider very weak solutions (see Section 2.1 for the
precise definition). To be specific, if one makes the following assumptions:

(i) ρ ∈ C(RN), ρ > 0 ,
(ii) u0 ∈ L∞(RN) ∩ C(RN),

it is well known (see [5, 15, 20, 29]) that there exists a bounded solution to Eq. 1.3; more-
over, for N = 1 and N = 2 such a solution is unique. When N ≥ 3, the uniqueness of the
solution in the class of bounded functions is no longer guaranteed, and it is strictly related
to the behavior at infinity of the density ρ. Indeed, it is possible to prove that if ρ does
not decay too fast at infinity, then problem (1.3) admits at most one bounded solution (see
[29]). On the contrary, if one suppose that ρ decays sufficiently fast at infinity, then the non
uniqueness appears (see [4, 14, 17, 29]).

Following this direction, in [14] the authors prove the existence and uniqueness of the
solution to Eq. 1.3 which satisfies the following additional condition at infinity

lim|x|→∞ u(x, t) = a(t) uniformly for t ∈ [0, T ] , (1.4)

supposing a ∈ C([0, T ]), a > 0 and lim|x|→∞ u0(x) = a(0). Note that Eq. 1.4 is a point-
wise condition at infinity for the solution u. Also, the results of [14] have been generalized
in [18, 19] to the case of more general operators.
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Previous Results in bounded domains When considering (1.1) in a bounded subset
� ⊂ R

N , in view of H1, since ρ is allowed either to vanish or to diverge at S , it is natural
to consider the following initial value problem associated with Eq. 1.1:{

ρ∂tu = �[G(u)] in � × (0, T ],
u = u0 in� × {0}, (1.5)

where no boundary conditions are specified at S . We require S, ρ and G to satisfy
hypotheses H0-2; furthermore, for the initial datum u0 we assume that

H3. u0 ∈ L∞(�) ∩ C(�).

Concerning the existence and uniqueness of the solutions to Eq. 1.5, the case G(u) = u

has been largely investigated, using both analytical and stochastic methods (see, e.g., [22,
27, 28, 31]). Also analogous elliptic or elliptic-parabolic equations have attracted much
attention in the literature (see, e.g., [6–11, 25, 26]); in particular, the question of prescribing
continuous data at S has been addressed (see, e.g., [22, 26–28]).

For general nonlinear function G, the well-posedness of problem (1.5) has been studied
in [16] in the case N = 1 and subsequently addressed for N ≥ 1 in [30]. Precisely, in [30] is
proven that, if ρ diverges sufficiently fast as d(x) → 0, then one has uniqueness of bounded
solutions not satisfying any additional condition at S .

Indeed, if one requires that there exist ε̂ > 0 and ρ ∈ C((0, ε̂]) such that
• ρ(x) ≥ ρ(d(x)) > 0, for any x ∈ S ε̂ := {x ∈ � | d(x) < ε̂},
• ∫ ε̂

0 η ρ(η) dη = +∞,

then there exists at most one bounded solution to Eq. 1.5.
Conversely, if either ρ(x) → ∞ sufficiently slow or ρ does not diverge when d(x) →

0, then nonuniqueness prevails in the class of bounded solutions. Precisely, in [30] it is
supposed that the function ρ satisfies the next condtion: there exist ε̂ > 0 and ρ ∈ C((0, ε̂])
such that

• ρ(x) ≤ ρ(d(x)), for any x ∈ S ε̂ ,
• ∫ ε̂

0 η ρ(η) dη < +∞.

A natural choice for ρ is given by

ρ(η) = η−α, for some α ∈ (−∞, 2), and η ∈ (0, ε̂]. (1.6)

It is proven that for any A ∈ Lip([0, T ]), A(0) = 0, there exists a solution to Eq. 1.5
satisfying

lim
d(x)→0

|U(x, t) − A(t)| = 0, (1.7)

uniformly with respect to t ∈ [0, T ], where U is defined as

U(x, t) :=
∫ t

0
G(u(x, τ )) dτ.

In particular, the previous result implies non-uniqueness of bounded solutions to Eq. 1.5.
Moreover, the solution to problem (1.5) which satisfies (1.7) is unique, provided A ≡ 0 or
G(u) = u.

Outline of the Main Results Formally, the boundary S for problem (1.5) plays the same
role played by infinity for the Cauchy problem (1.3); hence, the well-posedness for Eq. 1.5
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depends on the behavior of ρ in the limit d(x) → 0, in analogy with the previous results for
the Cauchy problem (1.3), where it depends on the behavior of ρ for large |x|.

Thus, a natural question that arises is if it is possible to impose at S Dirichlet boundary
conditions, instead of the integral one (1.7). Moreover, on can ask if such a Dirichlet condi-
tions restores uniqueness in more general situations than the ones considered in connection
with Eq. 1.7. Observe that, as recalled above, the same question has already been investi-
gated for the linear case G(u) = u (see, e.g., [22, 26–28]), and for the case where ρ ≡ 1 and
G is general (see [2, 3]). The case where both ρ and G are general, which is a quite natural
situation also for various applications (see, e.g., [21]), has not been treated in the literature
and is the object of our investigation.

