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Abstract This paper deals with a certain class of second-order conformally invariant
operators acting on functions taking values in particular (finite-dimensional) irreducible
representations of the orthogonal group. These operators can be seen as a generalisation
of the Laplace operator to higher spin as well as a second-order analogue of the Rarita-
Schwinger operator. To construct these operators, we will use the framework of Clifford
analysis, a multivariate function theory in which arbitrary irreducible representations for the
orthogonal group can be realised in terms of polynomials satisfying a system of differential
equations. As a consequence, the functions on which this particular class of operators act are
functions taking values in the space of harmonics homogeneous of degree k. We prove the
ellipticity of these operators and use this to investigate their kernel, focusing on polynomial
solutions. Finally, we will also construct the fundamental solution using the theory of Riesz
potentials.
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1 Introduction

The aim of this paper is to introduce a framework to study a certain class of second-order
conformally invariant operators which can be seen as generalisations of the classical Laplace
operator.

Traditionally, these operators are mostly studied on either the conformal sphere Sm,
which is a flat model of conformal geometry, or curved analogues thereof which are
modelled on a principal fibre bundle [8, 10, 11]. These geometries are called parabolic
geometries and conformal geometry is a specific example of a parabolic geometry. Alter-
natively, a conformal manifold is a manifold equiped with an equivalence class of metrics
and to recover the structure of a parabolic geometry, one has to introduce the notion of a
so-called standard tractor bundle and the corresponding tractor connection [9]. The use of
tractor bundles and connection give rise to the tractor calculus [3, 13, 16], which is the
tensor calculus for conformal geometries. However, as this calculus quickly becomes very
complicated when constructing second-order invariant operators acting on symmetric ten-
sors, we will restrict ourselfs to the Euclidean space R

m and we will use the language
of Clifford analysis to elegantly construct this class of operators. The advantage of using
the Clifford analysis model for spin fields (see below) lies in the fact that it leads to
an encompassing framework in which both the dimension m as the spin number can be
treated as a parameter. From this point of view, the results obtained in this paper form the
scalar version of the function theory for the Rarita-Schwinger operator on R

m which was
developed in [7].

The aforementioned language of Clifford analysis refers to a multivariate function the-
ory which is often described as a generalisation of complex analysis to arbitrary dimension
m ∈ N. At the very heart of this theory lies the Dirac operator ∂x on R

m, a conformally
invariant first-order elliptic differential operator generalising both the Cauchy-Riemann
operator ∂z and the operator introduced by P.A.M. Dirac in 1928 [15]. This operator more-
over satisfies �x = −∂2

x (with �x the Laplace operator on R
m), which means that Clifford

analysis is a refinement of classical harmonic analysis in dimension m. We refer the reader
to the standard references [5, 14, 24] for more information. While classical Clifford analy-
sis is centred around the study of functions on R

m taking values in the spinor space S, on
which the Dirac operator is canonically defined, several authors have been studying gener-
alisations of the developed techniques to the so-called higher spin theory [7, 19–22]. This
concerns the study of higher spin Dirac operators, acting on functions on R

m taking val-
ues in arbitrary irreducible representations of Spin(m). So far, the theory has been focusing
on first-order conformally invariant operators, reflected in the fact that the functions under
consideration take their values in irreducible half-integer representations for the spin group
(the spinor space being the easiest case of such a representation). This then leads to function
theories refining (poly-)harmonic analysis on R

m, see [21]. As mentioned earlier, we aim
at extending these results to a certain second-order conformally invariant operator acting on
functions taking their values in the simplest integer highest-weight representation. This will
lead to analogues of the Rarita-Schwinger function theory (see e.g. [7]). The existence of
the operators we are introducing follows from general arguments, see e.g. [6, 23]. However,
our focus is quite different: after developing explicit expressions for the higher spin Laplace
operator, we will study in depth its polynomial null-solutions as well as the fundamental
solution.

The paper is organised as follows: after a brief introduction to Clifford analysis in Sec-
tion 2, we will construct the higher spin Laplace operator in Section 3. In Section 4 we will
construct all polynomial solutions for this operator, whereas Section 5 will be devoted to the
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problem of constructing the fundamental solution for our operator using Riesz potentials.
Finally, in the last section we investigate the connection with the Rarita-Schwinger oper-
ator, a conformally invariant operator acting on functions taking values in the irreducible

Spin(m)-module with highest weight λ =
(
k + 1

2 , 1
2 , . . . , 1

2 , ± 1
2

)
. We have also included

an Appendix to prove some results of a more technical nature from Section 3 (related to the
conformal invariance and ellipticity).

2 Preliminaries on Clifford Analysis

Let us first introduce the (real) universal Clifford algebra Rm as the algebra generated by an
orthonormal basis {e1, . . . , em} for the vector space R

m endowed with the Euclidean inner
product 〈u, x〉 = ∑

j xjuj using the multiplication rules

eaeb + ebea = −2〈ea, eb〉 = −2δab

with 1 ≤ a, b ≤ m. The complex Clifford algebra Cm is then defined as the algebra Cm =
Rm ⊗C. This algebra is Z2-graded, and the even subalgebra (respectively the odd subspace)
is denoted by means of C+

m (resp. C−
m). We will not consider functions taking their values in

Cm, but restrict the values to a suitable subspace, which is known as the spinor space. This
space can be realised as a matrix space, as is often done by physicists, or as a subspace of
the Clifford algebra (see [14, 24]):

Definition 2.1 In case m = 2n, the Witt basis {fj , f†j : 1 ≤ j ≤ n} for Cm is defined by
means of

fj = 1

2

(
e2j−1 − ie2j

)
and f

†
j = −1

2

(
e2j−1 + ie2j

)
.

The element I := (f1f
†
1)(f2f

†
2) . . . (fnf

†
n) ∈ Cm defines a primitive idempotent (I 2 = I ),

and in terms of this element, a particular model can be constructed for the spinor spaces:

Proposition 2.1 The spinor spaces are complex vector spaces defined by means of

S
±
2n := C

±
2nI.

The main reason why it is better to consider spinor-valued functions is the following:
these spaces carry the irreducible spinor representations for the spin group or its Lie algebra
m). They are both realised inside the Clifford algebra:

Definition 2.2 The (real, compact) spin group Spin(m) can be defined as

Spin(m) =
⎧⎨
⎩

2k∏
j=1

ωj : ωj ∈ Sm−1

⎫
⎬
⎭ ⊂ Rm ,

with Sm−1 ⊂ R
m the unit sphere (viz. ω2

j = −1).

This Lie group defines a double cover for the orthogonal group, see e.g. [31]. The
following proposition can be found in e.g. [25]
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Proposition 2.2 The orthogonal Lie algebra m) can be realised as the space C(2)
m of bivec-

tors, defined as the linear hull of the elements eab := eaeb with 1 ≤ a, b ≤ m and a �= b.
This Lie bracket is defined as the commutator [B1, B2] := B1B2 − B2B1.

In case m = 2n, the spaces S
±
2n define inequivalent irreducible representations for the

spin group and its Lie algebra (both actions given by multiplication in the Clifford alge-
bra C2n), see e.g. [25] . In case m = 2n + 1 however, there is (up to isomorphism) a
unique spinor space (the so-called space of Dirac spinors) which will be denoted as S2n+1
and can be explicitly realised as S2n+1 ∼= S

±
2n+2 (whereby one can choose either the plus

sign or the minus sign, because as representation spaces for 2n + 1) they are equivalent),
see e.g. [14].

Remark 2.1 From now on we will omit the subscript attached to the spinor spaces. This
subscript refers to the dimension of the underlying vector space, equal to m ∈ N from now
on. The superscript only matters in even dimensions (cfr. supra). In order to avoid having
to drag this parity sign along in what follows, we will work with Dirac spinors in both even
and odd dimensions (see next definition).

The classical Dirac operator in R
m is given by ∂x = ∑m

j=1 ej ∂xj
. It is the unique ellip-

tic first-order conformally invariant differential operator acting on spinor valued functions
f (x) on R

m. It factorises the Laplace operator �x = −∂2
x on R

m. A spinor-valued func-
tion f is monogenic in an open region � ⊂ R

m if and only if ∂xf = 0 in �. For a
detailed study of the (classical) theory of monogenic functions, see [5, 14, 24]. In [12, 24]
it was shown that every (finite-dimensional) irreducible representation for the spin group
(or its Lie algebra) with integer (half-integer) highest weight can be realised in terms of
scalar-valued harmonic (spinor-valued monogenic) polynomials of several (dummy) vector
variables, a convenient alternative for the spaces of traceless tensors often used in physics.
These spaces are denoted by Pk,�

(
R

2m,C
)

and Pk,�

(
R

2m,S
)
, where the former is the

space of C- valued polynomials depending on two vector variables (x, u) ∈ R
2m, some-

times referred to as a matrix variable. The latter is the space of spinor-valued polynomials
depending on two vector variables (x, u) ∈ R

2m. The integers k and � refer to the degree
of homogeneity with respect to the variables x and u respectively. Our cases of interest of
the polynomial models are presented in the definition below, where from now on we write
ker(D1, . . . ,Dn) := kerD1 ∩ . . .∩kerDn where Dj is a linear (differential) operator for all
1 ≤ j ≤ n.