In fact, the main novelty of our paper relies in the following result: we prove existence
and uniqueness of a bounded solution to problem (1.5) satisfying Dirichlet possibly non-
homogeneous boundary conditions. This is of course a much stronger condition with respect
to Eq. 1.7. We require the function ρ to satisfy

H4. i. ρ ∈ L∞(�),
or

ii. inf� ρ > 0 and there exist ε̂ > 0, ρ ∈ C((0, ε̂]) such that
• ρ(x) ≤ ρ(d(x)) for any x ∈ S ε̂ ,
• ∫ ε̂

0 η ρ(η) dη < +∞.

Under the hypothesis H4, we show that, for any ϕ ∈ C(S × [0, T ]) , if either G is non
degenerate, i.e. there holds

H5. G ∈ C1(R), G′(s) ≥ α0 > 0 for any s ∈ R ,

or ϕ and u0 satisfy

ϕ > 0 in S × [0, T ] , lim inf
x→x0

u0(x) ≥ α1 > 0 for every x0 ∈ S , (1.8)

then there exists a unique bounded solution to Eq. 1.5 such that, for each τ ∈ (0, T ),

lim
x→x0
t→t0

u(x, t) = ϕ(x0, t0) uniformly with respect to t0 ∈ [τ, T ] and x0 ∈ S. (1.9)

If we drop either the assumption of non-degeneracy on G or the assumption (1.8), we need
to restrict our analysis to the special class of data ϕ which only depend on x; in fact, for any
ϕ ∈ C(S) we prove that there exists a unique bounded solution to Eq. 1.5 satisfying

lim
x→x0

u(x, t) = ϕ(x0) uniformly with respect to t ∈ [0, T ] and x0 ∈ S, (1.10)

provided
lim

x→x0
u0(x) = ϕ(x0) for every x0 ∈ S. (1.11)

To prove the existence results we introduce and use suitable barrier functions (see Eqs. 3.18,
3.25, 3.31, below). We should note that the definitions of such barriers seem to be new.
Let us observe that in constructing such barrier functions, the cases H4-i and H4-ii will be
treated separately (for more details, see Section 3).

In constructing our barrier functions, besides taking into account the behavior at S of the
density ρ(x) as described above, we have to overcome some difficulties due to the nonlinear
function G(u). In this respect, we should note that on the one hand, barrier functions similar
to those we construct were used in [14] and in [18], where problem (1.3) was addressed and
conditions were prescribed at infinity. However, such barriers cannot be trivially adapted to
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our case. Indeed, by an easy variation of them we could only consider S in place of infinity,
prescribing u(x, t) → a(t) as d(x) → 0 (t ∈ (0, T ]), but we cannot distinguish differ-
ent points x0 ∈ S and impose conditions (1.9) and (1.10). On the other hand, other similar
barriers were used in the literature (see, e.g., [12, 13, 24]) to prescribe Dirichlet boundary
conditions to solutions to linear parabolic or elliptic equations in bounded domains; how-
ever, they cannot be used in our situation, in view of the presence of the nonlinear function
G(u).

Let us finally mention that our results have some connections with regularity results up
to the boundary. In fact, as a consequence of our results, there exists a unique solution to
problem (1.5) which is continuous in�×[0, T ]. General regularity results could be deduced
from results in [2] and in [3], where more general equations are treated, only when

C1 ≤ ρ(x) ≤ C2 for all x ∈ � , (1.12)

for some 0 < C1 < C2. However, we suppose hypotheses H1 and H4, that are weaker than
Eq. 1.12.

We close this introduction with a brief overview of the paper. In Section 2 we present
a description of the main contributions of the paper; in particular, we state Theorem 2.3,
Theorem 2.4 and Theorem 2.5, that assure, under suitable hypotheses, the existence of a
bounded solution to Eq. 1.5 satisfying a proper Dirichlet boundary condition. Subsequently,
we show that such a solution is unique (see Theorem 2.7). Section 3 is devoted to the proofs
of the existence results, while in Section 4 the proof of the uniqueness result is given.

2 Existence and Uniqueness Results

In this section we present existence and uniqueness results for the solutions to

{
ρ∂tu = �[G(u)] in � × (0, T ],

u = u0 in � × {0}, (2.1)

where � ⊂ R
N satisfies hypothesis H0, and ρ, G and u0 satisfy hypotheses H1-H4.

Throughout the paper, we will extensively use the following notations:

• QT := � × (0, T ];
• Sε := {x ∈ � : d(x) < ε} (ε > 0);
• Aε := ∂Sε ∩ �;
• �ε := � \ Sε .

2.1 Mathematical Background

Before stating our results, let us define the tools we shall use in the following.

Definition 2.1 A function u ∈ C(� × [0, T ]) ∩ L∞(� × (0, T )) is a solution to Eq. 2.1 if

∫ τ

0

∫
�1

[u ρ ∂tψ + G(u)�ψ] dx dt =
∫

�1

[u(x, T )ψ(x, T ) − u0(x)ψ(x, 0)] ρ(x) dx

+
∫ τ

0

∫
∂�1

G(u)〈∇ψ, ν〉 dS dt, (2.2)
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for any open set �1 with smooth boundary ∂�1 such that �1 ⊂ �, for any τ ∈ (0, T ] and
for any ψ ∈ C

2,1
x,t (�1 × [0, τ ]), ψ ≥ 0, ψ = 0 in ∂�1 × [0, τ ], where ν denotes the outer

normal to �1.
Moreover, we say that u is a supersolution (subsolution respectively) to Eq. 2.1 if Eq. 2.2

holds with ≤ ( ≥ respectively).

Given ε > 0, we also consider the following auxiliary problem
⎧⎨
⎩

ρ∂tu = �[G(u)] in �ε × (0, T ] := Qε
T ,

u = φ inAε × (0, T ),

u = u0 in�ε × {0};
(2.3)

where φ ∈ C(Aε × [0, T ]) , φ(x, 0) = u0(x) for all x ∈ Aε .

Definition 2.2 A function u ∈ C(�ε × [0, T ]) is a solution to Eq. 2.3 if
∫ τ

0

∫
�1

[u ρ ∂tψ + G(u)�ψ] dx dt =
∫

�1

[u(x, T )ψ(x, T ) − u0(x)ψ(x, 0)] ρ(x) dx

+
∫ τ

0

∫
∂�1\Aε

G(u)〈∇ψ, ν〉 dS dt

+
∫ τ

0

∫
∂�1∩Aε

G(φ)〈∇ψ, ν〉 dS dt, (2.4)

for any open set �1 ⊂ �ε with smooth boundary ∂�1, for any τ ∈ (0, T ] and for any
ψ ∈ C

2,1
x,t (�1 × [0, τ ]), ψ ≥ 0, ψ = 0 in ∂�1 × [0, τ ], where ν denotes the outer normal

to �1. Supersolution and subsolution are defined accordingly.

2.2 Existence Results

At first, we consider the case of nondegenerate nonlinarities G satisfying hypothesis H5.

Theorem 2.3 Let hypothesesH0–H1,H3–H5 be satisfied and let ϕ ∈ C(S ×[0, T ]). Then
there exists the maximal solution to Eq. 2.1 such that, for each τ ∈ (0, T ),

lim
x→x0
t→t0

u(x, t) = ϕ(x0, t0), (2.5)

uniformly with respect to t0 ∈ [τ, T ] and x0 ∈ S .

Note that we say that u is the maximal solution to problem (2.1), if u ≥ v for any solution
v of the same problem satisfying (2.5).

We can also prove similar results to Theorem 2.3 in the case of a general nonlinearity G

satisfying hypothesis H2.

Theorem 2.4 Let hypothesesH0–H4 be satisfied, and let ϕ ∈ C(S). Suppose that condition
(1.11) holds. Then there exists the maximal solution to Eq. 2.1 such that

lim
x→x0

u(x, t) = ϕ(x0), (2.6)

uniformly with respect to t ∈ [0, T ] and x0 ∈ S .
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Finally, we can also consider data ϕ and u0 satisfying

ϕ > 0 in S × [0, T ] and lim inf
x→x0

u0(x) ≥ α1 > 0 for every x0 ∈ S. (2.7)

Theorem 2.5 Let hypotheses H0-H4 be satisfied, and let ϕ ∈ C(S × [0, T ]). Suppose that
Eq. 2.7 holds. Then there exists the maximal solution to Eq. 2.1 such that Eq. 2.5 holds.

Remark 2.6 If we further suppose that

lim
x→x0

u0(x) = ϕ(x0, 0) for every x0 ∈ S , (2.8)

then in Theorems 2.3 and 2.5 we can take τ = 0.

2.3 Uniqueness Results

Theorem 2.7 Let hypotheses H0–H3 be satisfied, and let ϕ ∈ C(S × [0, T ]). Suppose that
there exists a bounded maximal solution ū of problem (2.1) such that Eq. 2.5 holds. Then
there exists at most one bounded solution to Eq. 2.1 such that Eq. 2.5 holds.

Remark 2.8 Sufficient conditions for existence of the maximal solution ū in Theorem 2.7
can be found in Theorems 2.3, 2.4, 2.5.

3 Existence Results: Proofs

3.1 Preliminaries

In the proofs of our existence results, in order to show that the solution we construct is
maximal, we will make use of the following lemma.

Lemma 3.1 Let hypotheses H0–H3 be satisfied. Let u be a subsolution to problem (2.1)
and let û be a supersolution to problem (2.1). Suppose that for each τ ∈ (0, T ) there exists
ετ > 0 such that, for all 0 < ε < ετ ,

u ≤ û in Aε × (τ, T ]. (3.1)

Then

u ≤ û in QT .

Lemma 3.2 Let hypotheses H0–H3 be satisfied. Let ε > 0. Let

a :=
{

[G(u) − G(û)]/(u − û) for u �= û,

0 elsewhere,
(3.2)

with u and û as in Lemma 3.1. Then there exists a sequence {an} ∈ C∞(Qε
T ) such that

1

nN+1
≤ an ≤ ‖a‖L∞(Qε

T ) + 1

nN+1
and

(an − a)√
an

→ 0 in L2(Qε
T ).
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Furthermore, let χ ∈ C∞(�ε) with suppχ ⊂ �ε0 for some ε0 > ε, 0 ≤ χ ≤ 1. Then there
exists a unique solution ψn ∈ C

2,1
x,t (Q

ε
T ) to problem⎧⎪⎨

⎪⎩
ρ∂tψn + an�ψn = 0 in Qε

T ,

ψn = 0 inAε × (0, T ) ,

ψn(x, T ) = χ(x) in �ε.