Definition 2.3 For k ≥ �, the vector space of simplicial harmonic polynomials is defined as

Hk,�

(
R

2m,C
)

:= Pk,�

(
R

2m,C
)

∩ ker (�x, �u, 〈∂u, ∂x〉, 〈x, ∂u〉) ,

where 〈·, ·〉 denotes the Euclidean inner product.

Note that this definition is not symmetric with respect to x ↔ u which is reflected in the
dominant weight condition k ≥ �. Also note that for � = 0, the definition reduces to the
classical harmonic polynomials Hk (Rm,C), see e.g. [24]. The vector space Hk,�

(
R

2m,C
)

is an irreducible Spin(m)-representation if m > 4. If � = 0, this condition can even be
relaxed to m ≥ 3. The regular action of the spin group on f ∈ Hk,�

(
R

2m,C
)

is for all
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s ∈ Spin(m) given by H(s)[f ](x, u) = f (s̄xs, s̄us), and the corresponding (derived)
action of the orthogonal Lie algebra is given by [14]

dH(eij )[f ](x, u) =
(
Lx

ij + Lu
ij

)
f (x, u)

: = (
xi∂xj

− xj ∂xi
+ ui∂uj

− uj ∂ui

)
f (x, u).

The operators Lij are called the angular momentum operators. Without proof (see [12]), we
also mention that the highest weight is given by

λ = (k, �, 0, . . . , 0) =: (k, �),

where the length of this vector is equal to n for m ∈ {2n, 2n+1}, and that the highest weight
vector is given by

wk,� := (x1 − ix2)
k−�

(
(x1 − ix2)(u3 − iu4) − (x3 − ix4)(u1 − iu2)

)�
.

We also mention the following proposition, underlying the classical Howe dual pair
SO(m) × sl(2) for which we refer e.g. to [25, 27]:

Proposition 2.3 The Laplace operator, together with its symbol, spans a Lie algebra:

sl(2) = Span (X, Y,H) ∼= Alg

(
−1

2
�x,

1

2
|x|2 ,−

(
Ex + m

2

))
.

Here, Ex = ∑
j xj ∂xj

denotes the Euler operator.

In the last section, we will need the half-integer version of the representation λ = (k, l):

Definition 2.4 For k ≥ �, the vector space of simplicial monogenic polynomials is defined
as

Sk,�

(
R

2m,S
)

:= Pk,�

(
R

2m, S
)

∩ ker (∂x, ∂u, 〈x, ∂u〉) .

This definition is again not symmetric with respect to x ↔ u, which also here reflects
the dominant weight condition k ≥ �. Also note that if � = 0, the definition reduces to the
classical monogenic polynomials Mk (Rm,S), i.e. polynomial null solutions for ∂x . The
vector space Sk,�

(
R

2m,S
)

is an irreducible Spin(m)-representation if m is odd and splits
into two inequivalent irreducible representations if m is even cfr. remark 2.1 (see also [12,
24]). The action of the spin group on simplicial monogenics is given by

L(s)[f ](x, u) = sf (s̄xs, s̄us)
(∀s ∈ Spin(m)

)
.

The corresponding action of the orthogonal Lie algebra is given by [14]:

dL(eij )[f ](x, u) =
(

Lx
ij + Lu

ij − 1

2
eij

)
f (x, u) =

(
dH(eij ) − 1

2
eij

)
[f ](x, u).

Without proof, we also mention the highest weight

λ =
(

k + 1

2
, � + 1

2
,

1

2
, . . . ,

1

2

)
=: (k, �)′

and the corresponding highest weight vector (see [12])

vk,� := (x1 − ix2)
k−�

(
(x1 − ix2)(u3 − iu4) − (x3 − ix4)(u1 − iu2)

)�
I = wk,�I ,

where I ∈ Cm is a primitive idempotent realising the spinor space as a left ideal (see e.g.
[14] for more details).
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3 Construction of the Higher Spin Laplace Operator

It was already mentioned that the Laplace operator (acting on C-valued fields) is related
to the Dirac operator (acting on spinor-valued fields). The operator which generalises the
Dirac operator to higher spin is the so-called Rarita-Schwinger operator (see [7, 32] and
also the last section), and in this section we will construct the generalisation of the Laplace
operator to the case of higher spin:

Definition 3.1 The higher spin Laplace operator on R
m is the unique (up to a multiplicative

constant) conformally invariant second-order differential operator

Dk : C∞ (
R

m,Hk

) −→ C∞ (
R

m,Hk

)
.

Note that the space Hk(R
m,C), hereby plays the role of target space. This means that

elements of e.g. C∞(Rm,Hk) are functions of the form f (x, u), where x ∈ R
m is the

variable on which the operator Dk is meant to act, satisfying f (x, u) ∈ Hk(R
m,C) for

every x ∈ R
m fixed, i.e. �uf (x, u) = 0. Note that one might be tempted to think that

Dk = �x , as the relation [�x, �u] = 0 clearly shows that �x is a rotationally invariant
second-order operator preserving the values Hk , but the operator �x is not conformally
invariant with respect to the action of the inversion on Hk-valued functions (see below). This
means that we will have to add extra terms to ensure conformal invariance. For example,
also the second-order operator 〈u, ∂x〉〈∂u, ∂x〉 is rotationally invariant and is well-defined
on Hk-valued functions, provided we can apply a projection onto the space C∞ (Rm,Hk)

because

〈u, ∂x〉〈∂u, ∂x〉 : C∞ (
R

m,Hk

) −→ C∞ (
R

m,Hk ⊕ |u|2 Hk−2

)
,

due to the classical Fischer decomposition, see e.g. [2] for more information. In other words,
for f (x, u) ∈ C∞ (Rm,Hk) we have:

〈u, ∂x〉〈∂u, ∂x〉f (x, u) = ϕk(x, u) + |u|2 ϕk−2(x, u),

with ϕi ∈ C∞ (Rm,Hi ). The projection of 〈u, ∂x〉〈∂u, ∂x〉f onto C∞ (Rm,Hk) can be found
as follows:

�u〈u, ∂x〉〈∂u, ∂x〉f (x, u) = �u

(
|u|2 ϕk−2(x, u)

)

= 2(2Eu + m)ϕk−2 = 2(2k + m − 4)ϕk−2.

This implies that:

ϕk−2 = 1

2(2k + m − 4)
�u〈u, ∂x〉〈∂u, ∂x〉f

= 1

2(2k + m − 4)

([�u, 〈u, ∂x〉]〈∂u, ∂x〉f + 〈u, ∂x〉�u〈∂u, ∂x〉f
)

= 1

2k + m − 4
〈∂u, ∂x〉2f.

We finally have that

ϕk =
(

〈u, ∂x〉 − |u|2
2k + m − 4

〈∂u, ∂x〉
)

〈∂u, ∂x〉f.
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We could try to define Dk as a linear combination of this operator with the Laplace oper-
ator �x . Choosing the appropriate constant, this indeed works (see the Appendix for more
details):

Theorem 3.1 The higher spin Laplace operator on R
m is explicitly given by the following

formula:

Dk = �x − 4

2k + m − 2

(
〈u, ∂x〉 − |u|2

2k + m − 4
〈∂u, ∂x〉

)
〈∂u, ∂x〉.

Remark 3.1 For k = 1, we obtain the generalised Maxwell operator from [18], i.e.

D1 = �x − 4

m
〈u, ∂x〉〈∂u, ∂x〉 : C∞ (

R
m,H1

) −→ C∞ (
R

m,H1
)
.

For the remainder of this section, we will give a sketch of the proof for the conformal
invariance of Dk , which justifies the presence of the constant − 4

2k+m−2 in theorem 3.1.
For a detailed proof, we again refer the reader to the Appendix. In order to explain what
conformal invariance means, we need the following concept (see [17]):

Definition 3.2 An operator δ1 is a generalised symmetry for a differential operator D if
there exists another operator δ2 so that Dδ1 = δ2D. Note that for δ1 = δ2, this reduces to
the definition of a (proper) symmetry, in the sense that [D, δ1] = 0.

One then typically tries to describe the first-order generalised symmetries, as these span
a Lie algebra, see e.g. [30]. In this particular case, the first-order symmetries will span a
Lie algebra isomorphic to the conformal Lie algebra so(1,m + 1). The higher spin Laplace
operator is clearly so(m)-invariant because it is the composition of so(m)-invariant opera-
tors. This means that the angular momentum operators are symmetries of the higher spin
Laplace operator, in the sense that [Dk, L

x
ij + Lu

ij ] = 0. It is also easy to see that the Euler
operator and the infinitesimal translations are (generalised) symmetries of Dk , in view of
the fact that DkEx = (Ex + 2)Dk and [Dk, ∂xj

] = 0. Finally, there is also a special class
of generalised symmetries for the operator Dk which can be defined in terms of the har-
monic inversion for Hk-valued functions. This is an involution mapping solutions for Dk to
solutions for Dk .