(3.3)

Moreover, ψn has the following properties:

i. 0 ≤ ψn ≤ 1 on Q
ε

T ;
ii.

∫ ∫
Qε

T
an|�ψn|2 < C , for some C > 0 independent of n;

iii. sup0≤t≤T

∫
�ε |∇ψn|2 < C , for some C > 0 independent of n;

iv. there exists C̃ = C̃ε > 0 such that
∣∣∣ ∂ψn

∂ν

∣∣∣ ≤ C̃ on Aε × (0, T ) for any n ∈ N, where ν

is the outer normal at Aε .

Proof Note that i., ii., iii. follow by the same arguments as in [1, Lemma 10]. We should
note that in [1, Lemma 10] ρ ≡ 1; however, since in our case ∂tρ = 0, we get the conclusion
exactly by the same arguments. It remains to prove iv. To this aim observe that for any n ∈ N

∂ψn

∂ν
≤ 0 in Aε × (0, T ). (3.4)

Furthermore, the function ψn is a subsolution of problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ∂tψn + an�ψn = 0 in [�ε \ �̄ε0 ] × (0, T ],
ϕn = 0 inAε × (0, T ) ,

ϕn = 1 inAε0 × (0, T ) ,

ϕn(x, T ) = 0 in [�ε \ �̄ε0 ] × {T } ;

(3.5)

here we have used i. and the fact that suppχ ⊂ �ε0 . Now, let ζ be the solution of the elliptic
problem ⎧⎪⎨

⎪⎩
�ζ = 0 in [�ε \ �̄ε0 ],

ζ = 0 inAε,

ζ = 1 inAε0 .

(3.6)

By the maximum principle,
ζ ≥ 0 in �ε \ �ε0 .

Observe that the function ζ is a supersolution of problem (3.5). So, by the comparison
principle,

ζ ≥ ψn in [�ε \ �ε0 ] × (0, T ).

Moreover,
ζ = ψn = 0 in Aε × (0, T ).

Hence,
∂ψn

∂ν
≥ ∂ζ

∂ν
in Aε × (0, T ). (3.7)

From Eqs. 3.4 and 3.7 we obtain for all n ∈ N∣∣∣∣∂ψn

∂ν

∣∣∣∣ ≤ C̃ε := max
Aε

∂ζ

∂ν
in Aε × (0, T ).

This completes the proof.
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Proof of Lemma 3.1 The proof of this lemma is an adaptation of the arguments used in
[1, Proposition 9]. Let a be as in Eq. 3.2; since u and û are respectively subsolution and
supersolution to Eq. 2.1, in view of the Definition 2.1, with �1 and ψ as in Definition 2.2,
by Eq. 2.4 with τ = T , we get∫

�ε

ρ(x)[u(x, T ) − û(x, T )]ψ(x, T ) dx −
∫ T

0

∫
�ε

(u − û) {∂tψ + a �ψ} dt dx

≤ −
∫ τ

0

∫
Aε

[G(u) − G(û)]〈∇ψ, ν〉dSdt −
∫ T

τ

∫
Aε

[G(u) − G(û)]〈∇ψ, ν〉dSdt.(3.8)

Now, let {an} and ψn as in Lemma 3.2. Since, for every n ∈ N, there holds 〈∇ψn, ν〉 ≤ 0
onAε , if we set ψ = ψn in Eq. 3.8, using Eq. 3.1, we obtain∫

�ε

ρ[u(x, T ) − û(x, T )]χ(x) dx −
∫ T

0

∫
�ε

(u − û)(a − an) �ψndt dx

≤ −
∫ τ

0

∫
Aε

[G(u) − G(û)]〈∇ψn, ν〉dS dt −
∫ T

τ

∫
Aε

[G(u) − G(û)]〈∇ψn, ν〉dS dt

≤ −
∫ τ

0

∫
Aε

[G(u) − G(û)]〈∇ψn, ν〉 dS dt. (3.9)

In view of Lemma 3.2, we get∣∣∣∣
∫ T

0

∫
�ε

(u − û)(a − an) �ψndt dx

∣∣∣∣ ≤ C1

∥∥∥∥a − an√
an

∥∥∥∥
L2(QT )

∥∥√
an�ψn

∥∥
L2(QT )

≤ C1
√

C

∥∥∥∥a − an√
an

∥∥∥∥
L2(QT )

→ 0 as n → ∞ , (3.10)

where the constant C1 > 0 depends only on ‖u‖L∞ and ‖û‖L∞ . Furthermore,∣∣∣
∫ τ

0

∫
Aε

[G(u) − G(û)]〈∇ψn, ν〉dS dt

∣∣∣ ≤ C1C̃ meas(Aε)τ (3.11)

where we used Lemma 3.2-iv. Hence, in view of Eqs. 3.10 and 3.11, letting n → ∞ in
Eq. 3.9 and then τ → 0, we end up with∫

�ε

ρ(x)[u(x, T ) − û(x, T )]χ(x) dx ≤ 0. (3.12)

Since Eq. 3.12 holds for every χ ∈ C∞
0 (�ε), by approximation it also holds with χ(x) =

sign(u(x, T ) − û(x, T ))+, x ∈ �ε . This implies u ≤ û in Qε
T , from which the thesis

immediately follows, letting ε → 0+.

3.2 Proofs of the Theorems

In view of the assumption on ρ(x) given in H4, there holds the following lemma (see [30]).

Lemma 3.3 Let hypotheses H0–H3 be satisfied. Let there exist ε̂ > 0, ρ ∈ C((0, ε̂]) such
that ρ(x) ≤ ρ(d(x)) for any x ∈ S ε̂ , and

∫ ε̂

0 η ρ(η) dη < +∞.

Then there exists a function V (x) ∈ C2(Sε) such that⎧⎪⎨
⎪⎩

�V (x) ≤ −ρ(x), for all x ∈ Sε,

V (x) > 0, for all x ∈ Sε,

V (x) → 0 as d(x) → 0.
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In this section we use the fact that for any ϕ ∈ C(S × [0, T ]), there exists
ϕ̃ ∈ C(QT ) such that ϕ̃ = ϕ in S × [0, T ]. (3.13)

We shall write ϕ̃ ≡ ϕ.

Proof of Theorem 2.3 The proof is divided into two main parts. At first, we consider that
case of a density ρ satisfying hypothesis H4-ii.

Let η0 > 0. Since H5 holds, for any 0 < η < η0, we define u
η
ε ∈ C(�ε × [0, T ]) as the

unique solution (see [23, Chapter 5]; see also [32, Chapter 3]) to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ ∂tu = � [G(u)] in �ε × (0, T ) ,

u = ϕ + η on Aε × (0, T ) ,

u = u0,ε + η in �ε × {0} ,

(3.14)

where
u0,ε(x) := ζε u0(x) + (1 − ζε) ϕ(x, 0) in �

ε
,

and {ζε} ⊂ C∞
c (�ε) is a sequence of functions such that, for any ε > 0, 0 ≤ ζε ≤ 1 and

ζε ≡ 1 in �2ε . By the comparison principle, there holds

|uη
ε | ≤ K := max{‖u0‖∞, ‖ϕ‖∞} + η0 in �ε × (0, T ). (3.15)

Moreover, by usual compactness arguments (see, e.g., [23, Chapter 5]), there exists a
subsequence {uη

εk
} ⊆ {uη

ε } which converges, as εk → 0, locally uniformly in � × [0, T ], to
a solution uη to the following problem⎧⎨

⎩
ρ ∂tu = � [G(u)] in � × (0, T ] ,

u = u0 + η in � × {0}.
(3.16)

We want to prove that, for each τ ∈ (0, T ),

lim
x→x0
t→t0

uη(x, t) = ϕ(x0, t0),

uniformly with respect to t0 ∈ (τ, T ] , x0 ∈ S and η ∈ (0, η0).
Take any τ ∈ (0, T /2). Let (x0, t0) ∈ S × [2τ, T ]. Set Nε

δ (x0) := Bδ(x0) ∩ �ε for any
δ > 0 and ε > 0 small enough. From the continuity of the function ϕ and since G ∈ C1(R)

is increasing, there follows that, for any σ > 0, there exists δ(σ ) > 0, independent of
(x0, t0), such that

G−1 [G(ϕ(x0, t0) + η) − σ ] ≤ ϕ(x, t) + η ≤ G−1 [G(ϕ(x0, t0) + η) + σ ] , (3.17)

for all (x, t) ∈ Nδ(x0) × (tδ, tδ), where

tδ := t0 − δ , and tδ := min{t0 + δ, T },
and

Nδ(x0) := Bδ(x0) ∩ �.

Clearly, tδ > τ . Now, for any (x, t) ∈ Nδ(x0) × (tδ, tδ), we define

w(x, t) := G−1
[
−MV (x) − σ + G(ϕ(x0, t0) + η) − λ(t − t0)

2 − β|x − x0|2
]
, (3.18)

with V (x) as in Lemma 3.3 and M , λ and β positive constants to be fixed conveniently in
the sequel.
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First of all we want to prove that

ρ∂tw ≤ �G(w) in Nε
δ (x0) × (tδ, tδ). (3.19)

To his purpose, we note that

ρ∂tw ≤ ρ
2λδ

α0
, and �G(w) ≥ Mρ − 2βN.

Hence, the function w solves (3.19), if

M ≥ 2βN

inf� ρ
+ 2λδ

α0
. (3.20)

Going further, for any (x, t) ∈ [Bδ(x0) ∩ Aε] × (tδ, tδ), we have

w(x, t) ≤ G−1[G(ϕ(x0, t0) + η) − σ ]. (3.21)

Moreover, for (x, t) ∈ [∂Bδ(x0) ∩ �ε] × (tδ, tδ), there holds

w(x, t) ≤ −K, (3.22)

provided

β ≥ G(||ϕ||L∞ + η0) − G(−K)

δ2
.

Finally, for all (x, t) ∈ Nε
δ (x0) × {tδ}, there holds

w(x, t) ≤ G−1[G(ϕ(x0, t0) + η) − λδ2] ≤ −K, (3.23)

assuming

λ ≥ G(||ϕ||L∞ + η0) − G(−K)

δ2
.

From Eqs. 3.21, 3.22 and 3.23 we obtain that w is a subsolution to the following problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂tu = � [G(u)] in Nε
δ (x0) × (tδ, tδ) ,

u = −K in [∂Bδ(x0) ∩ �ε] × (tδ, tδ) ,

u = G−1[G(ϕ + η) − σ ] in [Bδ(x0) ∩ Aε] × (tδ, tδ) ,

u = −K in Nε
δ (x0) × {tδ}.