Definition 3.3 The harmonic inversion is a conformal transformation defined as

JR : C∞ (
R

m,Hk

) −→ C∞ (
R

m \ {0} ,Hk

)

f (x, u) �→ JR[f ](x, u) := |x|2−m f

(
x

|x|2 ,
xux

|x|2
)

.

Note that this inversion consists of the classical Kelvin inversion J on R
m in the variable

x composed with a reflection u �→ ωuω acting on the dummy variable u (where x = |x|ω),
and satisfies J 2

R = 1. The special conformal transformations are then for all 1 ≤ j ≤ m

defined as JR∂xj
JR , with JR the harmonic inversion from above. More explicitly, we have:

JR∂xj
JR = 2〈u, x〉∂uj

− 2uj 〈x, ∂u〉 + |x|2 ∂xj
− xj (2Ex + m − 2) , (1)
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which follows from calculations on an arbitrary Hk-valued function f (x, u), see Appendix
proposition A.1. This special conformal transformation and ∂xj

, the generator of translations
in the ej -direction, then define a model for a Lie subalgebra which is isomorphic to sl(2):

Proposition 3.1 One has

sl(2) ∼= Alg
(
JR∂xj

JR, ∂xj
, 2Ex + m − 2

)
.

Proof The classical commutator relations are verified after some straightforward computa-
tions.

Proposition 3.2 The special conformal transformations JR∂xj
JR from Eq. (1), with

1 ≤ j ≤ m, are generalised symmetries of the higher spin Laplace operator.

Proof This result can be proved by calculating the commutator [Dk,JR∂xj
JR], for which

we refer to proposition A.2 in the Appendix.

The conformal invariance can be summarized in the following theorem:

Theorem 3.2 The first-order generalised symmetries of the higher spin Laplace operator
Dk are given by:

(i) The infinitesimal rotations Lx
ij + Lu

ij , with 1 ≤ i < j ≤ m.
(ii) The shifted Euler operator (2Ex + m − 2).

(iii) The infinitesimal translations ∂xj
, with 1 ≤ j ≤ m.

(iv) The special conformal transformations JR∂xj
JR , with 1 ≤ j ≤ m.

These operators span a Lie algebra which is isomorphic to the conformal Lie algebra
so(1,m + 1), whereby the Lie bracket is the ordinary commutator.

Besides conformal invariance, we also have another crucial property of the higher spin
Laplace operator. For more details, we refer to theorem A.1 in the Appendix. We here only
mention the main conclusion:

Theorem 3.3 The higher spin Laplace operator Dk is an elliptic operator if m > 4, which
implies surjectivity of the map

Dk : C∞ (
R

m,Hk

) −→ C∞ (
R

m,Hk

)
.

To conclude this section, we will introduce two other conformally invariant operators
which are called (dual) twistor operators. These operators are used in the next section to
describe the structure of the space of polynomial null solutions of the higher spin Laplace
operator. The twistor operators are defined as follows:

Definition 3.4 The twistor operator is the unique (up to a multiplicative constant) confor-
mally invariant operator defined as

πk〈u, ∂x〉 : C∞ (
R

m,Hk−1
) −→ C∞ (

R
m,Hk

)
,
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where πk is a projection on ker �u. The dual twistor operator is the unique (up to a
multiplicative constant) conformally invariant operator given by

〈∂u, ∂x〉 : C∞ (
R

m,Hk

) −→ C∞ (
R

m,Hk−1
)
.

Proposition 3.3 The twistor operator is explicitly given by

πk〈u, ∂x〉 := 〈u, ∂x〉 − |u|2
2k + m − 4

〈∂u, ∂x〉.

Proof Acting with 〈u, ∂x〉 on a function f ∈ C∞ (Rm,Hk−1) yields

〈u, ∂x〉f ∈ C∞ (
R

m,Hk ⊕ Hk−2
)
.

The explicit expression for the twistor operator can thus be found using calculation similar
as the ones at the beginning of this section.

This means that the higher spin Laplace operator is in fact a combination of the Laplace
operator and the composition of the twistor operator with the dual twistor operator, i.e.

Dk = �x − 4

2k + m − 2
πk〈u, ∂x〉〈∂u, ∂x〉.

4 Polynomial Null Solutions

In this section we study �-homogeneous polynomial solutions for Dk , i.e. polynomials
f (x, u) in two vector variables satisfying Dkf (x, u) = 0 and Exf (x, u) = �f (x, u). The
vector space of null solutions will from now on be denoted by ker� Dk and this space is
not irreducible as a module for m), in contrast to the kernel of the Laplace operator. Note
that

⊕
� ker� Dk does define an irreducible module for the real form 1,m + 1), but this is

beyond the scope of the present paper. First, we use theorem 3.3, to compute the dimension
of ker� Dk as follows (� ≥ k):

dim (ker� Dk) = dim
(
P�

(
R

m,Hk

)) − dim
(
P�−2

(
R

m,Hk

))
.

Using the fact that P� (Rm,Hk) ∼= P� (Rm,C) ⊗ Hk , it follows that for all � ∈ N\ {0, 1}
dim (ker� Dk) =

((
m + � − 1

m − 1

)
−

(
m + � − 3

m − 1

))
dim (Hk) .

As this number coincides with dim (H� ⊗ Hk), this suggests that the space ker� Dk can be
decomposed as follows for arbitrary � ≥ k (hereby referring to [28] for the tensor product
decomposition rules):

ker� Dk
∼=

k⊕
i=0

k−i⊕
j=0

H�−i+j,k−i−j . (2)

A straightforward subspace of ker� Dk , is the space of harmonics in x and u intersected with
the kernel of the dual twistor operator 〈∂u, ∂x〉. This space is known as the space of Howe
harmonics, see [25, 27], and it allows for the following decomposition into m)-irreducible
summands (where we use our explicit model involving simplicial harmonics):

A�,k

(
R

2m,C
)
:=P�,k

(
R

2m,C
)
∩ker (�u,�x, 〈∂u, ∂x〉)=

k⊕
j=0

〈u, ∂x〉jH�+j,k−j

(
R

2m,C
)
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It has the same structure as the space of double monogenics, and can thus be seen as the
analogue of the type A solutions for the Rarita-Schwinger operator discussed in [7]. As
these solutions are also killed by the operator 〈∂u, ∂x〉, which then implies that the operator
Dk reduces to the ordinary Laplace operator �x , they can also be described as the solutions
for Dk in the Lorentz gauge, in analogy with what is usually done in physics.

We can prove by induction that decomposition (2) is in fact the correct one. To do so, we
need the following lemma:

Lemma 4.1 The following operator identity holds:

〈∂u, ∂x〉Dk = 2k + m − 6

2k + m − 2
Dk−1〈∂u, ∂x〉.

In particular, this means that the dual twistor operator 〈∂u, ∂x〉 maps solutions of Dk to
solutions of Dk−1.

Proof This can be proved by direct computations.

As a consequence of this lemma and because of the fact that 〈∂u, ∂x〉 is m)-invariant, the
irreducible components of ker�−1 Dk−1 also appear in decomposition (2). In particular, we
obtain the following result:

Lemma 4.2 The vector space ker� Dk has the following decomposition:

ker� Dk
∼= A�,k ⊕ ker�−1 Dk−1.

Proof For f ∈ ker� Dk , we can use the previous lemma to obtain Dk−1〈∂u, ∂x〉f = 0.
This means that either 〈∂u, ∂x〉f = 0 or Dk−1〈∂u, ∂x〉f = 0, with 〈∂u, ∂x〉f �= 0. The
latter implies that 〈∂u, ∂x〉f ∈ ker�−1 Dk−1. Since A�,k ⊂ ker〈∂u, ∂x〉, we have that A�,k ∩
ker�−1 Dk−1 = {0}.

The irreducible components of the subspace A�−1,k−1
(
R

2m,C
) ⊂ ker�−1 Dk−1 of type

A solutions of Dk−1, i.e.

A�−1,k−1

(
R

2m,C
) ∼=

k−1⊕
j=0

H�−1+j,k−1−j

(
R

2m,C
)

,

must also appear in decomposition (2). The components of the subspace A�−2,k−2 of
ker�−2 Dk−2 must also appear in decomposition of ker�−1 Dk−1 into irreducible compo-
nents and therefore, they must also occur in the decomposition of ker� Dk . This reasoning
can be repeated until we find a single component: H�−k = ker�−k D0. Putting all the
irreducible summands together, we obtain decomposition (2).