(3.24)

Recalling the definition of u
η
ε given in Eq. 3.14, and by using Eq. 3.15, it follows that uη is

a supersolution to problem (3.24). Note that sub– and supersolutions to problem (3.24) are
meant similarly to Definition 2.2, considering that Nε

δ (x0) is piece-wise smooth; the same
holds for problems of the same form we mention in the sequel.

By proceeding with the same methods, for all (x, t) ∈ Nδ(x0) × (tδ, tδ) we define

w(x, t) := G−1
[
MV (x) + σ + G(ϕ(x0, t0) + η) + λ(t − t0)

2 + β|x − x0|2
]
, (3.25)



162 F. Punzo and M. Strani

proving that, with an appropriate choice for the coefficientsM, λ and β,w is a supersolution
to problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂tu = � [G(u)] in Nε
δ (x0) × (tδ, tδ) ,

u = K in [∂Bδ(x0) ∩ �ε] × (tδ, tδ) ,

u = G−1[G(ϕ + η) + σ ] in [Bδ(x0) ∩ ∂�ε] × (tδ, tδ) ,

u = K in Nε
δ (x0) × {tδ}.

(3.26)

Precisely, we require M to be such that

M ≥ 2βN

inf� ρ
+ 2λδ

α0
,

while β and λ are chosen so that

β ≥ G(K) − G(||ϕ||L∞ + η0)

δ2
, λ ≥ G(K) − G(||ϕ||L∞ + η0)

δ2
.

On the other hand, uη is a subsolution to problem (3.26). Hence, by the comparison
principle, and by letting εk → 0, we get

w ≤ uη ≤ w in Nδ(x0) × (tδ, tδ). (3.27)

Take any τ ∈ (0, T /2) and (x0, t0) ∈ S × [2τ, T ]. Due to Eq. 3.27, recalling the definition
of w and w and by letting x → x0, t → t0, one has

G−1 [G(ϕ(x0, t0) + η) − 2σ ] ≤ uη(x0, t0) ≤ G−1 [G(ϕ(x0, t0) + η) + 2σ ] .

Letting σ → 0+, we end up with
lim

x→x0
t→t0

uη(x, t) = ϕ(x0, t0),

uniformly with respect to t0 ∈ (2τ, T ), x0 ∈ S and η ∈ (0, η0), for each τ ∈ (0, T /2).
Moreover, by usual compactness arguments, there exists a subsequence {uηk } ⊂ {uη} which
converges, as ηk → 0, to a solution u to Eq. 2.1, locally uniformly in �×[0, T ]. Hence, by
using Eq. 3.27, we have, in the limit σ → 0+ and η → 0+,

lim
x→x0
t→t0

u(x, t) = ϕ(x0, t0),

uniformly with respect to t0 ∈ (2τ, T ) and x0 ∈ S , for each τ ∈ (0, T /2).
It remains to show that u is the maximal solution. To this end, let v be any solution to

problem (2.1) satisfying (2.5). From Eq. 3.27 it follows that for any α ∈ (0, η0/4) and for
any τ ∈ (0, T ), there exist ε̃ > 0, η(α) > 0, with η(α) → 0 as α → 0, such that for any
0 < ε < ε̃ and η ∈ (η(α), η0)

v(x, t) ≤ ϕ(x, t) + α ≤ uη(x, t) for all (x, t) ∈ Aε × (τ, T ]. (3.28)

Moreover
v(x, 0) = u0(x) < u0(x) + η = uη(x, 0) for all x ∈ �. (3.29)

Since v(x, t) and uη(x, t) are solutions to the same equations in � × (0, T ], in view of
Eqs. 3.28, 3.29 and Lemma 3.1 there holds

v(x, t) ≤ uη(x, t) for all (x, t) ∈ QT .
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Passing to the limit η → 0+ we obtain

v ≤ u in QT ,

and the proof is complete, in this case.
In the second part of the proof, we consider a density ρ such that H4-i holds. Now, we

need to slightly modify the arguments used above. Since S ∈ C1, by [13] the uniform
exterior sphere condition is satisfied, i.e. there exists R > 0 such that for any x0 ∈ S we can
find x1 ∈ R

N \ �̄ such that BR(x1) ⊂ R
N \ �̄ and BR(x1) ∩ S = {x0}. Thus, by standard

arguments (see [24]), it is proven that the following function

h(x) := C[e−a R2 − e−a |x−x1|2 ] (3.30)

satisfies

• �h ≤ −1 in BR(x0) ∩ �;
• h > 0 for all x ∈ [

B̄R(x0) ∩ �̄
] \ {x0};

• h(x0) = 0,

for a suitable choice of the constants C > 0 and a > 0, independent of x0 ∈ S .
The function h(x) can be used in order to built suitable barrier functions w(x, t) and

w(x, t). To this end, for (x, t) ∈ Nδ(x0) × (tδ, tδ), we define

w(x, t) := G−1
[
−Mh(x) − σ + G(ϕ(x0, t0) + η) − λ(t − t0)

2
]
, (3.31)

being h(x) as in Eq. 3.30.
First of all, because of the properties of h(x), there holds ρ∂tw ≤ �G(w), if

M ≥ 2 ρ(x) λ δ

α0
,

Hence, we require that

M ≥ 2 λ δ

α0
‖ρ‖L∞ .