Now that we found the decomposition of ker� Dk into irreducible representations, we still
need to find the operators that embed each of these irreducible summands into ker� Dk . As
the Laplace operator �x commutes with Dk , the application of �x preserves solutions of Dk

and lowers the degree of homogeneity in x by two. Since the higher spin Laplace operator is
conformally invariant, the inversion JR preserves solutions and so does JR�xJR , raising
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the degree of homogeneity in x by two. This explicit expression for this operator follows
from tedious but straightforward computations and is given by:

JR�xJR =
m∑

j=1

JR∂2
xj
JR =

m∑
j=1

(
JR∂xj

JR

)2

= |x|4 �x + 4(2k + m − 4)πk〈u, x〉〈x, ∂u〉
+4 |x|2 (πk〈u, x〉〈∂x, ∂u〉 − πk〈u, ∂x〉〈x, ∂u〉) ,

where πk〈u, x〉 is the (principle) symbol of the twistor operator πk〈u, ∂x〉. Using this oper-
ator and the twistor operator πk〈u, ∂x〉, which acts as 〈u, ∂x〉 on simplicial harmonics, we
have the following conclusion (recall that it only holds for m > 4 as we heavily relied on
theorem 3.3 to obtain this result):

Theorem 4.1 The vector space ker� Dk has the following decomposition into irreducible
modules (for the action of the orthogonal group):

ker� Dk =
k⊕

i=0

k−i⊕
j=0

(JR�xJR)i〈u, ∂x〉i+jH�−i+j,k−i−j .

Also note that ker0 Dk = Hk(R
m,C).

Proof The proof of decomposition (2) was already completed above so it suffices to find
the correct embeddings. As it is clear that both 〈u, ∂x〉 and JR�xJR preserve the kernel of
Dk , the result follows from properly adjusting the degrees of homogeneity.

This result can also be visualised as the triangle in Fig. 1.

Remark 4.1 The case where � < k is the degenerate case. This means that some of the
summands, which do not satisfy the dominant weight condition, will be missing.

As we will see in the following theorem, each null solution of the higher spin Laplace
operator is a solution of �k+1

x . As a matter of fact, the higher spin Laplace operator
factorises this specific power of the Laplace operator.

Theorem 4.2 There exist a differential operator A2k of order 2k with k > 0 acting between
spaces ofHk-valued functions such that:

A2kDk = �k+1
x = DkA2k.

Fig. 1 The decomposition of ker� Dk under m)
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Proof We will prove this inductively. For k = 1, we can write

�2
x =

(
�x + 4

m − 4
〈u, ∂x〉〈∂u, ∂x〉

)
D1

Suppose we have constructed an operator A2k−2 such that A2k−2Dk−1 = �k
x =

Dk−1A2k−2. We then have:

�k+1
x = �k

x

(
Dk + 4

2k + m − 2
πk〈u, ∂x〉〈∂u, ∂x〉

)

= �k
xDk + 4

2k + m − 2
πk〈u, ∂x〉�k

x〈∂u, ∂x〉

= �k
xDk + 4

2k + m − 2
πk〈u, ∂x〉A2k−2Dk−1〈∂u, ∂x〉

=
(

�k
x + 4

2k + m − 6
πk〈u, ∂x〉A2k−2〈∂u, ∂x〉

)
Dk,

from which the operator A2k follows by induction.

5 Fundamental Solution

Before turning to the fundamental solution of Dk , we will first consider the fundamental
solution of the Laplace operator. It is given by

N(x) =
{

1
(2−m)Am

|x|2−m if m > 2
1

2π
log |x| if m = 2,

where Am is the surface area of the unit sphere Sm−1. The fundamental solution of the
Laplace operator is a harmonic function in C∞ (

R
m
0 ,C

)
, i.e. �xN(x) = 0 for all x �= 0. As

�x = −∂2
x , the fundamental solution E(x) for the Dirac operator is easily obtained through

the following [4, 5]:

E(x) = −∂xN(x) = − 1

Am

x

|x|m .

This expression is the so-called Cauchy kernel and, as fundamental solution for the Dirac
operator, it satisfies the relation ∂xE(x) = δ(x). Note that E(x) ∈ C∞ (

R
m
0 ,Cm

)
and

because the Clifford algebra Cm can be seen as the space of endomorphisms of the spinor
space S, we thus have that E(x) ∈ C∞ (

R
m
0 , End(S)

)
. In case of the higher spin Laplace

operator, which acts on functions taking values in Hk , the fundamental solution is then
expected to belong to the function space C∞ (

R
m
0 , End (Hk)

)
. We also refer to [19], where

this was done for the case of invariant operators acting on half-integer higher spin fields.
We start our search for the fundamental solution of Dk with the following observation:

Proposition 5.1 For every Hk(u) ∈ Hk (Rm,C), the function

Ek(x; u) := |x|2−m Hk(ωuω) = |x|2−m−2k Hk(xux), (3)

where ω = |x|, belongs to C∞ (
R

m
0 ,Hk

)
and has a singularity of degree (2 − m) in the

origin x = 0 in R
m. Furthermore, Ek(x; u) belongs to the kernel of the operator Dk (for

x �= 0).
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Proof It is clear that Ek(x; u) ∈ C∞ (
R

m
0 ,Hk

)
, as it is homogeneous of degree k in

the dummy variable u ∈ R
m. In order to prove that (3) belongs to the kernel of the

higher spin Laplace operator for x �= 0 we will rely on the fact that Hk is an irre-
ducible Spin(m)-representation generated by the highest weight vector 〈u, 2f1〉k . As Dk is
a Spin(m)-invariant operator, it will be sufficient to prove the statement for

�(x; u) := |x|2−m−2k 〈xux, 2f1〉k = |x|2−m−2k
(
|x|2 〈u, 2f1〉 − 2〈u, x〉〈x, 2f1〉

)k

,

where we used the fact that xux = u |x|2 − 2〈u, x〉x. To calculate the action of Dk on
�(x; u), we use the following relations, which can be verified by direct calculations:

�x |x|α = α (m + α − 2) |x|α−2

�x〈xux, 2f1〉k = 4k(k − 1) |x|2−m−2k |u|2 〈x, 2f1〉2〈xux, 2f1〉k−2

+2k(2k + m − 4) |x|2−m−2k 〈xux, 2f1〉k−1〈u, 2f1〉
〈∂u, ∂x〉〈xux, 2f1〉k = −2k(2k + m − 2)〈x, 2f1〉〈xux, 2f1〉k−1.

The action of the Laplace operator on �(x, u) for x �= 0 then gives:

�x�(x; u) = −2k(2 − m − 2k) |x|−m−2k 〈xux, 2f1〉k
+2k(2k + m − 4) |x|2−m−2k 〈xux, 2f1〉k−1〈u, 2f1〉
+4k(k − 1) |x|2−m−2k |u|2 〈x, 2f1〉2〈xux, 2f1〉k−2

+2
∑
j

(
∂xj

|x|2−m−2k
) (

∂xj
〈xux, 2f1〉k

)

= 2k(2 − m − 2k) |x|−m−2k 〈xux, 2f1〉k
+2k(2k + m − 4) |x|2−m−2k 〈xux, 2f1〉k−1〈u, 2f1〉
+4k(k − 1) |x|2−m−2k |u|2 〈x, 2f1〉2〈xux, 2f1〉k−2.

The action of 〈u, ∂x〉〈∂u, ∂x〉 is given by:

〈u, ∂x〉〈∂u, ∂x〉�(x; u) = −k(2k + m − 2)〈u, ∂x〉〈x, 2f1〉 |x|2−m−2k 〈xux, 2f1〉k−1

= k(2k + m − 2)2〈x, 2f1〉〈u, x〉 |x|−m−2k 〈xux, 2f1〉k−1

−k(2k + m − 2)〈u, 2f1〉 |x|2−m−2k 〈xux, 2f1〉k−1

+2k(k−1)(2k + m − 2) |u|2 〈x, 2f1〉2 |x|2−m−2k 〈xux, 2f1〉k−2,

whereas the action of the last term from Dk leads to

|u|2〈∂u, ∂x〉�(x, u)=k(k−1)(2k+m−2)(2k+m−4) |u|2 〈x, 2f1〉2 |x|2−m−2k〈xux, 2f1〉k−2.

Putting everything together with the proper constants gives zero, which proves the state-
ment.

Note that up until now, we have excluded the point-wise singularity of Ek(x; u) at x = 0.
In order to investigate this singularity, we will use results from distribution theory (more pre-
cisely, we will use the Riesz potentials on R

m). Take arbitrary α ∈ C fixed and consider the
function Eα

k (x; u) := |x|α−2k 〈xux, 2f1〉k . This is then again a function in C∞ (
R

m
0 ,Hk

)
.
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Under the action of the higher spin Laplace operator, tedious but similar calculations as the
ones in the proof of proposition 5.1 give:

DkE
α
k (x; u) = (α + m − 2)

(
α + 4k

2k + m − 2

)
|x|α−2k−2 〈xux, 2f1〉k

+(α + m − 2)(α + m)
4k

2k + m − 2
〈u, x〉〈x, 2f1〉 |x|α−2k−2 〈xux, 2f1〉k−1.

+4k(k − 1)(α + m)(α + m − 2)

(2k + m − 2)(2k + m − 4)
|u|2 〈x, 2f1〉2 |x|α−2k 〈xux, 2f1〉k−2 (4)

For α = 2 − m, we again observe that Eα
k (x; u) is in the kernel of Dk and has a pointwise

singularity of degree (2 − m) at the origin. Note that we can write Eα
k (x; u) as

Eα
k (x; u) := eα

k (x; u)〈u, 2f1〉k = |x|α R(ω)〈u, 2f1〉k,
where the notation R(ω) was used for the reflection f (u) �→ R(ω)f (u) = f (ωuω). As
eα
k (x; u) belongs to the space Lloc

1 (Rm, End (Hk)) of End (Hk)-valued locally integrable
functions on R

m for α ∈ C with R(α) > −m − 2, it thus defines a distribution on the space
D (Rm,Hk) of Hk-valued test functions (functions in C∞ (Rm,Hk) with compact support).
For arbitrary for γ with R(γ ) > −m, we then consider the distribution |x|γ whose action
on test functions φ ∈ D (Rm) is defined by

〈|x|γ , φ〉 =
∫

Rm

|x|γ φ(x)dx .

The following result will be used, see e.g. [26]:

Lemma 5.1 The mapping γ �→ |x|γ can be uniquely extended to a meromorphic mapping
from C to the space of tempered distributions on R

m (i.e. holomorphic on C, except for a
few isolated points). The poles are the points γ = −m − 2a (for all a ∈ N) and they are all
simple.

For γ ∈ C \ {m + 2a,−2b : a, b ∈ N} we then introduce the Riesz potential by means
of (see [26] page 135-136 for more details)

I
γ
x :=

�
(

m−γ
2

)

2γ π
m
2 �

( γ
2

) |x|−m+γ .

This distribution acts on test functions φ through a convolution product, and one has that
I 0
x φ = limγ→0 I

γ
x φ = φ(0). Note that the poles of |x|−m+γ are cancelled by the poles of

�
( γ

2

)
. The Riesz potential for γ = 2 can be seen as some sort of inverse of the Laplace

operator �x , because it satisfies I
γ
x �xφ = �xI

γ
x φ = −I

γ−2
x φ in distributional sense. A

repeated application of this relation then leads to the relation I
γ
x = (−1)a�a

xI
γ+2a
x , for all

a ∈ N, so we can define

I−2a
x = (−1)a�a

xδ (x) ,

with δ (x) the Dirac-delta distribution on R
m. This thus defines an analytic continuation

of the mapping γ �→ I
γ
x to a holomorphic function with poles in {γ = m + 2a : a ∈ N},

which are then precisely the poles of �
(

m−γ
2

)
. Our findings can be reformulated, in the
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sense that we can analytically extend the mapping γ �→ |x|−m+γ to C \ {−2a : a ∈ N},
according to lemma 5.1. Its singularities are the simple poles, with residues

Res
γ=−2a

|x|−m+γ = Res
γ=−2a

⎛
⎝2γ π

m
2 �

( γ
2

)

�
(

m−γ
2

) I
γ
x

⎞
⎠ = 2−2aπ

m
2

�
(

m
2 + a

) Res
γ=−2a

(
�

(γ

2

))
I−2a
x .

In view of the fact that

Res
γ=−2a

�
(γ

2

)
= lim

γ→−2a
(γ + 2a)�

(γ

2

)
= 2

(−1)a

a! ,

we then find

Res
γ=−2a

|x|−m+γ = 2−2a+1π
m
2

�
(

m
2 + a

)
a!�

a
xδ (x) .

This implies that the mapping α �→ Eα
1 is holomorphic in C \ {−m − 2a : a ∈ N}. More-

over, the poles at the values {−m − 2, . . . , −m + 2, −m} are removable singularities so the
following proposition was proved:

Proposition 5.2 The mapping α �→ Eα
1 (x; u) = |x|α−2 H1(x u x) can be holomorphically

extended to the set C\ {−m − 2a : a ∈ N}.

This means that Eq. (4) holds in distributional sense, for R(α) > −m − 1. Hence, with
this restriction on α, we find that

Dk�(x, u) = lim
α→2−m

(α + m − 2)

(
α + 4k

2k + m − 2

)
|x|α−2k−2 〈xux, 2f1〉k

+ lim
α→2−m

(α + m − 2)
4k(α + m)

2k + m − 2
|x|α−2k−2 〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1

+ lim
α→2−m

4k(k − 1)(α + m)(α + m − 2)

(2k + m − 2)(2k + m − 4)
|x|α−2k |u|2 〈x, 2f1〉2〈xux, 2f1〉k−2,

which leads to

Dk�(x, u) =
(

2 − m + 4k

2k + m − 2

)
2−2k+1π

m
2

�
(

m
2 + k

)
k!�

k
xδ (x) 〈xux, 2f1〉k

+ 8k

2k + m − 2

2−2k+1π
m
2

�
(

m
2 + k

)
k!�

k
xδ (x) 〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1

+ 8k(k − 1)

(2k + m − 2)(2k + m − 4)

2−2k+3π
m
2

�
(

m
2 + k − 1

)
(k − 1)!�

k−1
x δ (x)

× |u|2 〈x, 2f1〉2〈xux, 2f1〉k−2. (5)

In view of the fact that 〈δ, φ〉 = φ(0), we get:

〈(�k
xδ (x))〈xux, 2f1〉k, φ〉 = 〈(�k

xδ (x)), 〈xux, 2f1〉kφ〉
= 〈δ (x) ,�k

x〈xux, 2f1〉kφ〉
= 〈δ (x) ,

(
�k

x〈xux, 2f1〉k
)

φ + . . .〉,
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where the dots indicate all the other terms coming from the action of the operator �k
x . They

can be safely ignored, since we still have to act with the distribution δ (x) which will make
all of these terms disappear. We thus get that

〈(�k
xδ (x))〈xux, 2f1〉k, φ〉 = 〈δ (x) ,

(
�k

x〈xux, 2f1〉k
)

φ〉 = 〈[�x〈xux, 2f1〉k]δ (x) , φ〉.
A similar reasoning can be applied for the other two terms which means that Eq. (5) reduces
to

Dk�(x, u) =
(

2 − m + 4k

2k + m − 2

)
2−2k+1π

m
2

�
(

m
2 + k

)
k!

(
�k

x〈xux, 2f1〉k
)

δ (x)

+ 8k

2k + m − 2

2−2k+1π
m
2

�
(

m
2 + k

)
k!

(
�k

x〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1
)

δ (x)

+ 8k(k − 1)

(2k + m − 2)(2k + m − 4)

2−2k+3π
m
2

�
(

m
2 + k − 1

)
(k − 1)! |u|2

×
(
�k−1

x 〈x, 2f1〉2〈xux, 2f1〉k−2
)

δ (x) . (6)

In order to calculate the action of �k
x on the given polynomials, we need a few lemmas:

Lemma 5.2 For Ha(x) ∈ Ha and Hb(x) ∈ Hb, where a ≥ b, one has that Ha(x)Hb(x) ∈
ker �b+1

x , i.e.

Ha(x)Hb(x) ∈ Ha+b ⊕ |x|2 Ha+b−2 ⊕ . . . ⊕ |x|2b Ha−b.

Proof The results follows from iteration of the fact that the action of the Laplace operator
leads to �x (Ha(x)Hb(x)) = 2

∑m
j=1(∂xj

Ha(x))(∂xj
Hb(x)).

Lemma 5.3 For all integers k ≥ 2, we have:

�k−1
x 〈x, 2f1〉2〈xux, 2f1〉k−2 = 0.

Proof Recalling that 〈xux, 2f1〉 = |x|2 w1 − 2〈u, x〉z1 with z1 = x1 + ix2 and w1 =
u1 + iu2, we have for k ≥ 2:

〈x, 2f1〉2〈xux, 2f1〉k−2 =
k−2∑
j=0

(
k − 2

j

)
(−2)k−j−2 |x|2j z

k−j

1 〈u, x〉k−j−2w
j

1 .

The term 〈u, x〉k−j−2 can be decomposed into harmonics in x. We have two different cases
depending on the parity of k − j . For k − j even, we have

z
k−j

1 〈u, x〉k−j−2 = z
k−j

1

(
Hk−j−2 + . . . + |x|k−j−2 H0

)
,

with Hi ∈ Hi . Using the previous lemma, the term z
k−j

1 Hk−j−2 can be written as

z
k−j

1 Hk−j−2 = H ′
2k−2j−2 + . . . + |x|2k−2j−4 H ′

2.