Next, let (x, t) ∈ [Bδ(x0) ∩ Aε] × (tδ, tδ); we have

w ≤ G−1[G(ϕ(x0, t0) + η) − σ ]. (3.32)

Moreover, for (x, t) ∈ [∂Bδ(x0) ∩ �ε] × (tδ, tδ) we have

w(x, t) ≤ −K, (3.33)

provided

M ≥ G(||ϕ||L∞ + η0) − G(−K)

inf∂Bδ(x0)∩� h
.

Finally, for (x, t) ∈ Nε
δ (x0) × {tδ}
w(x, t) ≤ G−1[G(ϕ(x0, t0) + η) − λδ2] ≤ −K (3.34)

imposing

λ ≥ G(||ϕ||L∞ + η0) − G(−K)

δ2
.
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From Eqs. 3.32, 3.33 and 3.34 we can state that w is a subsolution to the following
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂tu = � [G(u)] in Nε
δ × (tδ, tδ) ,

u = −K on [∂Bδ(x0) ∩ �ε] × (tδ, tδ) ,

u = G−1[G(ϕ + η) − σ ] in [Bδ(x0) ∩ ∂�ε] × (tδ, tδ) ,

u = −K in Nε
δ (x0) × {tδ} ,

(3.35)

while uη is a supersolution to the same problem. By proceeding with the same methods, for
all (x, t) ∈ Nδ(x0) × (tδ, tδ) we define

w(x, t) := G−1
[
M h(x) + σ + G(ϕ(x0, t0) + η) + λ(t − t0)

2
]
, (3.36)

proving that, with the appropriate choices for the coefficients M,λ and β, w is a super-
solution to problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂tu = � [G(u)] in Nε
δ × (tδ, tδ) ,

u = K on [∂Bδ(x0) ∩ �ε] × (tδ, tδ) ,

u = G−1[G(ϕ + η) + σ ] in [Bδ(x0) ∩ ∂�ε] × (tδ, tδ) ,

u = K in Nε
δ (x0) × {tδ} ,

(3.37)

while uη is a subsolution to the same problem. Hence, by the comparison principle, and by
letting εk → 0, we get

w ≤ uη ≤ w in Nδ(x0) × (tδ, tδ). (3.38)

Take any τ ∈ (0, T /2). Let (x0, t0) ∈ S × [2τ, T ]. In view of Eq. 3.38, recalling the
definition of w and w and by letting x → x0 and choosing t = t0, one has

G−1 [G(ϕ(x0, t0) + η) − 2σ ] ≤ uη(x, t0) ≤ G−1 [G(ϕ(x0, t0) + η) + 2σ ] .

So, the thesis follows for σ → 0+ as in the previous case, as well as the maximality of
u.

Proof of Theorem 2.4 The conclusion follows arguing as in the proof of Theorem 2.3,
choosing λ = 0 in Eq. 3.18 and in Eq. 3.31, and λ̄ = 0 in Eq. 3.25 and in Eq. 3.36. We only
mention that in this case, since we are assumingH2 instead ofH5, existence and uniqueness
of the solutions u

η
ε follow by results in [32, Chapter 5]; moreover, in view of [2, Lemma 5.2]

we can find a subsequence {uη
εk

} ⊆ {uη
ε } which converges, as εk → 0, locally uniformly

in � × [0, T ], to a solution uη to problem (3.16). Furthermore, the fact that Eq. 2.6 holds
uniformly for t ∈ [0, T ] is due to assumption (1.11).

Proof of Theorem 2.5 Let

α2 := min

{
min

�̄×[0,T ]
ϕ, α1

}
,
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with α1 > 0 as in Eq. 2.7. Since ϕ ∈ C(S × [0, T ]) and ϕ > 0 in S × [0, T ], we can select
ϕ̃ ≡ ϕ as in Eq. 3.13, such that ϕ̃ > 0 in Q̄T . So, α2 > 0. Take u0 ∈ C(�̄) such that

u0 ≤ u0 in � , lim
x→x0

u0(x) = α2

2
. (3.39)

By Theorem 2.4, there exists a solution u(x, t) to the following problem{
ρ∂tu = �[G(u)] in � × (0, T ],

u = u0 in � × {0}, (3.40)

such that
lim

x→x0
u(x, t) = α2

2
uniformly for x0 ∈ S, t ∈ [0, T ]. (3.41)

We construct the approximating sequence {uη
ε } as in the proof of Theorem 2.4. Due to

Eqs. 3.40 and 3.41, by the comparison principle, we have that for some ε0 > 0, for every
0 < ε < ε0

u(x, t) ≤ uη
ε (x, t) for all x ∈ �ε , t ∈ (0, T ]. (3.42)

Then, by usual compactness arguments (see [2, Lemma 5.2]) there exists a subsequence
{uη

εk
} ⊂ {uη

ε } which converges, as εk → 0, to a solution uη to Eq. 3.16. From Eq. 3.42 it
follows that

uη(x, t) ≥ u(x, t) for all x ∈ � , t ∈ (0, T ].
Therefore, for some 0 < ε1 < ε0, for all 0 < η < η0 there holds

uη(x, t) ≥ α2

4
for all x ∈ Sε1 , t ∈ (0, T ]. (3.43)

Hence, in Sε1 × (0, T ] the equation does not degenerate, i.e., for some α0 > 0,

G′(u) ≥ α0 in Sε1 × (0, T ].
Select a function G1 such that hypothesis H2 is satisfied; moreover, G1(u) = G(u) for

u ≥ α2
4 and G′

1(u) ≥ α0
2 > 0 for all u ∈ R. From Eq. 3.43, uη(x, t) is a solution to the

non-degenerate equation

ρ∂tu = [G1(u)] in Sε1 × (0, T ].
Thus we get the conclusion as in the proof of Theorem 2.3.