Similarly, we can write

|x|2 z
k−j

1 Hk−j−4 = |x|2 H ∗
2k−2j−4 + . . . + |x|2k−2j−6 H ∗

4 ,
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which means that

|x|2j z
k−j

1 〈u, x〉k−j−2 = |x|2j H̃2k−2j−2 + . . . + |x|2k−4 H̃2,

since 1 ≤ j ≤ k −2, the maximal power of |x|2 that can appear is the one for j = k −2, i.e.

|x|2k−4 z
k−j

1 〈u, x〉k−j−2 = |x|2k−4 H̃2k−2j−2 + . . . + |x|2k−4 H̃2,

which is clearly in the kernel of �k−1
x . The case where k − j is odd can be computed in a

similar way which completes the proof of the lemma.

Lemma 5.4 For all positive integers k, we have:

�k
x〈xux, 2f1〉k = 22k−1k!(2k + m − 4)

�
(
k + m

2 − 2
)

�
(

m
2 − 1

) 〈u, 2f1〉k.

Proof In the proof of proposition 5.1, it was shown that

�k
x〈xux, 2f1〉k = 2k(2k + m − 4)〈u, 2f1〉�k−1

x 〈xux, 2f1〉k−1

+4k(k − 1) |x|2−m−2k |u|2 �k−1
x 〈x, 2f1〉2〈xux, 2f1〉k−2

= 2k(2k + m − 4)〈u, 2f1〉�k−1
x 〈xux, 2f1〉k−1,

where the second equality follows from the previous lemma. Repeating these steps leads to

�k
x〈xux, 2f1〉k = 2kk!(2k + m − 4)(2k + m − 6) . . . m(m − 2)〈u, 2f1〉k,

which can be simplified to obtain the desired result.

Lemma 5.5 For all positive integers k, we have:

�k
x〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1 = 22k−1k!�

(
k + m

2 − 2
)

�
(

m
2 − 1

) 〈u, 2f1〉k.

Proof A straightforward computation shows that

�k
x〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1 = 2〈u, 2f1〉�k−1

x 〈xux, 2f1〉k−1

+4(k − 1)(k − 2) |u|2 �k−1
x 〈u, x〉〈x, 2f1〉3〈xux, 2f1〉k−3

+4(k − 1) |u|2 �k−1
x 〈x, 2f1〉2〈xux, 2f1〉k−2

+2(k − 1)(2k + m − 6)〈u, 2f1〉
×�k−1

x 〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−2.

The third term is zero, which was proven in lemma 5.3. Using the same notations as in the
proof of that lemma, we have

〈u, x〉〈x, 2f1〉3〈xux, 2f1〉k−3 =
k−3∑
j=0

(
k − 3

j

)
(−2)k−j−3 |x|2j z

k−j

1 〈u, x〉k−j−2w
j

1 .
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This means that also �k−1
x 〈u, x〉〈x, 2f1〉3〈xux, 2f1〉k−3 = 0. The remaining expression is

given by

�k
x〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1 = 2〈u, 2f1〉�k−1

x 〈xux, 2f1〉k−1

+2(k − 1)(2k + m − 6)〈u, 2f1〉
×�k−1

x 〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−2

= 2k(k−1)!(2k+m−6)(2k + m−8) . . . m(m − 2)〈u, 2f1〉k
+2(k − 1)(2k + m − 6)〈u, 2f1〉
×�k−1

x 〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−2.

The proof then follows from induction.

Putting everything together, we find

Dk�(x, u) =
((

2 − m + 4k

2k + m − 2

)
(2k + m − 4) + 8k

2k + m − 2

)

× π
m
2 �

(
k + m

2 − 2
)

�
(

m
2 − 1

)
�

(
m
2 + k

)δ (x) 〈u, 2f1〉k,

which can be simplified to

Dk�(x, u) = 4(4 − m)π
m
2

(2k + m − 4)�
(

m
2 − 1

)δ (x) 〈u, 2f1〉k, (7)

We have thus reached the following conclusion, in which we use the notation R(ω) for the
reflection f (u) �→ R(ω)f (u) = f (ω u ω):

Theorem 5.1 The distribution

ek (x) := (2k + m − 4)�
(

m
2 − 1

)

4(4 − m)π
m
2

|x|2−m R (ω) ∈ C∞ (
R

m
0 , End (Hk)

)

satisfies, for every Hk (u) ∈ Hk , the following equation in distributional sense:

Dkek (x) Hk (u) = δ (x) Hk (u) .

Let us then introduce the Fischer inner product on Hk , by means of

[f, g]F :=
(
f (∂u)g(u)

)∣∣∣
u=0

,

where we used the notation · for complex conjugation. In order to obtain the fundamen-
tal solution for the higher spin Laplace operator, we will let the distribution ek (x) act
on the reproducing kernel Kk(u, v) for Hk with respect to this inner product, satisfying
the defining relation [Kk(u, v), Hk(u)]F = Hk(v), for each Hk(u) ∈ Hk . The repro-
ducing kernel for Hk is given by a so-called Gegenbauer polynomial, i.e. Kk(u, v) :=
|u|2k |v|2k C

( m
2 −1)

k

( 〈u,v〉
|u||v|

)
, see e.g. [1], page 302. Hence, we have obtained our main result:

Theorem 5.2 The fundamental solution for the higher spin Laplace operatorDk is defined
as

Ek (x; u, v) := ek (x)Kk(u, v) = (2k + m − 4)�
(

m
2 − 1

)

4(4 − m)π
m
2

|x|2−m Kk(ω u ω, v).
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Remark 5.1 Note that there are two special values for k: when k = 0, we get the clas-
sical Laplace operator, i.e. D0 = �x . The fundamental solution then becomes Ek (x) =
c0 |x|2−m, where the constant c0 equals

c0 = (m − 4)�
(

m
2 − 1

)

4(4 − m)π
m
2

= −�
(

m
2 − 1

)

4π
m
2

= �
(

m
2

)

2(2 − m)π
m
2

= 1

(2 − m)Am

.

For k = 1, we get the generalised Maxwell operator, see e.g. [18]. The fundamental solution
of D1 is given by E1 (x; u, v) = c1 |x|2−m K1(ω uω, v), where the constant c1 is given by

c1 =
(

m
2 − 1

)
�

(
m
2 − 1

)

2(4 − m)π
m
2

= 1

(4 − m)Am

,

which nicely corresponds to the one that was found in [18].

6 Connection with the Rarita-Schwinger Operator

Since the higher spin Laplace operator is the higher spin version of the Laplace operator one
can wonder whether there is a connection with the Rarita-Schwinger operator, the simplest
higher spin version of the Dirac operator. This question is inspired by the fact that

kerk �x ⊗ S ∼= kerk ∂x ⊕ kerk−1 ∂x , (8)

a relation which is known as the monogenic Fischer refinement (see [5]):

Theorem 6.1 If Hk (u) ∈ Hk (Rm,S) is a spinor-valued k-harmonic polynomial, we have
that

Hk (u) = Mk (u) + uMk−1 (u) ,

with Mj (u) ∈ Mj (Rm,S). Both polynomials are uniquely determined by

Mk−1 (u) = p0Hk (u) = − 1
2k+m−2∂uHk (u)

Mk (u) = p1Hk (u) =
(

1 + 1
2k+m−2u∂u

)
Hk (u) .

To investigate this, we recall the construction of the Rarita-Schwinger operator, see also
[7, 22]. Theorem 6.1 allows us to construct the Rarita-Schwinger operator, which is an
operator acting on functions taking values in the space of monogenic functions (this space
again plays the role of the higher spin fields):

Theorem 6.2 Let f (x; u) be a function in C∞ (Rm,Mk), then the Rarita-Schwinger
operator

Rk : C∞ (
R

m,Mk

) −→ C∞ (
R

m,Mk

)
,

is the unique (up to a multiplicative constant) conformally invariant first-order differential
operator defined as

Rkf (x; u) :=
(

1 + u∂u

m + 2k − 2

)
∂xf (x; u).

The kernel of the Rarita-Schwinger operator Rk is given by (see [7] for a detailed proof):

ker�Rk
∼=

k⊕
i=0

k−i⊕
j=0

S�−i+j,k−i−j .
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Now, recalling theorem 4.1 and using standard tensor product decomposition rules, one has
that

ker� Dk ⊗ S ∼= ker� Rk ⊕ ker�−1 Rk ⊕ ker� Rk−1 ⊕ ker�−1 Rk−1. (9)

At this point, the last statement is merely an isomorphism between irreducible represen-
tations for m), but we will prove that this is actually an equality. This then generalises
expression (8) to our higher spin case. First of all, it is clear that p1 + up0 = Id, so we
can write Dk = Dk (p1 + up0) and we will find expressions for each of these terms. On
Mk-valued functions, the square of the Rarita-Schwinger operator reads:

R2
k = −�x + 4

(2k + m − 2)2
u∂x〈∂u, ∂x〉 − 2

2k + m − 2
{u, ∂x} 〈∂u, ∂x〉

− 4

(2k + m − 2)2
|u|2 〈∂u, ∂x〉2

= −Dk + 4

2k + m − 2

(
1

2k + m − 4
− 1

2k + m − 2

)
|u|2 〈∂u, ∂x〉2

+ 4

(2k + m − 2)2
u∂x〈∂u, ∂x〉,

which means that

Dkp1 =
(

−R2
k + 4

(2k + m − 2)2

(
2 |u|2

2k + m − 4
〈∂u, ∂x〉 + u∂x

)
〈∂u, ∂x〉

)
p1.

Using the fact that

〈∂u, ∂x〉Rk =
(

2k + m − 4

2k + m − 2
∂x − 2

2k + m − 2
u〈∂u, ∂x〉

)
〈∂u, ∂x〉,

which was shown (and exploited) in [7], we can also write this expression as:

Dkp1 =
(

−Rk + 4

(2k + m − 2)(2k + m − 4)
u〈∂u, ∂x〉

)
Rkp1. (10)

The projection p1 ensures that each of the operators appearing at the right-hand side is well-
defined: we have that Rk (respectively u〈∂u, ∂x〉) maps Mk-valued functions to Mk-valued
functions (respectively uMk−1-valued functions). Also, from equation (10), it is clear that
we have for f ∈ C∞ (Rm,Mk):

Rkf = 0 =⇒ Rk−1〈∂u, ∂x〉f = 0 = Dkf .

Next, we calculate

Dkup0 =
(

�x − 4

2k + m − 2

(
〈u, ∂x〉 − |u|2

2k + m − 4
〈∂u, ∂x〉

)
〈∂u, ∂x〉

)
up0

= −
(

uRk−1 + 4

2k + m − 2

(
〈u, ∂x〉 − |u|2

2k + m − 4
〈∂u, ∂x〉

))
Rk−1p0,

The projection p0 again ensures that each of the operators appearing at the right-hand side
is well-defined. The first term between brackets (respectively the second operator) maps
Mk−1-valued functions to uMk−1-valued functions (respectively Mk-valued functions).
Also, from this equation it is clear that for f (x, u) = uf0 with f0 ∈ kerRk−1 one has that

Dkf = Dkup0(uf0) = 0.
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The higher spin Laplace operator can thus be written as a combination of the following
operators:

−R2
kp1 : Hk ⊗ S −→ Mk

4

(2k + m − 2)(2k + m − 4)
u〈∂u, ∂x〉Rkp1 : Hk ⊗ S −→ uMk−1

−uR2
k−1p0 : Hk ⊗ S −→ uMk−1

− 4

2k + m − 2

(
〈u, ∂x〉 − |u|2

2k + m − 4
〈∂u, ∂x〉

)
Rk−1p0 : Hk ⊗ S −→ Mk

Let us then construct the explicit embedding maps for decomposition (9), turning the
isomorphism into an equality. Recall that if f ∈ C∞ (Rm,Mk) ∩ kerRk , we have that
Dkf = 0, which means that ker� Rk can be embedded with the identity map. Another
straightforward embedding is the embedding of the space ker� Rk−1, since D1uf = 0 for
functions f (x) ∈ ker� Rk−1. In order to embed the space ker�−1Rk , we note that one
needs an embedding map which is homogeneous of degree one in x. In view of the fact that
Dkf = Dkp1f , we easily find:

f ∈ ker�−1 Rk ⇒ Dkxf = xDkf + 2

(
∂x − 2

2k + m − 2
u〈∂u, ∂x〉

)
f = 0 .

It is thus clear that a multiplication with x does the job. For the final space ker�−1 Rk−1,
we need an embedding map which is homogeneous of degree (1, 1) in (x, u). To do so, we
will make use of another conformally invariant operator, which is also known as a twistor
operator and is defined as:

p1πk〈u, ∂x〉 : C∞ (
R

m,Mk−1
) −→ C∞ (

R
m,Mk

)
.

This twistor operator is explicitly given by, see e.g. [20] for more information:

p1πk〈u, ∂x〉 := 〈u, ∂x〉 + 1

2k + m − 2

(
u∂x − |u|2 〈∂u, ∂x〉

)

The following result provides us with the desired combination for the embedding of
ker�−1 Rk−1 into ker� Dk:

Lemma 6.1 The space ker�−1 Rk−1 can be embedded in the kernel of the higher spin
Laplace operator (acting on spinor-valued functions) by means of:

JR�xJR p1πk〈u, ∂x〉 : ker�−1 Rk−1↪−→ ker� Dk ⊗ S.

Here p1πk〈u, ∂x〉 is a twistor operator acting on functions taking values in the space of
monogenics of degree k − 1.

Proof A tedious but straightforward calculation shows that p1πk〈u, ∂x〉 maps ker�−1 Rk−1
to ker�−2 Rk . Since a solution of Rk is automatically a solution of Dk , we only need
an operator of homogeneity (2, 0) in (x, u) to fix the homogeneity in x. It is clear from
Section 4 that JR�xJR is the desired operator, as it is an operator of homogeneity (2, 0)

preserving solutions of Dk .

Let us then restate the conclusion:
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Theorem 6.3 The space ker� Dk ⊗ S of �-homogeneous polynomial null solutions for the
higher spin Laplace operator Dk acting on the space C∞(Rm,Hk ⊗ S) decomposes as
follows:

ker� Dk ⊗ S = ker� Rk ⊕ x ker�−1 Rk ⊕ u ker� Rk−1

⊕(
JR�xJR p1πk〈u, ∂x〉

)
ker�−1 Rk−1.
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Appendix: Explicit proof of conformal invariance and ellipticity

In this Appendix, we first consider the conformal invariance in more detail. The following
technical result was already mentioned in expression (1):

Proposition A.1 The following property holds for all 1 ≤ j ≤ m:

JR∂xj
JR = 2〈u, x〉∂uj

− 2uj 〈x, ∂u〉 + |x|2 ∂xj
− xj (2Ex + m − 2)

Proof Suppose Pq(x, u) ∈ Pq (Rm,Hk), i.e. ExPq = qPq . The action of JR on Pq is
given by:

JRPq = |x|2−m Pq

(
x

|x|2 ,
xux

|x|2
)

:= |x|2−m−2q Pq (x, v(x)) ,

where v(x) is defined through the second equality. We thus get:

∂xj
JRPq = |x|2−m−2q

( ˙∂xj
Pq (ẋ, v(x)) + ˙∂xj

Pq (x, v̇(x))
)

+(2 − m − 2q)xj |x|−m−2q Pq.

Here, the dot on the argument of the function and partial derivative is to point out that the
partial derivative only acts on that argument. The first and the last term are the same as for
the C-valued case (using the inversion J ), which leads to the generalised symmetry

J ∂xj
J = |x|2 ∂xj

− xj (2Ex + m − 2).

The remaining term gives:

JR

(
|x|2−m−2q ˙∂xj

Pq (x, v̇(x))
)

= JR

(
|x|2−m−2q

m∑
i=1

∂vi

∂xj

˙∂vi
Pq (x, v̇(x))

)

= JR

(
|x|2−m−2q

m∑
i=1

∂

∂xj

(
ui − 2

〈x, u〉
|x|2 xi

)
˙∂vi

Pq (x, v̇(x))

)

= −2JR

(
|x|2−m−2q

m∑
i=1

(
ujxi

|x|2 + 〈x, u〉δij

|x|2 − 2
〈x, u〉xixj

|x|4
)

˙∂vi
Pq (x, v̇(x))

)

= 2

(
−

(
uj − 2

〈x, u〉xj

|x|2
)

〈x, ∂u〉 + 〈x, u〉∂uj
− 2

〈x, u〉〈x, ∂u〉
|x|2

)
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Simplifying the last term completes the proof.

We then arrive at the main proposition, stating that the special conformal transformations
are generalised symmetries of the higher spin Laplace operator:

Proposition A.2 The special conformal transformations

JR∂xj
JR := 2〈u, x〉∂uj

− 2uj 〈x, ∂u〉 + |x|2 ∂xj
− xj (2Ex + m − 2) ,

with j ∈ {1, · · · ,m} are generalised symmetries of the higher spin Laplace operator.

Using the fact that

[AB, CD] = A[B, C]D + AC[B, D] + [A,C]DB + C[A, D]B,

we first can prove the following technical lemmas:

Lemma A.1 For all 1 ≤ j ≤ m, we have:

[�x,JR∂xj
JR] = −4xj�x + 4〈u, ∂x〉∂uj

− 4uj 〈∂u, ∂x〉.

Proof Follows from straightforward calculations.