4 Uniqueness Results: Proofs

The proof of Theorem 2.7 makes use of the following lemma.

Lemma 4.1 Let ε0 > 0 and F ∈ C∞(�) such that F ≥ 0, supp F ⊂ �ε0 . Then, for any
0 < ε < ε0, there exists a unique classical solution ψε to the problem⎧⎨

⎩
�ψε = −F in �ε

ψε = 0 on Aε.

(4.1)

Moreover, for any 0 < ε < ε0 there holds:

ψε > 0 in �ε ; (4.2)

〈∇ψε(x), νε(x)〉 < 0 for all x ∈ Aε ; (4.3)∫
Aε

∣∣〈∇ψε, νε〉∣∣dS ≤ C̄ , (4.4)
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for some constant C̄ > 0 independent of ε; here νε denotes the outer unit normal vector to
∂�ε .

Proof For any 0 < ε < ε0, the existence and the uniqueness of the solution ψε to Eq. 4.1
follow immediately. Moreover, since F ≥ 0, by the strong maximum principle we get
Eqs. 4.2 and 4.3. Observe that, since supp F ⊂ �ε0 , then for any 0 < ε < ε0 we have∫

�ε

F (x) dx =
∫

�ε0
F(x) dx =: C̄. (4.5)

On the other hand, from Eq. 4.1 by integrating by parts,∫
�ε

F (x)dx = −
∫

�ε

�ψεdx = −
∫
Aε

〈∇ψε, νε〉dS. (4.6)

From Eqs. 4.5, 4.6, and 4.3 we get Eq. 4.4.

Proof of Theorem 2.7 In view of the hypotheses we made, we can apply Theorem 2.3 to
infer that there exists a maximal solution ū to Eq. 2.1. Let u be any solution to Eq. 2.1, and
let F ∈ C∞

c (�).
Without loss of generality, we suppose supp F ⊂ �ε0 , for some ε0 > 0, F �≡ 0 and

F ≥ 0. Since both ū and u solves (2.1), we apply the equality (2.2) with � = �ε , 0 < ε <

2ε0 and ψ(x, t) = ψε(x), with ψε given by Lemma 4.1. We get∫ T

0

∫
�ε

[G(ū) − G(u)]F(x) dx dt

= −
∫

�ε

[ū(x, T ) − u(x, T )]ρ(x) ψε(x)dx

−
∫ T

0

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉dS dt

Since F ≥ 0, ψε ≥ 0, ū ≥ u in �ε and 〈∇ψε, νε〉 ≤ 0 onAε , the previous equality gives:

0 ≤
∫ T

0

∫
�ε

[G(ū) − G(u)]F(x) dx dt ≤ −
∫ T

0

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉dS dt

= −
∫ τ

0

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉dS dt −
∫ T

τ

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉dS dt

(4.7)
Going further, by Eq. 4.4, we get∫ T

τ

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉 dS dt ≤ T sup
Aε×(τ,T )

[G(ū) − G(u)]
∫
Aε

∣∣〈∇ψε, νε〉∣∣dS

≤ C̄T sup
Aε×(τ,T )

[G(ū) − G(u)].
(4.8)

Furthermore, ∫ τ

0

∫
Aε

[G(ū) − G(u)]〈∇ψε, νε〉 dS dt ≤ C̄ τ C, (4.9)

where the constant C only depends on ‖u‖L∞ and ‖ū‖L∞ . Since any solution to Eq. 2.1
satisfies condition (2.5) uniformly for t ∈ [τ, T ], for each τ ∈ (0, T ), we get

sup
Aε×(τ,T )

[G(ū) − G(u)] → 0 as ε → 0. (4.10)
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Hence, in view of Eqs. 4.7, 4.8, 4.9 and 4.10, if we let ε → 0 in Eq. 4.7 and then τ → 0,
we obtain ∫ T

0

∫
�

[G(ū) − G(u)] F(x) dx dt = 0. (4.11)

In view of the hypothesis H2, and because of the arbitrariness of F , Eq. 4.11 implies

ū = u in � × (0, T ] ,

and the proof is completed.

As outlined in Remark 2.8, Theorem 2.7 holds true either if we consider a non degenerate
nonlinearity G satisfying hypothesis H5 or if we suppose

ϕ(x0, t) ≡ ϕ(x0), for all t ∈ [0, T ].
Infact, in both cases, Theorem 2.3 and Theorem 2.5 assure the existence of the maximal
solution satisfying (2.5) and (2.6) respectively. Hence, the uniqueness follows as in the proof
of Theorem 2.7.
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