Lemma A.2 For all 1 ≤ j ≤ m, we have:

[〈u, ∂x〉〈∂u, ∂x〉,JR∂xj
JR] = 2 |u|2 ∂uj

〈∂u, ∂x〉 − 4xj 〈u, ∂x〉〈∂u, ∂x〉
+ (〈u, ∂x〉∂uj

− uj 〈∂u, ∂x〉
)
(2Eu + m − 2) .

Proof Denoting Cj := JR∂xj
JR , we get:

[〈u, ∂x〉〈∂u, ∂x〉, Cj ] = 2〈u, ∂x〉〈x, ∂u〉∂xj
+ 2〈u, x〉∂xj

〈∂u, ∂x〉
−〈u, ∂x〉∂uj (2Ex + m − 2) − 2〈u, ∂x〉xj 〈∂u, ∂x〉
+uj (2Ex + m − 2) 〈∂u, ∂x〉 − 2xj 〈u, ∂x〉〈∂u, ∂x〉
+2〈u, ∂x〉 (Eu + Ex + m) ∂uj

+ 2 |u|2 ∂uj
〈∂u, ∂x〉

−2〈u, x〉∂xj
〈∂u, ∂x〉 − 2〈u, ∂x〉∂xj

〈x, ∂u〉
−2uj (Eu − Ex) 〈∂u, ∂x〉

= 2〈u, ∂x〉〈x, ∂u〉∂xj
− 〈u, ∂x〉∂uj (m − 2)

−2
(
xj 〈u, ∂x〉 − uj

) 〈∂u, ∂x〉 + uj (m − 2) 〈∂u, ∂x〉
−2xj 〈u, ∂x〉〈∂u, ∂x〉 + 2〈u, ∂x〉 (Eu + m) ∂uj

+2 |u|2 ∂uj
〈∂u, ∂x〉 − 2uj 〈∂u, ∂x〉 (Eu − 1)

−2〈u, ∂x〉
(〈x, ∂u〉∂xj

+ ∂uj

)
.

Simplifying the last expression completes the proof.

Lemma A.3 For all 1 ≤ j ≤ m, we have:

[|u|2 〈∂u, ∂x〉2,JR∂xj
JR] = −4xj |u|2 〈∂u, ∂x〉2 + 2 |u|2 ∂uj

〈∂u, ∂x〉 (2Eu + m − 4) .
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Proof Again denoting Cj := JR∂xj
JR , we get:

[|u|2 〈∂u, ∂x〉2, Cj ] = 4 |u|2 〈x, ∂u〉〈∂u, ∂x〉∂xj
− 4 |u|2 xj 〈∂u, ∂x〉2

−2 |u|2 ∂uj
〈∂u, ∂x〉 (2Ex + m − 2) − 4uj 〈u, x〉〈∂u, ∂x〉2

+4 |u|2 (Ex + Eu + m + 1) 〈∂u, ∂x〉∂uj
+ 4uj 〈u, x〉〈∂u, ∂x〉2

−4 |u|2 〈∂x, ∂u〉∂xj
〈x, ∂u〉

= 4 |u|2 〈x, ∂u〉〈∂u, ∂x〉∂xj
− 4 |u|2 xj 〈∂u, ∂x〉2

−2 |u|2 ∂uj
〈∂u, ∂x〉 (2Ex + m − 2) − 4uj 〈u, x〉〈∂u, ∂x〉2

+4 |u|2 ∂uj
〈∂u, ∂x〉 (Ex + Eu + m + 1 − 3) + 4uj 〈u, x〉〈∂u, ∂x〉2

−4 |u|2 〈x, ∂u〉〈∂x, ∂u〉∂xj
− 4 |u|2 ∂uj 〈∂x, ∂u〉

There is no term with �u involved because we work with Hk-valued functions. Simplifying
the last expression completes the proof.

Now we can put everything together, hereby again using the notation Cj :

DkCj = CjDk + [Dk, Cj ]
= (

Cj − 4xj

)
Dk + 4

(〈u, ∂x〉∂uj
− uj 〈∂u, ∂x〉

)

− 4

2k + m − 2

(〈u, ∂x〉∂uj
− uj 〈u, ∂x〉

)
(2Eu + m − 2)

− 8

2k + m − 2m
|u|2 ∂uj

〈u, ∂x〉

+ 8

(2k + m − 2)(2k + m − 4)
|u|2 ∂uj

〈∂u, ∂x〉 (2Eu + m − 4)

= (
Cj − 4xj

)
Dk ,

which completes the proof of proposition A.2. Finally, we also prove that the higher spin
Laplace operator is elliptic. We first start with the definition of ellipicity:

Definition A.1 A linear homogeneous differential operator of second-order

D : C∞ (
R

m,Vλ

) −→ C∞ (
R

m,Vμ

)
,

where Vλ and Vμ are vector spaces, is elliptic if for every non-zero vector x ∈ R
m its

principle symbol, which is a linear map σx(D) : Vλ −→ Vμ obtained by replacing its
partial derivatives ∂xj

with the corresponding variables xj , is a linear isomorphism.

Theorem A.1 The higher spin Laplace operator, which is explicitely given by

Dk := �x − 4

2k + m − 2

(
〈u, ∂x〉 − |u|2

2k + m − 4
〈∂u, ∂x〉

)
〈∂u, ∂x〉

is an elliptic operator if m > 4.
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Proof To prove the theorem, we will show that for fixed x ∈ R
m
0 the symbol of the higher

spin Laplace operator, which is given by

σx(Dk) = |x|2 − 4

2k + m − 2

(
〈u, x〉 − |u|2

2k + m − 4
〈x, ∂u〉

)
〈x, ∂u〉 : Hk −→ Hk,

is a linear isomorphism. As the symbol is clearly a linear map, it remains to be proven that
the map is injective. To do so, we will need a clever choice for a basis for Hk (Rm,C),
which will be obtained using the classical CK extension for harmonic polynomials [29].
Therefore, we need the classical Kelvin inversion J , which is given by

J : C∞ (
R

m,C
) −→ C∞ (

R
m
0 ,C

) : f (u) �→ J [f ](u) := |u|2−m f

(
u

|u|2
)

In this case, we also have that

sl(2) ∼= Span
(
J ∂uj

J , ∂uj
, 2Eu + m − 2

)
,

where J ∂uj
J is explicitly given by

J ∂uj
J = |u|2 ∂uj

− uj (2Eu + m − 2)

For x ∈ R
m
0 fixed, we have

J 〈x, ∂u〉J = |u|2 〈x, ∂uj
〉 − 〈u, x〉 (2Eu + m − 2) ,

which means that we can write the symbol of Dk as

σx(Dk) = |x|2
(

1 + 4

(2k + m − 2)(2k + m − 4)
(J 〈ω, ∂u〉J ) 〈ω, ∂u〉

)

The branching rules for the Lie algebra m) state that when we restrict the action on the irre-
ducible representation with highest weight λ = (k, 0 . . . , 0) to m− 1), we get the following
decomposition:

(k, 0, . . . , 0)

∣∣∣∣
m)

m−1)

=
k⊕

j=0

(k − j, 0, . . . , 0).

This means that an arbitrary harmonic polynomial Hk(u) ∈ Hk (Rm,C) can be written as

Hk(u) =
k∑

j=0

(J 〈ω, ∂u〉J )j H ∗
k−j (u),

where H ∗
k−j (u) ∈ Hk−j (Rm,C) such that 〈ω, ∂u〉H ∗

k−j (u) = 0. The right-hand side of
the equation is then clearly invariant under the action of m − 1), where m − 1) has to be
understood as the Lie algebra corresponding to the subgroup of SO(m) containing rotations
in the hyperplane perpendicular to ω ∈ R

m. Using the relation

[〈ω, ∂u〉, (J 〈ω, ∂u〉J )j ] = −2 (J 〈ω, ∂u〉J )j−1 (2Eu + m − 3) ,

which is a relation in the universal enveloping algebra U(sl(2)) that can be proved by
induction, the equation σx(Dk)Hk(u) = 0 leads to the following system:

Hk(u) +
k∑

j=1

(
1 − 4j (2k + m − j − 3)

(2k + m − 2)(2k + m − 4)

)
(J 〈ω, ∂u〉J )j H ∗

k−j (u) = 0.
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Since the polynomials H ∗
k−j (u) ∈ Hk (Rm,C) are linearly independent for 1 ≤ j ≤ k, we

have that either H ∗
k−j (u) = 0 for all 1 ≤ j ≤ k, which means that ker σx(Dk) = 0 or that

1 − 4j (2k + m − j − 3)

(2k + m − 2)(2k + m − 4)
= 0,

⇐⇒ (2k + m − 4)(2k + m − 2) − 4j (2k + m − j − 3) = 0.

The latter is a polynomial of second-order in m and has two roots:

m = −2(k − j − 1) and m = −2(k − j − 2).

It is easy to see that for k ∈ N fixed, only m ≤ 4 causes trouble. This means that
ker σx(Dk) = 0 whenever m > 4, which proves the statement.
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